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Geometric (pre)quantization in the
polysymplectic approach to field theory
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Abstract. The prequantization map for a Poisson–Gerstenhaber algebra of the
differential form valued dynamical variables in the polysymplectic formulation
of the De Donder–Weyl covariant Hamiltonian field theory is presented and the
corresponding prequantum Schrödinger equation is derived. This is the first
step toward understanding the procedures of precanonical field quantization
put forward earlier from the point of view of geometric quantization.
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1. Introduction

The idea of quantization of fields based on a manifestly covariant version of the
Hamiltonian formalism in field theory known in the calculus of variation of mul-
tiple integrals [6, 7, 33, 46, 54] has been proposed for several times throughout the
last century dating back to M. Born [4] and H. Weyl [53]. The mathematical study
of geometrical structures underlying the related aspects of the calculus of varia-
tions and classical field theory has been undertaken recently by several groups of
authors [8–11,13,15–17,19,38,42–44] including Demeter Krupka’s group [36,37]
here in the Czech Republic. One of the central issues for the purposes of quan-
tization of fields is a proper definition of Poisson brackets within the covariant
Hamiltonian formalism in field theory. This has been accomplished in our earlier
papers [23–25] which are based on the notion of thepolysymplecticform as a field
theoretic analogue of the symplectic form in mechanics and present a construc-
tion of Poisson brackets of differential forms leading to a Poisson–Gerstenhaber
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algebra structure generalizing a Poisson algebra in mechanics. The corresponding
precanonicalquantization of field theories was developed heuristically in [26–28],
its relation to the standard quantum field theory was considered in [30], and a pos-
sible application to quantum gravity was discussed in [31]. In this paper we present
elements of geometric prequantization in field theory based on the above mentioned
Poisson–Gerstenhaber brackets and derive the corresponding prequantum analogue
of the Schr̈odinger equation. The main purpose of our consideration is to pave a way
to a better understanding of the procedures of precanonical field quantization from
the point of view of the principles of geometric quantization [1,12,48,50,55].

2. Polysymplectic structure and the Poisson–Gerstenhaber brackets

Let us briefly describe the polysymplectic structure [23,25] which underlies the
De Donder–Weyl (DW) Hamiltonian form of the field equations [7,33,46,54]

(2.1) ∂µya(x) = ∂ H/∂pµ
a , ∂µ pµ

a (x) = −∂ H/∂ya,

wherepµ
a := ∂L/∂ya

µ, calledpolymomenta, andH := ya
µ pµ

a −L = H(ya, pµ
a , xµ),

called theDW Hamiltonian function, are determined by the first order Lagrangian
density L = L(ya, ya

µ, xν). These equations are known to be equivalent to the
Euler–Lagrange field equations ifL is regular in the sense that

det

(∣∣∣∣
∣∣∣∣ ∂2L

∂ya
µ∂yb

ν

∣∣∣∣
∣∣∣∣
)

�= 0.

Let us view classical fieldsya = ya(x) as sections in thecovariant configuration
bundle Y → X over an orientedn-dimensional space-time manifoldX with the
volume formω. The local coordinates inY are(ya, xµ). Let

∧p
q(Y) denotes the

space ofp-forms onY which are annihilated by(q + 1) arbitrary vertical vectors
of Y.

The space
∧n

1(Y) → Y, which generalizes the cotangent bundle, is a model of
amultisymplectic phase space,[17], which possesses the canonical structure

(2.2) �MS = pµ
a dya ∧ ωµ + pω,

whereωµ := ∂µ ω are the basis of
∧n−1 T∗X. The sectionp = −H(ya, pµ

a , xν)

gives the multidimensionalHamiltonian Poincaŕe–Cartan form�PC.
For the purpose of introducing the Poisson brackets which reflect the dynamical

structure of DW Hamiltonian equations (1) we need a structure which is indepen-
dent of p or a choice ofH :

Definition 1. Theextended polymomentum phase spaceis the quotient bundle
Z:

∧n
1(Y)/

∧n
0(Y)→Y.

The local coordinates onZ are(ya, pν
a, xν). A canonical structure onZ can be

understood as an equivalence class of forms� := [ pµ
a dya ∧ ωµ mod

∧n
0(Y)].
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Definition 2. Thepolysymplectic structureon Z is an equivalence class of the
forms� given by

(2.3) � := [d� mod
∧n+1

1 (Y)] = [−dya ∧ dpµ
a ∧ ωµ mod

∧n+1
1 (Y)].

