
ßree investigations into linear logic

Richard Garner

January , 

Abstract

ßis essay looks into three topics in category theory broadly linked by the theme of linear

logic, which could perhaps be described as a ‘resource-sensitive’ version of classical logic:

one no longer just worries about proving B from A, but also how many times one must

invoke A in order to get B.
ße first topic describes a method for describing a particular species of category-with-

structure which provides an abstract model for the system of linear logic. Previous ap-

proaches to this problem have imposed a ‘top-down’ solution, starting from the desired

syntactic goals; here, we provide a ‘bottom-up’ approach which builds the structure in

stages from more elementary components.

ße second topic provides a more abstract view of some of the tools used to construct

the categories-with-structure of the first section; in particular, it seeks to provide a fresh

perspective on several well-known but seemingly ad hoc constructions, a perspective

from which they may appear a little more natural.

ße third topic describes a new way of describing the structure of ‘polycategories’,

which furnish us with a different, and perhaps more natural, way of describing the sys-

tem of linear logic.

iii

Contents

 Overview 

 Frobenius algebras in multiplicative linear logic 

. Introduction . 

. Preliminaries . 

. Frobenius algebras and the Frobenius category 

. An orthogonality category . 

. ße unit-free part of O(F) . 

. Co-semisimplicity . 

. Isomorphisms in F . 

. ße key lemma . 

. ße main result . 

. Reintroducing duality . 

 Monoidal modules, double glueing and the Chu construction 

. Introduction . 

. Monoidal actions . 

. Maps of modules . 

. Coherence for bimodules . 

. Symmetric actions . 

. Closed modules . 

. Cotensored actions . 

. ∗-autonomy . 

.. ∗-autonomous modules . 

.. Cyclic and symmetric ∗-autonomous modules 

.. Maps of ∗-autonomous modules 

. Comma objects . 

. ße cofree monoidal category on a module 

.. ße basic case . 

.. ße closed and ∗-autonomous cases 

. Modules modulo C . 

v

 Polycategories 

. Introduction . 

. Multicategories . 

. From multicategories to polycategories 

. ße pseudomonad T onMod . 

. Free monoidal structure at 1 . 

. Spans . 

. ße distributive law at 1 . 

. ße mediating -cells at 1 . 

. Clubs and pro-clubs . 

. Liµing the distributive law from 1 . 

 Future directions 

vi

Preface

ßis essay consists in original research, as yet unpublished, carried out in pursuit of my

doctoral studies. Where use has been made of others’ work, explicit note has been made

in the body of the text. A full bibliography is appended. I gratefully acknowledge the

support of my supervisor Martin Hyland.

vii

Chapter 1

Overview

ßis essay investigates three topics in the broad area of linear logic. As so oµen inmathe-

matics, linear logic may be seen as a natural generalisation of several different intuitions.

Girard’s original paper [Gir] has it arising as a calculus on certain types of qualitative

domains, whilst from a syntactic perspective it can be seen as the result of excising the

structural rules of contraction and weakening from the classical sequent calculus.

However, the most pertinent source of motivation for the purposes of this essay is not

syntax but semantics. Given a logical calculus, we might hope to capture the essence of

that calculus by means of some category, whose morphisms A → B are to be read as

‘proofs of B from A’ in our calculus. We would consider this enterprise a success if there

were a tight correspondence between the morphisms of the category, and the proofs of

the calculus; that is, if two proofs of B from A were represented by the same morphism

A → B if and only if they were ‘essentially the same proof ’. What wemean by ‘essentially’

in this context is a matter of aesthetics rather than mathematics.

A leading example of this is the correspondence between intuitionistic classical logic

and cartesian closed categories with finite coproducts, in which the logical connectives

‘and’, ‘or’ and ‘implies’ are interpreted categorically by the operations of product, co-

product and function-space. One naturally wonders whether this correspondence can

be extended to the full classical logic with negation. ße following observation gives us

an answer:

Proposition  (Joyal). Let C be a cartesian closed category, with initial object 0. Consider

the functor ¬ = (–) ⇒ 0 : C
op → C. If ¬¬X is naturally isomorphic to X for all X ∈ C,

then C is a preorder category.

Proof. ße functor ¬ forms part of an equivalence of categories C ≃ C
op; hence C

op is

also cartesian closed. So the functor (–) + 1 : C → C is a right adjoint, and so preserves

limits; in particular, 1 + 1 is terminal, and hence the two injections∐1,∐2 : 1 → 1 + 1 are

the same. Now, given any two morphisms f , g : 1 → X in C, we have

1
f
−→ X = 1

∐1
−−→ 1 + 1

[f ,g]
−−−−→ X = 1

∐2
−−→ 1 + 1

[f ,g]
−−−−→ X = 1

g
−→ X ,



C 1. O

and since maps A → B are in bijection with maps 1 → (A ⇒ B), we deduce that C must

be a preorder category.

So adding classical negation necessarily collapses the categorical semantics back to

mere truth-value semantics; we can no longer see howwe can proveB fromA, butmerely

if we can prove B from A. Informally, this collapse happens because maps in a cartesian

closed category have a very strong sense of which direction is ‘from’ and which is ‘to’;

so strong that the contravariant isomorphism of classical negation cannot be accommo-

dated in a non-degenerate manner.

ße story of linear logic can thus be seen as the story of how intuitionistic logic can be

altered to allow us to fruitfully reintroduce negation; from a categorical perspective, it is

the story of categories in which the distinction between ‘source’ and ‘target’ is to some

extent blurred. Concretely, these categories are the ∗-autonomous categories of [Bar],

but the concept of ‘undirectedness’ cuts deeper, since many of the intuitions, and hence

concepts, of category theory are derived from the ‘directed’ world of sets, and hence

function badly in the context of linear logic.

We can approach ∗-autonomous categories by way of weakly distributive categories,

which is the topic of the first part of this essay. It shows how we can construct a free

such category, starting from the notion of an generic Frobenius algebra (itself a rather

‘undirected’ structure), and how, by reintroducing negation, we can produce from it a

free ∗-autonomous category.

ße second part of this essay deals abstractly with the issue of constructing ‘undirected’

categories, building on the observation that the glueing construction for monoidal cate-

gories is unsuited to constructing new ∗-autonomous categories from old ones. Solving

this problem was one of the main thrusts of [HS], with its double glueing construc-

tion; here, we decompose that construction into more elementary pieces, based on the

concept ofmodules for monoidal categories.

ße final part of this essay develops a new approach to Szabo’s polycategories [Sza],

which are to weakly distributive categories asmulticategories are tomonoidal categories.

