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ABSTRACT
We propose a system for acoustic scene classification using pair-
wise decomposition with deep neural networks and dimensionality
reduction by multiscale kernel subspace learning. It is our contri-
bution to the Acoustic Scene Classification task of the IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE2016). The system classifies 15 different acoustic
scenes. First, auditory spectral features are extracted and fed into
15 binary deep multilayer perceptron neural networks (MLP). MLP
are trained with the ‘one-against-all’ paradigm to perform a pair-
wise decomposition. In a second stage, a large number of spectral,
cepstral, energy and voicing-related audio features are extracted.
Multiscale Gaussian kernels are then used in constructing optimal
linear combination of Gram matrices for multiple kernel subspace
learning. The reduced feature set is fed into a nearest-neighbour
classifier. Predictions from the two systems are then combined by a
threshold-based decision function. On the official development set
of the challenge, an accuracy of 81.4% is achieved.

Index Terms— Computational Acoustic Scene Analysis,
Acoustic Scene Classification, Multilayer Perceptron, Deep Neural
Networks, Multiscale Kernel Analysis

1. INTRODUCTION

Acoustic scene classisfication aims at recognising the acoustic
background and goes under the field of Computational Auditory
Scene Analysis (CASA) [1]. Acoustic scene analysis is a challeng-
ing task since a plethora of different overlapping sound sources are
composing the acoustic mark of a certain scene, making it a com-
plex combination of various acoustic events.

In the past years, we observed an increasing interest on intelli-
gent audio-based systems able to recognise an environment around
a device [2]. This has stimulated the research community to find
more robust and efficient methods ranging from unsupervised ap-
proaches such as acoustic novelty detection [3, 4] to supervised ap-
proaches such as acoustic scene classification and sound even de-
tection [5].

Several works on acoustic scene classification applied different
spectral, energy and voicing-related features, in conjunction with
neural networks [6]. A system for acoustic scene recognition is de-
scribed and evaluated in [7]. That system uses several audio features
and a nearest neighbour (NN) classifier. In [8], a system for acous-
tic scene classification is described. The approach relies on Sup-

port Vector Machines (SVM), embedded in a hierarchical or paral-
lel framework. In [9], the detection and classification of acoustic
events is evaluated by providing a testbed. In [10], it was shown
how, in the case of small amounts of training data, new acoustic
events can be learned by a system. In [11], large-scale acoustic
features are used in combination with SVM for the task of acoustic
scene analysis.

Acoustic scene classification is applicable in several fields such
as intelligent user interfaces [12], serious games [13], automotive
[14], and street routing [15], where the context can be recognised
using acoustic scene classification techniques.

In the scene classification task of the IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE2016), systems for acoustic scene recognition are com-
pared. The provided corpus is divided into a development set and a
non-public evaluation set. The dataset is categorised into 15 differ-
ent classes of acoustic scenes.

This contribution describes our investigated method for acous-
tic scene classification. From the recordings, auditory spectral fea-
tures and a large number of spectral, cepstral, energy and voicing-
related audio features are extracted. Fifteen binary deep MLP neural
networks are trained in a ‘one-against-all’ fashion to perform a pair-
wise decomposition instead of simply training a multi-class neural
network. In a second stage, multiscale Gaussian kernels are used
for multiple kernel suspace learning in order to decrease the dimen-
sionality of the feature space. The reduced feature set is fed into
a nearest-neighbour classifier. Finally, the predictions from the two
system are then combined with a threshold-based decision function.
To our best knowledge, little research focuses on multikernel sub-
space learning for CASA. Thus, we aim at filling this white spot
in the litterature in order to verify if this method can significantly
improve the generalisation abilities of a system for acoustic scene
classification.

On the official development set of the challenge, an accuracy
of 81.4 % is achieved. The employed database, audio features and
classification methods are described in Section 2. Experimental re-
sults are presented in Section 3, and conclusions are given in Sec-
tion 4.

2. METHODOLOGY

2.1. Database
For evaluation of our system, we employ the official dataset of the
IEEE AASP Challenge on Detection and Classification of Acoustic



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

Scenes and Events [5]. Thereby, we use only the data of the scene
classification task. This dataset contains 30 s recordings of various
acoustic scenes, categorised into fifteen different classes. For each
of the fifteen classes, the database contains 39 minutes of recordings
in the development set, summing up to 9 hours and 45 minutes total
duration of the development set. In addition, for the challenge, the
systems were evaluated with a non-public test set containing similar
data. Sounds were recorded with a high-quality binaural recording
system, whereby the portability and subtlety of the system allowed
to obtain unobstructed everyday recordings with relative ease. Since
the recordings were performed with binaural microphones on the
ears of a person, the head-related transfer function (HRTF) of that
person is intrinsically incorporated.

