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ABSTRACT

In this paper, we propose a multi-level attention model for the
weakly labelled audio classification problem. The objective of au-
dio classification is to predict the presence or the absence of sound
events in an audio clip. Recently, Google published a large scale
weakly labelled AudioSet dataset containing 2 million audio clips
with only the presence or the absence labels of the sound events,
without the onset and offset time of the sound events. Previously
proposed attention models only applied a single attention module
on the last layer of a neural network which limited the capacity of
the attention model. In this paper, we propose a multi-level attention
model which consists of multiple attention modules applied on the
intermediate neural network layers. The outputs of these attention
modules are concatenated to a vector followed by a fully connected
layer to obtain the final prediction of each class. Experiments show
that the proposed multi-attention attention model achieves a state-
of-the-art mean average precision (mAP) of 0.360, outperforming
the single attention model and the Google baseline system of 0.327
and 0.314, respectively.

Index Terms— AudioSet, audio classification, attention model

1. INTRODUCTION

Audio classification aims to predict the presence or the absence of
audio events in an audio clip. Audio classification has many appli-
cations such as multimedia information retrieval and public surveil-
lance [1, 2]. Before 2017, datasets in audio processing are rela-
tively smaller than datasets in computer vision such as ImageNet
[3]. For example, UrbanSound dataset [4] consists of 27 hours of
urban sound records with 3075 samples. ESC-50 dataset [5] con-
sists of 2000 environmental recordings across 50 classes. The de-
tection and classification of acoustic scenes and events (DCASE)
challenge 2013, 2016, 2017 [1, 2, 6] datasets consists of several
hours of data. Recently, Google published a large scale audio clas-
sification dataset called AudioSet [7] consists of 5,800 hours two
million human-labeled 10-second audio clips covering 527 audio
categories.

In AudioSet, each audio clip contains one or several labels, such
as “cat”, “speech” and “park” [7]. AudioSet is a weakly labelled
dataset (WLD), that is, only the presence or the absence of sound
events are known in an audio clip, without knowing the onset and
offset time of the sound events. The duration of sound events in
the WLD vary from milliseconds to seconds depending on the cat-
egories. For example, sound class such as “speech” can last a few
seconds, while sound class such as “gunshot” only last for hundreds
of milliseconds.

The audio classification problem with WLD is to design a sys-
tem trained only on WLD. Many methods such as multiple instance

learning (MIL) [8] has been used to solve the WLD audio classifi-
cation [9] problem. In [10] a single-level attention model was pro-
posed and outperformed both the MIL method [9] and the Google
baseline deep neural network system [7] on AudioSet classification.
This single-level attention model consists of three fully connected
layers followed by an attention module. The motivation of the atten-
tion module is based on the observation that different segments in
an audio clip contribute differently to the label of an audio clip. For
example, the segments containing a sound event should be attended
and the segments containing irrelevant noise should be ignored.

However, when using the single-level attention model, substan-
tial information from the intermediate neural network layers is dis-
regarded. Previous work [11, 12, 13] explored the features from
intermediate layers of a neural network contain rich information for
classification. For example, Lee et. al. [11] explored that the audio
classification performance can be improved by concatenating fea-
tures from different intermediate neural network layers. Features
from multiple intermediate layers have been found to be effective
not only for audio tasks, but also for computer vision tasks. For
example, Meng et al. [12] proposed to extract features from differ-
ent layers of a deep CNN and concatenated them to a representation
which significantly outperforms the non-concatenated features [12].

Inspired by the success of multi-level representation [11, 12],
we expand the single-level attention model [10] to a multi-level at-
tention model. Multiple attention modules are applied on the inter-
mediate neural network layers. Then, the outputs of the attention
modules are concatenated to a vector followed by a fully connected
layer with sigmoid non-linearity to predict the presence probability
of each class.

The paper is organized as follows. Section II introduces re-
lated works. Section III introduces the single-level attention model
[10]. Section IV describes the proposed multi-level attention mod-
ule. Section V shows the experimental results. Section VI con-
cludes and forecasts the future work.

2. RELATED WORKS

Audio classification: Audio classification has attracted many at-
tention in recent years. Some representative challenges including
DCASE 2013 [6], DCASE 2016 [2] and DCASE 2017 [1]. Hidden
Markov models have been used to model audio events in [14]. Non
negative matrix based methods were applied to learn the dictionary
of audio events [15]. Recently, neural network based methods in-
cluding fully connected neural networks [16], convolutional neural
networks (CNN) [17] have been applied on audio classification and
achieved the state-of-the-art performance.

Attention module: The concept of attention module is first intro-
duced in natural language processing [18]. Attention module allows
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deep neural networks to focus on relevant instances and ignore irrel-
evant instances in a bag. It has been successfully applied in machine
translation [18], face detection [19], image classification [20] and
captioning [21]. It is also utilized in the domain audio classification
[22].

