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Abstract

With the proliferation of extremely high-dimensional ddtzature selection algorithms have become indispensatrte ¢
ponents of the learning process. Strangely, despite extemgrk on the stability of learning algorithms, the stétlgilof
feature selection algorithms has been relatively negticténis study is an attempt to fill that gap by quantifying teess-
tivity of feature selection algorithms to variations in ttraining set. We assess the stability of feature selectigarghms
based on the stability of the feature preferences that tkpyess in the form of weights-scores, ranks, or a selectztd e
subset. We examine a number of measures to quantify théitgtabfeature preferences and propose an empirical way to
estimate them. We perform a series of experiments withadeature selection algorithms on a set of proteomics detias
The experiments allow us to explore the merits of each #ahikasure and create stability profiles of the featurectéla
algorithms. Finally we show how stability profiles can sugiptbe choice of a feature selection algorithm.

1 Introduction

High dimensional datasets are becoming more and more abtinddassification problems. A variety of feature selegtio
methods have been developed to tackle the issue of high diorelity. The major challenge in these applications isctceet
a set of features, as small as possible, that accuratelifidssthe learning examples.

A relatively neglected issue in the work on high dimensigmablems, and in general in problems requiring feature
selection, is the stability of the feature selection methoskd. Stability, defined as the sensitivity of a method t@mtians
in the training set, has been extensively studied with reisjeethe learning algorithm itself. We propose to invedtgaow
different subsamples of a training set affect a method'ssssent of a feature’s importance and consequently thesthalf
selected features.

The stability of classification algorithms was examined lbiyrky [16] who proposed a measure based on the agreement
of classification models produced by an algorithm when &dion different training sets. He defined the agreement of two
classification models as the probability that they will piod the same predictions over all possible instances drevom f
a probability distributionP(X'). Note that instances are drawn froR{X) and not fromP (X, C), the joint probability
distribution of class and training instances; the undagyieason is that the agreement of two concepts—classificati
models—should be examined in all possible input worlds.rtteoto estimate stability he suggested using 2-fold cross-
validation. In each of the: repetitions of cross-validation a classification modelrisduced from each one of the two folds.
The two models are then tested on artificial instances dramsaimpling fromP(X') and their agreement is computed. The
final estimation of stability is the average agreement oltenauns.

Related to the notion of stability is the bias-variance aeposition of the error of classification algorithms, [6, 2, Bhe
variance term quantifies instability of the classificatidgoaithm in terms of classification predictions. Varianceasures
the percentage of times that the predictions of differesgsification models, learned from different training sitsa given
instance are different from the typical (average) predittiBias-variance decomposition is usually done via beagging,
where part of the data is kept as a hold-out test set and thaimeler is used to create different training sets by usingosiaig
with replacement. The final estimation of variance is alsaberage over the different bootstrap samples.



In both approaches described above, the predictions ofifissification models are crucial in quantifying the sewnisjti
of classification algorithms to changes in the training ¢etge that both approaches can also be used for error e&timat
which is then tightly coupled with the stability analysisjowever when one wants to examine only feature selection+alg
rithms without involving a classification algorithm, theaae methods do not apply. Typical feature selection algor# do
not construct classification models and thus cannot proslassification predictions. They usually output what we aal
feature preference statement (for conciseniesdure preferengethis can take the form of a subset of selected features, or
alternatively of a weighting-scoring or a ranking of thettgas, based on which a small set of features can be selexitiedr(
by specifying a threshold or asking for a specific number afdees). A classification algorithm should then be applied o
the selected feature set to produce a classification motigle lused the stability estimation methods described above t
the combined feature selection and classification algmsthwe would be measuring their joint sensitivity to tragiset
variations and we would have no way to delimit the (in)sigbthe feature selection algorithm from that of the classifion
algorithm.

To address this difficulty we introduce the notion of prefdi@ stability, i.e., the stability of the feature prefaoes
produced by a feature selection algorithm, to quantify @ssdtivity to differences in training sets drawn from thenga
distribution. The same approach can in fact be used to medsempreferential stability of any classification algamitthat
produces models from which weightings or rankings of théuiess can be extracted, e.g. linear discrimination algorg.

Stability, as introduced in [16], and the bias-varianceategosition frameworks are not able to accurately quantigéf-p
erential stability. It is possible that different trainisgmples lead to really different feature sets which howsgiadd the
same prediction patterns. This can be especially true wineimitial features have a high level of redundancy whichat n
handled in a principled way by the algorithms used.

The motivation for investigating the stability of featurelection algorithms came from the need to provide applicati
domain experts with quantified evidence that the selectadifes are relatively robust to variations in the trainiaged This
need is particularly crucial in biological applicationsgegenomics, DNA-micorarrays, and proteomics, mass speetry.
These applications are typically characterized by highadisionality, the goal is to output a small set of highly disenatory
features on which biomedical experts will subsequenthgstvconsiderable time and research effort. Domain expents t
to have less confidence in feature sets that change radigahyslight variations in the training data. Data miners éidy
convince them not only of the predictive potential but aléthe relative stability of the proposed features.

The rest of the paper is organized as follows: in Section 2ntr@duce measures of stability that can be applied to any
feature selection algorithm that outputs a feature prefszas defined above; we also show how we can empirically @sim
these measures. In Section 3 we describe the experimenual sbe datasets used, and the feature selection algarithm
included in the study; in Section 4 we present the resulti@Ekperiments, investigate the behavior of the differitibty
measures and establish the stability profiles of the chosaturfe selection algorithms; in Section 5 we examine tageth
classification performance and stability of feature prefees, and suggest how we can exploit the latter to suppert th
choice of the appropriate feature selection algorithmjifinge conclude in Section 6.