2.2. Acoustic features

Auditory Spectral Features (ASF) [16, 17] are computed by apply-
ing the Short Time Fourier Transformation (STFT) using a frame
size of 40 ms and a frame step of 20 ms. Each STFT yields the
power spectrogram which is converted to the Mel-Frequency scale
using a filter-bank with 26 triangular filters obtaining the Mel spec-
trograms M40(n,m). Finally, to match the human perception of
loudness, a logarithmic representation is chosen:

M40
log(n,m) = log(M40(n,m) + 1.0). (1)

In addition, the positive first order differences D40(n,m) are cal-
culated from each Mel spectrogram as follows:

D40(n,m) = M40
log(n,m)−M40

log(n− 10,m), (2)

with n being the frame index, and k the frequency bin index. Fur-
thermore, the frame energy and the log frame energy are also in-
cluded as a feature leading to a total number of 56 features. The
features are extracted with our open-source audio feature extractor
openSMILE [18].

We separately consider the feature sets of the ‘emobase’ config-
uration [19]. These features are obtained by extracting the following
Low-Level Descriptors (LLDs): intensity, loudness, 12 MFCC, fun-
damental frequency (F0), probability of voicing, F0 envelope, 8 line
spectral frequencies, zero-crossing rate. Statistical functionals are
then applied to the LLDs and their first order differences. The fol-
lowing functionals have been used: max./min. value and respective
relative position within input, range, arithmetic mean, two linear
regression coefficients, and linear and quadratic error, standard de-
viation, skewness, kurtosis, quartile 1–3, and 3 inter-quartile ranges
resulting in a total of 988 features.

2.3. Pairwise Decomposition

Multi-class neural learning [20] can be implemented via several
paradigms. One of those is the so called ‘one-against-all’ paradigm.
It consists in decomposing an N -class pattern recognition problem
into a system of L > 1 neural networks. The L neural networks are
trained using a given data set with the assumption of using different
class lables. A decision function is usually applied to fuse the re-
sults of L neural networks and provide the final system prediction.
The ‘one-against-all’ modelling paradigm employs an ensamble of
L = N binary neural networks, ANNi, i = 1, ..., N , each with
one unit output layer Yi with output function fi (usually sigmoid
function) that provides fi(x̄) = 1 or 0 whether the input vector x̄
belongs to class i or does not belong to class i. In order to train
the i-th neural network ANNi, the training set Str is relabelled in

two sets, Str = Str
i ∪ S̄i

tr , where Str
i consists of all the refer-

ence patterns belonging to class i (labelled as ‘1’), and S̄i
tr consists

of all the reference patterns belonging to remaining other classes
(labelled as ‘0’). The decision module in this paradigm should be
designed to face the following three output scenarios: The first sce-
nario consists in obtaining fi = 1, and fj = 0 for all j given
i 6= j. The decision function D can be easily implemented as
D(x̄, f1, f2, ..., fL) = argmaxi=1,...,L(fi). The second scenario
consists in obtaining all fi = 0 for i = 1, ..., L. The third one
consists in having more than one neural networks output ‘1’. In
both last scenarios the system is uncertain and the decision func-
tion outputs the class label that corresponds to the neural network
that shows the largest output value by the activation function at the
output layer unit:

D(x̄, y1, y2, ..., yL) = argmaxi=1,...,L(yi), (3)

where yi is the output of the activation function used in the output
layer of the i-th neural network.

Since we used fully connected MLP feed-forward neural net-
works, we will refer to this approach as pairwise decomposition
with MLP (PDMLP).

In our final system we applied an enhanced decision function
that relies on an auxiliary system when the PDMLP is uncertain.
The adopted decision function is described in Section 2.5.

2.4. Auxiliary Systems

A system of N binary neural networks trained with ‘one-against-
all’ is indeed a more flexible system and allows for a better dis-
crimination of one class. However, it has one major drawback, the
system decision borders generated by theN binary neural networks
are suffering from overlapping or uncovering regions in a feature
space. In order to mitigate this drawback we introduced some aux-
iliary systems when the N binary neural networks are providing
uncertain outputs. We applied three different auxiliary system: se-
lected ‘one-against-one’ (OAO) classification, SVM, and Multiple
kernel leaning.

