
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

GENERAL-PURPOSE AUDIO TAGGING FROM NOISY LABELS
USING CONVOLUTIONAL NEURAL NETWORKS

Turab Iqbal, Qiuqiang Kong, Mark D. Plumbley, Wenwu Wang

Centre for Vision, Speech and Signal Processing, University of Surrey
{t.iqbal, q.kong, m.plumbley, w.wang}@surrey.ac.uk

ABSTRACT
General-purpose audio tagging refers to classifying sounds that are
of a diverse nature, and is relevant in many applications where
domain-specific information cannot be exploited. The DCASE 2018
challenge introduces Task 2 for this very problem. In this task, there
are a large number of classes and the audio clips vary in duration.
Moreover, a subset of the labels are noisy. In this paper, we propose
a system to address these challenges. The basis of our system is
an ensemble of convolutional neural networks trained on log-scaled
mel spectrograms. We use preprocessing and data augmentation
methods to improve the performance further. To reduce the effects
of label noise, two techniques are proposed: loss function weighting
and pseudo-labeling. Experiments on the private test set of this task
show that our system achieves state-of-the-art performance with a
mean average precision score of 0.951.

Index Terms— Audio classification, convolutional network,
recurrent network, deep learning, data augmentation, label noise

1. INTRODUCTION

Audio tagging is a classification problem that is concerned with
categorizing audio clips based on the presence of sound events.
These events could be domestic sounds such as a telephone ringing,
outdoor sounds such as a car passing by, and anything else that may
be relevant to an application. Historically, classifiers have relied on
domain-specific techniques to achieve good performance, such as in
speech recognition [1] and music information retrieval [2]. However,
with new applications such as smart homes [3] and smart cities [4],
there is growing interest in general-purpose audio classifiers.

The Detection and Classification of Acoustic Scenes and Events
(DCASE) [5] is a recurring challenge with several tasks pertaining
to audio classification. DCASE 2018 introduces Task 2 [6], which
poses the problem of general-purpose audio tagging. This task uses
a subset of the FSD dataset [7], and is comprised of 41 audio classes
with labels from Google’s AudioSet ontology [8]. As this is a high
number of classes, it demands good discriminative abilities from the
classifier. A training set of 9473 labeled examples is provided in
order to use supervised learning methods. However, approximately
60% of the labels are unverified. Of these unverified labels, at least
65% to 70% of the labels are correct. The presence of incorrectly-
labeled examples can negatively affect training, so it is important
that the learning algorithm is robust with respect to such examples.
Another property of this dataset is that the duration of the audio clips
varies from 0.3 s to 30 s. This is a problem because many training
models expect a fixed-length input.

In this paper, we propose a system to address these challenges.
The system we develop is based on a number of convolutional neural
networks trained on log-mel spectrograms. We investigate different

architectures of convolutional neural networks and show that they
complement each other by ensembling predictions using a technique
called stacking. We also use preprocessing and data augmentation
methods to improve the performance further. To reduce the effects
of incorrect labels, two ideas are proposed: loss function weighting
and pseudo-labeling.

This paper is organized as follows. Section 2 introduces related
work. Section 3 details the preprocessing and feature extraction
methods. Section 4 proposes the convolutional neural networks and
training methodology. Section 5 presents the experiments and results.
Lastly, Section 6 concludes with a summary.

2. RELATED WORKS

Deep neural networks have recently become a popular choice for
audio classification due to their leading performance in many tasks,
including general-purpose audio tagging [9]. Most, if not all, of
the neural network architectures that achieve state-of-the-art results
are based on convolutional neural networks (CNN) [10, 11, 12].
Hybrid architectures such as convolutional recurrent neural networks
(CRNN) have also been adopted with great success [13, 14, 15], but
more for tasks that also require localization. Given a training model,
an effective way to improve the performance further is to use data
augmentation, as observed in [16] and [17]. We use both CNNs and
CRNNs with data augmentation, but also consider label noise.

Learning from noisy labels is a problem that has several decades
of research behind it [18]. It was shown in [19] that neural networks
can converge to near-zero loss on training sets even when the labels
are completely random. This is problematic because it suggests that
incorrect labels can have a significant impact on the generalization
performance of a neural network. One way to mitigate the effects
of label noise is to apply a correction to the loss function as in [20],
which requires estimating a noise transition matrix. In [21], this is
done by incorporating an additional layer in the neural network. We
also modify the loss function, but make simpler assumptions and
hence propose a simpler method. Furthermore, we combine this with
a technique called pseudo-labeling.

