
Detecting Pneumonia in Chest X-Rays with Supervised

Learning

Benjamin Antin1, Joshua Kravitz2, and Emil Martayan3

1bantin@stanford.edu
2kravitzj@stanford.edu

3emilmar@stanford.edu

I. INTRODUCTION

Physicians often use chest X-rays to quickly and
cheaply diagnose disease associated with the area. How-
ever, it is much more difficult to make clinical diagnoses
with chest X-rays than with other imaging modalities
such as CT or MRI. With computer-aided diagnosis,
physicians can make chest X-ray diagnoses more quickly
and accurately.

Pneumonia is often diagnosed with chest X-Rays and
kills around 50,000 people each year [1]. With computer-
aided diagnosis of pneumonia specifically, physicians
can more accurately and efficiently diagnose the disease.
In this project, we hope to train a model using the dataset
described below to help physicians in making diagnoses
of pneumonia in chest X-Rays.

Our problem is thus a binary classification where the
inputs are chest X-ray images and the output is one of
two classes: pneumonia or non-pneumonia.

II. DATA

We use a dataset compiled by the NIH which contains
112,120 chest X-ray images from 30,805 unique patients
[5]. The dataset is available from Kaggle [4]. Each image
in the dataset is labeled with one or more diagnoses
(“Pneumonia”, “Fibrosis”, “Mass”, etc), or “No finding”
if the patient was healthy.

These labels were inferred through natural language
processing by mining disease classification from the
associated radiological reports, and are estimated to be
at least 90% accurate. For the sake of this project, we
follow past approaches [2] [5] and treat the labels as
ground truth for the purpose of classification.

For this project, we focus on binary classification,
attempting to classify a particular X-Ray as having
pneumonia or not. There is a strong class imbalance in
the dataset, with only about 1% of images labeled as

having pneumonia. For this reason, we us AUC as our
error metric, rather than accuracy.

Images from the NIH dataset are 1024x1024. To
begin, we resized each image using an anti-aliasing filter.
As explained below, our Logistic Regression baseline
uses 32x32 resolution. Our Deep Learning model uses
224x224 resolution. We also standardize the data so that
each feature (each pixel) has zero mean and approxi-
mately unit variance.

There are multiple images from many of the patients,
and in order to ensure that our models do not see
data from the same patient across training and test, we
separate the data by patient before splitting into training,
validation, and test sets.

We begin with a brief exploration of the data using
unsupervised techniques. For the sake of data explo-
ration, we explore 500 random samples due to resource
constraints.

III. DATA EXPLORATION

We begin by plotting the first two principle compo-
nents for our 500 random samples, and coloring them
by class. As shown in Figure 1, the first principle
components do not appear to be clustered based on class.

To better visualize the data, we run t-SNE (T-
Distributed Stochastic Neighbor Embedding) for 2-
dimensions, because it is often effective for visual-
izing extremely high dimensional data [7]. The two-
dimensional visualization is show in Figure 2. Although
there are two clusters present, they do not appear to be
separable based on class.

Next, we run k-means on the 500 random samples
(with k = 2) and label each point in the t-SNE visual-
ization, based on its k-means cluster. We see in Figure
3 that the k-means clusters correspond well with the
qualitative clusters we found with t-SNE. Looking at a
few examples (see Figure 4 for two examples), we see

that one cluster corresponds with darker images and the
other with brighter images.

Although these results are interesting, we do not find
them useful in developing the machine learning models
described below. Additionally, we ultimately decide to
use deep learning techniques, which can often infer com-
plicated features through training. As such, we feel that
any filters using unsupervised methods can be captured
by the complexity of our neural network.

Fig. 1: First two components of PCA run on each sample,
stratified by class.

Fig. 2: First two components of running t-SNE on each
sample, stratified by class.

IV. INFRASTRUCTURE

Working with a dataset this large poses its own
challenges. In order to satisfy memory and computation
requirements, we use a Google Cloud instance with
8vCPUs and 52GB of memory, and store the data on
a separate disk.

For the deep learning section of our project, we
additionally use an NVIDIA P100 GPU. We implement
the baseline using SciKit-Learn, and we use PyTorch
for the Deep Learning section of our project. With

Fig. 3: t-SNE visualization of samples, colored by k-
means cluster.

(a) Sample from cluster 1 (b) Sample from cluster 2

Fig. 4: Examples from both clusters in Figure 3

the addition of the GPU, Logistic Regression actually
becomes more memory-intensive than Deep Learning.
As we explain below, SciKit-Learn requires that the
entire design matrix be stored in memory, whereas our
Deep Learning model only loads the pixel values for
each mini-batch of images. In effect, this means that
we were not able to run logistic regression on 224x224
images, and were limited by available memory.

For the logistic regression baseline, we also utilize
h5py in order to store the images in HD5 format. We
do this in the hope that we could afford to run our
baselines on larger images, since h5py doesn’t load
examples into memory until they are sliced in the python
code. Ultimately, this doesn’t alleviate memory pressure
because SciKit-Learn loads every example into memory
regardless.