2 Stability

The generic model of classification comprises: a generdt@maom vectors:, drawn according to an unknown but fixed
probability distributionP(X); a supervisor that assigns class label® thex random vectors, according to an unknown but
fixed conditional probability distributio®(C| X ); a learning space populated by pdirsc) drawn from the joint probability
distribution P(X, C) = P(C|X)P(X).

We define thestability of a feature selection algorithm as the robustness of tharepreferences it produces to differences
in training sets drawn from the same generating distribuff¢ X, C'). Stability quantifies how different training sets affect
the feature preferences.

Measuring stability requires a similarity measure for teatpreferences. This obviously depends on the represamtat
language used by a given feature selection algorithm toritbesits feature preferences; different representatioigleages
call for different similarity measures. We can distinguibhee types of representation languages for feature medées. In
the first type a weight or score is assigned to each featuredtidg its importance. The second type of representaian i
simplification of the first where instead of weights ranks @ssigned to features. The third type consists of sets ofteele
features in which no weighting or ranking is considered. i@bsly any weighting schema can be cast as a ranking schema,
which in turn can be cast as a set of features by setting ahtbietsn the ranks or asking for a given number of features.

More formally, let training examples be described by a veofdeaturesf = (f1, fo, ..., fm), then a feature selection
algorithm produces either:



e a weighting-scoringw = (wy, wa, .., Wy, ), w € W C R™,
e arankingr = (r1,7r2, .., 7m), 1 <1y <m,
e or a subset of features:= (s, s2, .., Sm ), s; € {0, 1}, with 0 indicating absence of a feature ahgresence.

In order to measure stability we need a measure of similéoityeach of the above representations. To measure sirgilarit
between two weightings, w’, produced by a given feature selection algorithm we use Bearsorrelation coefficient
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whereSyy takes values in [-1,1]; a value of 1 means that the weightamggerfectly correlated, a value of O that there is no

correlation while a value of -1 that they are anticorrelated
To measure similarity between two rankings’, we use Spearman’s rank correlation coefficient
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wherer; andr; are the ranks of featurein rankingsr andr’ respectively. Here too the possible range of values is ii]-1
A value of 1 means that the two rankings are identical, a vafiithat there is no correlation between the two ranks, and a
value of -1 that they have exactly inverse orders.

Finally we measure similarity between two subsets of festuising a straightforward adaptation of the Tanimoto dista
between two sets, [4]:

Is| + |s'| —2|sn |

[s| + [ —[sn s’

The Tanimoto distance metric measures the amount of ovbdapeen two sets of arbitrary cardinalitys takes values in
[0,1] with 0 meaning that there is no overlap between the ®is,sand 1 that the two sets are identical.

To empirically estimate the stability of a feature seleatédgorithm for a given dataset, we can simulate the didtiobu
P(X, C) from which the training sets are drawn by using a resampkenique like bootstrapping or cross-validation. We
opted for N-fold stratified cross-validation (N=10). In tésid cross-validation the overlap of training instancesoag the
different training folds is roughly 78%. The feature selectalgorithm outputs a feature preference for each of thimiing
folds. The similarity of each pair of feature preferences,N (N — 1)/2 pairs, is computed using the appropriate similarity
measure and the final stability score is simply the averag#asity over all pairs.

We want to couple stability estimates with classificatiomeestimates in view of identifying feature selection altons
which maximize both stability and classification perforroanTo this end we embed the procedure described above \&ithin
error estimation procedure, itself conducted using steakil0-fold cross-validation. In other words, at each tieraof the
cross-validated error estimation loop, there is a fulling cross-validation loop aimed at measuring the stgiilitfeature
precedences returned by the feature selection algorithma.oliter loop provides a classification error estimate irugel
manner, while the inner loop provides an estimate of thelgtabf the feature selection algorithm.

Ss(s,s') =1

3 Stability Experiments
3.1 Datasets

We have chosen to experiment with high dimensional data tfoee different application domains, namely proteomics,
genomics and text mining. A short description of these adsas given in table 1.

The proteomics datasets come all from the domain of massrspeetry. The goal is to construct classification models
that discriminate between healthy and diseased indiviglial we have two class problems. We worked with three differ
datasetsovarian cancer [11], (version 8-07-02)rostate cancer [12] and an extended version of the eaftgke diagnosis
dataset used in [14]. All features correspond to interssitiemass values and are continuous.

The genomics datasets are all datasets of DNA-microaragrenents. We worked with three different datasétakemia
[7] where the goal is to distinguish between acute myelaidtéenia (AML) and acute lymphoblastic leukemia (ALL); clas-
sification of embryonal tumors of the centrarvous system [13] where the goal is to predict whether a given tneat



dataset class 1| #class 1| class 2 | #class 2| # features
ovarian normal 91 diseased 162 824
prostate | normal 253 diseased 69 2200
stroke normal 101 diseased 107 4928
leukemia| ALL 47 AML 25 7131
nervous | survival 21 failure 39 7131
colon normal 22 tumor 40 2000
alt relevant| 1425 not 2732 2112
disease | relevant 631 not 2606 2376
function | relevant 818 not 3089 2708
structure | relevant 927 not 2621 2368
subcell relevant| 1502 not 6475 4031

Table 1. Description of datasets.

will be effective or not (i.e., patient will or will not surve); andcolon cancer [1] where the goal is to distinguish between
healthy and tumor colon tissue. Features correspond ttslefexpression of different genes and are continuous.

In text mining we worked with five datasets aimed at deterngnvhether a sentence is relevant or not to a given topic:
protein-disease relationdiease), protein-function and structuréupction andstructure respectively), protein subcellular
location Gubcell), and related protein sequences produced by alternatii@ngpof a gene or by the use of alternative
initiation codons &lt) [10]. Sentence features are stemmed words, each desdrnjbadcontinuous value representing it
standardf-idf score.