3. PREPROCESSING AND FEATURE EXTRACTION

3.1. Silence Removal

In the dataset of Task 2, we observed that there is little background
noise present in the audio clips. However, some of the clips contain
segments of silence. Long sequences of silence are not characteristic
of the sounds themselves, and only indicate the start or end of sounds.
For this reason, we include in our pipeline an algorithm to extract the
non-silent segments of the audio signal. This discards the silence and
means that separate segments can be considered as separate inputs.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

0 100000 200000 300000 400000 500000 600000

10000

5000

0

5000

10000

15000

Figure 1: Illustration of the silence removal process on the file
“071e836c.wav”, which is 13 s in length. The non-silent segments
that are extracted are highlighted in gray. These segments would be
considered as separate inputs.

Table 1: Log-mel spectrogram parameters

Parameter Configuration A Configuration B

Sample rate 32 000Hz 32 000Hz
Window size 1024 512

Hop size 512 256
Mel bands 64 64

To detect silence, we segment the audio signal into frames and
threshold each frame’s root mean square (RMS) energy. We define
“silence” to include very quiet background noise, so it does not
have to match the threshold of hearing. In our algorithm, a non-
silent segment is the span of non-silent frames that are within some
proximity (they do not have to be contiguous), and also includes
some excess silence to prevent over-cropping. This is exemplified in
Figure 1, where four segments are highlighted.

3.2. Feature Extraction

Following silence removal, the extracted segments are considered as
separate inputs. These are downsampled to 32 kHz and transformed
into log-scaled mel-frequency (log-mel) spectrograms. Log-mel
features have been shown to outperform traditional representations
such as mel-frequency cepstrum coefficients (MFCCs) in modern
neural network architectures [22], which benefit from the additional
information and do not need de-correlated inputs [23].

We use two sets of parameters to extract the log-mel features
– a standard configuration and a narrow-band configuration – the
values of which are given in Table 1. We selected these values
based on experiments on a validation set. In our experiments, these
configurations produced complementing results. Indeed, the different
resolutions appear to capture different characteristics.

After feature extraction, each feature vector is partitioned into
chunks of a fixed size, which resolves the problem of varying clip
durations. When the length of the feature vector is less than the chunk
length, it is padded. When it is greater, but not evenly divisible by
the chunk length, an additional chunk is added to align with the end
of the feature vector so that it includes the remainder.

The chunk size is an important parameter, as a chunk that is too
short may not encompass a sound in its entirety. On the other hand,
a chunk that is too long will mostly contain padding data for short
audio segments. We choose a chunk size of 128 × 64, where the

first axis is the temporal dimension. This corresponds to 2 s chunks
and 1 s chunks for configurations A and B, respectively (cf. Table 1).
Approximately 80% of the segments in the training set are more
than 1 s in duration, and 60% are more than 2 s.

4. TRAINING AND INFERENCE

In order to utilize the training set that is provided for this task, we
use two types of neural networks: CNNs and CRNNs. For each
type, we also use two variants: one using standard convolutions
and another using gated convolutions. Since there are two log-
mel configurations, this gives eight training models in total. In the
subsections to follow, we describe the architectures, learning with
label noise, data augmentation, and ensembling.

4.1. Neural Network Architectures

The neural network architectures are outlined in Table 2. Beginning
with the standard CNN, it is essentially equivalent to the “VGG13”
network proposed in [24], hence the name. Each convolutional block
consists of two convolutional layers followed by a max pooling layer
that halves each spatial dimension. The convolutional layers use a
ReLU activation function [25] as well as batch normalization [26]
as a form of regularization. After the convolutional blocks, global
average pooling is applied, i.e. each feature map is averaged across
both dimensions. Finally, a densely-connected softmax layer is used
to generate the predictions.

The CRNN architecture is an extension of VGG13. Instead of
applying global average pooling after the convolutions, only the
frequency dimension is averaged so that temporal information is
preserved. A bidirectional recurrent layer [27] is then applied to
output a vector, st, for each time step t ∈ [1, T ]. Averaging these
vectors gives s = 1

T

∑T
t=1 st, which is the output prior to the

softmax layer. The motivation for using a recurrent layer is to learn
the temporal dynamics of the input [13]. In our experiments, this
improved the overall performance by up to 0.5%.