ße approach is inspired by the presentation of multicategories as monads in the Kleisli

bicategory of a pseudomonad; it develops a distributive law between a pseudomonad

and a pseudocomonad such that monads in the Kleisli bicategory of this distributive law

are polycategories.



Chapter 2

Frobenius algebras in multiplicative linear logic

2.1 Introduction

We wish to investigate the logical system , and in particular attempt to characterise

its proofs. From a categorical viewpoint, we see of  as the free ∗-autonomous cat-

egory on a discrete category X of primitive proposition; and so in order to understand

, one may hope to understand the construction of free ∗-autonomous categories.

In fact, we shall be more humble, and only attempt to understand the construction of

∗-autonomous categories without units. (ße interaction of the units with the binary

connectives is a thorny problem; a recent attempt to resolve it may be found in [SL].)

One may protest that a perfectly adequate description of such categories already ex-

ists, given by proof nets [Gir, DR]. Yet though proof nets may be adequate they are

not wholly satisfactory: indeed, that proof nets describe ∗-autonomous categories only

becomes apparent aµer a detour through the sequent calculus . From the perspec-

tive of the categorical proof theorist, it would be more appealing to be able to directly

construct such a free category; and this is what this chapter sets out to do.

2.2 Preliminaries

We assume the reader is reasonably familiar with the sequent calculus , or mul-

tiplicative linear logic (if not then see [Gir] or [Gir] for more details); we give

a brief summary here for completeness. Its formulae are built from a set of literals

X = {A, B, . . . } and their negations A⊥, B⊥, . . . using two binary connectives, ⊗ and

¿, and two nullary connectives I and ⊥. We extend negation (–)⊥ to arbitrary formulae

by the DeMorgan laws:

(A ⊗ B)⊥ = A⊥ ¿ B⊥ (A ¿ B)⊥ = A⊥ ⊗ B⊥

I⊥ = ⊥ ⊥⊥ = I .



C 2. F     

Proofs are constructed from these formulae according to the following rules of deduc-

tion:

id
⊢ A⊥, A

⊢ Γ, A ⊢ A⊥,∆
cut

⊢ Γ,∆

⊢ ∆, A, B, Γ
ex

⊢ ∆, B, A, Γ
⊢ ∆, A ⊢ B, Γ

⊗
⊢ ∆, A ⊗ B, Γ

⊢ ∆, A, B
¿

⊢ ∆, A ¿ B
I

⊢ I
⊢ ∆

⊥.
⊢ ∆,⊥

As mentioned in the introduction, if we view the set of propositions X as a discrete

category, then manifests itself as the free symmetric ∗-autonomous category SA(X)
on X , where we recall from [Bar] that:

Definition. A symmetric ∗-autonomous category (C,⊗, I , (–)∗) is a symmetricmonoidal

category (C,⊗, I) equipped with a functor (–)∗ : C → C
op such that

• A∗∗ ∼= A naturally in A ∈ C;

• C(A ⊗ B, C∗) ∼= C(B ⊗ C, A∗) naturally in all variables.

Note that this definition seems to suppress any mention of ¿ or ⊥; but these are recov-

ered by setting (–)¿(?) = ((–)∗⊗ (?)∗)∗ and⊥ = I∗. IfA⊗B ∼= A¿B and I ∼= ⊥, then we

say that C is compact closed. Closely related to ∗-autonomy is the concept of a weakly

distributive category:

Definition . A symmetric weakly distributive category (C,⊗,¿, I ,⊥) is a category C

such that (C,⊗, I) and (C,¿,⊥) are symmetric monoidal categories, equipped with a

natural family of maps

wABC : A ⊗ (B ¿ C) → (A ⊗ B) ¿ C

calledweak distributivitymaps, which satisfy axiomsmaking them compatible with the

two monoidal structures. (For the full details of these axioms, we refer the reader to

[CS].)

2.3 Frobenius algebras and the Frobenius category

ßis section reviews a few necessary facts about Frobenius algebras; these can be found

in more detail in [Koc] or [Car] for example.

Definition. A commutative Frobenius object in a symmetricmonoidal category (C,⊗, I)
is an object X equipped with morphisms

m : X ⊗ X → X (multiplication),

η : I → X (unit),

∆: X → X ⊗ X (comultiplication), and

ǫ : X → I (counit),



2.3. F    F 

Figure .: Axioms for a symmetric Frobenius object

X ⊗ I

ρ

X⊗η
X ⊗ X

m

I ⊗ X

λ

η⊗X

X

X ⊗ I

ρ

X⊗ǫ
X ⊗ X

∆

I ⊗ X

λ

ǫ⊗X

X

X ⊗ X
σ

m

X ⊗ X

m

X

X ⊗ X
σ

∆

X ⊗ X

∆

X

X ⊗ X ⊗ X
m

m

X ⊗ X

m

X ⊗ X m X

X ⊗ X ⊗ X
∆

∆

X ⊗ X

∆

X ⊗ X
∆

X

X ⊗ X
∆⊗X

m

X ⊗ X ⊗ X

X⊗m

X
∆

X ⊗ X

X ⊗ X
X⊗∆

m

X ⊗ X ⊗ X

m⊗X

X
∆

X ⊗ X

which make (X,m, η) into a commutative monoid, (X,∆, ǫ) into a cocommutative co-

monoid, and satisfy the Frobenius laws:

(X ⊗m) ◦ (∆ ⊗ X) = ∆ ◦m = (m ⊗ X) ◦ (X ⊗ ∆).

ße category which interests us is the symmetric monoidal category F freely generated

by a Frobenius object X . Since it costs us nothing and gains us transparency, we may as

well assume that F is strict monoidal; that is, the associativity and identity (though not

the symmetry) isomorphisms are taken to be identities. Formally, we have:

Definition . Let G be the strict monoidal category with objects I , X , . . . , X⊗n, . . . and

morphisms freely generated (under composition and tensor product) by maps m : X ⊗

X → X , ∆: X → X ⊗ X , η : I → X , ǫ : X → I and σ : X ⊗ X → X ⊗ X .
Let ∼ be the smallest equivalence relation on G compatible with composition which

makes all the diagrams of Figure  commute and makes σ into an involutive natural

transformation; then we define F to be G/∼.

Quotients of categories are usually rather difficult to describe; happily, this is not the case



C 2. F     

here. Indeed, suppose we interpret G graphically by drawing objects as:

I X X ⊗ X

. . .

and generating morphisms as:

m

m : X ⊗ X → X ,

∆

∆: X → X ⊗ X ,

η

η : I → X ,

ǫ

ǫ : X → I ,

σ

σ : X ⊗ X → X ⊗ X .