3. DATASET

AudioSet [7] consists of over two million samples. There are 527
classes in the current version. AudioSet is a multi-label dataset and
each audio clip has one or several labels. Google created AudioSet
through transfer learning. In the pre-training stage, two billion
10-second audio clips from YouTube covering more than 30,000
classes are collected and called YouTube 100M [23]. Log Mel spec-
trogram with size of 96 x 64 along time and frequency axis is ex-
tracted as feature for each audio clip. Then, a ResNet-50 model is
trained using this YouTube 100M data. This trained ResNet-50 is
later used as a feature extractor. After the pre-training stage, two
million 10-second audio clips covering 527 classes are collected.
The log Mel spectrogram of each audio clip is presented to the
trained ResNet-50 model to extract the bottleneck features. In this
process, each audio clip is compressed into 10 bottleneck features.
Each feature has a dimension of 128. These two million samples
constitute AudioSet.

4. SINGLE-LEVEL ATTENTION MODEL

In this section, we will introduce the single-level attention model
proposed in [10].

To illustrate the notation, let z;, t = 1,2, ..., T be the t-th bot-
tleneck feature with a dimension M = 128. Each sample in Au-
dioSet has T' = 10 bottleneck features. K = 527 is the number of
classes.

In the single-level attention model, each bottleneck feature x
is presented to a trainable embedding mapping fems(-) to extract an
embedded feature hy:

ht :femb(mt) (1)

Furthermore, an attention module is applied on the 7" embedded
features to attain the class probabilities for the input sample:

T

1

= —= v ht ht 2
ST ; (he)f (he) )
where h = [hq, ..., hr] is the concatenation of the embedded fea-
tures. Non-negative function v(-) determines how much an embed-
ded feature h; should be attended or ignored and f(-) denotes the
classification output on an embedded feature h;. The attention mod-
ule has ability to ignore irrelevant sound segments such as back-
ground noise and silences, and attend to the sound segments with
audio events.

The implementation of the single-level attention model is
shown in Fig. 1. The first part is an embedded mapping fems(+)
modeled by three fully connected neural layers with A units. The
second part is an attention module described by Equation (2). The
attention non-negative mapping v (-) and the classification map-
ping fi(-) are modeled by a softmax function and sigmoid func-
tion, respectively. The normalization applied after vy (-) ensures
the attention is normalized. Finally, the prediction is obtained by
element-wise multiplication of the classification output and normal-
ized attention output.

y(h)
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Figure 1: Architecture of the single-level attention model [10]

5. MULTI-LEVEL ATTENTION MODEL

Many works have explored that using multi-level features from in-
termediate layers of neural networks can promote the audio or im-
age classification performance [11, 12]. We propose to extend the
single-level attention model in Section 4 to multi-level attention
model in our paper.

The architecture of the proposed multi-level attention model is
shown in Fig. 2. Instead of applying a single-level attention model
after the fully connected neural network, multiple attention mod-
ules are applied after intermediate layers as well. These attention
modules aim to capture different level information. We denote the
feedforward mappings as g;(-) and the activations of the interme-
diate layers as hY, where [ is the number of embedded mappings.
The feed-forward neural network can be written as:

{hi” = gi(z2)

3
Y =gr!™") 1=23,..,L @

where each forward mapping ¢;(-) may consists of several fully
connected layers in series (Fig. 2). For the single-level attention
model, the prediction is produced by y&) = y(h') follows Equa-
tion (2) where h(%) = [h§“, h(TL)] .

In the proposed multi-level attention model, each [-th atten-
tion module produces a prediction y® = y(h(”). Each prediction
y e [0, 1]K. Then, all the predictions are concatenated to a vector
u e [0,1]%":

w= [y, y™] @

Finally, a fully connected layer followed by sigmoid non-
linearity is applied on the concatenated vector u to attain the class
probabilities z € [0, 1] of the audio classes.
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Figure 2: Architecture of the multi-level attention model

2= ¢(Wu+b) )

where the W € R¥E*X and b € R¥ represent the weight ma-
trix and the bias, separately. Sigmoid non-linearity ¢(-) is used for
multi-label classification.

6. EXPERIMENTS

6.1. Training details

We use the balanced together with the unbalanced data from Au-
dioSet [7] for training. We validated our model on the left out eval-
uation data of AudioSet. In order to comprehensively compare the
performance of single-level and multi-level attention models, we
implemented nine variants of single- (3-A, 6-A, 9-A) or multi-level
attention models (1-A-1-A-1-A, 2-A-1-A, 2-A-2-A-2-A, 3-A-3-A,
3-A-3-A-3-A, 5-A-4-A) which are shown in Table 1. The model 2-
A-1-A represents two attention modules are applied after the 2nd
and 3rd fully connected layers. The model 2-A-2-A-2-A repre-
sents three attention modules are applied after the 2nd, 4th and 6th
fully connected layers. Each fully connected layer in all embedded
mappings consists of 600 hidden units followed by ReLU activa-
tion function [24]. Dropout is used to prevent overfitting [25] with
dropout rate of 0.4. Batch normalization [26] is applied to speed
up training and prevent overfitting. We used Keras version 2.0.8 to
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implement our system. Adam optimizer [27] with learning rate of
0.001 is used. Batch size is set to 500. The setting of these hyper-
parameters follows the configuration in [10]. Code has been made
publicly available here '