The other two architectures are GCNN and GCRNN, which are
variants of VGG13 and CRNN, respectively. The difference is that
each convolutional layer is replaced with a gated convolutional layer
[28]. The idea of a gated layer is inspired by the gating mechanisms
found in recurrent neural networks [29, 30], and is used to control
the information that is propagated to deeper layers. This mechanism
has been shown to produce good results for similar tasks [15].

4.2. Learning from Noisy Labels

The presence of unverified labels poses a problem for learning, as
neural networks are susceptible to overfitting on incorrectly-labeled
examples [19]. On the other hand, training with verified examples
only means that a large number of unverified labels that are otherwise
correct are discarded. Our tests showed that performance dropped
by up to 5% when a model was trained on verified examples only.
Therefore, we propose two techniques.

The first technique is to weight the training loss function such
that its magnitude is lowered for unverified examples. The rationale
is that if an example is incorrectly labeled, the computed loss will
be incorrect and should be disregarded. Of course, we do not know
whether it is correct or not if the label is unverified. Let η ∈ (0, 1)
be the weight applied to unverified examples. Given a loss function,
L(y, ŷ), the weighted loss function is then given by

L̃(y, ŷ) := (η · 1XN (x) + 1Xc
N
(x))L(y, ŷ), (1)



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Table 2: Description of the neural networks. Each convolutional
layer uses a receptive field size of 3, as in [24]. “GLU” refers to the
use of gated linear units, as described in [28]. “Bi-GRU” refers to
using bidirectional gated recurrent units [30].

Feature Size CRNN GCRNN
128× 64 Log-mel spectrogram

2× {conv 64,ReLU} 2× {conv 64,GLU}
64× 32 2× 2 Max Pooling

2× {conv 128,ReLU} 2× {conv 128,GLU}
32× 16 2× 2 Max Pooling

2× {conv 256,ReLU} 2× {conv 256,GLU}
16× 8 2× 2 Max Pooling

2× {conv 512,ReLU} 2× {conv 512,GLU}
8× 4 2× 2 Max Pooling

2× {conv 512,ReLU} 2× {conv 512,GLU}
4× 2 2× 2 Max Pooling

Bi-GRU, 512, ReLU (optional)
Global Average Pooling

Softmax (41 Classes)

where XN is the subset of the training set that is unverified and
X c

N is the complement. The parameter η can be considered as
the confidence that the unverified labels are correct. It can be be
determined using a validation set or set to 1 minus the noise rate.

The second technique, known as pseudo-labeling, is to relabel
the unverified examples prior to training using a previously-trained
classifier. For pseudo-labeling to be effective, the error rate of the
classifier should be lower than the noise rate of the original labels,
because the error rate can be considered as the new noise rate. The
previously-trained classifier in this case is just the same system
described in this paper but without pseudo-labeling.

Another form of pseudo-labeling that we propose is to “promote”
examples from unverified to verified by corroborating the label with
the predictions of the previously-trained classifier. The examples if
promoted if the classifier prediction agrees with confidence greater
than τ . The confidence threshold, τ , should be high enough that the
false positive rate of the classifier is low.

4.3. Data Augmentation

When training a neural network, overfitting is a common problem in
which the network learns to predict the training examples with very
high accuracy but cannot generalize to new data. This is likely to
occur with smaller datasets, and was found to be the case with the
dataset of Task 2 by verifying on a validation set. To prevent this,
data augmentation is a popular approach [31] that increases the size
of the training set without manual intervention. In our work, we use
a method called mixup [32] to create new examples.

Mixup is a method that generates new data during training by
randomly mixing pairs of inputs and their associated target values.
Consider a pair of inputs, x1 and x2, and their one-hot-encoded
target values, y1 and y2. To mix these, a parameter, λ ∈ (0, 1), is
used to create convex combinations.

x = λx1 + (1− λ)x2. (2)

y = λy1 + (1− λ)y2. (3)

The output, (x,y), is then used as the training example rather than
the original examples. If loss function weighting is used, w(x) :=
η · 1XN (x) + 1iXc

N
(x) should also be mixed.