Dimensionality reduction and stability of selected featuare very important especially in the first two types of eyapl
tions. The selected features provide the basis to distingoetween different types of pathologies, a first path tottygsis
construction, an initial understanding of the mechanismslved in various diseases etc. In other words they prowide
starting point which is followed by substantial laboratoegearch. As such the quality and the robustness of thetselec
features is of paramount importance.

3.2 Feature Selection Algorithms

For feature selection we considered the following methdd&rmation Gain (1G), Chi-Square (CHI) [4], Symmetrical
Uncertainty (SYM), [9], ReliefF (RELIEF), [15], and SVMRHB]. Information gain, Chi-Square and Symmetrical Uncer-
tainty are all univariate feature scoring methods for nahaitributes or continuous attributes which are disceetiasing the
method of [5]. ReliefF delivers a weighting of the featurdsilertaking their interactions into account; it uses alltfeas to
compute distances among training instances and the K neaighbors of each of th&/ probe instances to update feature
weights. We sef{ to 10 andM to the size of the training set, so that all instances werd aserobes. SVMRFE is based
on repetitive applications of a linear support vector maetalgorithm where th&% lowest ranked features are eliminated
at each iteration of the linear SVM. The ranks of the feataresbased on the absolute values of the coefficients assigned
them by the linear SVM. In our experiment3,was set to 10% and the complexity paramétesf the linear SVM to 0.5.

We also include a simple linear support vector machine tavsthat the same type of stability analysis can be applied
to any linear classifier; here too the complexity parametas wet to 0.5. Provided that all features are normalized to a
common scale, the absolute values or the squares of theaieef§ of the linear hyperplane can be taken to reflect the
importance of the corresponding features, in effect priogjch feature weighting. This is actually the assumptionesnd
which SVMRFE works; alternatively the support vector maehis equivalent to SVMRFE with a single iteration, where the
ranking of the features is simply based on the absolute saluthe squares of the coefficients of the support vector mach
We consider this version of support vector machines as yathan feature selection algorithm and identify it as SYVMQNE
The implementations of all the algorithms are those fountié&"WEKA machine learning environment [17].

As already mentioned the stability estimates are calcdilaithin each training fold by a nested cross-validatioml@md
the final results reported are the averaggs, Sr, Ss, over the ten external folds.




dataset IG CHI SYM
Sw Sk Ss Sw Sk Ss Sw Sk Ss

ovarian | 0.9553 0.9105 0.49480.9560 0.9089 0.56140.9512 0.9068 0.5038
prostate | 0.8247 0.4070 0.40800.8249 0.4011 0.42120.8196 0.4039 0.4125
stroke 0.8387 0.2042 0.18470.8434 0.2032 0.21520.8250 0.2023 0.2187
avg 0.8729 0.5072 0.36250.8747 0.5044 0.39920.8652 0.5043 0.3783
leukemia| 0.8507 0.2492 0.73920.8467 0.2477 0.75570.8397 0.2479 0.7897
nervous | 0.4652 0.0177 0.23200.4693 0.0166 0.23850.4652 0.0182 0.2436
colon 0.7606 0.1138 0.48650.7587 0.1157 0.50240.7504 0.1159 0.5069
average | 0.6921 0.1269 0.48590.6915 0.1266 0.49880.6851 0.1273 0.5134
alt 0.9983 0.1254 0.96320.9985 0.1267 0.96400.9966 0.1268 0.9037
disease | 0.9231 0.0900 0.7589 0.9267 0.0853 0.74700.9002 0.0853 0.7405
function | 0.9151 0.1045 0.80550.9255 0.1058 0.79740.8972 0.1041 0.7491
structure | 0.9771 0.1636 0.88550.9807 0.1641 0.885830.9643 0.1629 0.8485
subcell | 0.9854 0.1136 0.89900.9873 0.1139 0.85990.9795 0.1135 0.8487
average | 0.9594 0.1194 0.86240.9637 0.1191 0.8507 0.9476 0.1185 0.8181

average | | |

RELIEF SVMONE SMVRFE
Sw__ Se Ss | Sw Sk Ss | Sw  Sr Ss
ovarian | 0.9697 0.9537 0.72960.9379 0.8476 0.5965 NA 0.8386 0.4680
prostate | 0.9572 0.9399 0.55290.8685 0.7389 0.52483 NA 0.7323 0.4484
stroke 0.8806 0.8230 0.34100.8174 0.7032 0.2721 NA 0.6971 0.1678
avg 0.9358 0.9055 0.54110.8746 0.7633 0.4175 NA 0.7560 0.3614

leukemia| 0.9157 0.8675 0.579830.8757 0.7655 0.4878 NA 0.7632 0.2678
nervous | 0.8078 0.7839 0.28730.8099 0.6751 0.4568 NA 0.6728 0.1065
colon 0.9063 0.8363 0.69310.7782 0.6818 0.3512 NA 0.6799 0.2392
average | 0.8766 0.8292 0.51990.8213 0.7074 0.431 0.7053 0.2045

alt 0.8278 0.6945 0.69080.9889 0.7468 0.6676 NA 0.7307 0.6517
disease | 0.8270 0.6892 0.5277 0.8366 0.7033 0.526 - - -

function | 0.6764 0.6417 0.54440.7826 0.7169 0.325
structure | 0.7636 0.6678 0.50720.8543 0.7156 0.532
subcell | 0.8016 0.6881 0.67940.9328 0.7345 0.766
average | 0.7793 0.6763 0.58990.8790 0.7234 0.563
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Table 2. Stability results for the different stability meas ures. Sg is computed on feature sets com-
prising the top ten features proposed by each method.



