
Optimizing Leakage Power using Machine Learning

Shuhan Bao
sbao@nvidia.com

December 10, 2010

1 Abstract

As transistor technology nodes continue to scale into
deep sub-micron processes, leakage power is becoming
an increasingly large portion of the total power. This
has been true for many years now, ever since deep sub-
micron processes became available. In addition, more
recently, computing is becoming increasingly mobile,
where minimal power is of paramount importance. As
a result, companies are becoming increasingly aware of
the need to optimize leakage power to the greatest ex-
tent possible. One of the most popular approach to leak-
age reduction has been to use gates with higher thresh-
old voltages, which reduces the leakage of the gate ex-
ponentially, at the cost of increasing the delay through
the gate. By swapping gates in paths with significant
positive timing slack to their high Vt equivalents, it is
possible to greatly reduce the leakage of a design. In this
paper, I will discuss an algorithm for solving this opti-
mization problem. By using machine learning to provide
a model for the design and standard cell library, we can
model the salient variable (rather than an indicator of
that variable) and dramatically increase the set of po-
tential swaps we consider, at the cost of adding some
error to the timing model.

2 Introduction

Of the methods for reducing the leakage power of a chip,
using libraries with multiple Vt classes is amongst the
most popular. This method assumes a standard cell li-
brary consisting of two or more Vt equivalents for at
least most if not all cell types in the library. For every
cell type, there would exist a variant of that cell with

minimal Vt and equivalently minimal delay. We can use
this knowledge to define an optimal achievable timing
slack of the design, Sopt, where each Sopt(i) is the timing
slack through cell i, under the condition that all cells in
the design are of the minimal Vt (and thus fastest) type.
Additionally, we can define a leakage term L(i, Vt), is the
leakage of cell i, given that we have assigned its thresh-
old voltage class to Vt(i). The optimization problem is
then to choose an array Vt of threshold voltages over i
which satisfies

min
n∑

i=1

L(i;Vt(i))

s.t. S(i, Vt) = Sopt(i) ∨ S(i, Vt) ≥ 0

In other words, we wish to minimize the leakage power
of the design, while maintaining the performance of the
design. Alternatively, this constraint can be expressed
as requiring that all paths either meet timing S(i, Vt) >
0, or consist entirely of the leakiest, but fastest cells.

Current algorithms to do this will heuristically
”swap” some subset of Vt based on analysis of the po-
tential power savings and the difference in the cell de-
lay as calculated by the library model. In general, this
method requires multiple iterations as crucially, the li-
brary only gives a model for the cell delay, but not the
quantity S(i, Vt), the path slack. In current deep sub-
micron technologies, it is not guaranteed that cell delay
changes are perfectly indicative of path delay changes,
as changes to the slew propagation will cause down-
stream cells to speed up or slow down (figure 1). As
a result, if optimization proceeds solely on the basis of
cell delay, it will be suboptimal for situations in which
the path delay differs significantly from the cell delay.
Additionally, after each iteration, the full timer must be

1



updated with the new cell types to determine the new
S(i, Vt).

Figure 1: Path delay vs cell delay. x=y line displayed

The purpose of this work is to use machine learning
to generate a model for the path slack for each potential
swap, which can then be evaluated on new inputs very
quickly, in order to allow for optimization algorithms
to work on the path delay change rather than the cell
delay change. If the error of such a model is minimized,
it would be possible to very quickly compute the effect
of changing Vt(i) on S(i, Vt) for all cells in the design,
and use these values to find an optimal Vt configuration.

3 Methods

In this section, I will describe the methodology for im-
plementing this algorithm. In order to implement the
algorithm, as described, it would be necessary to create
a model for the slack difference

∆S = S(i, Vt)− S(i, V ′
t )

observed when swapping cell i. In practice, it makes
more sense to create a model for changing the threshold
voltage of a standard cell library cell, then applying that
model for all cells in the design which are mapped to
that library cell.

3.1 Training

In order to gather the training data, an existing EDA
tool was used to load a relatively small block of a next-
generation GPU chip. Then for each cell in the design,
the Vt was swept across all possible values for which an
equivalent cell existed in the library, and the subsequent
change in path slack was recorded, along with relevant
input features. For the most part, in the library that
was tested, 3 Vt settings were available for each standard
cell type. Based on

Since the goal of the model is to output a continuous
valued function, a linear regression minimizing square
error on the slack delta was tried. The model parame-
ters are determined by solving the closed formed equa-
tion for the parameters, as gradient descent was found
to converge very slowly. Despite the potential complex-
ities of analyzing a full path as opposed to a single cell,
the linear regression was in fact able to achieve a reason-
ably good training error. This will be discussed further
in the results section.

