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Abstract. This work focuses on the application of the adjoint method to pediatric ventricular 

assist device (PVAD), in order to develop an optimization methodology capable of improving 

its performance. Equally important is the capability to compute sensitivity derivatives of 

relevant measures of merit with respect to operational parameters. On following the usual 

practice in the literature, we asume that the flow is governed by the Navier-Stokes equations. 

This particular study has the goal of obtaining the correspondent adjoint equations for this 

problem, as well as the appropriate set of boundary conditions. For this initial purpose a 2D 

computational mesh is used, the flow is assumed to be steady and an uniform velocity profile 

in imposed on the inlet of the PVAD. A set of relevant measures of merits is identified for the 

sensitivity analysis. The validation of flow and adjoint simulations, as well as of the gradient 

computations is discussed. This calculation is performed by using the adjoint-based gradient 

formula that will be shown in this paper. Preliminary results show that it is possible to make 

use of the adjoint method to compute sensitivity gradients pertaining to this class of devices. 

The validation of the methodology for gradient evaluation is the starting point of the 

optimization process of the PVAD. 

 

 

 

mailto:joaobrasil.lima@usp.br


J.S.B. Lima, J.A. Isler, E.V. Volpe, X.Mao, B.S. Carmo and I.A Cestari 

 2 

1 INTRODUCTION 

There is a rapidly growing literature on the use of Computational Fluid Dynamics (CFD) 

resources to investigate the blood-flow through the so-called Ventricular Assist Devices 

(VAD). Of particular interest to us, a recent study [1] points out the importance of CFD in the 

design process of those devices. With the appropriate experimental validation [3], CFD 

resources should enable one to accurately predict flow behaviour inside different configurations 

of VADs, thus opening up the possibility of optimizing them. 

However, it is well-known that those flows are highly complex, owing to the rheology of 

blood and its non-Newtonian character. Moreover, the flow behaviour, itself, may lead to 

complications of biological nature, such as haemolysis, thrombosis and emboli, which must be 

avoided. Even more so when it comes to pediatric patients, in view of the smaller displacement 

volumes and higher pumping frequencies of the paediatric devices (PVAD), which increase the 

incidence of the aforementioned complications [2]. Although many of these issues have not 

been sufficiently resolved in the literature, in principle, they should be taken into account in the 

design and optimization of PVADs. 

The adjoint method is a powerful tool to tackle these issues, in that it enables one to capture 

the flow physics with high fidelity in the optimization process. It also allows for a systematic 

exploration of the space of realizable solutions, at a cost that is virtually independent of the 

number of design parameters. In particular, our approach to the method [4] provides a means 

for one to evaluate the sensitivity of flow measures to parameters other than those concerning 

the device geometry. In principle It extends the method capabilities to flow parameters such as 

Reynolds number, inflow velocity profiles and pulsation frequency. 

This work focuses on the application of the adjoint method to PVADs, where the blood is 

modelled as a Newtonian incompressible fluid. Hence the flow is governed by the usual Navier-

Stokes equations. The continuous form of the adjoint equations are presented, along with the 

appropriate boundary conditions [4]. A set of relevant measures of merit is identified, and their 

sensitivity gradients are evaluated and discussed. Numerical simulations shall be carried out by 

making use of high order codes [5],[6]. In order to validate the methodology for the calculation 

of the sensitivity gradients, the simulations will be performed in a 2D computational mesh, with 

no moving boundaries and with an uniform velocity profile on the inlet of the device. The most 

important steps of the derivation of the adjoint equations and the sensitivity gradient formula 

are presented what follows. 

2 THE ADJOINT METHOD 

2.1 General Formulation of the Adjoint Method 

 

In general, measures of merit that are relevant to fluid-dynamics applications, involve 

functionals or functions of the flow variables, 𝑈 and its geometry ℱ [7,8]: 

𝐼 = 𝐼(𝑈, ℱ) (1) 

Usually, ℱ is represented as a function of the flow coordinates and a set of parameters 𝛼. 

Geometry variations 𝛿ℱ can occur as a result of parameter variations (𝛿𝛼), which then cause 

variations in the flow variables 𝛿𝑈. In that regard, it is possible to obtain an expression for the 
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sensitivity gradient of the measure of merit 𝐼 with respect to geometry parameters 𝛼: 

𝜕𝐼

𝜕𝛼
=

𝜕𝐼

𝜕𝑈

𝑇 𝜕𝑈

𝜕𝛼
+

𝜕𝐼

𝜕ℱ

𝑇 𝜕ℱ

𝜕𝛼
 

(2) 

By considering all four terms that are required for the gradient calculation, the second one, 

𝜕𝑈/𝜕𝛼 is hardly ever known in closed form – that is, except for a very few cases of little 

practical interest. This derivative could be calculated by using finite differences, but the 

computational cost becomes prohibitive whenever the number of parameters 𝛼 increases. For 

example, if ℱ contains N parameters, at least N+1 numerical simulations will be necessary to 

compute the derivative – one for the baseline solution plus one for each of the parameters which 

must be perturbed separately. 