V. BASELINE MODEL: LOGISTIC REGRESSION

As a baseline, we use a logistic regression model to
classify whether or not a given X-ray contains pneumo-
nia. Logistic regression works well as a baseline because
it is relatively easy to implement. We treat each pixel as

2

a distinct feature, and add an L2 regularization term to
our loss function. The loss function is given by

L =

mX

i=1

log(1 + exp(y

(i)
✓

T
x

(i)
) + �||✓||22

To tune the regularization parameter �, we use a fine
range of values for �, and perform 3-fold cross-validation
to obtain average accuracy measures for each different
value of �. We then save the � value that yields the best
model and use it for the rest of our analysis. We find
that � = 1500 gives the best performance on the 32x32
images.

Because the dataset is so large, we are not able
to perform hyperparameter sweeps on the full dataset.
Instead, we perform our sweep on a random sample of
5606 images.

Using the value of � = 1500 that we obtain from our
initial experiments, we then run logistic regression on
the entire dataset, splitting into train, val, and test sets.

After training, logistic regression achieves an AUC
score of 0.60 on the test set, using 32x32 images (the
corresponding ROC plot is shown in Figure 8). As
mentioned above, our dataset contains highly skewed
classes. Therefore, we use AUC as our primary error
metric, rather than accuracy.

We also run logistic regression on larger 128x128
images. Interestingly, AUC evaluated on the test set for
larger images is slightly lower, at 0.58. We hypothesize
that the lower performance is because our regularization
parameter was tuned on smaller images, and larger
images would require more regularization because there
are many more features. Even with our Google Cloud
infrastructure, we are not able to run logistic regression
on larger resolutions, because of the larger design ma-
trix and SciKit-Learn’s high memory requirements for
logistic regression (all of which did not fit into main
memory).

From the AUC of 0.60, we conclude that logistic
regression does not adequately capture the complexity
of our dataset. In particular, it is unlikely that individual
pixel intensities are good features for this binary classi-
fication problem. Correlations between pixels, as well
as higher level features like edges, are likely needed
to perform well on this classification problem. For this
reason, we next used a Convolutional Neural Network.

VI. DEEP LEARNING

Following the approach of CheXNet[2] we use a 121-
layer dense Convolutional Neural Network (DenseNet).

Fig. 5: ROC Curve for Logistic Regression on 32x32
Images. AUC = 0.6037

First proposed by Huang, Liu, et al, DenseNets make
training very deep networks easier by connecting each
layer to every prior layer [3]. To implement our network,
we use transfer learning via PyTorch, a deep learning
framework for building neural networks in Python with
GPU acceleration.

The weights of the network are initialized using the
weights from a model trained on the ImageNet dataset.
We then replace the last layer with a 2-output Softmax
layer. To help the model converge faster, we down-
sample the 1028x1028 to size 224x224, which still
preserves most of the fine details in the images.

Additionally, we augment our data by randomly flip-
ping the images in the horizontal direction. In other
image classification tasks, it is common to augment data
with random cropping and rotation. However, because
our dataset consists exclusively of X-Ray images which
are centered in the field of view, we limited our data
augmentation to random horizontal flips.

We use the Adam[6] algorithm to train our network,
as it is well suited for problems that are large in terms
of data and/or parameters. We use standard parameters
(�1 = 0.9,�2 = 0.999) and a learning rate of ↵ = 0.001,
which we anneal by a factor of 10 every time the
validation loss plateaus for one epoch. Additionally, we
use a batch-size of B = 16. To account for the class
imbalance we use the following weighted binary cross-
entropy loss as our loss function:

L = � 1

B

BX

i=1

w

(i)
⇣
y

(i)
log(ŷ

(i)
) + (1� y

(i)
)log(1� ŷ

(i)
)

⌘
,

3

where

w

(i)
=

(|N |+|P |
|P | if y

(i)
= 1

|N |+|P |
|N | otherwise,

where |N | and |P | refer to the number of negative and
positive examples, respectively.

After training, the network achieved an AUC of 0.609,
only slightly better than logistic regression. ROC Curves
for train and test are shown in Figures 6 and 7. As
we discuss in the next section, we hypothesize that the
network failed to generalize well to unseen data.

Fig. 6: Train ROC for DenseNet-121. AUC = 0.684.

Fig. 7: Test ROC for DenseNet-121. AUC = 0.609.

VII. DISCUSSION AND ERROR ANALYSIS

As expected, Logistic Regression does not adequately
capture the complexities of this dataset. Diagnosis of

pneumonia from chest X-rays alone is a difficult task
that requires knowledge of disease pathology as well
as human anatomy [2]. From inspecting the dataset, it
is clear that it presents a challenging problem: areas of
interest are often obscured by the ribs, and other diseases
in the dataset look visually similar to pneumonia.

Using a DenseNet, CheXNet documents an AUC of
0.828 on the pneumonia classification task, which is
significantly better than our network [2]. We are unable
to replicate the results described in the CheXNet paper.
As shown in Figure 8, the training loss decays smoothly
with every training epoch, but validation loss fluctuates
seemingly at random. This suggests that the loss function
is indeed being optimized, but that the features learned
on the training set are not generalizing to the validation
set.