Table 3: Training parameters

Parameter Value

Batch size 128
Learning rate (LR) 0.0005

LR decay factor 0.9
LR decay rate 2

In the original paper [32], a different value of λ is used for
each mini-batch by sampling from a beta distribution, B(α, α). The
hyperparameter α controls the distribution’s shape, where a value of
1.0 reduces it to a uniform distribution. A lower value of α will be
more likely to produce values of λ that are closer to 0 and 1, which
weakens the effect of mixup.

Mixup has been used before for audio classification and has been
shown to be beneficial [17]. We ultimately followed the method
used in [32], but also experimented with a variation. This involves
constraining some or all of the example pairs to belong to the same
class. Unfortunately, this did not improve the performance of our
system and actually worsened it in the extreme case of constraining
all the pairs. This suggests that mixing inter-class examples is an
important aspect of mixup’s success.

5. EXPERIMENTS

5.1. System Setup

To train the various models, the training set was split into five cross-
validation folds, ensuring that there was a similar number of verified
examples in each fold. The cross-entropy function was used as
the training loss and Adam [33] was used as the gradient descent
algorithm. Refer to Table 3 for the values of the hyperparameters.
Decay rate is the number of epochs until the learning rate is decayed.

For loss function weighting, we used a weight of η = 0.7 when
pseudo-labeling was not used (to determine the pseudo-labels in the
first place) and η = 0.9 when it was. When promoting labels, we
used a confidence threshold of τ = 0.7. For mixup, the parameter α
was set to 1.0. All of the hyperparameters were selected based on
evaluations on a validation set containing verified labels only. This
includes the parameters in Table 3 too.

In terms of generating the predictions, the top four epochs were
selected based on performance on the validation set. The metric used
was the mean average precision (MAP) score. Recalling that the
inputs to the neural networks are chunks, and that the chunks are
from sections of the original audio clip (cf. Section 3), the chunk
predictions need to be merged to produce clip-level predictions. This
was achieved using the geometric mean, as this is less sensitive to
outliers than the arithmetic mean. With the clip-level predictions,
the top four epochs were merged using the arithmetic mean.

5.2. Ensembling

To combine the predictions of the different models, we used an
ensembling method known as stacking [34, 35, 36]. In this method,
the base model predictions are used as features to train a second-
level classifier. The output of a base model is an N ×K vector of
probabilities, where N is the number of data samples and K = 41 is
the number of classes. By concatenating the outputs of the models,
the result is an N × 8K vector; this is the input of the new classifier.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Table 4: Training set results. Only the results of configuration A
models are given to highlight the difference in architectures.

Model MAP@3

VGG13 0.950
GCNN 0.951
CRNN 0.952
GCRNN 0.958
Arithmetic Mean 0.968
Stacking 0.972

Table 5: Test set results comparing the 8-model stacked ensemble
with a 4-model version that excludes VGG13 and CRNN models.
The results of the competition’s baseline system is also included.

Model Private Public All

Baseline 0.694 0.704 –
4-Model Stacking 0.948 0.956 0.950
8-Model Stacking 0.951 0.961 0.953

As the validation sets constitute the training set, the validation
set predictions were used to generate the features for the training set.
Similarly, the test set predictions were used as the test set features.
We used logistic regression with an L2 penalty as the second-level
classifier. It was configured to use class weights to compensate for
class imbalance and sample weights as described in Section 4.2.

5.3. Results

To assess the performance of our system, we evaluated the training
set and test set predictions. It was possible to evaluate the training
set predictions because we used cross-validation folds. We only
evaluated the manually-verified training examples. The test set was
split into a public set and a private set by the challenge organizers.
Therefore, we report results for both sets individually and also when
the two are combined. The metric used to assess the performance is
the mean average precision (MAP@3) score, which is defined as

MAP@3 =
1

N

N∑
n=1

min{K,3}∑
i=1

P (i), (4)

where N is the number of data samples, K = 41 is the number of
classes, and P (i) is the precision at cutoff i.

The results for the training set are shown in Table 4. The systems
that are compared are the single models (log-mel configuration A
only), an arithmetic-mean ensemble of the models, and the stacked
ensemble described in the previous section. It can be seen that the
mean ensemble performs much better than all of the single models
– by almost 2%. However, the stacked ensemble performs the best,
with a MAP@3 score of 0.972. The weight-learning capability of
stacking, with respect to model and class, appears to help.