The general principle of the adjoint method is to restrict the physical variations to a locus of 

realizability by imposing the flow governing equations as constraints on the variational 

problem. It assumes that the solution to those equations depends on the flow variables and on 

its boundaries geometry: 

𝑅(𝑈, ℱ) = 0 (3) 

Therefore, all the realizable variations 𝛿𝑈 must satisfy the condition 𝛿𝑅 = 0, i.e.: 

𝛿𝑅 =
𝜕𝑅

𝜕𝑈
𝛿𝑈 +

𝜕𝑅

𝜕ℱ
𝛿ℱ 

(4) 

The restriction is introduced in the variational problem by multiplying it by a Lagrange 

multiplier 𝜓 and by adding it to the variation of the measure of merit 𝛿𝐼: 

𝛿𝐼 =
𝜕𝐼

𝜕𝑈

𝑇

𝛿𝑈 +
𝜕𝐼

𝜕ℱ

𝑇

𝛿ℱ − 𝜓𝑇 (
𝜕𝑅

𝜕𝑈
𝛿𝑈 +

𝜕𝑅

𝜕ℱ
𝛿ℱ) 

(5) 

𝛿𝐼 = [
𝜕𝐼

𝜕𝑈

𝑇

− 𝜓𝑇
𝜕𝑅

𝜕𝑈
] 𝛿𝑈 + [

𝜕𝐼

𝜕ℱ

𝑇

− 𝜓𝑇
𝜕𝑅

𝜕ℱ
] 𝛿ℱ 

 

The Lagrange multiplier 𝜓 is chosen so as to satisfy the eq. (6), 

𝜕𝑅

𝜕𝑈
𝜓 =

𝜕𝐼

𝜕𝑈
 

(6) 

Which eliminates the first term in equation (5), and the variation of the measure of merit 

becomes independent from the flow variations 𝛿𝑈. The surviving terms give rise to the 

following expression for 𝛿𝐼 

𝛿𝐼 = [
𝜕𝐼

𝜕ℱ

𝑇

− 𝜓𝑇
𝜕𝑅

𝜕ℱ
] 𝛿ℱ 

(7) 

The independence of eq. (7) from 𝛿𝑈 allows one to compute the sensitivity gradient with 

respect to any number of parameters, without the need for any additional flow simulation 

[9,10,11]. 

 

2.2 The Adjoint Problem for Incompressible Navier-Stokes Flows 

 

In the applications that are considered here, the main objective is to find flow configurations 

that represent extrema of a given measure of merit. That measure is usually a functional of the 
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flow variables. That is, an integral over the body surface ℬ. For the PVAD problem there are 

some measures of merit that are relevant, such as the fluid stress tensor, vorticity and forces. In 

this work, as a preliminary test, the measure of merit chosen is the force exerted by the fluid 

(blood) on the PVAD walls, projected onto a given direction 𝒆: 

𝐼0 =
1

𝑇
∫ ∮ 𝐺(𝒏. 𝝈. 𝒆)𝑑𝑆 𝑑𝑡

𝐵

𝑇

0

 
(9) 

where 𝜎 = 𝜏 − 𝑝𝐼 represents the fluid stress tensor. The well-known Navier-Stokes equations 

are given by: 

Hence, the augmented functional can be written as: 

𝐼 = ∫ ∮ 𝐺(𝒏. 𝝈. 𝒆) |
𝑑𝑆′

𝑑𝑆
| 𝑑𝑆 𝑑𝑡 +

𝐵

𝑇

0

1

𝑇
{∫ 𝜃∇𝒖 𝑑Ω

Ω

− ∫ 𝜓[𝜕0𝒖 + (𝒖. ∇)𝒖 + 𝑣∇𝑝 − 𝜈∇2𝒖]𝑑Ω
Ω

} 

(11) 

It is possible to calculate the first variation of the augmented functional, and then, to separate 

physical variations from those pertaining to control parameters. Then, by means of Gauss’s 

Theorem one can transfer to the adjoint variables the differential operators that are originally 

applied to the physical ones. To a large extent, the procedure relies on the fundamental 

hypothesis that all physical variables are continuous and differentiable within the domain. 