ßen horizontal and vertical juxtaposition give us respectively categorical composition

and tensor product, and we can describe the equivalence relation ∼ explicitly by refer-

ence to these diagrams.

Definition . Given a morphism f : X⊗n → X⊗m of G, view it as a diagram in R
3, with

leµ-hand boundary X⊗n and right-hand boundary X⊗m. Let cptsf be its collection of

connected components.

For each c ∈ cptsf , we can then ask two questions: firstly, which of the n input copies
and m output copies of X lie on its boundary, and secondly, what its genus is. We write

inc , outc and genc for these pieces of data. ße topology of f , Top(f) is then the multiset

[
(inc , outc , genc) | c ∈ cptsf

]
.

[Note that according to our definition, the two morphisms

σ σ and

id

id

are topologically equivalent, which might cause a knot theorist some consternation, but

is entirely correct in this setting, since we want F to be symmetric rather than braided.]

Proposition . For f , g : X⊗n → X⊗m in G, f ∼ g if and only if f and g are topologically

equivalent.

Proof. See, for instance, [Koc] or [Car].



2.4. A  

So we have a crisp solution to our coherence problem: we think of the category F as

being the category G modulo topological equivalence; thus we work with (diagrams of)

morphisms of G directly and argue topologically to prove commutativity.

Now, F is in fact already a ∗-autonomous category; indeed, we know it to be symmetric

monoidal, and we have a functor (–)∗ : F → F
op given by the identity on objects and by

‘reversal’ on morphisms; explicitly, on generating morphisms, it is given by

∆∗ = m, m∗ = ∆, η∗ = ǫ, ǫ∗ = η, and σ∗ = σ,

which has a unique extension to a strict monoidal functor F → F
op. Clearly, though, this

structure is far from ‘free’, since we have ¿ = ⊗; so F is in fact compact closed.

2.4 An orthogonality category

We now wish to apply the orthogonality construction of [HS] to the category F. We

avoid the full generality of that paper by considering only the very well-behaved case we

need here.

Definition . Let A ∈ F and consider maps u : I → A and x : A → I . We shall say that u
is orthogonal to x and write u ⊥ x just when x ◦ u = ǫ ◦ η. Further, given Ap ⊂ F(I, A),
and Ac ⊂ F(A, I), we write A◦

p and A◦
c for the sets

A◦
p :=

{
x : A → I | u ⊥ x for all u ∈ Ap

}
, and

A◦
c := { u : I → A | u ⊥ x for all x ∈ Ac } .

ßese two operations set up a Galois connection between the powerset of F(I, A) and
the powerset of F(A, I). We are interested in ‘closed’ subsets that are paired under this

Galois connection; i.e., subsets Ap and Ac such that A◦
p = Ac and A◦

c = Ap.

ße categoryO(F) arises by augmenting objectsAofFwith suchpaired subsets (Ap, Ac).

We think of Ap and Ac as respectively being the ‘proofs’ and ‘coproofs’ of A. ße maps of

O(F) are maps between the underlying objects in F, that are required to map proofs to

proofs, and coproofs to coproofs. Formally, we have:

Definition . ße category O(F) has for objects, triples A = (A,Ap, Ac), where A ∈ F,

Ap ⊂ F(I, A) andAc ⊂ F(A, I), subject toA◦
p = Ac andA

◦
c = Ap. Itsmorphisms f : A → B

are given by maps f : A → B in F, subject to the conditions

f ◦ u ∈ Bp for all u ∈ Ap, and

x ◦ f ∈ Ac for all x ∈ Bc .

ßere is an evident forgetful functor O(F) → F which we shall denote by U .



C 2. F     

Proposition . ße categoryO(F) has a ∗-autonomous structure liµing that of F; it is given

by:

(A,Ap, Ac) ⊗ (B, Bp, Bc) = (A ⊗ B, (Ap ⊗ Bp)
◦◦, (Ap ⊗ Bp)

◦)

(A,Ap, Ac) ¿ (B, Bp, Bc) = (A ⊗ B, (Ac ⊗ Bc)
◦, (Ac ⊗ Bc)

◦◦)

(A,Ap, Ac)
∗ = (A,Ac , Ap)

where we have

Ap ⊗ Bp =
{
I

∼=
−→ I ⊗ I

u⊗v
−−−→ A ⊗ B | u ∈ Ap, v ∈ Bp

}

Ac ⊗ Bc = { A ⊗ B
u⊗v
−−−→ I ⊗ I

∼=
−→ I | u ∈ Ac , v ∈ Bc } .

ße tensor unit is given by I = (I, {idI}, {η ◦ ǫ}).

Proof. Immediate from the general theory of [HS]; we refer the reader to that paper

for the details.

Example . Let us set

X := (X, {η}, {ǫ})

in O(F); now consider the object ((X¿X)⊗X) ¿X. We wish to calculate its proofs and

coproofs: as a first step, we have

X ¿ X = (X, {η}, {ǫ}) ¿ (X, {η}, {ǫ})

= (X ⊗ X, {ǫ ⊗ ǫ}◦, {ǫ ⊗ ǫ}◦◦).

To calculate {ǫ⊗ǫ}◦, we need to findmaps u : I → X⊗X in F such that (ǫ⊗ǫ)◦u = ǫ◦η.
Graphically, we seek maps I → X ⊗ X in G which when attached to

ǫ

ǫ

gives something topologically equivalent to η ǫ . It’s easy to see that any suchmapmust

be topologically equivalent to

η ∆
;

hence {ǫ ⊗ ǫ}◦ = {∆ ◦ η}. Likewise, it’s immediate that {∆ ◦ η}◦ = {ǫ ⊗ ǫ}, so we get

X ¿ X = (X ⊗ X, {∆ ◦ η}, {ǫ ⊗ ǫ}).



2.4. A  

Next, we have:

(X ¿ X) ⊗ X = (X ⊗ X, {∆ ◦ η}, {ǫ ⊗ ǫ}) ⊗ (X, {η}, {ǫ})

= (X ⊗ X ⊗ X, {(∆ ◦ η) ⊗ η}◦◦, {(∆ ◦ η) ⊗ η}◦)

ßus, the coproofs are simply the maps orthogonal to (∆ ◦ η) ⊗ η:

η

η

∆

id

And there are two such, as represented by the following diagrams in G:

ǫ

m ǫ

and

id

ǫ

id

m ǫ

So the set of coproofs is {η⊗ (η ◦m), ǫ ◦m ◦ (X ⊗ ǫ⊗X)}. And once again, the only map

orthogonal to this set is the original map (∆ ◦ η) ⊗ η. Continuing aµer this fashion we

find ((X ¿ X) ⊗ X) ¿ X to have two proofs:

η

η

∆

∆

and η ∆

∆

id

id

η

id

id

,

and two coproofs:

ǫ

m ǫ

ǫ

and

id

ǫ

id

m ǫ

ǫ

.