Features for the linear regression were selected pri-
marily on the basis of first order contributors to transis-
tor and wire delays. Additionally, the amount of down-
stream logic was included in order to represent the effect
of slew propagation along the path.

3.2 Leakage Optimization Algorithm

Once the models for each swap are generated, it is pos-
sible to load any design that is bound to the library
which was trained on, and apply the leakage optimiza-
tion algorithm. Two algorithms were tried for the leak-
age optimization. Both are suboptimal in that both
lack complete information that would typically be held
in a timer graph. In favor of time constraints, build-
ing such a complete view of the design connectivity
was decided against. Additionally, both methods use
a heuristic method to obtain some connectivity infor-
mation, which simply assumes that cells with the same
slack value are likely to be on the same path. This gen-
erally holds if the number of possible slack values is large
compared to the number of paths in the design. For the
cases where it does not hold, the ”merged” paths will
diverge after any change along either of the paths. In

2



general, this assumption is neither always true, nor is
it complete, but in practice is a very simple to imple-
ment method that improves the performance of both
algorithms dramatically over having no connectivity in-
formation whatsoever.

In algorithm 1, first, the S(i, Vt), and x(i) is dumped
for all cells in the design, where x(i) is the input fea-
ture vector for cell i. For each potential single element
change in Vt(i) → V ′

t (i), a reward function is then cal-
culated:

R(i, V ′
t (i)) = (1− C) log (1 + |∆S(i, Vt → V ′

t )|)

−C log (1 + |∆L(i, Vt → V ′
t )|)

Where the model learned previously is used to estimate
S(i,Vt’(i)). C ∈ [0, 1] is a parameter to control the rela-
tive weighting of the leakage versus the slack minimiza-
tion as the deltas can be orders of magnitude apart. For
simplicity, the reward function above is only valid for
swaps to lower threshold. The converse higher thresh-
old swap would simply be −1×R(i, V ′

t (i)). This reward
function is chosen on the basis that the best swaps are
those with the best ratio of small timing degradation in
exchange for large leakage reduction. In this method, C
needs to be varied from favoring leakage reduction to-
wards the beginning, to favoring timing fixing towards
the end, as the final design is expected to achieve Sopt

or close to Sopt.
In method 2, we evaluate each ”path” as described

above. First, swap all cells to their lowest Vt equivalent.
This gives a value for Sopt. In subsequent iterations, for
each path, we have a set of cells P, and some slack value
S(i, i ∈ P ) = C is constant over all cells along the path.
Given this simple ”path”, we can solve the 0-1 knapsack
packing using dynamic programming. First compute a
set of ”weights” for each swap as defined by the amount
the slack would degrade if the swap was executed. We
do this using the model learned previously. Second, the
”value” of the swap is simply the beneficial change in
leakage. The total capacity of the sack is just C. Solving
this problem will yield the optimal leakage configuration
for any single path. A similar problem can be solved for
paths with negative slack, to find the set of changes to
Vt that minimize leakage degradation, but set S(i, i ∈
P ) = Sopt(i, i ∈ P ) or greater than 0.

In both algorithms, we execute the algorithms across
the entire design. After each pass, it is necessary to re-
evaluate the timing to verify both that the estimated
slack agrees with the actual calculated slack. It is nec-
essary to recompute the timing due to two sources of er-
ror. First, there is the potential test error of the learned
slack prediction model. Second, there is potential error
associated with having an incomplete connectivity pic-
ture when doing the optimization. The algorithm may
believe two cells to be on independent paths and indi-
vidually act on both cells, when in fact they are on the
same path, and should have been treated together. Af-
ter re-evaluating the timing, the algorithm will either
stop if it has converged, or dump the state data and
iterate again.

4 Results

We can view the results in three sections: first, an anal-
ysis of the training error, second, an analysis of the test
error, and finally, a report of the actual results of run-
ning the algorithm on real designs.

4.1 Training Error

The primary contributors to training error seemed to
be complex cells and flops. Initially this effect was even
more pronounced, until separate models were built for
each pathway through the cell (for example, a MUX
has 3 pathways from S to Z, I0 to Z, and I1 to Z). In
particular, before building path specific models of the
delays, the error for flops was enormous, as the effect of
swapping is dramatically different for the delay of the Q
pin (which acts as a driver) and the setup time of the D
pin (which is only serving to capture the signal). One
explanation of the remaining error in complex cells and
flops can be given in terms of conditional arcs, which
cause the delay to differ depending on the state of other
inputs to the cell. Since modeling this would require a
much more complex model of the design, it was decided
to accept this error. From the table below, the overall
training error is seen to be approximately 3.5ps across
all models built.

