
BEFORE MEMORY WAS VIRTUAL

Peter J. Denning
George Mason University

11/1/96

Virtual memory, long a standard feature of nearly every operating system and
computer chip, is now invading the Internet through the World Wide Web.
Once the subject of intense controversy, virtual memory is now so ordinary that
few people think much about it. That this has happened is one of the
engineering triumphs of the computer age.

Virtual memory is the simulation of a storage space so large that programmers
do not need to rewrite programs, and authors do not need to rewrite documents,
when the content of a program module, the capacity of a local memory, or the
configuration of a network changes. The name, borrowed from optics, recalls the
virtual images formed in mirrors and lenses -- images that are not there but
behave is if they are. The story of virtual memory, from the Atlas Computer at
the University of Manchester in the 1950s to the multicomputers and World
Wide Web on the 1990s, is not simply a story of automatic storage allocation, it is
a story of machines helping programmers with protection of information, reuse
and sharing of objects, and linking of program components.

In what follows, I will give an account of the history of virtual memory,
including personal recollections of the events I witnessed and experienced.
These recollections will make up a kind of photo album of technical snapshots of
virtual memory from birth, through adolescence, to maturity. From these
snapshots you will see that the real driver was the quest for a good programming
environment; automatic storage allocation was actually a secondary concern.
You will see that virtual memory’s designers had deep insights about
modularity, sharing, resuse, and objects a long time ago, a fact that may surprise
some younger members of the field. Without those insights, virtual memory
would never have passed its adolescence.

I was a graduate student at MIT Project MAC during 1964-68, a time of intense
debate on the principles to be incorporated into Multics, principles that would
make a permanent imprint on operating systems. Automatic storage allocation
and management of multiprogramming were high on the agenda. I contributed
the working set model for program behavior. The working set model generated
a practical theory for measuring a program’s dynamic memory demand and
building an automatic control system that would schedule processor and

Virtual Memory P. J. Denning Page 2

memory for optimum throughput and response time. I also contributed a
unified picture of virtual memory that helped to settle the controversies
surrounding it.

Programming with Memory Hierarchies

From their beginnings in the 1940s, electronic computers had two-level storage
systems. In the 1950s, main memory was magnetic cores (today it is RAMs); the
secondary memory was magnetic drums (today it is disks). The processor (CPU)
could address only the main memory. A major part of a programmer’s job was
to devise a good way to divide a program into blocks and to schedule their
moves between the levels. The blocks were called “segments” or “pages” and
the movement operations “overlays” or “swaps”. The designers of the first
operating systems in the 1950s dreamt of relieving the programming burden by
automating all this storage management.

It is easy to see how the programmer’s job is significantly impacted by a memory
hierarchy. Consider matrix multiplication. If you create a matrix multiply
algorithm straight from the definition in the textbook, you will create a program
with three nested loops covering six lines of text. This program becomes much
more complicated if you cannot fit the three matrices in main memory at the
same time: you have to decide which rows or columns of which matrices you can
accommodate in the space available, create a strategy for moving them into main
memory, and implement that strategy by inserting additional statements into the
program. You will come to several conclusions from the exercise: (1) devising an
overlay strategy is time consuming, in this example more than programming the
guts of the algorithm, (2) the overlay strategy depends on the amount of memory
you assume is available, and (3) the size of the program increases by a factor of
two or three. Many programmers reached the same conclusions for other
programs that will not fit into the main memory.

So it was pretty obvious to the designers of operating systems in the early 1960s
that automatic storage allocation could significantly simplify programming. The
first operating system design group to accomplish this was the Atlas team at the
University of Manchester who, by 1959, had produced the first working
prototype of a virtual memory (Fotheringham 1961; Kilburn et al 1962). They
called it one-level storage system. At the heart of their idea was a radical
innovation --- a distinction between “address” and “memory location”. It led
them to three inventions. (1) They built hardware that automatically translated
each address generated by the processor to its current memory location. (2) They
devised demand paging, an interrupt mechanism triggered by the address
translator that moved a missing page of data into the main memory. (3) They
built a replacement algorithm, a procedure to detect and move the least useful
pages back to secondary memory.