4 Stability Results

In this section we will examine the stability results alongtdimensions:
e the behavior of the stability measures per se,
e and the stability performance of the feature selectionritlgms

Table 2 gives the stability results f6%y,, Sg, andSs, i.e., for weightings-scorings, rankings and selectetliessets, for the

six different methods considered. The imposed cardinalfityre final feature set influences the valuesefbut not of Sy
andSg. S5 was computed on the feature sets of the best ten featuresesbley each method. SVMRFE does not produce
a weighting-scoring of features so the computatio®af does not make sense in that case; moreover in the case okthe te
mining datasets SVMRFE produced results only foraltedataset, in the remaining text mining datasets its execatid

not terminate within a reasonable amount of time. For SVMQN&ESstability results are computed on the square values of
the coefficients of the linear hyperplane found by the supygertor machine.

4.1 Discussion on stability measures

Sw andS§g take into account the complete feature preferences praduca method, whilé's focuses on a given number
of top ranked or selected features. Thus the former two pleai global view of stability of feature preferences while th
latter focuses on a more precise picture of greater utilitgesfeature preferences are used to select a featurgggprovides
a finer grain picture of stability in comparison & since it is based on the actual feature coefficients prodbgedgiven
method while theS uses the ranking of these coefficients. However this doesneain that the information provided by
Sw is of greater value than that provided By, on the contrary. First, in practice ranks are of more ditgitity in selecting
the final set of features. A second disadvantagsgfis that since it directly operates on the actual weightsescproduced
by each method, its results are not directly comparable gndifferent methods due to possible differences in scalés an
intervals of the weights-scores, a problem that does naapp the case of ranks.

The results that the three measures of stability deliverteanontradictory, each one indicating a considerably difie
level of stability, eg the stability measurements of IG oadblon dataset (table 2), whergy; has a value of 0.7606,; a
value of 0.1138 and's a value of 0.4865. These differences are a result of the wathtiee different measures are computed.
Sw operates directly on the weightings-scorings producethbyeature selection method, if it happens that a methograssi
exactly the same score to a large set of features the regSiinvalue can be quite high. In fact this was often the case with
all the univariate feature selection that we examine hdrafahem assign a score of zero to a large number of features.
That was a side effect of the discretization process, usednjunction with the univariate feature selection methedsch
resulted in a large number of features with a single valus tha corresponding score of the feature was zero. In theofase
the multivariate feature selection methods this happerchriess often S addresses this issue by breaking ties randomly,
i.e. when two features have exactly the same score whichdvoebln assigning to both of them the same rartken we
randomly assign to one of them a rankkodind to the other a rank @f+ 1. The reasoning behind the random breaking of ties
is that when we ask a feature selection algorithm to selemttgxk features, usually we have no way to prefer one feature
over another when both have the same ranK his explains why there can be such large discrepanciegleatthe values
of Sy andSk. Table 3 shows how many zero weights-scorings each feaglgetin method produces; when the number
of zero weights is low then the values §f;; and Sk will be similar. The discrepancy betweéix andSy is explained by
the fact that the latter is focusing on the tbpanked features which can be extremely stable, especialgnthe value of:
is low as it was in the case of the results given in tablé 2-(10). This observation points to possible improved versions of
Sr where similarities or differences on the top ranks are meaviy accounted for while differences and similaritieshe
lowest ranks are less accounted.

The pattern of agreement or disagreement between the tiffeeedt measurements is as follows: usually the highest
stability value will be given bySyy-; depending on whether there are fewer or more features with weighting, the value
of Sk can be as high as that 6f; or considerably lower. The value &fy does not correlate with that of the other two
measurements, i.e. a low value 8f does not necessarily translate to a low valueSef Overall the most important
information is delivered bySs, when we are examining the stability of the methods for sétsetected features of given
cardinality, followed bySx which provides an indication of stability of the completatigre preference. In the following
sections we will focus on these two measures of stability.



IG CHI  SYM RELIEF SVMONE

ovarian 35.07 35.07 35.07 0 01.08
prostate  85.63 85.63 85.63 0 00.99
stroke 91.25 91.25 091.25 0 02.33
leukemia 87.68 87.68 87.68 0 16.21
nervous  98.48 98.48 98.48 0 09.91
colon 93.98 93.98 93.98 0 02.51
alt 94.33 94.33 94.33 05.56 09.72
disease 96.15 96.15 96.15 06.06 05.03
function 95.17 95.17 95.17 07.35 05.64

structure 92.82 92.82 92.82 06.88 05.69
subcell 95.19 95.19 095.19 06.13 07.91

Table 3. Percentage of features with zero score for each meth od.

4.2 Discussion on stability of feature selection algorithrs

First of all there is no feature selection method that is txiestly more stable than all the others for all the différen
problems that we examined. However it seems that there pes tyf problems for which a given method is more stable than
the others.

In the case of the proteomics problems the most stable metwus to be RELIEF which achieved the highest stability
scores in all three problems both in termsSf andSs. The feature preferences that RELIEF produces for the giyes of
problem are stable both globally, i.e. the ranking of theuess does not change considerably with different traisietg, and
at the top, i.e. the ten top ranked features do not changed=yably with changes in the training set. The global sighif
RELIEF's feature preferences as measuredhys on average 0.9055 for the three proteomics datasetsidggwably higher
than all the other feature selection methods. FoRELIEF scores 0.7295, 0.5529 and 0.3410 for dlrarian, prostate
andstroke datasets respectively. These scores correspond to argavevarlap of 8.43, 7.12 and 5.08 features, out of the
ten contained in the final set of selected features, amongitfegent subsets of the training foltisThe rest of the methods
have a considerably lower score.

In the case of the genomics datasets the picture is mixederinst of the global stability of the feature preferences
measured by the clear winner is again RELIEF, with an average score d928 The results of all the univariate methods
are catastrophic, on average around 0.126, a fact that isodine very large number of features to which these methods
assigned a score of zero resulting in random rankings faetieatures. SVMONE and SVMRFE have relatively stable
feature preferences, around 0.7. However when we tuSstthe picture changes. For theukemia dataset the univariate
methods achieve the highest stability compared to all theranethods, the best being SYM with a score of 0.7897 (8.82
common features out of ten on average); forileevous dataset the most stable algorithm is by far SYMONE anat@don
RELIEF.