3



Type Count Error (ps)

Buffer/Inverter 59 0.9065

Complex 526 3.6155

Sequential 40 5.3318

Total 625 3.4696

Table 1. Training error for a typical library

Based on the observed characteristics of the training
error, it was decided that more complex model would
not help the accuracy of the model. Figure 2 shows the
data for a worst case training error cell type, in this
case for a complex XOR gate. In the figure, capaci-

Figure 2: Worst Case Training Error Example

tance is chosen to be plotted against the slack delta,
but the same type of graph can be seen for all of the
input features. Primarily, work was done to find an in-
put feature that showed reasonable correlation with this
output data, but there is no conclusion on this issue yet.

4.2 Test Error

Figure 3 summarizes the test error of the algorithm
when executed on a standard 28nm design. The data
is gathered by actually running algorithm 2 on a de-
sign, and at each iteration comparing the algorithm’s
expected value of the new slack against the actual ob-
served slack value. Of note is that while training oc-
curred one change per ”iteration”, the actual execution

Figure 3: Test error histogram

of the algorithm may swap typically on the order of ten
thousands cells at once, without guarantees on their
independence. We can see that test error is generally
much greater than training error, and that the error is
spread over a much wider range. Observations of greater
error can be attributed to two factors. First, one of the
input features selected for determining the slack differ-
ential is the input slew to the cell. For a single swap,
this value will be invariant, but in practice when many
cells along a path may be swapped at once, the input
slew of the downstream cells will change, rendering the
model estimate less accurate. The second factor stems
from the fact that as described above, the algorithm
did not build a complete graph of the cell connectiv-
ity. As a result, it may be unaware that is swapping
cells along the same path, and independently calculate
the expected slack for each path. In this case, the fi-
nal observed slack will depend on both changes, while
the expected values for both only depend on the single
change in Vt.

4.3 Leakage Recovery Results

The table below summarizes the actual result of running
the algorithm on some select designs. Unfortunately,
due to the enormous size of most interesting designs at
NVIDIA, it was not possible to gather more data points

4



Design (names changed) Cell count Initial Leakage (mW) Algorithm 1 Algorithm 2 Current flow

Design 1 113433 7.3 4.9 6.4 5.9

Design 2 427667 45.73 35.3 40.5 38.4

Design 3 464617 36.82 33.1 37.1 33.45

Design 4 68490 48 40.9 41.1 N/A

Figure 4: Leakage results after various optimization methods

within the time frame of the project. We can see from
these results that actually method 1 tends to outper-
form method 2, despite the fact that method 1 is only
a heuristic approximation to the packing problem that
method 2 solves. This can be understood if we account
for the error in the models. Because algorithm 2 tries to
optimize the leakage to fit exactly within the slack bud-
get, it’s possible that it may add fairly suboptimal swaps
(i.e. bad leakage to timing degradation ratio) to fill in
what it perceives to be a small shortfall in the slack bud-
get. If the error is sufficiently large, however, this swap
may turn out to block a much more useful swap. Unless
the timing is violating, algorithm 2 cannot undo previ-
ous swaps that it did even based on new information,
as this would cause it to take much longer to converge.
Algorithm 1 on the other hand is always selecting the
best swaps from an infinite budget perspective, and so
in the presence of greater errors, it will perform better.
The biggest problem observed while running these trials
was that as the algorithm proceeded, even though the
achieved leakage number was very good compared to
the expectation set by the existing leakage optimization
flow, the algorithm had a lot of difficulty reconverging
on the timing. As noted in the discussion on test er-
ror, large errors can be attributable to the algorithm
working on seemingly independent, but actually iden-
tical data pathways. It often required many iterations
and some guidance (reducing the number of swaps at
each iteration for example) to make the algorithm con-
verge in the presence of these errors. In many cases
where the design was too large, the runtime needed to
converge on both a good leakage number and good tim-
ing was prohibitive.

5 Conclusions and Future Work

Overall, this was a fairly basic trial to see if a machine
learning based algorithm could enable a better leakage
optimization algorithm. For certain, there are cases
where the algorithm is doing a good job, especially on
simple buffer chains, the algorithm performs very well to
find an optimum setting for Vt. However, there are still
two large sources of error in the method that need to
be worked out, primarily, the training error associated
with complex cells, and the lack of a complete timer
graph. As the algorithm can provide very good leak-
age numbers when given enough iterations to converge,
resolving these two issues with both improve the conver-
gence time and improve the overall achievable leakage.
Future work will focus on selecting a more complete set
of input features, and generating better models of the
design as a whole, rather acting on individual cells in
fairly independent fashion.

5