The equivalence classes are introduced as an alternative to the explicit introduc-
tion of a non-canonical connection on the multisymplectic phase space in order to
define the polysymplectic structure as a “vertical part” of the multisymplectic form
d�MS, see [43]. The fundamental constructions, such as the Poisson bracket below,
are required to be independent of the choice of representatives in the equivalence
classes, as they are expected to be independent of the choice of a connection.

Definition 3. A multivector field of degreep, X p ∈ ∧p T Z, is calledvertical
if X p F = 0 for any formF ∈ ∧∗

0(Z).

The polysymplectic form establishes a map of horizontal forms of degreep,
F p ∈ ∧p

0(Z), p = 0, 1, . . . , (n − 1), to vertical multivector fields of degree
(n − p), Xn−p

F , calledHamiltonian:

(2.4) Xn−p
F � = d Fp.

More precisely, horizontal forms forms are mapped to theequivalence classes
of Hamiltonian multivector fields modulo thecharacteristicmultivector fieldsX p

0 :
X p

0 � = 0, p = 2, . . . , n. The forms for which the map (2.4) exists are also
called Hamiltonian. It is easy to see that the space of Hamiltonian forms is not
stable with respect to the exterior product of forms. However,

Lemma 4. The space of Hamiltonian forms is closed with respect to the graded
commutative, associativeco-exteriorproduct

(2.5) F p • Fq := ∗−1(∗F p ∧ ∗Fq).

Proof. A straightforward proof is to solve (2.4) to see that Hamiltonianp-forms
are restricted to specific(n − p)-polylinear forms inpµ

a , and then to check that the
•-product preserves the space of these forms (see [24,43]).�

Note that the definition of the•-product requires only the volume formω on
the space-time, not the metric structure. Givenω a p-form F ∈ ∧p T∗X can be
mapped to an(n − p)-multivector XF ∈ ∧n−p T X: XF ω = F . Then the ex-
terior product of multivectors(∧) induces the•-product of forms in

∧∗ T∗X. The
construction is given by the commutative diagram

∧pT∗X ⊗ ∧qT∗X
•−−−→ ∧p+q−nT∗X

ω

� �ω∧n−pT X ⊗ ∧n−qT X
∧−−−→ ∧n−p+n−qT X

and can be lifted to forms in
∧∗

0(Z).
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The Poisson bracket of Hamiltonian forms{[ · , · ]} is induced by the Schouten–
Nijenhuis bracket[[ · , · ]] of the corresponding Hamiltonian multivector fields:

(2.6) −d{[F p, Fq ]} := [[ Xn−p, Xn−q]] �.

As a consequence,

(2.7)
{[F p

1, Fq
2 ]} = (−1)(n−p)Xn−p

1 d Fq
2

= (−1)(n−p)Xn−p
1 Xn−q

2 �,

whence the independence of the definition of the choice of representatives in the
equivalence classes ofXF and� is obvious. The algebraic properties of the bracket
are given by the following

Theorem 5. The space of Hamiltonian forms with the operations{[ · , · ]} and•
is a (Poisson–)Gerstenhaber algebra, i.e.

(2.8)

{[F p, Fq ]} = −(−1)g1g2{[Fq, F p ]},
(−1)g1g3{[F p, {[Fq, Fr ]} ]}+(−1)g1g2{[Fq, {[Fr , F p ]} ]}

+(−1)g2g3{[Fr , {[F p, Fq ]} ]} = 0,

{[F p, Fq•Fr ]} = {[F p, Fq ]}•Fr +(−1)g1(g2+1)Fq•{[F p, Fr ]},
where g1 = n − p − 1, g2 = n − q − 1, g3 = n − r − 1.

Proof. The graded Lie algebra properties are a straightforward consequence
of (2.6) and the graded Lie nature of the Schouten–Nijenhuis bracket. The graded
Leibniz property can be seen as a consequence of the Frölicher–Nijenhuis theorem
[14,34] adapted to the algebra of forms equipped with the co-exterior product.�

3. Prequantization map

Having in our disposal a generalization of the symplectic structure and a Poisson
algebra to the DW Hamiltonian formalism of field theory it is natural to ask if
geometric quantization can be generalized to this framework. The first step in this
direction would be a generalization of theprequantization map[1, 12, 48, 50, 55]
F → OF which maps dynamical variablesF on the classical phase space to the
first order (prequantum) operatorsOF on (prequantum) Hilbert space and fulfils
three properties:
(Q1) the mapF → OF is linear;
(Q2) if F is constant, thenOF is the corresponding multiplication operator;
(Q3) the Poisson bracket of dynamical variables is related to the commutator of

the corresponding operators as follows:

(3.1) [OF1, OF2] = −i �O{F1,F2}.