Fortunately, it is reasonable to expect such behavior of the pressure and velocity fields, under 

the flow conditions that are considered here. The final expression obtained is 

𝑇𝛿𝐼 = ∫ {φj|
𝑗
𝑣𝛿𝑝

Ω

+ [𝜕0φi − 𝑢𝑗φi|𝑗 + φj𝑢
𝑗|𝑖 + Θ|𝑖 − 𝜈(φi|

𝑗 + φj|
𝑖
)|𝑗  ]𝛿𝑢𝑖}𝑑𝜉̅𝑑𝑡 + 

 

− ∫ ∮ {[𝑢𝑗φi𝑛𝑗 − Θ𝑛𝑖 + 𝜈(φi|𝑗 + φj|𝑖
) 𝑛𝑗]𝛿𝑢𝑖 + 𝑣(𝛿𝑝𝑛𝑖 − 𝛿ℱ)φi}𝑑𝑆 𝑑𝑡 +

𝜕𝒟

𝑇

0

 

 

− [∫ φi𝛿𝑢𝑖𝑑𝑉
𝒟

]
0

𝑇

+ ∫ ∮ [
𝜕𝐺

𝜕𝑝
𝛿𝑝 +

𝜕𝐺

𝜕ℱ𝑘
𝛿ℱ𝑘] |

𝑑𝑆′

𝑑𝑆
| 𝑑𝑆𝑑𝑡 +

𝐵

𝑇

0

 

(12) 

+ ∫ ∮ 𝐺𝛿 |
𝑑𝑆′

𝑑𝑆
| 𝑑𝑆 𝑑𝑡 +

𝐵

𝑇

0

∫
Θ

𝐽
[𝛿(𝐽𝛽𝑞′

𝑘 )𝑢𝑞′
]

,𝑘
𝑑Ω

Ω

 
 

− ∫
φ𝑟′

𝐽
{𝜕0(𝛿𝐽𝑢𝑟′

) + [𝛿(𝐽𝛽
𝑛′
𝑗

) (𝑢𝑟′
𝑢𝑛′

+ 𝑔𝑟′𝑛′
𝑝𝑣 − 𝜈𝑢,𝑝′

𝑟′
𝑔𝑝′𝑛′

)]
,𝑗

}
Ω

𝑑Ω 
 

 

The first four integrals concern only physical variations, while the last two involve only 

geometry variations. In essence, the rationale behind the method is to derive the adjoint equation 

and boundary conditions so as to drive the integrals containing physical variations, to zero. The 

first domain integral, gives rise to the adjoint equations, as a means of driving it to zero for 

arbitrary physical variations 𝛿𝑢 and 𝛿𝑝. 

   

{
𝜕0φi − 𝑢𝑗φi|𝑗 + φj𝑢

𝑗|𝑖 + Θ|𝑖 − 𝜈φi|
𝑗|𝑗 = 0

                                                                   φi|𝑖 = 0
 

(13) 

where φ is the adjoint velocity vector and Θ is the adjoint pressure. The adjoint boundary 

{𝜕0𝒖 + (𝒖. ∇)𝒖 + 𝑣∇𝑝 − 𝜈∇2𝒖 = 0
                                                 ∇. 𝒖 = 0

 
(10) 
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conditions are obtained by pursuing the same rationale with the second and fourth integrals of 

eq. (12). The third integral corresponds to the time conditions and it is driven to zero by 

assuming that φ|𝑡=𝑇 = 0. The set of adjoint boundary conditions is given below: 

 

Table 1: Set of boundary conditions for viscous incompressible flows. Flow and adjoint BCs 

Contour Flow Adjoint 

Inflow 𝑢𝑖 = 𝑓(𝜉𝑗 , 𝑡, 𝛼𝑘) 𝛗 = 0 

Outflow 𝜕𝒖

𝜕𝒏
= 0 

𝑝 𝑓𝑖𝑥𝑒𝑑  

𝜕𝛗

∂𝐧
= −

(𝒖. 𝒏)𝛗

ν
 

Θ = 0 

Wall 𝒖 = 0 
𝛗 = −ρ

∂G

∂ℱ
|
𝑑𝑆′

𝑑𝑆
| 

Symmetry Plane 𝒖. 𝒏 = 0 

𝜕𝒖𝑡

𝜕𝒏
=

𝜕𝑝

𝜕𝒏
= 0 

𝛗. 𝒏 = 0 

𝜕𝛗𝑡

𝜕𝒏
=

𝜕Θ

𝜕𝒏
= 0 

 

The remaining terms in eq. (12) represent the sensitivity gradient.  