Virtual memory was adopted widely in commercial operating systems in the
1960s. The IBM 360/67, CDC 7600, Burroughs 6500, RCA Spectra/70, and GE
645 all had it. By the mid 1970s IBM 370, DEC VMS, DEC TENEX, and Unix had

Virtual Memory P. J. Denning Page 3

it too. In all these systems, it was the backbone multiprogramming, a stratagem
for loading several programs simultaneously into main memory in order to
maintain high processing efficiency. Virtual memory solved not only the storage
allocation problem but the more critical memory protection problem. Much to
everyone’s surprise, these systems all exhibited “thrashing”, a condition of near-
total performance collapse when the multiprogrammed load was too high
(Denning 1968). (See Figure 1.) The concern to eliminate thrashing triggered a
long line of experiments and models seeking effective load control systems. This
was finally accomplished by the late 1970s --- near-optimal throughput will
result when the virtual memory guarantees each active process just enough space
to hold its working set (Denning 1980).

Hardware designers also found virtual memory attractive. In 1965, Maurice
Wilkes proposed the “slave memory”, a small high-speed store included in the
processor to hold, close at hand, a small number of most recently used blocks of
program code and data. Slave memory also used address translation, demand
loading, and usage-based replacement. Wilkes said that, by eliminating many
data transfers between processor and the main memory, slave memory would
allow the system to run within a few percent of the full processor speed at a cost
of a few percent of the main memory (Wilkes 1965). The term “cache memory”
replaced “slave memory” in 1968 when IBM introduced it on the 360/85
machine. Cache memory is now a standard principle of computer architecture
(Hennessey 1990).

Throughput
(jobs/sec)

CPU

DISK

N

N 0

Figure 1. When it was first observed in the 1960s, thrashing was an
unexpected, sudden drop in throughput of a multiprogrammed system
when the number of programs sharing the main memory N passed a
critical threshold N0. No one knew how to calculate the threshold,
which varied with the changing workload. I explained the
phenomenon in 1968 and showed that a working-set memory
controller would stabilize the system close to the optimal
multiprogramming level. In 1975, many colleagues and I showed from

Virtual Memory P. J. Denning Page 4

queueing network models that the sudden drop was forced by
saturation of the paging disk, whose limit on throughput could be
calculated from disk access times and program page-fault-rate
functions.

Thrashing Solved by The Working Set Model

When I arrived at MIT in 1964, the debate over virtual memory was in full swing.
Jack Dennis, who had written extensively and eloquently on the value of
segmented address spaces for sharing, modularity, protection, and reusability,
had won a place for segmented virtual memory in Multics. Others, such as
Richard Kain, liked the elegance of the mechanism, but worried that its cost
would be too high and that excessive “page turning” could kill system
performance. Jerry Saltzer and Fernando Corbató took a middle ground --- they
sought an automatic control system that would regulate the multiprogrammed
memory for optimal throughout. The ideal control would have a single “tuning
knob” that would be adjusted once, like the automatic tuning system of an FM
receiver.

I took it as a challenge to solve that control problem. The goal was a virtual
memory system that could satisfy the programming needs of a Dennis and the
performance needs of a Kain. Since fault-rates depend ultimately on the patterns
by which programs reference their pages, I began to think extensively about
program behavior. My quest was a single model that would account for all the
individual cases (loops, nested loops, array referencing, clusters of subroutines,
etc). I came to believe that the central property of this model had to be “locality”
--- the tendency of programmers to write programs that address subsets of their
pages over long time intervals. I purposely put the programmer into this
formulation because I was convinced that human thought patterns for problem-
solving tended to impose structure and regularity on the dynamics of their
programs; in short, locality was a universal property of programs because it is a
universal property of how people think. I found many allies for this view in the
virtual machine research group at IBM Yorktown labs, especially with Les
Belady, who had taken extensive measurements of programs and had found
locality in every one.

After many months and many failed models for locality, late one night in the
Christmas recess of 1966 I had the Aha! insight that became the working set
model. Rather than find a way to generate locality, all I needed was a standard
way to observe locality. I proposed to define the working set as the set of pages
referenced in a sampling window extending from the current time backwards
into the past. The idea of sampling for used pages was not new; it appeared
within usage-bit-based paging algorithms. What was new was that the window
was defined in the virtual time of the program --- i.e., CPU time with all
interrupts removed -- so that the same program with the same input data would
have the same locality measurements no matter what the memory size,
multiprogramming level, or scheduler policy. This simple shift of observer made

Virtual Memory P. J. Denning Page 5

a profound difference. I called the set of pages observed in the window the
“working set”, a term that was already being used for the intuitive concept of the
smallest set of pages required to be in main memory in order that virtual
memory would generate acceptable processing efficiency. The virtual-time-
based definition made that precise: the larger the window, the larger the working
set, the lower the probability of paging, and the greater the processing efficiency.