2.4.1. Selected ‘one-against-one’
A first auxiliary system decomposes an N -class pattern classifica-
tion problem into N(N − 1)/2 two-class classification problems
using the OAO paradigm. Let’s define the N(N − 1)/2 two-class
neural networks as ANNk(i, j), with 1 ≤ k ≤ L = N(N − 1)/2.
AnANNk(i, j) represents a neural network trained to discriminate
class i from class j , for 1 ≤ i < j ≤ N . AnANNk(i, j) is trained
with reference patterns of class i and j, and its output, fk(i, j), is
indicating whether the input pattern x̄ is either class i or j. In our
case, we refer to selected OAO (sOAO) since we just use as an aux-
iliary system the binary classifier ¯ANNk(i, j) where i and j are
the two more likely classes resulting from the output of the PDMLP
in Section 2.3.

2.4.2. Support Vector Machines
As a second auxiliary system we applied the traditional SVM ap-
proach trained on the high dimensional feature set ‘emobase’.

SVMs have shown to achieve good performances for the task
of acoustic scene analysis [10, 11], and are used in this contribution
as a comparison to a state-of-the-art method.

2.4.3. Multiple Kernel Learning
The third auxiliary system is based on MultiScale-Kernel Fisher
Discriminant Analysis (MSKFDA). This methods was recently
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proven to be effective in solving emotion recognition in speech [21].
To our best knowledge, little research focuses on multiscale repre-
sentation in CASA and we believe that this method for subspace
learning may significantly improve the generalisation of the system
by learning more robust features. This method benefits from alter-
natively optimising two variables, namely the kernelised mapping
directions and a nonnegative linear combination for kernels with
different scaling parameters.

The research of MSKFDA provides the possibility of solving
multiscale analysis of acoustic scene factors. For Gaussian kernels,
it is easy to draw the multiscale case by regulating scaling parame-
ters. The kernel transforming between samples xi and x is shown
in Eq. (4), with the parameters σm > 0, m = 1, 2, . . . ,M and
i = 1, 2, . . . , N :

(Ωxi)m = φT
m(xi)φm(x) = e

− (xi−x)
2

σ2m , (4)

where Ωxi is the multiple kernel coordinate matrix, and φm(x) is
the high dimensional form of x. Kernel methods are originally rep-
resented as high-dimensional space by adopting inner product forms
in RKHS. However, it can be also assumed that kernel methods
bring a dimension-limited feature transformation in graph embed-
ding. This transformation constructs a new feature space for each
sample by kernel functions and training samples. Thus, the rela-
tionship between a given sample and each training sample leads to
the new features. Then, the scales of kernels are mainly determined
by the parameters of respective kernels.

As is shown in Figure 1, for sample x, the original features x
are transformed into new features Ωxβ by linearly combining mul-
tiscale kernels, where β ∈ <M×1 is the column vector with corre-
sponding elements βm ≥ 0 for kernelm. Then, for the new features
of x, the dimensionality-reduced sample can be achieved by using
AT Ωxβ in bilateral ways, where A contains the kernel mappings.
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Figure 1: Schematic diagram of learning multiscale kernels. The
original features x are transformed into new features Ωxβ by lin-
early combining multiscale kernels.

High-dimensional acoustic features inevitably include much in-
terference resulting from the factors of background environment
sound, speakers, etc., in spite of state-of-the-art feature acquisition
ways. Therefore, CASA systems would benefit from the suggested
novel feature reduction method in combination with the embedding
graphs of FDA and multiple kernel learning. In addition, few pa-
rameters need to be regulated in FDA. For these reasons, we utilise
MSKFDA as an auxiliary tool in order to obtain better performance
as second stage of our algorithm.

2.5. Decision Functions

In our final system, the decision function is obtained by first apply-
ing a threshold to the output activations of a PDMLP. If the number
of outputs above the threshold is 1, then the predicted class is the
one corresponding to the neural network that generated that output.
Otherwise, if more outputs are above the threshold or none of the
outputs are above the threshold we only rely on the auxiliary sys-
tem predicted class. The value of threshold is set to 0.3 and was
optimised on the development set.

3. EXPERIMENTS

This section contains the experimental setup and the evaluation of
different approaches on the development set of DCASE.