C 2. F     

Before we continue, we record a few general observations about orthogonality categories

that will be used repeatedly in the sequel:

Proposition . Let A = (A,Ap, Ac) and B = (B, Bp, Bc) in O(F), and let f : A → B in F.

ßen

f ◦ u ∈ Bp for all u ∈ Ap iff x ◦ f ∈ Ac for all x ∈ Bc .

Proof. Both conditions are equivalent to the condition that f ◦u◦x = ǫ ◦η for all u ∈ Ap

and x ∈ Bc .

Proposition . Let A = (A,Ap, Ac) in O(F). ßen the set Ap is in bijection with the set

O(F)(I,A); similarly, the set Ac is in bijection with the set O(F)(A,⊥).

Proof. Let f : I → A in F; then by the previous result, f ∈ O(F)(I,A) if and only if f ◦ (–)
maps Ip = {idI} into Ap; and this happens if and only if f ∈ Ap. Similarly for the dual

result.

ßus we can freely confuse ‘proofs of A’ (i.e., elements of Ap) with maps I → A ∈ O(F),
and similarly, ‘coproofs of A’ with maps A → ⊥. Now, given a map f : A → B in O(F),
consider the two maps of sets

f ◦ (–) : Ap → Bp and (–) ◦ f : Bc → Ac .

We shall say that f is surjective on proofs (resp., coproofs) if the first (resp., the second)

of these maps is surjective.

Proposition . If f : A → B is surjective on coproofs, then f is a cartesian arrow with

respect to the forgetful functor U : O(F) → F. Similarly, if f is surjective on proofs, then it

is cocartesian.

Proof. Note that U is faithful, so that any liµing of maps from F to O(F) is necessarily
unique. Suppose f is surjective on coproofs, and we have a diagram

T
φ

A
f

B

U
−−−−−−−→

T

ψ
φ

A
f

B.

ßen we need to show that ψ liµs to a map in O(F). For this, by the previous result, it
suffices to show that ψ carries coproofs of A to coproofs of T. Since f is surjective on

coproofs, every coproof x ∈ Ac can be written as x′ ◦ f for x′ ∈ Bc .

So it suffices to show that x′ ◦ f ◦ ψ ∈ Tc for every x
′ ∈ Bc . But x

′ ◦ f ◦ ψ = x ′ ◦ φ, and
since φ is a map in O(F), it carries coproofs to coproofs; and so we are done. We argue

dually if f is surjective on proofs.



2.5. T -   O(F)

2.5 ße unit-free part of O(F)

ße categoryO(F) is still slightly degenerate; however, this degeneracy is essentially con-
fined to the units, and so we shall concentrate on the unit-free part of it. We thus proceed

as follows:

• Let W denote the free weakly distributive category on one object X , and Wm the

full subcategory thereof determined by the unit-free objects in W.

• Let U : O(F) → F be the evident forgetful functor; note that this preserves all the

∗-autonomous structure on the nose.

• LetV : W → O(F)be theweakly distributive functor uniquely determined byV(X) =
X. Note that this induces a functor UV : W → F, which is the weakly distributive

functor uniquely determined by UV(X) = X .

• O(F)m denotes the full subcategory of O(F) determined by those objects in the im-

age of V|Wm
.

• Fm denotes the full subcategory of F determined by the objects lying in the image

of UV|Wm
.

In summary, we have:

Wm

V|Wm
O(F)m

U

O(F)

U

Fm F

.

We claim that restricting our attention to O(F)m improves matters somewhat. As initial

evidence in support of this is the following:

Proposition . Every object T ∈ O(F)m has at least one proof and at least one coproof.

Proof. We proceed by induction. For the base case, the object X = (X, {η}, {ǫ}) clearly
satisfies this property. For the inductive step, suppose that T = A ⊗ B, with A =

(A,Ap, Ac) and B = (B, Bp, Bc) known to have the desired property. ßen, picking any

(f , g) ∈ Ap × Bp, we have

I
∼=
−→ I ⊗ I

f⊗g
−−−→ A ⊗ B

a proof of T by definition. To construct a coproof of T, let (j, k) ∈ Ac × Bc ; then we can

factorise j and k (not necessarily uniquely) as

A
̂
−→ X

ǫ
−→ I and B

k̂
−→ X

ǫ
−→ I



C 2. F     

respectively. So take the map

h := A ⊗ B
̂⊗k̂
−−−→ X ⊗ X

m
−→ X

ǫ
−→ I .

We claim that this is a coproof of T. Indeed, for any (f , g) ∈ Ap × Bp, we have:

I
f
−→ A

̂
−→ X = I

η
−→ X and I

g
−→ B

k̂
−→ X = I

η
−→ X

and hence

h ◦ (f ⊗ g) = I
f⊗g
−−−→ A ⊗ B

̂⊗k̂
−−−→ X ⊗ X

m
−→ X

ǫ
−→ I

= I
η⊗η
−−−→ X ⊗ X

m
−→ X

ǫ
−→ I

= I
η
−→ X

ǫ
−→ I

as required. ße case T = A ¿ B follows dually.

We would like to classify the proofs of a general object T ofO(F)m. Suppose thatUT =

X⊗n, say, and let f : I → X⊗n be a proof of T. By Proposition , T has at least one

coproof – call it u – satisfying f ◦ u = ǫ ◦ η, and so we see that:

• f has no connected component of genus > 0, and

• f has no connected component c with outc = inc = ;,

since if either of these were the case then f ◦ u = ǫ ◦ η would be impossible. ßus the

topology of f is determined by giving a partition P1 ∐ · · · ∐ Pk of {1, . . . , n}; explicitly,

Top(f) = [(;, Pi, 0) | i = 1, . . . , k] .

A similar condition hold for the coproofs of T. So henceforth we shall implicitly as-

sume that all maps considered satisfy the two bulleted conditions above, unless other-

wise stated.

Notation. Let f : I → X⊗n in F. We say that f joins A, for A ⊆ {1, . . . , n} if there is
some c ∈ cptsf with A ⊆ outc . In particular, if f joins {i, j}, we say that f joins i and j.
Similarly for a map k : X⊗n → I in F.

Proposition . Let T ∈ O(F)m, and suppose that there is a proof f of T that joins A, and
a coproof u of T that joins B. ßen |A ∩ B| 6 1.

Proof. Suppose |A ∩ B| > 1; then the composite u ◦ f has a component of non-zero

genus, and hence cannot be equal to ǫ ◦ η, which is a contradiction.