In the next few months I discovered that this formulation is extremely powerful.
I was able to give formulas for the paging rate and size of a working set memory
policy as a function of its single parameter, window size. These basic measures
could be computed from the histogram of intervals between successive
references to the same page, a function that could be measured efficiently and in
real time. I was able to explain in this theory what caused thrashing and how to
prevent it. Although the hardware needed to measure working sets dynamically
is more expensive than most designers were willing to tolerate, a number of very
good approximations based on sampling usage bits were made, and they solved
the problem of thrashing. A decade after the original discovery, my student
Scott Graham showed experimentally that a single setting of the working set
window size would be sufficient to control the entire operating system to be
within five or ten percent of its optimum throughput. This provided the final
steo of the solution to Saltzer and Corbato’s control problem. The basic concepts
developed then are widely used today.

real

time

virtual

time

tt-T

3 9 2 3 5 2 2 9 3 4 2 3 4

. . . 3 9 2 3 5 2 2 9 3 4 2 3 4

Figure 2. The working set of a program W(t,T) at its virtual time t is
the distinct pages referred to by that program in the backward
window of size T. The identities of the pages can be determined
from usage bits. In this example, the page reference trace inside
the window contains the distinct pages {2,3,4,5,9}, which is the
working set at time t. At two earlier times there were page faults
(because pages 2 and 4 may were not present in main memory).
The time intervals to service the page faults are shown in black on
the real time scale. The processing efficiency is the ratio of black

Virtual Memory P. J. Denning Page 6

to non-black intervals on the real time scale; it improves as the
window size increases.

Memory Management Theory

From 1967 though 1975 I worked on theories of program behavior, memory
management, and system performance for computers with virtual memory.

• A program behavior model generates address traces that are

statistically close to address traces measured for real programs. Within
a model, a small number of parameters can be used to control locality
set size, locality holding times, extent of sequential or random
correlations, and the like. The model can be used to generate artificial
address traces in real time, providing an input for simulators of
computer systems. The model can also be used as a basis for system
performance models.

• A memory management model computes the number and volume of

objects moved per unit time between levels of memory for a given
memory management policy.

• A system performance model computes the throughput and response

time of a computer system operated under a memory management
policy for a workload satisfying given program-behavior assumptions.

I had the privilege of working with many colleagues and students on the models,
over 200 in all (Denning 1980). We learned many important things along the
way -- for example:

• The principal statistics of a working-set policy can be computed from a

histogram of the lengths of intervals between repeated references to
pages.

• The average duration of a locality set in a program could be estimated

from Little’s law applied to the working set: D = (mean working set
size)/(paging rate). D was found experimentally to be relatively
insensitive to the window size of the working set policy, giving
experimental proof that locality is a real phenomenon.

• Locality in address traces derived from locality of reference in the

source code of programs.

• Most programs exhibit phase-transition behavior: long intervals

during which all references are restricted to a given locality set. Phases
are periods of stability and predictability. Transitions between phases
are chaotic.

Virtual Memory P. J. Denning Page 7

• A simple law relates system throughput X (jobs completed per
second), space-time Y (number of page-seconds of memory consumed
by a job), and memory capacity M (number of pages): M = XY.
Maximizing throughput is the same as minimizing space-time of a job,
which is the objective of the memory policy.

• The reciprocal of the fault-rate function of a program gives the mean

virtual time between faults; it is called the lifetime function. Allocating
a program enough space to accommodate the knee of the function
usually minimizes the program’s space-time. (See Figure 3.)

• The fault-rate functions of the programs making up the workload

become the parameters of a multi-class queueing network model of the
computer system on which the work is run. The model allows fast
computation of system throughput and response time. It also gives a
direct way to compute the upper bound on throughput imposed by
saturation of the paging device, giving a simple way to explain
thrashing (and avoid it).

• The working set memory management policy is optimal: a single value

of working-set window size can be tuned for the whole computer
system; it need be dynamically adjusted.

mean time
between
faults

size of
space
allocated

knee

knee allocation

Figure 3. The lifetime curve of a program is the mean time
between addressing faults as a function of the mean size of the
memory space allocated to it. These function have an overall “S”
shape. When the size of the allocated space is close to the knee
allocation, the program tends to require the minimum space-time,

Virtual Memory P. J. Denning Page 8

thus contributing to the system’s capacity to deliver optimum
throughput. The working-set policy can be tuned so that it
operates every program close to its knee allocation.