In Table 5, the results for the test set are presented. We look at the
8-model stacked ensemble compared to a smaller 4-model version.
In the latter, the VGG13 and CRNN architectures are omitted. The
results of both systems are far superior to the competition’s baseline
system. Although the additional models in the 8-model version help,
the difference is minor. This can be explained by the lack of diversity
that the omitted models have to offer.

6. CONCLUSION

This paper described an approach to audio tagging in which the
audio signals to be classified were of a diverse nature. The approach
was based on our efforts in Task 2 of the DCASE 2018 challenge.
The challenges of this task include audio clips of varying duration
and incorrectly-labeled training examples. Our method involved
preprocessing the audio, extracting log-mel feature vectors, and
partitioning the feature vectors into fixed chunks to be considered as
separate inputs. To train on these inputs, a number of convolutional
and convolutional-recurrent neural networks were introduced. We
used mixup for data augmentation. Several techniques were also
used to resolve the problem of incorrect labels, including pseudo-
labeling and loss function weighting. In evaluating our system on
the DCASE 2018 Task 2 Kaggle private test set, we achieved a mean
average precision score of 0.951, placing us in 3rd place out of 558
in the Kaggle private leaderboard.

7. ACKNOWLEDGMENT

This research was supported by the EPSRC grant EP/N014111/1,
“Making Sense of Sounds”, and a Research Scholarship from the
China Scholarship Council (CSC), No. 201406150082. We would
also like to thank Yong Xu for his contributions in the early stages of
the competition and the relevant work he did in previous challenges.

8. REFERENCES

[1] J. H. L. Hansen and T. Hasan, “Speaker recognition by ma-
chines and humans: A tutorial review,” IEEE Signal Process.
Mag., vol. 32, no. 6, pp. 74–99, 2015.

[2] M. Schedl, E. Gómez, and J. Urbano, “Music information re-
trieval: Recent developments and applications,” Found. Trends
Inf. Retr., vol. 8, no. 2-3, pp. 127–261, 2014.

[3] S. Krstulović, “Audio event recognition in the smart home,” in
Computational Analysis of Sound Scenes and Events, 1st ed.,
T. Virtanen, M. D. Plumbley, and D. Ellis, Eds. Cham:
Springer, 2018, pp. 335–371.

[4] J. P. Bello, C. Mydlarz, and J. Salamon, “Sound analysis in
smart cities,” in Computational Analysis of Sound Scenes and
Events, 1st ed., T. Virtanen, M. D. Plumbley, and D. Ellis, Eds.
Cham: Springer, 2018, pp. 373–397.

[5] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. La-
grange, and M. D. Plumbley, “Detection and classification of
acoustic scenes and events: An IEEE AASP challenge,” in
IEEE Workshop Applied Signal Processing Audio and Acous-
tics (WASPAA), New Paltz, NY, 2013, pp. 1–4.

[6] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of Freesound audio
with AudioSet labels: Task description, dataset, and baseline,”
arXiv preprint arXiv:1807.09901, 2018.

[7] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
A platform for the creation of open audio datasets,” in Proc.
18th Int. Society Music Information Retrieval Conf. (ISMIR),
Suzhou, China, 2017, pp. 486–493.

[8] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Au-
dio Set: An ontology and human-labeled dataset for audio



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

events,” in IEEE Int. Conf. Acoustic Speech and Signal Pro-
cessing (ICASSP), New Orleans, LA, 2017, pp. 776–780.

[9] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange,
T. Virtanen, and M. D. Plumbley, “Detection and classifica-
tion of acoustic scenes and events: Outcome of the DCASE
2016 challenge,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 26, no. 2, pp. 379–393, 2018.

[10] K. J. Piczak, “Environmental sound classification with convo-
lutional neural networks,” in IEEE 25th Int. Workshop Machine
Learning Signal Processing (MLSP), Boston, MA, 2015, pp.
1–6.

[11] H. Eghbal-zadeh, B. Lehner, M. Dorfer, and G. Widmer, “A
hybrid approach with multi-channel I-vectors and convolu-
tional neural networks for acoustic scene classification,” arXiv
preprint arXiv:1706.06525, 2017.