2.6. C-

2.6 Co-semisimplicity

We turn our attention now to a special class of objects in O(F)m. Consider the object
T = X¿n: it is easy to see that T has a unique proof, namely the map

∆n : I
η
−→ X

∆
−→ X ¿ X

X¿∆
−−−−→ X ¿ X ¿ X → · · · → X¿n.

Generalising this, let us say that an object of O(F)m is co-semisimple if it is of the form

X¿n1 ⊗ X¿n2 ⊗ · · · ⊗ X¿nk

for some natural numbers k, n1, . . . , nk. ßen we have

Proposition . Any co-semisimple object T ∈ O(F)m has exactly one proof.

Proof. We have

T = X¿n1 ⊗ X¿n2 ⊗ · · · ⊗ X¿nk = (X⊗n, {∆n1 ⊗ · · · ⊗ ∆nk}
◦◦, {∆n1 ⊗ · · · ⊗ ∆nk}

◦).

Now, let us defineNi = {ni−1 + 1, . . . , ni} (where n0 = 0). ßen ∆n1 ⊗ · · · ⊗∆nk is the map

corresponding to the partition N1 ∐ · · · ∐ Nk. Now, given any set A ⊂ {1, . . . , n} of size
k such that

A ∩ Ni = 1 for i = 1, . . . , k

then the map uA : X
⊗n → I determined by the partition

A ∐
∐

i∈{1,...,n}
i/∈A

{i};

is easily seen to be orthogonal to ∆n1 ⊗ · · · ⊗ ∆nk , and hence a coproof of T.

Now, suppose f is a proof of T. Given a ∈ Ni and b ∈ Nj, where i 6= j, we can choose

{a, b} ⊆ A above, to get a coproof uA joining a and b; so by Proposition , f cannot not

join a and b.
So f can only join a and b if {a, b} ⊂ Ni for some i. In fact, in this case f must join

a and b, or else it’s easy to see that uA ◦ f would have at least two disjoint connected

components.

ßus we conclude that f joins a and b iff {a, b} ⊂ Ni for some i, and so must be the

map ∆n1 ⊗ · · · ⊗ ∆nk .

Proposition . LetT ∈ O(F)m withUT = X⊗n. ßen anymap f : I → T can be factored

as:

I
∆n1⊗···⊗∆nk

f

A

g

T

where A is co-semisimple,
∑

ni = n and Ug is an isomorphism.



C 2. F     

Proof. By the remarks above, f is determined by a partition

P1 ∐ · · · ∐ Pk

of {1, . . . , n}. But writing ni = |Pi|, and ∆(n) for the map ∆n1 ⊗ · · · ⊗ ∆nk , there is an

isomorphism g ∈ F such that g ◦ ∆(n) is topologically equivalent to f . By the previous
result, ∆(n) is the unique proof of the co-semisimple term

A = X¿n1 ⊗ · · · ⊗ X¿nk ,

and hence a map ∆(n) : I → A in O(F). Furthermore, this map is surjective on proofs,

and hence cocartesian, and so the factorisation f = g ◦ ∆(n) in F liµs to a factorisation

f = g ◦ ∆(n) in O(F), with Ug an isomorphism.

2.7 Isomorphisms in F

Our attention is directed by the previous result to maps g : A → B in O(F) whose image

under U is an isomorphism. ße isomorphisms in F are precisely those maps in the

image of

S : S → F

whereS is the free symmetricmonoidal category on one objectX , and S is the symmetric

monoidal functor from S to F uniquely determined by S(X) = X . Let us write Fs for the

subcategory of Fm thus determined, and O(F)s for the pullback of Fs ,→ Fm along U . A

typical map in Fs will be written as sφ : X
⊗n → X⊗n where φ is a permutation on n letters.

Explicitly, sφ is the map given by

Top(sφ) =
[
({i}, {φ(i)}, 0) | i ∈ {1, . . . , n}

]
.

We say that sφ sends i to j if φ(i) = j.
In particular, we note that all the symmetry and weak distributivity maps in Fm lie in

Fs; and since the functor U : O(F) → F preserves all the weakly distributive structure on

the nose, we see that all the symmetry and weak distributivitymaps inO(F)m lie inO(F)s.
Our main goal is a converse to the above observation, namely:

Proposition. Let A, B ∈ O(F)m with A co-semisimple; then every map sφ : A → B in

O(F)s can be decomposed as a series of applications of weak distributivities and symme-

tries.

But we still have some way to go before we can prove this. Now, there is a natural class

of maps, built from symmetries and weak distributivities, that we can describe:

Definition . Let C be a weakly distributive category; we writeM(C) for the monoid of

endofunctors of C generated by

(–) ⊗ C , C ⊗ (–), (–) ¿ C , and C ¿ (–)



2.7. I  F

for every C ∈ C. Given objects A, B ∈ C, we say that A is a subterm of B if there exists

F ∈ M(C) with B = F(A).

Proposition . Let C be any weakly distributive category, and let F ∈ M(C). ßen there

are families of maps

l⊗F (A, B) : A ⊗ F(B) → F(A ⊗ B)

r⊗F (A, B) : F(A) ⊗ B → F(A ⊗ B)

l¿F (A, B) : F(A ¿ B) → A ¿ F(B)

r¿F (A, B) : F(A ¿ B) → F(A) ¿ B

natural in A and B, built from symmetries and weak distributivities in C.

Proof. We prove only the first; the rest follow by symmetry and duality. We proceed by

induction on the form of F . For the base case F = id, we have nothing to do. For the

inductive step, we have one of:

F(–) =






C ⊗ G(–),

G(–) ⊗ C ,

C ¿ G(–) or

G(–) ¿ C ;

accordingly, we have maps

A ⊗ (C ⊗ G(B))
∼=
−→ C ⊗ (A ⊗ G(B))

l⊗G
−−→ C ⊗ G(A ⊗ B) = F(A ⊗ B),

A ⊗ (G(B) ⊗ C)
∼=
−→ (A ⊗ G(B)) ⊗ C

r⊗G
−−→ G(A ⊗ B) ⊗ C = F(A ⊗ B),

A ⊗ (C ¿ G(B))
w.d.
−−−→ C ¿ (A ⊗ G(B))

l¿G
−−→ C ¿ G(A ⊗ B) = F(A ⊗ B) and

A ⊗ (G(B) ¿ C)
w.d.
−−−→ (A ⊗ G(B)) ¿ C

r¿G
−−→ G(A ⊗ B) ¿ C = F(A ⊗ B).