3.1. Setup

In the fifteen binary classifiers composing the PDMLP system, MLP
were trained on 100 parallel sequences per batch, using Stochastic
Gradient Descent with Adam by applying a fixed learning rate of
0.001 and a binary cross-entropy objective function. We used recti-
fied linear units as activation function. Weights were initialized with
Gaussian normal distribution (σ = 0.1, µ = 0). For better general-
ization, the networks were trained using early stopping on the cor-
responding test set per each fold. Furthermore, the early stopping
criterion was applied considering the sum of all validation errors at
each epoch of each network. In this way, we first reduced the train-
ing time by a factor of 3 and we also avoided potential overfitting.
The training procedure stopped after a maximum number of 1000
epochs. The ‘selected OAO’ auxiliary networks were trained in the
same fashion. In order to compare the proposed approaches with
state-of-the-art methods, we also evaluated traditional multi-class
MLP with exactly the same training algorithm and parameters, ex-
cept that we used a multi-class cross entropy error as objective func-
tion. All networks were trained using Theano [22] and Lasagne1.
We also evaluated SVM with a linear kernel and complexity value
C = 0.001, 0.01, 0.1, 1.0, 10.0. SVM are trained with the sequen-
tial minimal optimisation (SMO) algorithm using the training data.
The parameters in the MSKFDA are set as follows. The number
of scales is set as M = 21, with the Gaussian scaling parameters
σm (m = 1, 2, . . . ,M ) selected as 0.0001n, 0.0003n, 0.0005n,
0.0007n, 0.001n, 0.003n, 0.005n, 0.007n, 0.01n, 0.03n, 0.05n,
0.07n, 0.1n, 0.3n, 0.5n, 0.7n, n, 3n, 5n, 7n, and 10n, respec-
tively, where n is the number of original features. We employ
openSMILE’s ‘emobase’ feature set which results in n = 988 here.
The dimensions d of the dimensionality-reduced feature space are
selected no larger than 21. The number of iterations is set as 7. A
Nearest-Neighbour classifier is selected as the final decision maker.

3.2. Results

We first tested traditional multi-class approaches by using SVM
and MLP in order to compare the performance of PDMLP with
state-of-the-art methods. Table 1 reports performances on the de-
velopment set using the 4-fold cross validation as specified in the
challenge baseline. By applying PDMLP, we can observe an abso-
lute improvement of 7% accuracy over the baseline of the DCASE
challenge [5]. SVMs perform slightly better than the baseline with
up to 74% accuracy (best performance obtained with C = 0.1).

1https://lasagne.readthedocs.io
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Table 1: Comparison of performances between traditional multi-
class systems and the proposed method with 15 binary classifiers
(PDMLP). Multi-class classifiers: Gaussian Mixture Models (Base-
line), Support Vector Machines (SVM), and Multi Layer Perceptron
(MLP). For neural networks, the layout is indicated in parenthesis
(number of units× number of layers). Results are given in terms of
accuracy [%].

Method Fold1 Fold2 Fold3 Fold4 Mean
Baseline [5] 67.2 68.9 72.2 81.9 72.5
SVM 72.2 73.9 77.1 72.4 74.0
MSKFDA 76.8 73.7 79.5 79.7 77.5
MLP (54x3) 78.5 70.8 77.7 75.9 75.9
MLP (256x3) 78.6 77.7 76.2 77.1 77.4
PDMLP (54x3) 82.6 76.9 77.5 77.0 78.5
PDMLP (256x3) 81.4 78.2 77.5 80.8 79.5

Table 2: Combination of the PDMLP system with different auxil-
iary systems. Best accuracy (%) obtained on the development set
with 4-fold cross validation. Auxiliary systems: Support Vector
Machines (SVM), selected ‘one-against-one’ classifier (sOAO), and
MultiScale-Kernel Fisher Discriminant Analysis (MSKFDA) with
nearest-neighbours. Results are given in terms of accuracy [%].

Folds
Method 1 2 3 4 Mean
PDMLP 81.4 78.2 77.5 80.8 79.5
PDMLP-SVM 79.4 75.8 78.6 80.0 78.4
PDMLP-sOAO 81.9 80.4 75.8 81.2 80.8
PDMLP-MSKFDA 81.5 79.8 81.5 82.9 81.4

MSKFDA performs significantly better than SVM with an auccu-
racy of 77.5%, corroborating our assumption that multikernel sub-
space learning is effective for acoustic scene classification. Multi-
class MLP are evaluated using different layouts. For simplicity, we
only report the best results obtained with three hidden layers com-
posed by 54 units and 256 units. We can observe that, increasing
the dimension of the hidden layer to 256 units brings better perfor-
mances up to 77.4% accuracy, however, no more improvement was
observed by further augmenting the dimensionality of the hidden
layer. The same layout (256-256-256) also brought about an in-
crease in performance in the PDMLP method of up to 79.5% accu-
racy. We kept this layout for the PDMLP as final first stage system
and applied the auxiliary systems by adopting the enhanced deci-
sion function described in Section 2.5.