In the case of a Poisson–Gerstenhaber algebra we expect that the commutator (3.1)
is replaced by thegradedcommutator[ A, B] := A ◦ B − (−1)degAdegB B ◦ A.
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Theorem 6. The prequantum operator of a differential form dynamical variable
F is given by the formula

(3.2) OF = i �£XF + XF � • +F•,

where

£XF := [XF , d]

and� is a (local) polysymplectic potential in the sense of(2.3).

Proof. See a straightforward calculation in [32].�

The most intriguing aspect of the representation (3.2) is that the prequantum op-
eratorOF is non-homogeneous: for anf -form F the degree of the first term in
(3.2) is (n − f − 1) and the degree of the other two terms is(n − f ). This fact
suggests that prequantum wave functions are complex non-homogeneous horizon-
tal differential forms, i.e. sections of the complexified bundle

∧∗
0(Z)C → Z. The

corresponding (graded) prequantum Hilbert space will be considered in [32] (see
also [29]).

Note that formulas (3.1) and (3.2) imply that one can introduce a formal non-
homogeneous “supercovariant derivative” with respect to a multivector fieldX:

∇X := £X − i

�
X �•

with the curvature of the corresponding “superconnection”∇ (cf. [40,45])

(3.3) �(X1, X2) := −i �
(
[∇X1, ∇X2] − ∇[[ X1,X2]]

)
coinciding with the polysymplectic form.

One of the important questions is what is the dynamical equation for the wave
functions. Let us consider how geometric prequantization can help us to find an
answer.

4. Prequantum Schr̈odinger equation

The origin of the Schr̈odinger equation in quantum mechanics from the point
of view of geometric (pre)quantization can be understood as follows. The classical
equations of motions are incorporated in the vector fieldX∗ which annihilates the
exterior differential of the (Hamiltonian) Poincaré–Cartan form

(4.1) � = p dq− H(p, q) dt,

i.e.

(4.2) X∗ d� = 0.

The classical trajectories in the phase space are known to be the integral curves of
X∗.
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Now, if we think of geometric prequantization based on the presymplectic struc-
ture given byd� we notice that the zero “observable” has a non-trivial (presym-
plectic) prequantum operator:

(4.3) 0→ O0 = i �£X∗ + X∗ �,

whereX∗ = Xt∂t + Xq∂q + X p∂p and

(4.4) Xq = ∂pH, X p = −∂q H,

as it follows from (4.2) under the assumptionXt = 1 (which is just a choice of time
parametrization). The obvious consistency requirement then is thatO0 vanishes on
prequantum wave functions
 = 
(p, q, t), i.e.,

(4.5) O0(
) = 0.

Using the explicit form of the operatorO0 derived from (4.3), (4.4):

(4.6) O0 = i �∂t + i �(∂pH∂q − ∂q H∂p) + p∂pH − H(p, q)

one can write (4.5) in the form of theprequantum Schrödinger equation

(4.7) i �∂t
 = OH
,

whereOH is the (symplectic) prequantum operator of the Hamilton canonical func-
tion:

(4.8) OH = −i �(∂pH∂q − ∂q H∂p) − p∂pH + H(p, q).

The above consideration demonstrates the origin of the Schrödinger equation in
the classical relation (4.2). The subsequent steps of quantization just reduce the
Hilbert space of the wave functions (by choosing apolarization) and construct a
proper operator ofH on this Hilbert space, the form of the Schrödinger equation
(4.7) remaining intact. This observation motivates our consideration of the field the-
oretic prequantum Schrödinger equation in the following section: having obtained
it on the level of prequantization one may have a better idea as to what is the co-
variant Schr̈odinger equation for quantum fields within the approach based on DW
Hamiltonian formulation (2.1).

There has been a little discussion of the prequantum Schrödinger equation in the
literature (cf. [5,35,39,47]) for the reason that it works on a wrong Hilbert space of
functions over the phase space, thus contradicting the uncertainty principle. It can
serve, therefore, only as an intermediate step toward the true quantum mechanical
Schr̈odinger equation.