We thus immediately deduce

Proposition . For F ∈ M(O(F)m) and A, B ∈ O(F)m, each of the maps l⊗F (A,B),
r⊗F (A,B), l

¿
F (A,B) and r

¿
F (A,B) constructed in Proposition  lies in O(F)s.

Now, a little notation. Given an object of Fm (resp., O(F)m), we label its occurrences of
X (resp., X) in ascending numerical order from leµ-to-right, allowing us to distinguish

between them easily. For example

(((X ⊗ X) ¿ X) ⊗ X) ! (((X1 ⊗ X2) ¿ X3) ⊗ X4).

We emphasise that this is a purely syntactic convenience, and that we are not changing

the objects of the category.



C 2. F     

Proposition . Let F, G ∈ M(O(Fm)), and let sφ : F(Xi⊗Xi+1) → G(Xj⊗Xj+1) be a map

in Fs with φ(i) = j and φ(i + 1) = j + 1. ßen we can find a permutation φ′ making the

following diagrams commute in F:

F(Xi)

sφ′

F(∆)
F(Xi ⊗ Xi+1)

F(m)

sφ

F(Xi)

sφ′

G(Xj)
G(∆)

G(Xj ⊗ Xj+1)
G(m)

G(Xj)

Proof. Define φ′ by φ′(i) = e(φ(δ(i)), where

δ : [n − 1] → [n]; i 7→

{
i if i 6 j

i + 1 if i > j
and

e : [n] → [n − 1]; i 7→

{
i if i 6 j

i − 1 if i > j

Since sφ′ is built out of symmetry maps, it is natural in each of its n − 1 variables. In par-

ticular, it can be viewed as a natural transformation F → G, in which guise, instantiation
atX ⊗X gives us precisely sφ. So the above diagram is just a naturality square, and hence

commutative.

2.8 ße key lemma

A few preliminaries before the key lemma:

Proposition . ßemapsm : X⊗X → X and∆: X → X⊗X in F liµ tomapsm : X⊗X →

X and ∆: X → X ¿ X in O(F).

Proof. We simply observe

X ⊗ X = (X ⊗ X

m

,{η ⊗ η}

m◦(–)

,{ǫ ◦m})

X = (X , {η} , {ǫ}

(–)◦m

)

and

X = (X

∆

, {η}

∆◦(–)

, {ǫ})

X ¿ X = (X ⊗ X ,{∆ ◦ η} ,{ǫ ⊗ ǫ}

(–)◦∆

)

.



2.8. T  

Proposition . Let T ∈ O(F)m and F, G ∈ M(O(F)m) such that F(Xi) ⊗ G(Xj) is a

subterm of T. ßen no proof of T joins i and j, and some coproof does join i and j.

Proof. We have T = H(F(Xi) ⊗ G(Xj)) for some H ∈ M(O(F)m); so by Proposition ,

we have a map

T = H(F(Xi) ⊗ G(Xj))
l⊗G◦r

⊗
F

−−−−→ HFG(Xk ⊗ Xk+1)
HFG(m)
−−−−−−−→ HFG(Xk)

in O(F)s. By Proposition , the object HFG(Xk) has at least one coproof. Pick any such

h : HFG(Xk) → I ; then the composite

H(F(Xi) ⊗ G(Xj))
l⊗G◦r

⊗
F

−−−−→ HFG(Xk ⊗ Xk+1)
HFG(m)
−−−−−−−→ HFG(Xk)

h
−→ I

is a coproof of T. It is easy to check from the manner of construction of l⊗G and r⊗F that

the first arrow above sends i to k and j to k + 1; and since the remaining composite joins

k and k + 1, the entire composite joins i and j. But now by Proposition , since some

coproof of T joins i and j, no proof of T can, as required.

Dually, we have

Proposition . Let T ∈ O(F)m and F, G ∈ M(O(F)m) with F(Xi) ¿ G(Xj) a subterm of

T. ßen no coproof of T joins i and j, and some proof does join i and j.

Proposition  (Key Lemma). Let T ∈ O(F)m with T 6= X. ßen either T contains a

subterm of the form Xi ⊗ Xi+1, or T contains a subterm of the form Xi ¿ Xi+1 such that

every proof of T joins i and i + 1.

For the proof of this, we shall need a little notation:

Notation. Let T be an object of O(F)m. By a ⊗-atom, we shall mean a subterm Xi ¿

Xi+1 ¿ · · · ¿ Xj of T with i 6 j; we write Xi,j for such a subterm. A maximal ⊗-atom

is an ⊗-atom Xi,j such that neither Xi−1,j nor Xi,j+1 are subterms of T, and a nontrivial

⊗-atom is an ⊗-atom Xi,j with j > i. For example, the maximal ⊗-atoms of

(((X1 ¿ X2 ¿ X3) ⊗ X4) ¿ (X5 ⊗ (X6 ¿ X7)))

are X1,3, X4,4, X5,5 and X6,7, whereas the nontrivial maximal ⊗-atoms are X1,3 and X6,7.

We shall say that a proof I → T of T completely joins a given ⊗-atom Xi,j just when it

joins {i, i + 1, . . . , j}.

Proof. Suppose thatT contains no subterm of the formXi⊗Xi+1. Under this assumption

we shall prove the following result: that there exists a nontrivial maximal ⊗-atom of T

that every proof of T completely joins. Clearly the lemma then follows a fortiori.



C 2. F     

We proceed by induction on the number of ⊗ connectives in T. For the base case, we

have T = X1,n, which from above has a unique proof ∆n : I → T. For the inductive step,

we may write T in the form

T = F(Xi−n,i ⊗ Xi+1,i+m)

where F ∈ M(O(F)m) and the leµ and right hand arguments of the tensor are maximal

⊗-atoms. Since T contains no subterm of the form Xi ⊗ Xi+1, we may take it that Xi−n,n

is a nontrivial ⊗-atom, i.e., n > 1. Now, we have the following map in O(F)m:

T = F((Xi−n ¿ · · · ¿ Xi) ⊗ (Xi+1 ¿ · · · ¿ Xi+m))

w.d.

F(Xi−n ¿ · · · ¿ (Xi ⊗ Xi+1) ¿ · · · ¿ Xi+m)

F(Xi−n¿···¿m¿···¿Xi+m)

T′ = F(Xi−n ¿ · · · ¿ Xi ¿ · · · ¿ Xi+m−1),

which under U is sent to the map c = X⊗a ⊗ m ⊗ X⊗b : T → T ′ in F (for appropriate

values of a and b).
By induction there is a nontrivial maximal ⊗-atom Xj,k of T

′ which every proof of T′

completely joins. If k < i − n then Xj,k is a maximal ⊗-atom of T, and c sends p to p for
each j 6 p 6 k. So if a proof f of T did not completely join Xj,k, then c ◦ f would be

a proof of T′ not completely joining Xj,k, which is a contradiction. A similar argument

holds if j > i +m.