Table 2 shows the results obtained from the fusion with SVM,
sOAO and MSKFDA. We observe that the combination with SVM
is not fruitful and led to a decrease in performance down to 78.4%
accuracy. However, combining PDMLP and sOAO seems to in-
crease performances up to 80.8% with an absolute improvement of
1.3% accuracy. Further improvement is observed with the com-
bination of PDMLP and MSKFDA up to 81.4% with an absolute
improvement of 8.9% accuracy over the challenge baseline.

Table 3 shows the confusion matrix for the best-performing sys-
tem, using PDMLP and MSKFDA. Some classes (office, car) are
recognised with high accuracy, while for others (park, restaurant,

train), low scores are obtained. Most confusions are made between
the classes park and residential area or city and train. The record-
ings of the classes park and residential area are partly very similar.

Summing up, we believe that such a system is more robust to
variation since it relies on two generalised system. In fact, PDMLP
can be considered already a very flexible system given that it was
tailored to discriminate one class against the rest. Additionally, we
carefully trained the 15 MLP considering the overall validation er-
ror, avoiding individual training and subsequent overfitting. Fur-
thermore, by selecting MSKFDA as auxiliary system we relied on
another well-generalised model trained on a reduced and rubust fea-
ture set obtained via multi kernel subspace learning.

Table 3: Confusion Matrix of the development data for the proposed
system, achieving an accuracy of 81.4 %.
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beach 62 0 0 0 4 0 0 0 0 0 0 7 4 0 1
bus 0 68 0 6 0 0 0 0 0 0 0 0 0 2 2
cafe/rest. 0 0 59 0 0 0 6 2 0 7 0 1 0 0 3
car 0 4 0 71 0 0 0 0 0 0 0 0 0 3 0
city 0 0 0 0 74 0 1 0 0 0 0 0 3 0 0
forest 1 0 0 0 0 73 0 1 0 0 0 1 2 0 0
grocery 2 0 9 0 0 0 56 0 0 11 0 0 0 0 0
home 5 0 1 0 0 1 0 67 2 0 1 1 0 0 0
library 0 0 3 0 0 0 2 0 71 0 0 0 0 2 0
metro st. 0 0 0 0 0 0 3 5 0 70 0 0 0 0 0
office 0 0 0 0 0 0 0 0 5 0 73 0 0 0 0
park 4 0 0 0 2 1 0 0 4 0 0 47 20 0 0
res. area 2 0 0 0 1 4 0 0 1 0 1 15 54 0 0
train 0 9 6 0 15 0 1 0 1 0 0 0 0 39 7
tram 0 1 0 0 2 0 5 0 0 0 0 0 0 1 69

4. CONCLUSIONS

We presented and evaluated a system for acoustic scene classifica-
tion. Combining pairwise decomposition with deep neural networks
and dimensionality reduction by multiscale kernels, an accuracy of
81.4 % is obtained on the development set of the D-CASE chal-
lenge. A comparison with stat-of-the-art approaches showed that
the pairwise decomposition can alone bring a significant (one-tailed
z-test [23], p<0.001) improvement. Furthermore, we found that a
dimensionality reduction via multiple kernel learning is also effec-
tive and outperforms the baseline significantly. The two methods
seems to be complementary and thus – if combined – they provide a
more robust system. Some acoustic scenes (park, restaurant, train,
city) are difficult to recognise due to the high variability in the class
and the similarity between the different classes. In future works, we
will focus on new acoustic features and enhanced decision functions
for the late fusion stage.
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[19] F. Eyben, M. Wöllmer, and B. Schuller, “OpenEAR–
introducing the Munich open-source emotion and affect
recognition toolkit,” in Affective Computing and Intelligent
Interaction and Workshops. Amsterdam, The Netherlands:
IEEE, 2009, pp. 576–581.

[20] G. Ou and Y. L. Murphey, “Multi-class pattern classification
using neural networks,” Pattern Recognition, vol. 40, no. 1,
pp. 4 – 18, 2007.

[21] X. Xu, J. Deng, W. Zheng, L. Zhao, and B. Schuller, “Dimen-
sionality reduction for speech emotion features by multiscale
kernels,” in Proc. Annual Conference of the Int. Speech Com-
munication Association (INTERSPEECH). Dresden, Ger-
many: ISCA, 2015, pp. 1532–1536.

[22] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016.

[23] M. D. Smucker, J. Allan, and B. Carterette, “A comparison
of statistical significance tests for information retrieval evalu-
ation,” in Proc. of the Sixteenth ACM Conference on Confer-
ence on Information and Knowledge Management, ser. CIKM
’07. New York, NY, USA: ACM, 2007, pp. 623–632.