[12] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Sey-
bold, M. Slaney, R. Weiss, and K. Wilson, “CNN architectures
for large-scale audio classification,” in IEEE Int. Conf. Acous-
tic Speech and Signal Processing (ICASSP), New Orleans, LA,
2017, pp. 131–135.

[13] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Vir-
tanen, “Convolutional recurrent neural networks for polyphonic
sound event detection,” IEEE/ACM Trans. Audio, Speech, Lan-
guage Process., vol. 25, no. 6, pp. 1291–1303, 2017.

[14] E. Çakır, S. Adavanne, G. Parascandolo, K. Drossos, and T. Vir-
tanen, “Convolutional recurrent neural networks for bird audio
detection,” in Proc. European Signal Processing Conf. (EU-
SIPCO), Kos, Greece, 2017, pp. 1744–1748.

[15] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, “Large-scale
weakly supervised audio classification using gated convolu-
tional neural network,” in IEEE Int. Conf. Acoustic Speech
and Signal Processing (ICASSP), Calgary, Canada, 2018, pp.
121–125.

[16] J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classifi-
cation,” IEEE Signal Process. Lett., vol. 24, no. 3, pp. 279–283,
2017.

[17] K. Xu, D. Feng, H. Mi, B. Zhu, D. Wang, L. Zhang, H. Cai,
and S. Liu, “Mixup-based acoustic scene classification using
multi-channel convolutional neural network,” in Advances Mul-
timedia Information Processing (PCM), R. Hong, W.-H. Cheng,
T. Yamasaki, M. Wang, and C.-W. Ngo, Eds., 2018, pp. 14–23.

[18] B. Frenay and M. Verleysen, “Classification in the presence of
label noise: A survey,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 5, pp. 845–869, 2014.

[19] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning requires rethinking generalization,”
in Proc. 5th Int. Conf. Learning Representations (ICLR), New
Orleans, LA, 2017.

[20] G. Patrini, A. Rozza, A. Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction
approach,” in IEEE Conf. Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, HI, 2017, pp. 2233–2241.

[21] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus,
“Training convolutional networks with noisy labels,” in Proc.
3rd Int. Conf. Learning Representations (ICLR), San Diego,
CA, 2015.

[22] M. Huzaifah, “Comparison of time-frequency representations
for environmental sound classification using convolutional neu-
ral networks,” arXiv preprint arXiv:1706.07156, 2017.

[23] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. L. Seltzer,
G. Zweig, X. He, J. D. Williams, Y. Gong, and A. Acero, “Re-
cent advances in deep learning for speech research at microsoft,”
in IEEE Int. Conf. Acoustic Speech and Signal Processing
(ICASSP), Vancouver, Canada, 2013, pp. 8604–8608.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. 3rd Int.
Conf. Learning Representations (ICLR), San Diego, CA, 2015.

[25] V. Nair and G. E. Hinton, “Rectified linear units improve re-
stricted Boltzmann machines,” in Proc. 27th Int. Conf. Machine
Learning (ICML), Haifa, Israel, 2010, pp. 807–814.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proc. 32nd Int. Conf. Machine Learning (ICML), ser. Proc.
Mach. Learn. Res., vol. 37, Lille, France, 2015, pp. 448–456.

[27] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp.
2673–2681, 1997.

[28] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in Proc. 34th
Int. Conf. Machine Learning (ICML), ser. Proc. Mach. Learn.
Res., vol. 70, Sydney, Australia, 2017, pp. 933–941.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances Neural Information Processing Systems (NIPS), Lake
Tahoe, NV, 2012, pp. 1097–1105.

[32] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in Proc. 6th Int. Conf.
Learning Representations (ICLR), Vancouver, Canada, 2018.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. 3rd Int. Conf. Learning Representations
(ICLR), San Diego, CA, 2015.

[34] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5,
no. 2, pp. 241–259, 1992.

[35] K. M. Ting and I. H. Witten, “Issues in stacked generalization,”
J. Artif. Int. Res., vol. 10, no. 1, pp. 271–289, 1999.

[36] M. J. van der Laan, E. C. Polley, and A. E. Hubbard, “Super
learner,” Stat. Appl. Genet. Mol. Biol., vol. 6, no. 1, 2007.