For the text mining problems in terms of the global stabilitg clear winner is SVMONE, with a6z that is consistently
higher than 0.7 for all datasets, followed by RELIEF. Allwariate methods have a very Iy score, in the best case around
0.16, again this is due to the large number of features toltiiese methods assign a score of zero. The picture changes
radically when we examine the stability behavior with regtge Ss. This time the most stable methods are the univariate
methods with an averag®s score always above 0.8 (8.88 common features).

Overall RELIEF produces very stable feature preferencabese are evaluated [, being the most stable in all the
proteomics and genomics datasets and the second mostistéidetext mining datasets. When we evaluate the stabifity o
the top ten selected features RELIEF is the clear winnerdrptioteomics datasets and on average the best for the geshomic
datasets. The univariate feature selection methods petiadly in terms of their global stability but better when waleate
the stability of the top ten features, in fact for the text mgapplications they are by far more stable than the othehauss.

The SVM based algorithms are somewhere in the middle getiiegecond place in terms of global stability in two out of
the three application domains (proteomics, genomics).Hatwoncerns the stability of the top ten selected featinesdo
not have an application domain in which they excel.

1t is easy to compute the actual number of common featureswieeknow theSs score and the cardinality of the final feature set simply t#y th
definition of Sg.



Examining the stability profiles of the different featurdesgion algorithms three groups of algorithms arise ndlyra
where the algorithms that belong to a given group share asierijar stability behavior. The first group consists of et
univariate feature selection algorithms, the second ¢os@VMONE and SVMRFE, while RELIEF is a group on each own
since it does not have a stability behavior similar to anyhefather methods.

IG, SYM and CHI have almost identical stability scores fdrtatee measures of stability and all application domains
considered. This is not a surprise since all of them are basadimilar principle, i.e. they select individual featsmen the
basis of how well they discriminate among the different séss

SVMONE and SVMRFE are quite similar in terms$t—a fact that can be easily explained since the ranking ofifeat
provided by SYMONE can be considered as a less refined veo$ibie ranking provided by SVMRFE, the former being the
result of a single execution of the SVM algorithm and theeletihe result of an iterative execution where each time 10&b6ef
lower ranked features are removed. However in term$08VMONE appears to be more stable; for the proteomics dataset
SVMONE has an average overlap of 7.47, 6.87, 4.27 featuresfden against 6.37, 6.19, 2.87 for SVMRFE forarian,
prostate andstroke respectively. In the case of genomics datasets the differeneven greater, SVMONE has an average
feature overlap of 6.55, 6.27, 5.19 against 4.22, 1.92, RB&VMRFE forleukemia, nervous andcolon respectively;
finally in alt the only text dataset in which SYVMRFE terminated, the défere is small: 8 and 7.9. Here too the fact that
SVMREFE is based on multiple iterations explains its higmstability on the top ten ranked features. When the diffeesn
of the coefficients of two features are rather small and aaghigiabout to be made on which of the two to eliminate, differe
training sets could result in opposite rankings for these fisatures thus eliminating a different feature each time.

The results of the estimation processSf can be very eloquently visualized, not only providing irfdign the stability
of each method, but also clearly indicating which featurescansidered important by each method. An example of such a
visualization for one dataset from each application donggiven in figure 1, where the cardinality of the final feataet
is set to ten. In each of the graphs the x-axis correspondsetmtlividual features. The y-axis is separated into 10 rows
each one corresponding to one of the outer cross-valid&ids. Within each row we find 10 rows (not visibly separated)
corresponding to each of the inner cross-validation foldhe outer fold. A perfectly stable method, i.e. one thatajw
chooses the same features, would have in its graph as maigalénes as the cardinality of the final feature set. Eacé |
would correspond to one selected feature.

Examining figure 1 it is obvious that the most stable behafdorll algorithms is attained for thalt dataset while the
less stable in the case of thervous dataset, wittprostate being somewhere in the middle. In the case ofdhelataset
it is clear that the univariate methods are more stable tHalRF, SVMONE and SVMRFE. The visual inspection of the
graphs allows for a clear understanding of which featuresansidered most important by each method. We can see ¢éhat th
three univariate methods select roughly the same featureach dataset. The feature patterns established by SVMQUNE a
SVMRFE are also similar between them, albeit to a lesseméxtehile RELIEF has a distinctively different pattern from
all the other methods. Moreover it is clear that the actudlevaf stability is affected by the dataset examined with som
datasets resulting in systematically higher levels ofilitatior all algorithms.

4.3 Stability profiles with Sg

The more interesting stability estimation is provided$y since it focuses on a subset of features, the ones selected by
each method, which is actually what interests us when we enfenning feature selection. Nevertheless this estinmaso
specific to a given number of selected features. To get a mobabpicture of the stability profile of the different meth®
with respect toSs we computed its values for different sizes of selected fesgats, ranging from 10 up to the cardinality of
the full feature set in increments of five, the results aregiin figure 2. However as the cardinality of the selectedufeat
set increases so does the estimated value of stability gibgalause with a larger number of selected features theiteds a
a higher probability that there will be more features in coomonly due to chance. To quantify the increase in stability
attributed to the increasing cardinality of the selecteatdee set we included as a stability baseline a random featlector
that outputs random feature sets of a given cardinality. Néeikl note here that the computation of the curves does goire
any extra application of the feature selection algorithitieothan that described in the previous section for esiilgahe
different stability measures, the reason is that each #ligorsimply outputs a complete feature preference whichhman
readily used to compute the valuesSf for different feature set cardinalities.