These pursuits took us through a lot of mathematics (probability and queueing
theory were the most common) and experimentation (measuring systems and
comparing with models). We discovered repeatedly that the stochastic models
worked well despite the fact that their key assumptions were usually violated in
practice. For example, we discovered that a queueing network model of a
system would estimate throughput to within 5% of the value measured for that
system, even though the system violated assumptions of statistical steady-state,
exponential service times, and random arrivals. In 1975 I entered a collaboration
with Jeffrey Buzen, who was trying to explain this phenomenon. He called the
approach “operational analysis” to emphasize that models could be formulated
from purely operational assumptions. Many limit theorems of queueing theory
are operational laws --- relationships among measurable quantities that hold for
every data set (Denning and Buzen 1978). Operational analysis helped us
understand why the methods for measuring the statistics of “stack algorithms”
and of “working set algorithms” worked so well. (See Appendix for the results
of a controversy about operational analysis.)

The End of the Beginning

The historical thread of concern for program models, memory management, and
performance models of computer systems has persisted to the present day as
operating system engineers have taken the results into client-server architectures.
But to help you understand the rest of the story of the maturation of virtual
memory in today’s operating systems, I must return to the beginning and
examine more deeply the thread of concern for programming.

The literature of 1961 records a spirited debate about automatic storage
allocation. By that time, Fortran, Algol, and Lisp had become the first widely-
used higher-level programming languages. These languages made storage
allocation harder for the programmer because programs were larger, more
machine independent, more modular, and their dynamics more dependent on
their input data. Dozens of experimental studies during the 1960s sought either
to affirm or deny the hypothesis that operating systems could do a better job at
storage allocation than any compiler or programmer.

One by one, the technical problems were solved during the 1960s --- thrashing,
optimal memory management, caching, address translation for paging and for
segmentation, protected subroutine calls, limited protection domains guarded by
hardware. The last remaining part of the debate --- whether the operating
system’s set of automatic overlay strategies could outperform the best
programmers manual overlay strategies --- was laid to rest in 1969 by an
extensive study of program locality by David Sayre’s IBM research team (Sayre,

Virtual Memory P. J. Denning Page 9

1969). Among other things, that team showed that the total number of page
moves up and down the memory hierarchy was consistently less with virtual
memory than with manual overlays; this meant that virtual-memory controlled
multiprogramming systems would be more efficient than manual-controlled
systems.

I was able to assemble a coherent picture from all the pieces and I wrote the
paper “virtual memory”, which went on to enjoy a long period of being regarded
as a classic (Denning, 1970). This paper celebrated the successful birth of virtual
memory.

Object-Oriented Virtual Memory

If it ended here, this story would already have guaranteed virtual memory a
place in history. But the designers of the 1960s were no less inventive than those
of the 1950s. Just as the designers of the 1950s sought a solution to the problem
of storage allocation, the designers of the 1960s sought solutions to two new
kinds of programming problems: (1) Sharable, reusable, and recompilable
program modules, and (2) packages of procedures hiding the internal structure
of classes of objects. The first of these led to the segmented address space, the
second to the architecture that was first called capability-based addressing and
later object-oriented programming.

In 1965 the designers of Multics at MIT sought systems to support large
programs built from separately compiled, sharable modules linked together on
demand. Jack Dennis was the leading spokesman (Dennis 1965, Organick 1972).
To Dennis, virtual memory as a pure computational storage system was too
restrictive; he held that modular programming would not become a reality as
long as programmers had to bind together manually, by a linking loader or
makefile program, the component files of an address space. Working with other
designers of Multics, Dennis added a second dimension of addressing to the
virtual address space, enabling it to span a large collection of linearly-addressed
segments. A program could refer to a variable X within a module S by the two-
part name (S,X); the symbols S and X were retained by the compiler and
converted to the hardware addresses by the virtual memory on first reference (a
“linkage fault”). The Multics virtual memory demonstrated very sophisticated
forms of sharing, reuse, access control, and protection.

What became of these innovations? The segmented address space did not
survive as a recognizable entity, ostensibly because most programmers were
content with one, private, linear address space and a handful of open files. The
methods of address translation for segmentation were generalized by Dennis and
his students into capability machines and, later, object-oriented programming.
The dynamic linking mechanism did not die with Multics. It merely went into
hibernation, recently reawakening in the guise of the World Wide Web, in which
programs and documents contain symbolic pointers to other objects that are
linked on demand.