𝑇𝛿𝐼 = ∫ ∮ 𝐺𝛿 |
𝑑𝑆′

𝑑𝑆
| 𝑑𝑆 𝑑𝑡 + ∫

Θ

𝐽
[𝛿(𝐽𝛽𝑞′

𝑘 )𝑢𝑞′
]

,𝑘
𝑑Ω

Ω𝐵

𝑇

0

+ 

(14) 

− ∫
φ𝑟′

𝐽
{𝜕0(𝛿𝐽𝑢𝑟′

) + [𝛿(𝐽𝛽
𝑛′
𝑗

) (𝑢𝑟′
𝑢𝑛′

+ 𝑔𝑟′𝑛′
𝑝𝑣 − 𝜈𝑢,𝑝′

𝑟′
𝑔𝑝′𝑛′

)]
,𝑗

}
Ω

𝑑Ω 
 

As for control parameters that are not related to the flow geometry, they are also imposed as 

variational constraints on the problem. In essence, they control the inflow boundary conditions 

and thus, they are not subject to the integrations by parts, performed by means of Gauss’s 

Theorem. For the sake of space, we refer the reader to references [4,12] for further details on 

this portion of the derivation. The final expression for the sensitivity gradient reads: 

< 𝑎, 𝛿𝛼 >= ∫ ∮ [𝜈(
𝑆𝑖

𝑇

0

φi|𝑗 + φj|𝑖)𝑛𝑗 − Θ𝑛𝑖]
𝜕𝑓𝑖

𝜕𝛼𝑘
𝛿𝛼𝑘𝑑𝑆 𝑑𝑡  

(15) 

 

where 𝑆𝑖 is the inflow boundary and 𝛼 is a (or more) non-geometrical parameter. 

 

3 PRELIMINARY RESULTS 

 

3.1 Parameters of the PVAD 

 

Below, a PVAD is shown as means of illustrate the assembly of this device: 
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Figure 1: Photo of PVAD 

The PVAD considered in this work is the one shown below: 

 

Figure 2: Photo of the PVAD considered in this work 

The mesh for numerical simulations will be extracted from the 3D geometry of a PVAD 

characterized by the following parameters: 

Table 2: Parameters of the PVAD  

Parameter Value 

Inlet diameter 22 𝑚𝑚 

Outlet diameter 14 𝑚𝑚  
Volume 35 𝑚𝐿 

Inclination with 

horizontal 
35 ° 

Angle between 

cannulas 
8 ° 
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The 2D mesh was obtained from a slice of the 3D geometry, as shown below: 

 
 

Figure 3: In red, the slice from the 3D geometry that was used to generate the 2D mesh 

3.2 Geometry of PVAD and Simulation Mesh 

The 3D geometry that was used to extract the 2D geometry in order to generate he simulation 

mesh is: 

 
 

Figure 4: 3D geometry of the PVAD 

The 2D was generated in the software Gambit (ANSYS™) and it is shown below: 
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Figure 5: 2D mesh. Axes scales in mm 

3.3 Results 

 

The simulations were carried out in a high order numerical code [13] that is based on the 

spectral/hp element method. The inflow velocity adopted is 0,22 𝑚/𝑠, the viscosity of the blood 

as 𝜈 = 3,87.10−6𝑚2/𝑠2. That leads to a Reynolds number of 𝑅𝑒 = 1249, approximately. The 

simulation mesh contains 716 elements, the polynomial order is 10, the numerical time step is 

𝑑𝑡 = 0,0002 and the number of time steps is 120000. The result of the flow simulation with 

these parameters is the following: 

 

  

 
Figure 6: Flow solution. On the left, background colour-scale represents contours of horizontal velocity 𝑢, with 

particle path-lines. On the left, background colour-scale represents contours of vertical velocity 𝑣, also with 

particle path-lines. 

The solution of the adjoint equations is the following: 
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Figure 7: Adjoint solution, background colour-scale represents contours of adjoint pressure Θ 

3.4 Computation of the Sensitivity Derivative 

 

As a preliminary test to calculate the sensitivity of a measure of merit in respect to a control 

parameter, on calculate the sensitivity of the force that the fluid exerts on the PVAD projected 

in the 𝑥 direction in respect to inflow velocity, using eq.(15), assuming steady flow: 

𝜕𝐹𝑥

𝜕𝑈∞

=
1

𝑅𝑒
∮{[∇φ

𝑆

+ (∇φ)T] − Θ𝕀}𝒏 𝑑𝑆 
(16) 

The integration is performed in the inflow boundary and the result is compared to the value 

of the same sensitivity derivative computed by finite differences. The preliminary results are: 

 

Adjoint Method Finite Differences 

−0.0016 −0.0013 

4 CONCLUSIONS 

The preliminary results presented above, show that it is possible to make use of the adjoint 

method to compute sensitivity derivatives pertaining to this class of devices. Although more 

tests are still necessary to validate the process The main purpose of this work is to open the 

possibility of using the adjoint method to calculate the sensitivity derivatives to, in the future, 

compute derivatives that are more relevant to the analysis of the operation of the PVAD and to 

optimize it. Furher tests consists in compute the sensitivity derivatives in respect with Reynolds 

number, then change the inlet velocity profile to a pulsatile one, compute sensitivity derivatives 

in respect to the frequency of this profile, and, run new tests to other measures of merit. 
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