6.2. Evaluation Metrics

To evaluate our model, we use three metrics of the Google’s bench-
mark: mean average precision (mAP), area under curve (AUC) and
d-prime. The mAP is the mean of average precision over all classes.
The mAP is calculated by:

1 K N
mAP = ? Z ZpC,TLATC,7L7 (6)

c=1n=1

where pcn is the precision at n-th positive sample of c-th class. N

is the number of positive samples for each class. Ar., is equal to
1

The AUC is area under the true positive-false positive rate
curve. True positive rate (TPR) is a probability of correctly clas-
sifying a positive sample. False negative rate (FPR) is a probability
of incorrectly classifying a negative sample as positive.

The d-prime is a deterministic function of AUC used in [7]. The
d-prime can be calculated from AUC:

d-prime = V2F, '(AUC) @)

F,! is inverse of the cumulative distribution function and de-
fined by:
z 1 —@-w?
Fy(x) = / ——e 2 dx ®)
(z) -
The larger AUC and d-prime indicates the better the audio clas-
sification performance.

6.3. Analysis

The first two rows in Table I show the results of Google’s bench-
mark [7] without attention model and Kong’s result with the single-
level attention model [10]. All of the multi-level attention models
outperform Google’s baseline and single-level attention model in
mAP, AUC, and d-prime. The best multi-level attention model is 2-
A-1-A with two attention modules on the 2nd and 3rd intermediate
layers. A mAP of 0.360 is achieved, outperforming the single-level
attention model [10] of 0.327 and the Google’s baseline system of
0.314 [7]. The reason for the good performance using multi-level
attention model is that the multi-level features extracted from the
intermediate layers provide various representations, and then each
attention module can filter the unrelated information of each fea-
ture. In addition, different classes may favor different layer of fea-
tures and the last fully connected layer of each multi-level attention
model can automatically select best feature for each class by the
weight parameters.

When comparing all variants of the single-level attention model
(3-A, 6-A, 9-A), it was observed that the performance notably de-
grades as the number of fully connected layers is increased. This
results from that the features extracted from a deep fully connected
layer (e.g. 6th and 9th fully connected layer) are worse than that of
a shallow layer (e.g. 3rd fully connected layer).

https://github.com/ChangsongYu/Eusipco2018_
Google_AudioSet
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Figure 3: Average precision (AP) results of all single-level or multi-level attention models for nine randomly selected classes. The left black
bar-graph scaled by the y-axis on the left-side represents the relative AP to the lowest AP among all models on a class. For example, the
lowest AP among all models of the class "speech" is the AP of 9-A. The relative AP of 9-A of this class is 0 and that of 5-A-4-A is 0.04.
The right brown bar-graph scaled by the y-axis on the right side represents the absolute AP. For example, the APs of 5-A-4-A and 9-A for the

class "speech" are 0.730 and 0.690, separately.

Table 1: Comparisons of results of multi-level attention model

Model mAP AUC d-prime
Benchmark 0.314  0.9590 2.452
Kong [10] 0.327 09650 2.558
1-A-1-A-1-A  0.357 09693 2.645
2-A-1-A 0.360 0.9700 2.660
3-A 0.336  0.9668 2.596
2-A-2-A-2-A  0.358 09695 2.650
3-A-3-A 0.355 09690 2.639
6-A 0.311 09571 2430
3-A-3-A-3-A 0.353  0.9687 2.633
5-A-4-A 0.340 09676 2.612
9-A 0.305 0.9388 2.185

6.4. Performance visualization of individual classes

In addition, we investigate all variants of our single-level or multi-
level attention model by comparing average precision (AP) of nine
randomly selected classes are shown in Figure 3. For each class,
the color bars plotted below is the relative improvement of AP and
the bars plotted above is the absolute AP. The APs of classes such as
speech and whoop are close to 0.7. In contrast, APs of many classes
such as breathing are lower than 0.2.

Figure 3 shows that the multi-level attention models do not al-
ways achieve better performance on all classes than the single-level
attention models. For the class "piano"”, the model 6-A outper-
forms the models 2-A-2-A-2-A and 3-A-3-A. We also observe that
different classes favor different models. For example, the classes
“speech”, “whoop”, “breathing”, “guitar”, “train” and “emergence
vehicle” favor the model 2-A-1-A. However, the class "groan" fa-
vors the model 3-A-3-A-3-A. Overall, we can ensure that the perfor-
mance of classification consistently increases on most classes when
the multi-level features are concatenated and 2-A-1-A is the best

architecture.

7. CONCLUSION

In this work, we introduced a multi-level attention model in address-
ing weakly labelled audio classification problem on AudioSet. The
experimental results showed the effectiveness of multi-level atten-
tion models and achieved a state-of-the-art mean average precision
(mAP) of 0.360 than the single-attention model and Google’s base-
line system. In future, we will investigate the combination of the
multi-scale and multi-level features for AudioSet classification.
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