The univariate feature selection methods have an accextdiility performance only for low cardinalities of feegisets
for almost all datasets, with the exceptionavfarian. After a point their behavior converges to that of the randsatector
and they are dominated by the remaining three algorithmeg;tetiat as already mentioned is due to the discretizatidghade
used with them. For low feature set cardinalities they dat@rall other algorithms in all the text mining problems anelyt
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have a slight advantage in the proteomics and in two of theetigenomics dataseteifkemia andcolon) over the SVM
based algorithms. RELIEF has an almost systematic advauotagy the other methods for two out of the three proteomics
datasetsrostate, stroke). For all types of problems it appears to have a better (prates, genomics problems) or similar
(text mining problems) stability profile with the SVM basddaithms.

The global relation of the stability profiles of the diffetemlgorithms is nicely summarized by th#; measure. For
example in the case of theukemia dataset RELIEF which has the best stability profile ovehadlather algorithms has also
the highestSy value (0.8675). The SVM based algorithms have the next hetability profile with anSy value around
0.754, while the univariate methods are the worst witffarnvalue around 0.247. Whil§ captures the global picture it is
not able to capture the finer details, for example in the saata@set there is a range of feature set cardinalities in wihieh
univariate methods clearly dominate the SVM based algmsthand they are very similar to RELIEF.

Examining the graphs in figure 2 the separation of the feagelection algorithms in three groups is clearly visibleeTh
three univariate feature selection methods have an indisishable stability profile for all the datasets to the pthat the
lines depicting their profile become one. SVMONE and SVMRRE&Eealso a very similar profile with SYMONE being
more stable on feature sets of lower cardinality, neveesehs the cardinality increases their profiles convergeaéirda
point, which depends on the dataset, they become indissihglle. As we move to higher cardinalities, both methods ad
low ranked features; these should be more or less the sanetiomethods since for SVMRFE they are determined at the
earliest iterations of the algorithm, thus resembling elpshe behavior of SVMONE's single run. For lower carditias
the instability of SVMRFE increases due to the already noeetil fact that small differences in the coefficients canrsee
the rank and thus remove different features. The differemaestability between SYMONE and SVMRFE increases as we
move to lower cardinalities where the final feature sets oMRFE are determined during the last iterations of the SVM
algorithm.

Looking more closely at the behavior of the univariate mdthae see that they reach a peak after which their stability
drops dramatically and their stability profile convergesttat of the random feature selector. The peak before the atiam
drop in stability corresponds to the inclusion of all fea&siwvhose score was different than zero. After this poinuiestare
actually included randomly. The three remaining algorshRELIEF, SVMONE and SVMRFE exhibit a different pattern of
stability. In almost all the datasets théig value reaches a plateau, either starting from lower valndsrcreasing creating
an upwards looking "knot” (this can be observed in all thetpomnics datasets), or starting from higher values and dsirg
creating a downwards looking "knot” (this can be observedlirihe text mining datasets). After reaching the plateairth
stability values increase very slowly. In both cases reaglihe plateau means that afterwards the stability valuagds
mainly due to the increase of the feature set cardinaligy, ihe algorithms do not select anymore features in an digrong
informative manner. In some sense the stability of the dtlgais converges at the stability value observed in the lmeggof
the plateau. A similar plateau is observed also for the uidt@feature selection methods in the case ofverian dataset.
Note that the beginning of the plateau does not necessaritggpond to the most stable feature set size. In the casagwh
it defines an upward looking knot this is true; in the casesre/itedefines a downwards looking knot it corresponds to the
minimal stability feature set size, all feature sets witksléeatures would have a higher stability.

The identification of the start of the plateau can provide amseof bounding the maximum cardinaliky,of the selected
feature sets. In terms of information content it would nokeaense to have feature sets of higher cardinality sincedhe
features will not be incorporated in an strongly informatimanner. This is an important observation that could guide t
selection of the appropriate number of features. In almib&ature selection algorithms we have to set either a tiotesor
a number of selected features but usually there is no infdrweey this could be done and we most often rely on extensive
cross validation using accuracy estimations to select pipecgriate values. Reaching the plateau indicates thathweld
stop adding new features since selection is not done anyimareinformative manner.

5 Stability and Classification Performance

A feature selection algorithm alone can provide an indaratf which features are informative for classification kut i
cannot provide an estimate of the discriminatory power ekthfeatures, since it does not construct classificationetaod
whose error could be estimated. In the same manner stat@lylts cannot provide the sole basis on which to select an
appropriate feature selection algorithm; nevertheleeyg ttan support the selection of a feature selector when the Ia
coupled with a classification algorithm, and increase th&idence of the users in the analysis results (provided tiet t
feature selection is found to be stable).

Lets suppose that we use some resampling technique to pegfoor estimation of a pair of feature selection and classifi
cation algorithms. If the feature selection algorithm stdeonsistently the same features then we can have morelenoé
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in the importance of the selected features and a higher ardilin the error estimates. The latter because the models pr
duced in the different folds of the resampling will be simi{at least in terms of the features they contain) a fact thedms
that the averaged error estimation we get corresponds todelnttwat remains relatively constant among different foldse
of the problems of the resampling based error estimatiotiaigthey evaluate algorithms and not specific classifinatiod-
els, nevertheless in practice what is going to be used isggesttassification model that is the result of the learninggehof
the algorithms. If the models are similar among the différeeamples then we move closer to an estimate of the perfarena
of a given model. The simplest scenario of using the staflitd error estimation to select the appropriate algorithoes as
follows: couple a given classification algorithm with a nuenbf feature selection algorithms and estimate the claasidin
performance and the stability of the feature selector utiegorocess described in section 2. Then calculate thetstati
significance of error differences. Among the feature s@eaclgorithm-classification algorithm combinations taet found
to be better than all the others, choose the combinatiorctratins the most stable feature selector.