Virtual Memory P. J. Denning Page 10

A major turning point occurred in 1965 when Jack Dennis and his student, Earl
Van Horn, worked on a paper that they called “programming semantics for
multiprogrammed computations.” They devised a generalization of virtual
memory that allowed parallel processes in operating systems to operate in their
own “spheres of protection”. They replaced the concept of address with a new
concept they called “capability”, which was a protected pointer to an arbitrary
object. I was Van Horn’s office mate while he worked on this project with
Dennis; I remember our blackboard being filled with candidate terms like
“pointer”, “handle”, and “generalized address”, and it was some weeks before
he and Dennis settled on the word “capability”.

Processor

Main
Memory

s b c b

s:

c

T A ID

1

Mapper

c+k:

c+b:

c:

Objects Table

P B L

x:

Descriptor Table

t a x

k

Secondary
Memory

up
down

U

did d

OT[d] DT

TLB

s t a c k

Figure 4. Two-level mapping scheme has become a universal
method to translate an address to a reference to a shared object.
The domain identifier register (did) associates the processor with an
objects table that lists all the objects accessible in that domain.
That table converts the local object identifier (s) to the global object
identifier (x). The global identifier selects a descriptor, which in
this case points to a segment of memory containing the object. A
translation lookaside buffer (TLB) holds a number of most-recent
paths connecting the local address to the object’s location in
memory; the TLB can map repeated references to the object in a
small fraction of the time that the two table lookups would take. If
an object is not present in main memory, the mapper will issue
appropriate up and down commands to the secondary memory.
With this scheme, each domain can have a (different) local
identifier for the same object, facilitating sharing without prior
arrangement; and the physical location of the object is recorded
just once, in the descriptor, so that any relocations are effective
instantly. In a large distributed system, such as Internet, the local
object identifiers are the “URLs” and the global object identifiers
“handles”; the main memory is on the local computer and

Virtual Memory P. J. Denning Page 11

secondary memory is a server somewhere in the network; and the
up and down commands correspond to uploads and downloads
performed automatically by the network protocol.

Capability Machines

With that extraordinary paper, Dennis and Van Horn initiated a new line of
computer architectures, the capability machines. They anticipated object-oriented
programming: a programmer can build a manager that would create and delete
objects of a class and perform operations on them. They introduced the concept
called “protected entry point”, a way to call a procedure and force the CPU into a
new protection domain associated with that procedure. Dennis and Van Horn
were especially concerned that objects be freely reusable and sharable and, at the
same time, that their internal structures be accessible only to their authorized
managers. Their proposal inspired others to build capability machines during
the 1970s, including the Plessey 250, IBM System 38, Cambridge CAP, Intel 432,
SWARD, and Hydra. In these systems, capabilities were implemented as long
addresses (e.g., 64 bits), which the hardware protected from alteration. (See
Fabry 1974, Myers 1982, Wilkes and Needham 1979.) The RISC microprocessor,
with its simplified instruction set, rendered capability-managing hardware
obsolete by the mid 1980s. But software-managed capabilities, now called
handles, are indispensable in modern object-oriented programming systems,
databases, and distributed operating systems (Chase et al, 1994). The same
conceptual structure has also reappeared in a proposal to manage objects and
intellectual property in the Internet (Kahn & Wilensky 1995).

You may have wondered why virtual memory, so popular in the operating
systems of the 1960s and 1970s, was not present in the personal-computer
operating systems of the 1980s. The pundits of the microcomputer revolution
proclaimed bravely that personal computers would not succumb to the diseases
of the large commercial operating systems; the personal computer would be
simple, fast, and cheap. Bill Gates, who once said that no user of a personal
computer would ever need more than 640K of main memory, brought out
Microsoft DOS in 1982 without most of the common operating system functions,
including virtual memory. Over time, however, programmers of personal
computers encountered exactly the same programming problems as their
predecessors in the 1950s, 1960s, and 1970s. That put pressure on the major PC
operating system makers (Apple, Microsoft, and IBM) to add multiprogramming
and virtual memory to their operating systems. These makers were able to
respond positively because the major chip builders had never lost faith; Intel
offered virtual memory and cache in its 80386 chip in 1985; and Motorola did
likewise in its 68020 chip. Apple offered multiprogramming in its MultiFinder
and virtual memory in its System 6 operating system. Microsoft offered
multiprogramming in Windows 3.1 and virtual memory in Windows 95. IBM
offered multiprogramming and virtual memory in OS/2.