Let us note that equations (4.7), (4.8) recently appeared within the hypothetical
framework of “subquantum mechanics” proposed by J. Souček [49] whose start-
ing point was quite different from geometric quantization. A possible connection
between the “subquantum mechanics” and geometric prequantization could be an
interesting subject to study, particularly in connection with the question recently
revisited by G. Tuynman [51, 52] as to “were there is the border between classical
and quantum mechanics in geometric quantization?”
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5. Prequantum Schr̈odinger equation in field theory

In this section we present a field theoretic generalization of the above derivation
of the prequantum Schrödinger equation.

It is known [8–11,13,25,44] that the classical field equations in the form (2.1) are
encoded in the multivector field of degreen, Xn∗ ∈ ∧n T Z, which annihilates the
exterior differential of the multidimensional Hamiltonian Poincaré–Cartann-form

(5.1) �PC = pµ
a dya ∧ ωµ − H(ya, pµ

a )ω,

i.e.

(5.2) Xn∗ d�PC = 0.

Let us extend the geometric prequantization map (3.2) to the case of the “pre-
polysymplectic” formd�PC, usually calledmultisymplectic. Again, the feature of
this extension is that there is a non-trivial prequantum operator corresponding to
the zero function on the polymomentum phase space:

(5.3) O0 = i �[Xn∗, d] + Xn∗ �PC • .

Then the consistency requires the prequantum wave function
 = 
(ya, pµ
a , xµ)

to obey the condition

(5.4) O0(
) = 0

which is expected to yield the field theoretic prequantum Schrödinger equation.
It is easy to see that the operator (5.3) is non-homogeneous: the first term has the

degree−(n − 1) while the last one has the degree−n. Therefore, the prequantum
wave function in (4) is a horizontal non-homogeneous form


 = ψω + ψνων,

a section of the bundle(
∧n−1

0 (Z)⊕ ∧n
0(Z))C → Z which generalizes the complex

line bundle over the symplectic phase space used in the usual geometric quantiza-
tion.

AssumingXn
∗ ω = const and introducing the vertical Hamiltonian multivector

associated withH :

Xn
H d� = d H,

where� is a potential of the polysymplectic form�, the vertical part ofXn∗ takes
the form:

XnV
∗ = (−1)n(Xn∗ ω)Xn

H .

Then (5.4) yields the prequantum Schrödinger equation in the form:

(5.5)
i �(∂µψµ−(−1)n∂µψ dxµ)

= −(−1)n(i �Xn
H d
+Xn

H �•
)+H •
.

For odd n the right-hand side of (5.5) is identified with the (polysymplectic)
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prequantum operator ofH (see (3.2)), and (5.5) takes a particularly appealing form
(cf. [22])

(5.6) i σ� d • 
 = OH (
),

whereσ = ±1 for Euclidean/Lorentzian spacetimes (in our conventions∗ω =
σ ), andd• is theco-exteriordifferential [28] which is non-vanishing only on the
subspace of(n − 1)- andn-forms:

d • (ψνων) = ∂µψνdxµ • ων = σ∂νψ
ν, d • (ψω) = σ∂µψdxµ.

For even nthe right-hand side of (5.5) is notOH because of the wrong sign
in front of the first two terms. The left hand side is also different from the one in
(5.6). A distinction between even and odd space-time dimensions is a problematic
feature of the present derivation based on a specific prequantization formula (3.2).
(See Note added in proofs.)

The meaning of our discussion in this section is that it provides a hint to the
actual form of the covariant Schrödinger equation in field theory which one can
expect within the approach to field quantization based on the covariant DW Hamil-
tonian formalism.

6. Discussion

We presented a formula of prequantum operators corresponding to Hamiltonian
forms. It realizes a representation of the Poisson–Gerstenhaber algebra of Hamil-
tonian forms by operators acting on prequantum wave functions given by nonho-
mogeneous forms
, the sections of

∧∗
0(Z)C → Z. We also argued that these

wave functions fulfill the prequantum Schrödinger equation (5.5).
The next step in geometric quantization would be to reduce the prequantum

Hilbert space by introducing apolarization in the polymomentum phase space.
A generalization of theverticalpolarization reduces the space of wave functions to
the functions depending on field variables and space-time variables:
(ya, xµ). A
construction of quantum operators on the new Hilbert space of quantum wave func-
tions requires further generalization of the techniques of geometric quantization,
such as the notion of the metaplectic correction and the Blattner-Kostant-Sternberg
pairing, which is not developed yet.