ßis leaves only the case where Xi−n,i+m−1 is a subterm of Xj,k. Here, every proof of T
′

completely joinsXi−n,i+m−1; it follows that every proof ofT completely joins the nontrivial

maximal ⊗-atom Xi−n,i.

Indeed, given f ∈ Tp, if f did not join p to q (for i − n 6 p < q < i) then c ◦ f would

be a proof of T′ which did not join p and q, a contradiction. And if f did not join p to i
(for i − n 6 p < i), then, since c ◦ f joins p and i, we must have that f joins p and i + 1.

But this is impossible by Proposition .

2.9 ße main result

Proposition . Let A, B ∈ O(F)m with A co-semisimple; then every map sφ : A → B in

O(F)s can be decomposed as a series of applications of weak distributivities and symme-

tries.

Proof. We proceed by induction on the number of X’s in B. In the base case A = B = X

and there’s nothing to do. Otherwise, we proceed following the key lemma.

Case : B contains a subterm Xi ⊗ Xi+1, such that B = F(Xi ⊗ Xi+1), say. ßen setting

j = φ−1(i) and k = φ−1(i + 1), we see by Proposition  that Xj and Xk cannot appear on



2.9. T  

opposite sides of a ¿ connective in A. Indeed, if they did then some proof f of A would

join j and k, and hence sφ ◦ f would be a proof of B joining i and i + 1, contradicting

Proposition .

ßus, Xj and Xk must appear on opposite sides of a tensor connective in A; without

loss of generality, we assume j < k (if not then applying a symmetry in O(F)s will sort
things out). We compose with symmetries and weak distributivities as follows:

A = · · · ⊗ (· · · ¿ Xj ¿ . . .) ⊗ · · · ⊗ (· · · ¿ Xk ¿ · · ·) ⊗ · · ·

∼=

· · · ⊗ (· · · ¿ Xn) ⊗ (Xn+1 ¿ · · ·) ⊗ · · ·

w.d.

· · · ⊗ (· · · ¿ (Xn ⊗ Xn+1) ¿ · · ·) ⊗ · · ·

Since the displayed map is made up of symmetries and weak distributivities it lies in

O(F)s, and so is sψ for some permutation ψ. Writing G for the functor · · · ⊗ (· · · ¿ (–) ¿

· · ·) ⊗ · · · , we thus have the following diagram in O(F)m:

A
sψ

sφ

G(Xn ⊗ Xn+1)
G(m)

G(Xn)

F(Xi ⊗ Xi+1) F(m)
F(Xi)

We remark that the object G(Xn) is co-semisimple; hence the top composite is surjec-

tive on proofs, and hence cocartesian. Applying U to the above diagram, we see that

sφψ−1 : G(Xn⊗Xn+1) → F(Xi⊗Xi+1) is a map in Fs sending n to i and n+1 to i+1. Hence
by Proposition , there is a map sφ′ in Fs, sending n to i and making the following dia-

gram commute:

A
sψ

sφ

G(Xn ⊗ Xn+1)

sφψ−1

G(m)
G(Xn)

sφ′

F(Xi ⊗ Xi+1) F(m)
F(Xi)

But since G(m) ◦ sψ is cocartesian, sφ′ liµs to a map G(Xn) → F(Xi) in O(F)s.
Since G(Xn) is co-semisimple and sφ′ is a map in O(F)s, the inductive hypothesis tells

us that sφ′ can be decomposed as a series of weak distributivities and symmetries; and

as such, is a map natural in every variable. In particular, we can view it as a natural

transformation G → F , and instantiating it at X ⊗ X gives us a map h : G(Xn ⊗ Xn+1) →

G(Xi ⊗ Xi+1) built out of weak distributivities and symmetries in O(F)s, and making the



C 2. F     

right hand square in the diagram

A
sψ

sφ

G(Xn ⊗ Xn+1)
G(m)

h

G(Xn)

sφ′

F(Xi ⊗ Xi+1) F(m)
F(Xi)

commute. But applyingU to the diagram, we see thatUh is precisely themapwe get from

instantiating sφ′ at X ⊗X , i.e., Uh = sφ ◦ sψ−1 . So sφ = h ◦ sψ is our desired decomposition

in O(F)s, and we are done.

Case : B contains no subterm of the form Xi ⊗Xi+1. Now the key lemma tells us that

B can be written as F(Xi ¿ Xi+1) such that every proof of B joins i and i + 1. As before,

set j = φ−1(i) and k = φ−1(i + 1); then by Proposition  we see that Xj and Xk cannot

appear on opposite sides of a ⊗ connective in A; for if they did, then the unique proof u
of A would not join j and k; and then sφ ◦ uwould be a proof of B not joining i and i + 1.

So Xj and Xk appear on opposite sides of a par connective; again, without loss of gen-

erality we assume that j < k. Now we apply a symmetry into A:

· · · ⊗ (· · · ¿ Xj ¿ Xj+1 ¿ · · ·) ⊗ · · ·

∼=

A = · · · ⊗ (· · · ¿ Xj ¿ · · · ¿ Xk ¿ · · ·) ⊗ · · ·

which we denote by sψ ; so settingG(–) = · · ·⊗(· · ·¿(–)¿ · · ·)⊗· · · we have the following

diagram in O(F)m:

G(Xj)
G(∆)

G(Xj ¿ Xj+1)
sψ

A

sφ

F(Xi) F(∆)
F(Xi ¿ Xi+1)

We proceed as before by applying U to the above diagram, and utilising Proposition 

to get a map sφ′ in Fs, sending j to i and making

G(Xj)
G(∆)

sφ′

G(Xj ¿ Xj+1)
sψ

sφψ

A

sφ

F(Xi) F(∆)
F(Xi ¿ Xi+1)

commute. Now, we observe that F(∆) is split mono in F, with leµ inverse F(X ⊗ ǫ); from
which it follows that themap F(∆) inO(F) is surjective on coproofs, and hence cartesian.
So sφ′ liµs to a map in O(F)s. ße rest of the proof in this case follows just as before.



2.10. R 

Corollary . Let T ∈ O(F)m with UT = X⊗n. ßen any map f : I → T can be factored

as:

I
∆n1⊗···⊗∆nk

f

A

g

T

whereA is co-semisimple,
∑

ni = n and g is built from weak distributivity and symmetry

maps.

Proof. Follows from the main theorem and Proposition .