A similar pattern appeared in the early development of distributed-memory

Virtual Memory P. J. Denning Page 12

multicomputers beginning in the mid 1980s. These machines allowed for a large
number of computers, sharing a high-speed interconnection network, to work
concurrently on a single problem. Around 1985, Intel and N-Cube introduced
the first hypercube machines consisting of 128 component microcomputers.
Shortly thereafter, Thinking Machines produced the first actual supercomputer
of this genre, the Connection Machine, with a maximum number of 65,536
component computer chips. These machines soon challenged the traditional
supercomputer by offering the same aggregate processing speed at a lower cost
(Denning 1990). Their designers initially eschewed virtual memory, believing
that address translation and page swapping would seriously detract from the
machine’s performance. But they quickly encountered new programming
problems having to do with synchronizing the processes on different computers
and exchanging data among them. Without a common address space, their
programmers had to pass data in messages. Message operations copy the same
data at least three times: first from the sender’s local memory to a local kernel
buffer, then across the network to a kernel buffer in the receiver, and then to the
receiver’s local memory. The designers of these machines began to realize that
virtual memory can reduce communication costs by as much as two-thirds
because it copies the data once at the time of reference. Tanenbaum (1995)
describes a variety of implementations under the topic of distributed shared
memory.

Virtualizing the Web

The World Wide Web (Berners-Lee 1996), extends virtual memory to the world.
The Web allows an author to embed, anywhere in a document, a “uniform
resource locator” (URL), which is an Internet address of a file. The WWW
appeals to many people because it replaces the traditional processor-centered
view of computing with a data-centered view that sees computational processes
as navigators in a large space of shared objects. To avoid the problem of URLs
becoming invalid when an object’s owner moves it to a new machine, Kahn and
Wilensky have proposed a two-level mapping scheme that first maps a URL to a
handle, maps the handle to the machine hosting the object, and then downloads
a copy of the object to the local machine (Kahn 1995). This scheme is structurally
identical to the mapping of object-oriented virtual memory considered in the
1960s and 1970s (Dennis and van Horn 1966, Fabry 1974). With its Java
language, Sun Microsystems has extended WWW links to address programs as
well as documents (Gilder 1995); when a Java interpreter encounters the URL of
another Java program, it brings a copy of that program to the local machine and
executes it on a Java virtual machine. These technologies, now seen as essential
for the Internet, vindicate the view of the Multics designers a quarter century ago
--- that many large-scale computations will consist of many processes roaming a
large space of shared objects.

Conclusion

Virtual memory is one of the great engineering triumphs of the computing age.

Virtual Memory P. J. Denning Page 13

Virtual memory systems are used to meet one or more of these needs:

1. Automatic Storage Allocation: Virtual memory solves the overlay

problem that arises when a program exceeds the size of the
computational store available to it. It also solves the problems of
relocation and partitioning arising with multiprogramming.

2. Protection: Each process is given access to a limited set of objects --- its

protection domain. The operating system enforces the rights granted
in a protection domain by restricting references to the memory regions
in which objects are stored and by permitting only the types of
reference stated for each object (e.g., read or write). These constraints
are easily checked by the hardware in parallel with address formation.
These same principles are being used in for efficient implementations
of object-oriented programs.

3. Modular Programs: Programmers should be able to combine separately
compiled, reusable, and sharable components into programs without
prior arrangements about anything other than interfaces, and without
having to link the components manually into an address space.

4. Object-Oriented Programs: Programmers should be able to define
managers of classes of objects and be assured that only the manager
can access and modify the internal structures of objects (Myers 1982).
Objects should be freely sharable and reusable throughout a
distributed system (Chase 1994, Tanenbaum 1995). (This is an
extension of the modular programming objective.)

5. Data-Centered Programming. Computations in the World Wide Web
tend to consist of many processes navigating through a space of
shared, mobile objects. Objects can be bound to a computation only on
demand.

6. Parallel Computations on Multicomputers. Scalable algorithms that can
be configured at run-time for any number of processors are essential to
mastery of highly parallel computations on multicomputers. Virtual
memory joins the memories of the component machines into a single
address space and reduces communication costs by eliminating much
of the copying inherent in message-passing.