To demonstrate the above idea we selected as classificdgioritam a linear SVM, setting its complexity parameter to
0.5. We performed a series of experiments in which we paiesth édeature selection algorithm and the linear SVM. In the
following when we will refer to a feature selection algoritwe will actually mean the pair of the feature selection &tgm
with the linear SVM. From the univariate feature selectioethods we have chosen to report results only for Information
Gain since the others had a very similar behavior. For evatgskt we fixed the number of selected feature¥ tavith N
ranging from 10 to 50 in steps of 10. For a giv&hthe four feature selection algorithms were compared wispeet to their
classification error and their stability. The statisticansficance of error differences was computed using McNésrast
with a significance level of 0.05. To rank the feature setectlgorithms on a given dataset and for a given nuniexf
selected features we used the following approach: if tworitlyns A and B had a classification performance that was not
significantly different, then each was assigned 0.5 poihtd;was significantly better tha®® then A was assigned one point
and B zero. The rank of an algorithm is given by the sum of its poifiilse complete results are given in tables 4,5, 6 for
the proteomics, genomics and text mining datasets respgctEach entry in the above tables gives the rank, claasific
error, and theSs stability estimate for a given feature selection algorithop ranked algorithms are noteditalics.

Applying the algorithm selection scenario mentioned abogesee that there are many cases in which there is a number
of algorithms ranked on the top position in terms of clasatfan error but whose stability values differ consideralbhythe
case of the proteomics datasets this is observed often Btthke dataset and less often in the casevafian. In the Stroke
dataset the algorithms do not have a significantly diffectadsification performance fa¥ = 30, 40 and50. In these cases
SVMRFE is by far the less stable algorithm with &g which is always less than 0.20, while RELIEF has a value dfikita
which is more than double. Similar observations can be doiied case obvarian dataset. In the genomics datasets we can
see that foteukemia the algorithms have an indistinguishable performancerignelue of N but a great difference in their
stability values. Again SVMRFE has systematically a very kiability which can be as low as 1/3 of the stability value of
the most stable algorithm. For example fér= 10 IG has a stability value of 0.7392 while SVMRFE has a value.26@8.

A similar picture appears also in tleelon dataset, with SVM and SVMRFE being very far from the mostIstaltgorithm,
RELIEF (V.= 10,20 and30). Similar observations are in order also in the case of tkenening datasets; the most stable
feature selection algorithm, for the range/®fvalues examined here, is IG, which also appears in the tojigqos terms
of classification performance in all datasets and almosiadlies of V.

We should note here that high instability, as measuredbyis not necessarily associated with a low classification
performance. Among the cases examined there were many Thwiné best performing algorithm was the most unstable,
e.g. SVMRFE instroke, ovarian for N = 10,20, andprostate for all values of N, or cases in which among the best
performing there were also algorithms with high instaitg. SVM and SVMRFE in theolon dataset)N = 10, 20 and30.
One possible explanation for that is redundancy. Amongrfi&i full feature set there are possibly many differenbsets
on which classification models can be constructed that caarately predict the target concept. Such cases of ingtabil
coupled with high classification performance, can be ancatitin of redundancy within the full feature set. Nevertissl
this is a hypothesis that remains to be verified.

Stability provides an objective criterion on which we cars®aur choice of feature selection algorithm in the absence
of any significant difference in classification performangelecting the most stable algorithm we have a higher camiele
in the quality of the features that it selects but also a higlemfidence in the corresponding classification perforreanc
Moreover coupling the selection procedure with a visuatespntation of stability, as the one given in figure 1, we gaear
picture of the important features and how robust they aresttupbations of the training set.



6 Conclusions and Future Work

To the best of our knowledge this is the first proposal of a Bamrk that measures the stability of feature selection
algorithms. We defined the stability of feature selectiogoathms as the robustness of the "feature preferencey’ the
produce to training set perturbations. We examined threrdnt stability measures and proposed a resampling tqeahn
to empirically estimate them. The most interesting one waset onSg, a measure of the overlap of two feature sets. We
exploited the framework to investigate the stability of somell known feature selection algorithms on high dimenalon
datasets from different application domains. We showed tvaacan use stability to support the selection of a feature
selection algorithm among a set of equally performing atpors.

We believe that the notion of stability is central in real Wdaapplications where the goal is to determine the most it@mdr
features. If these features are consistent among modeltedr&om different training data, the confidence of the sigethe
analysis results is strengthened. The results of the ecapigstimation of stability can be elegantly visualized anavide
a clear picture of the relevant features, their robustnegtifferent training sets, and the stability of the featueéestion
algorithm.

Future work includes refining th8y stability measure in order to reflect better large differand similarities on top
ranked features. Exploring the stability profile in ordemp@erform feature selection. Exploiting the notion of simiti@s
between feature preferences to quantify the similaritiedifferent feature selection algorithms. Aggregating thfterent
feature sets produced from subsamples of a given traininip sehat can be viewed as the analogue of ensemble learning
and model combination for feature selection; to draw a pelrafith bias-variance, where aggregating models of a liegrn
algorithm with a high variance can reduce classificationremwe could combine feature sets of an unstable featuretsmie
algorithm to increase stability and possibly classificaf@rformance afterwards.
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Stroke

N

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.5-32.22-0.1847
1.0-31.73-0.2612
1.5-27.89-0.2944
1.5-29.81-0.3261
1.5-27.89-0.3576

1.5-30.29-0.3410
1.0-28.85-0.3670
1.5-27.41-0.3830
1.5-25.97-0.3887
1.5-28.37-0.4013

1.0-37.02-0.27210-26.45-0.1678
1.0-35.10-0.31610-21.64-0.1679
1.5-28.37-0.3390 -28.56-0.1802
1.5-25.00-0.3583 -25.89-0.1886
1.5-26.45-0.3801 -25.89-0.1997

Ovarian

N

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.0-10.28-0.4948 1.0-10.28-0.7296 1.0-07.11-0.598%-01.19-0.4680
1.0-05.53-0.6111 1.0-05.93-0.6933 1.5-03.95-0.582/5-01.19-0.4749