Fig. 8: Training and Validation Loss vs. Epoch for
DenseNet-121.

We suspect that this is the case because the number of
pneumonia cases in the training set is so much smaller
than the number of non-pneumonia cases.

In order to better understand the performance of
network, we use t-SNE to visualize the features output
from the last convolutional layer. We run t-SNE on the
features output from 154 images from each class. As
described in [7], t-SNE attempts to maximize the Kull-
back Leibler divergence between the reduced dimension
components. Thus, if the features output by the last
convolutional layer were meaningful for distinguishing
between classes, we would expect distinct clustering.
However, as shown in Figure 9, we see no distinct
clusters when we use t-SNE on the activations of the
final convolutional layer. We conclude that the issue is

4

with the features learned by the network, rather than
an issue with the final linear layer. We hypothesize that
more examples with Pneumonia would help the network
learn more salient features.

Fig. 9: t-SNE Clustering of Final Layer Activations,
colored by class. No distinct clustering is present.

VIII. FUTURE WORK

Below are a variety of techniques and ideas one might
pursue to expand on the work of this project.

A. Different Features

One could try running PCA on the images to decorre-
late the data and use these results on a logistic regression
model. (In other words, use a subset of principal com-
ponents as features.)

It may also be worth exploring different image feature
extraction techniques to get a better baseline.

B. Improved Logistic Regression Baseline

Although we were able to run logistic regression on
32x32 and 128x128 down-sampled images, we were
unable to both do a hyperparameter sweep on images
larger than 32x32 and use the same image size as our
deep learning model, 224x224. With more time, we
would implement a Spark cluster on Google Cloud and
attempt to find the best regularization value for 224x224
images. We predict that our baseline would improve
fairly significantly as a result.

C. More Error Analysis

One might explore the DenseNet’s activations using
Class Activation Maps in order to better understand
its behavior on this dataset. This might inform why it
achieves such low AUC as compared to similar work.

D. Bounding Boxes
A small subset of the dataset has bounding boxes

around diseased areas. One could use these bounding
boxes to train a CNN to not only classify images with
pneumonia, but also identify where in the image the
pneumonia is located.

IX. ACKNOWLEDGEMENTS

We would like to thank Dr. Andrew Ng and Dr. Dan
Boneh for exposing us to a wide breadth of machine
learning concepts. Furthermore, we would like to thank
Mr. Jeremy Irvin for assisting us in understanding rel-
evant topics outside of class time and for helping us
implement and debug our neural network.

X. CONTRIBUTIONS

Ben worked on preprocessing the images, configuring
Google Cloud, and implementing transfer learning in
PyTorch.

Joshua worked on data exploration and the logistic
regression baseline on the full 112,120 images. He
helped to set up the GPU on Google Cloud and assisted
with debugging the CNN.

Emil worked on the cross-validated logistic regression
model, helped set up the GPU on Google Cloud, and
helped to write the code for the DenseNet CNN.

REFERENCES

[1] https://www.cdc.gov/nchs/fastats/pneumonia.htm
[2] Pranav Rajpurkar, Jeremy Irvin, et al. CheXNet:

Radiologist-Level Pneumonia Detection on Chest X-
Rays with Deep Learning, https://arxiv.org/pdf/1711.
05225.pdf 2017.

[3] Gao Huang, Zhuang Liu, Laurens van der Maaten.
Densely Connected Convolutional Neural Networks
https://arxiv.org/abs/1608.06993

[4] https://www.kaggle.com/nih-chest-xrays/datasets
[5] Wang, et al. ChestX-ray8: Hospital-scale

Chest X-ray Database and Benchmarks
on Weakly-Supervised Classification and
Localization of Common Thorax Diseases
http://openaccess.thecvf.com/content cvpr 2017/
papers/Wang ChestX-ray8 Hospital-Scale Chest
CVPR 2017 paper.pdf

[6] Diederik P. Kingma, Jimmy Lei Ba. Adam: A
Method for Stochastic Optimization https://arxiv.org/
pdf/1412.6980.pdf

[7] Laurens van der Maaten, Geoffrey Hinton Visualiz-
ing Data using t-SNE 2008 http://www.cs.toronto.
edu/⇠hinton/absps/tsne.pdf

5

https://www.cdc.gov/nchs/fastats/pneumonia.htm
https://arxiv.org/pdf/1711.05225.pdf
https://arxiv.org/pdf/1711.05225.pdf
https://arxiv.org/abs/1608.06993
https://www.kaggle.com/nih-chest-xrays/datasets
http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://www.cs.toronto.edu/~hinton/absps/tsne.pdf
http://www.cs.toronto.edu/~hinton/absps/tsne.pdf

	Introduction
	Data
	Data Exploration
	Infrastructure
	Baseline Model: Logistic Regression
	Deep Learning
	Discussion and Error Analysis
	Future Work
	Different Features
	Improved Logistic Regression Baseline
	More Error Analysis
	Bounding Boxes

	Acknowledgements
	Contributions