From time to time over the past forty years, various people have argued that
virtual memory is not really necessary because advancing memory technology
would soon permit us to have all the random-access main memory we could
possibly want. Such predictions assume implicitly that the primary reason for
virtual memory is automatic storage allocation of a memory hierarchy. The
historical record reveals, to the contrary, that the driving force behind virtual
memory has always been simplifying programs (and programming) by
insulating algorithms from the parameters of the memory configuration and by

Virtual Memory P. J. Denning Page 14

allowing separately constructed objects to be shared, reused, and protected. The
predictions that memory capacities would eventually be large enough to hold
everything have never come true and there is little reason to believe they ever
will. And even if they did, each new generation of users has discovered that its
ambitions for sharing objects led it to virtual memory. Virtual memory
accommodates essential patterns in the way people use computers. It will still be
used when we are all gone.

References

Berners-Lee, T. 1996. “The World Wide Web.” Technology Review (June).

Berners-Lee, T. 1996. “WWW: Past, Present, and Future.” IEEE Computer 29, 10
(October), 69-77.

Chase, J. S., H. M. Levy, M. J. Feeley, and E. D. Lazowska. 1994. “Sharing and
protection in a single-address-space operating system.” ACM TOCS 12, 4
(November), 271-307.

Denning, P. J. 1968. “Thrashing: Its causes and prevention.” Proc. AFIPS FJCC
33, 915-922.

Denning, P. J. 1970. “Virtual memory.” ACM Computing Surveys 2, 3
(September), 153-189.

Denning, P. J. 1980. “Working sets past and present.” IEEE Transactions on
Software Engineering SE-6, 1 (January 1980), 64-84.

Denning, P. J., and J. Buzen. 1978. “Operation analysis of queueing network
models.” ACM Computing Surveys 10, 3 (September).

Denning, P. J., and W. F. Tichy. 1990. “Highly parallel computation,” Science
250 (30 Nov), 1217-1222.

Denning, P. J. 1996. “Virtual memory”. Article in CRC Handbook of Computer
Science and Engineering. Condensed version in Computing Surveys (June).

Dennis, J. B. 1965. “Segmentation and the design of multiprogrammed
computer systems.” JACM 12, 4 (October), 589-602.

Dennis, J. B., and E. Van Horn. 1966. “Programming semantics for
multiprogrammed computations.” ACM Communications 9, 3 (March), 143-155.

Fabry, R. S. 1974. “Capability-based addressing.” ACM Communications 17, 7
(July), 403-412.

Virtual Memory P. J. Denning Page 15

Fotheringham, J. 1961. “Dynamic storage allocation in the Atlas computer,
including an automatic use of a backing store.” ACM Communications 4, 10
(October), 435-436.

Gilder, George. 1995. “The coming software shift.” Forbes ASAP of 8/5/95.

Hennessey, J. and D. Patterson. 1990. Computer Architecture: A Quantitative
Approach. Morgan-Kaufmann.

Kahn, R. and R. Wilensky. 1995. A framework for distributed digital object
services. CNRI technical report cnri.dlib/tn95-01. Available as
http://cnri.reston.va.us/k-w.html.

Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. 1962. “One-level
storage system.” IRE Transactions EC-11, 2 (April), 223-235.

Myers, G. J. 1982. Advances in Computer Architecture, Wiley. (2nd Ed.)

Organick, E. I. 1972. The Multics System: An Examination of Its Structure, MIT
Press.

Sayre, D. 1969. “Is automatic folding of programs efficient enough to displace
manual?” ACM Communications 12, 12 (December), 656-660.

Tanenbaum, A. S. 1995. Distributed Operating Systems. Prentice-Hall.

Wilkes, M. V. 1965. “Slave memories and dynamic storage allocation.” IEEE
Trans. EC-14 (April), 270-271.

Wilkes, M. V., and R. Needham. 1979. The Cambridge CAP Computer and Its
Operating System. North-Holland.

Virtual Memory P. J. Denning Page 16

APPENDIX: OPERATIONAL ANALYSIS

Operational queueing theory was messier than regular queueing theory and was
controversial among queueing theorists. A popular criticism was that the
operational assumption of homogeneity --- service rates of servers do not depend
on system state -- was nothing more than an exponential service-time
assumption in disguise. That criticism was neatly dispelled by Ken Sevick and
Maria Klawe, who gave an example of an operationally-determinstic system
whose throughput and response time were calculated accurately from classical
queueing formulas but which in no sense satisfied an exponential service time
assumption. Another criticism was that one cannot make predictions of a future
system’s performance without assuming the present and future systems are
manifestations of the same underlying stochastic process. Buzen said that
stochastic processes had nothing to do with it; he argued that prediction in
practice operates as a process of stating future parameter values and using a
validated model to calculate future performance measures. Such small triumphs
did little to assuage the critics, who believed that operational analysis denied the
existence of stochastic processes.