0.0-04.74-0.6567 2.0-01.58-0.6966 2.0-01.19-0.5631 2.0-00.40-0.4498
0.5-03.16-0.7011 1.5-01.58-0.708@.0-00.40-0.5682 2.0-00.40-0.4401

1.5-02.77-0.7496 1.5-01.58-0.7368 1.5-00.40-0.5825 -00.80-0.4473

Prostate

N

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.0-18.64-0.4073
1.0-17.71-0.4299
1.0-16.46-0.4639
1.0-16.15-0.5044
1.0-14.60-0.5374

1.0-18.95-0.5842
1.0-17.09-0.6044
1.0-15.84-0.6170
1.0-14.91-0.6214
1.0-13.36-0.6304

1.0-18.02-0.5368)-13.05-0.4417
1.0-16.46-0.51310-11.50-0.4006
1.0-14.91-0.5193-10.87-0.3786
1.0-13.36-0.528M-09.01-0.3848
1.0-13.05-0.5383)-09.32-0.3890

Table 4. Results on the proteomics datasets, each triplet of

the feature selection algorithm for the specific number of se

the form x — y — z gives the ranking,

x, of

se lected features, the classification error,
y, and the Sg value, z. In italics the feature selection algorithms that are ranked at the top.

leukemia

N

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.5-05.55-0.7392
1.5-05.55-0.6570
1.5-05.55-0.6294
1.5-05.55-0.5958
1.5-04.16-0.5938

1.5-06.94-0.5793
1.5-04.16-0.6553
1.5-02.77-0.6338
1.5-02.77-0.6360
1.5-02.77-0.6255

1.5-05.55-0.4878 -05.55-0.2678
1.5-04.16-0.4544 -01.88-0.2979
1.5-02.77-0.4681 -01.38-0.3108
1.5-02.77-0.4852 -01.38-0.3336
1.5-02.77-0.4921 -01.88-0.3526

nervous

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.5-40.00-0.2320
1.5-38.33-0.2491
1.5-35.00-0.2506
1.5-35.00-0.2488
1.5-31.66-0.2501

1.5-30.00-0.2873
1.5-30.00-0.2973
1.5-36.66-0.3124
1.0-40.00-0.3158
1.0-41.66-0.3283

1.5-35.00-0.4568 -36.66-0.1065
1.5-30.00-0.4469 -40.50-0.1498
1.5-36.66-0.4288 -28.33-0.1909
1.0-36.66-0.4124-23.33-0.2129
1.0-38.33-0.4127%5-23.33-0.2349

colon

IG

Relief

SVM SVMRFE

10
20
30
40
50

1.5-17.74-0.4856
1.5-17.74-0.5143
1.5-14.51-0.5224
1.5-14.51-0.5459
1.5-14.51-0.5519

1.5-16.12-0.6931
1.5-14.51-0.6530
1.5-14.51-0.6174

1.5-25.80-0.3512 -16.32-0.2392
1.5-22.58-0.3950 -19.85-0.2810
1.5-16.12-0.4121 -19.85-0.3115

2-12.90-0.5937 1.5-16.12-0.4229 1.0-22.58-0.3261
2-12.90-0.5837 1.5-14.51-0.4311 1.0-22.58-0.3470

Table 5. Results on the genomics datasets.



alt disease

N IG Relief SVM IG Relief SVM

10 1.0-10.77-0.9623 1.0-10.87-0.6908 1.0-10.89-0.66160-19.67-0.7589 1.0-19.46-0.5277 1.0-19.64-0.5269
20 1.5-10.56-0.8631 1.0-10.84-0.6187 0.5-11.01-0.6191.0-19.74-0.6778 1.0-19.36-0.5766 1.0-19.43-0.4790
30 1.0-10.68-0.8209 1.0-10.80-0.6103 1.0-10.58-0.58320-19.83-0.6282 1.0-19.24-0.6282 1.0-19.80-0.4691
40 1.0-10.58-0.7996 1.0-10.65-0.5719 1.0-10.65-0.5p49%5-19.98-0.6124 2.0-19.09-0.6670 0.5-19.92-0.4536

50 1.0-10.46-0.7733 1.0-10.58-0.5545 1.0-10.51-0.58110-19.52-0.6133 1.0-19.02-0.6250 1.0-19.77-0.4489

function structure

N IG Relief SVM IG Relief SVM

10 1.5-20.24-0.8055 0.5-20.93-0.5444 1.0-20.37-0.325%2.0-21.02-0.8855 0.5-22.66-0.5072 0.5-21.84-0.5325
20 1.0-20.29-0.7129 1.0-20.93-0.6304 1.0-20.45-0.35240-19.78-0.8141 0.0-22.26-0.6296 1.0-20.77-0.4977
30 1.0-20.27-0.6824 1.0-20.93-0.6566 1.0-20.47-0.3[7/290-19.39-0.8481 0.0-21.95-0.6486 1.0-20.40-0.4853
40 2.0-20.06-0.6824 0.5-20.93-0.6032 0.5-20.68-0.391€.0-19.05-0.7718 0.5-20.54-0.6288 0.5-19.80-0.4889
50 2.0-19.98-0.6649 0.5-20.93-0.5732 0.5-20.68-0.3996..5-19.08-0.7331 0.0-20.71-0.6062 1.5-19.50-0.4866

subcell
N IG Relief SVM
10 1.5-15.97-0.8980 0.0-16.72-0.6794 1.5-15.80-0.7663
20 1.5-15.84-0.8646 0.0-16.47-0.7110 1.5-15.43-0.6749
30 1.5-15.48-0.8039 0.0-16.49-0.5878 1.5-15.19-0.6349
40 1.5-14.86-0.8117 0.0-16.48-0.5438 1.5-15.03-0.6044
50 1.5-14.64-0.8460 0.0-16.44-0.5339 1.5-14.93-0.5773
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