However, the quantum operator̂H is already known from the heuristic pro-
cedure of “precanonical quantization” [26–28, 30, 31] based on quantization of a
small Heisenberg-like subalgebra of brackets of differential forms generalizing the
canonical variables. Within precanonical quantization it was found suitable to work
in terms of the space-time Clifford algebra valued operators and wave functions,
rather than in terms of non-homogeneous forms and the graded endomorphism val-
ued operators acting on them. In general, a relation between the two formulations
is given by the “Chevalley quantization” map from theco-exterior algebra to the
Clifford algebra:ωµ• → −(1/�)γµ, where the constantκ is introduced to match
the physical dimensions (1/� ∼ lengthn−1). The corresponding Clifford product of
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forms is given by (cf. [2,3,18,20,21])

ωµ ∨ ων = ωµ • ων + �−2ηµν.

Note that the appearence of the metricηµν at this stage is related to the fact that a
definition of the scalar product of wave functions represented by non-homogeneous
forms, i.e. their probabilistic interpretation, requires a space-time metric.

Under the above “Cliffordization” and the vertical polarization the wave function
becomes Clifford valued:
 = 
(ya, xµ) and the left hand side of (5.5), (5.6) can
be expressed in terms of the Dirac operator acting on
 = ψ +ψνγ

ν ; in particular,
d• ∼ γ γ ν∂ν , whereγ ∼ γ1γ2 · · · γn corresponds to the Hodge duality operator∗.
Similarly, the operator ofH• is represented as∼γ Ĥ . The coefficients not specified
here are fixed by the requirement that the resulting Dirac-like equation is causal and
consistent, thus leading to the covariant Schrödinger equation for quantum fields in
the form

(6.1) i ��γ µ∂µ
 = Ĥ
.

A similar reasoning leads to the representation of polymomenta, which is of the
form:

p̂pµ
a = −i ��γ µ ∂

∂ya .

These results have been anticipated within precanonical field quantization earlier
[26–28] (see also [41] where similar relations were postulated). This approach also
allows us to derive the explicit form of̂H . For example, in the case of interacting
scalar fieldsya one can show that [28]

Ĥ = − 1
2 �

2�2 � +V(y),

where� is the Laplace operator in the space of field variables.
What we have arrived at is a multidimensional hypercomplex generalization of

the Schr̈odinger equation from quantum mechanics to field theory, where the space-
time Clifford algebra, which arose from quantization of differential forms, general-
izes the algebra of the complex numbers in quantum mechanics, and the notion of
the unitary time evolution is replaced by the space-time propagation governed by
the Dirac operator. In [30] we discussed how this description of quantum fields can
be related to the standard description in the functional Schrödinger representation.
In doing so the Schrödinger wave functional arises as a specific composition of
amplitudes given by Clifford-valued wave functions of the precanonical approach,
and the parameter� appears to be related to the ultra-violet cutoff.

Obviously, in this presentation we have left untouched a lot of important issues
both on the level of prequantization and on the level of quantization. A develop-
ment of the present version of geometric quantization in field theory would further
clarify the mathematical foundations of precanonical quantization of fields and also
advance its understanding and applications. The whole field appears to us as appeal-
ing, mathematically rich and unexplored as the field of the geometric quantization
approach to quantum mechanics was 25–30 years ago.
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Note added in proofs

A distinction between odd and evenn in Section 5 can be avoided by noticing
that the prequantization map (3.2) can be modified as follows:

(6.2) O′
F = (−1)(n− f −1)(i �£XF + XF �•) + F•,

where(n − f ) is the co-exterior degree ofF . Then the right-hand side of (5.5) is
identified with O′

H (
) for any n. The left-hand side of (5.5) also can be written
in a universal form for anyn using the reversion anti-automorphismβ in a co-
exterior Grassmann algebra:β(F) := (−1)

1
2 (n− f )(n− f −1)F . Then the prequantum

Schr̈odinger equation (5.5) can be written as follows:

(6.3) i σ�(−1)
1
2n(n−1)β(d • 
) = O′

H (
).

Note that a choice between two representations (3.2) and (6.2) can be made once
the scalar product is specified.
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Universiẗat Hamburg
Luruper Chaussee 149
22761 Hamburg
Germany
E-mail: ivar@mail.desy.de