In 1981, I witnessed a debate between Buzen and one of his critics. I was struck
by the symmetry of their arguments. Each started with his domain as the ground
and claimed that the other was in effect performing unneeded, error-inducing
mappings to get to the same answer. They were both describing the same loop
from different angles! This prompted me to write the following little fable.

A Tale of Two Islands

Once upon a time there were two islands. The citizens of Stochasia had organized
their society around a revered system of mathematics for random processes. The
citizens of Operatia had organized their society around a revered system for
experimentation with nondeterminate physical processes. Both societies were
closed. Neither would ever have known of the other’s existence, had it not been for
the events I shall now describe.

At a moment now lost in the mists of antiquity, a great sage of Stochasia posed
this problem: Given a matrix of transition probabilities, find the corresponding
equilibrium probability distribution of occupying the possible states. He worked
out the solution, which he engraved on stones. Ever since, whenever they
encounter a problem in life, the Stochasians phrase it in these terms and, using
the stones, they find and implement its solution.

At a moment now lost in the mists of antiquity, a great sage of Operatia posed
this problem: Having observed a matrix of transition frequencies, calculate the
corresponding distribution of proportions of time of occupying the possible states.
He worked out the solution, which he engraved on stones. Ever since, whenever
they encounter a problem in life, the Operatians phrase it in these terms and,
using the stones, they find and implement its solution.

Virtual Memory P. J. Denning Page 17

In a recent time there was an anthropologist who specialized in islands. He
discovered our two islands from photographs taken by an orbiting satellite. He
went to visit Stochasia, where he learned the secrets of their stones. He also
visited Operatia, where he learned the secrets of their stones.

Struck by the similarities, the anthropologist asked the elders of each island to
evaluate the approach used by the other island. In due course, each island’s elders
reached a decision.

The elders of Operatia told the anthropologist: “The Stochasians are hopelessly
confused. They have developed a highly indirect approach to solving the problem
posed by our great sage. First, they transform the problem into an untestable
domain by a process we would call ‘abstraction’. Using their stones, they find the
abstract answer corresponding to the abstract problem. Finally, they equate the
abstract answer with the real world by a process we would call ‘interpretation’.
They make the audacious claim that their result is useful, even though the two key
steps, abstraction and interpretation, can nowise be tested for accuracy. Indeed,
these two steps cannot be tested even in principle! Our stones tell us elegantly
how to calculate the real result directly from the real data. No extra steps are
needed, and nothing untestable is ever used.”

The elders of Stochasia told the anthropologist: “The Operatians are hopelessly
confused. They have developed a highly indirect approach to solving the problem
posed by our great sage. First, they restrict the problem to a single case by a
process we would call ‘estimation’. Using their stones, they estimate the answer
corresponding to their estimate of the problem. Finally, they equate the estimated
answer with the real world by a process we would call ‘induction’. They make the
audacious claim that their result is useful, even though the two key steps,
estimation and induction, are nowise error free. Indeed, these two steps cannot be
accurate even in principle! Our stones tell us elegantly how to calculate the
general answer directly from the parameters. No extra steps are needed, and
nothing inaccurate is ever used.”

The anthropologist believed both these arguments and was confused. So he went
away and searched for new islands.

Some years later, the anthropologist discovered a third island called Determia. Its
citizens believe randomness is an illusion. They are certain that all things can be
completely explained if all the facts are known. On studying the stones of
Stochasia and Operatia, the elders of Determia told the anthropologist: “The
Stochasians and Operatians are both hopelessly confused. Neither’s approach is
valid. All you have to do is look at the real world and you can see for yourself
whether or not each state is occupied. There is nothing uncertain about it: each
state is or is not occupied at any given time. It is completely determined.”

Later, he told this to an Stochasian, who laughed: “That’s nonsense. It is well
known that deterministic behavior occurs with probability zero. Therefore, it is of
no importance. How did you find their island at all?” Still later, he told this to
an Operatian, who laughed: “I don’t know how to respond. We have not observed

Virtual Memory P. J. Denning Page 18

such behavior. Therefore it is of no importance. How did you find their island at
all?”

The anthropologist believed all these arguments and was profoundly confused. So
he went away and searched for new island. I don’t know what became of him, but
I heard he discovered Noman. (Noman is an island.)