2.10 Reintroducing duality

ße categoryO(F)m is thus fairly close to being a free (unit-free) ∗-autonomous category.

We can see in the factorisation diagram of the above corollary, that the vertical arrow

g is built from valid maps in a ∗-autonomous category, but that the horizontal arrow

∆n1 ⊗ · · · ⊗ ∆nk is not. However, we can resolve this in a straightforward manner.

Notation. Let X be an arbitrary set, viewed as a discrete category. ßen we write SA(X)
for the free ∗-autonomous category on X, and CC(X) for the free compact closed cate-

gory on X.

We observed that F was a compact closed category, so we determine a functor of com-

pact closed categories J : CC(X) → F extending the constant functor ∆X : X → F. Now

consider the following pullback in Cat:

M(X) O(F)

U

CC(X)
J

F

Since both O(F) and CC(X) are ∗-autonomous categories, we can determine a ∗-auto-

nomous functor L : SA(X) → O(F) extending ∆X : X → O(F) and a ∗-autonomous

functor N : SA(X) → CC(X) extending the natural embedding X → CC(X). It’s now
evident thatUL and JN are both ∗-autonomous functors extending the constant functor

∆X : X → F, and hence must be the same. ßus we get a unique functor K making the



C 2. F     

following diagram commute:

SA(X)

K
L

N M(X) O(F)

U

CC(X)
J

F

We note that to give an object ofM(X) is to give an object of CC(X) and an object of

O(F)whose image in F is the same; but this is equivalent to giving an object of SA(X). So
the functor K is an isomorphism on objects, and we identify objects ofM(X) with their

preimage in SA(C).

Proposition . Let f : I → A be a map inM(X), where A is a unit-free object. ßen f is

the image under K of a unique map in SA(X).

Proof. For uniqueness, note that K must be faithful since N : SA(X) → CC(X) is. It

remains only to show existence. Now, to give a map I → A in M(X) is to give a map

g : I → NA of CC(X) and a map h : I → LA of O(F) with Jg = Uh.
In full generality, a map I → NA in CC(X) is given by a partition of the set of atoms

of NA into pairs {C, C⊥}, composed with a number of maps of the form

dim a : I → a ⊗ a⊥
σ
−→ a⊥ ⊗ a → I

for atoms a ∈ X. [For the details, we refer the reader to, for example, [Tan].] However,

our map g cannot contain components of the form dim a, as then Jg = Uf would

contain more than one connected component, which we know is impossible. So g is

given just by a suitable partition of the atoms of NA, and so admits a decomposition

I
ηa1⊗···⊗ηan
−−−−−−−−−→ (a1 ⊗ a⊥1) ⊗ · · · ⊗ (an ⊗ a⊥n)

sφ
−−→ NA

where each ai ∈ X with ηai the unit of the adjunction ai ⊣ a⊥i , and φ is a suitable permu-

tation in S2n.
By Proposition  and the knowledge that Uf = Jg , we may decompose f as

I
∆⊗···⊗∆
−−−−−−→ X1,2 ⊗ X3,4 ⊗ · · · ⊗ X2n−1,2n

sψ
−−→ LA

and it is clear that we may arrange it that ψ = φ. Having done this, we see that these two

decompositions together give a decomposition of our original map f : I → A inM(X).

It remains only to give a map in SA(X) corresponding to each part of the decomposi-

tion. But since the first part is built from the units of adjunctions in CC(X), we may liµ



2.10. R 

it to the corresponding units of adjunctions in SA(X); and since the second part is built

out of weak distributivities and symmetries in O(F)m, we may liµ it to the correspond-

ing weak distributivities and symmetries in SA(X). ßen it is trivial to verify that this

composite gives a map whose image under K is f .



Chapter 3

Monoidal modules, double glueing and the Chu construction

3.1 Introduction

In the previous chapter, the orthogonality construction of [HS] was used to produce

a new ∗-autonomous category from an old one. ßis construction builds on the double

glueing construction of the same paper (but see also [Tan]), which itself generalises the

single glueing construction. However, whilst single glueing is a conceptually compelling

concept, its double glueing counterpart has a whiff of black magic about it; whilst it is

routine to see that it works, it is much less clear why it should work. One aim of this

chapter is to attempt an answer to this question.

Similar accusations have been levelled at another well-known tool for constructing ∗-

autonomous categories, the ‘Chu construction’ of [Bar] and [Bar], leading to various

attempts to quantify its universality: see [Pav] or [DS], for example. By these lights,

this chapter could be facetiously subtitled ‘Yet another universal property of the Chu

construction’.

But foremost, this chapter is about ‘monoidal modules’. As monoidal categories are to

one-object bicategories, so monoidal modules are to (certain) two-object bicategories.

Whilst a lot of this material is well-known (indeed, the basic definition is present in

the first few pages of [Bén]), it is worth being relatively explicit about it; aµer all, the

study of monoidal categories is more than just the theory of one-object bicategories;

similarly, the theory of monoidal modules has more to it than just the theory of two-

object bicategories.

A lot of this material is complementary to that of [CKVW], and indeed the material

of both that paper and this chapter can be viewed as specialisations of a general notion

of ‘profunctors of bicategories’.

3.2 Monoidal actions

ßematerial of this section is essentially folklore; in the literature it appears in [Bén],

and more explicitly in [JK].



C 3. M ,     C 

Definition . Let (C,⊗, r, l, a) be a monoidal category and D an arbitrary category. A

leµ action of C on D is a strong monoidal functor F : C → [D,D], where the monoidal

structure on [D,D] is given by composition. To give such a functor is to give a functor

⊠l : C × D → D together with natural isomorphisms:

λD : D → I ⊠l D

αB,C,D : B ⊠l (C ⊠l D) → (B ⊗ C) ⊠l D

subject to the following coherence conditions:

C ⊠l D
C⊠lλD

rC⊠lD

C ⊠l (I ⊠l D)

αC,I,D

(C ⊗ I) ⊠l D

C ⊠l D
λD

lC⊠lD

I ⊠l (C ⊠l D)

αI,C,D

(I ⊗ C) ⊠ D

A ⊠l (B ⊠l (C ⊠l D))
αA,B,(C⊠lD)

A⊠lαB,C,D

(A ⊗ B) ⊠l (C ⊠l D)

α(A⊗B),C,DA ⊠l ((B ⊗ C) ⊠l D)

αA,(B⊗C),D

(A ⊗ (B ⊗ C)) ⊠l D aA,B,C⊠lD
((A ⊗ B) ⊗ C) ⊠l D.

Similarly, a right action of C on D is a strong monoidal functor F : C → [D,D]rev, where

the latter category is monoidal under reversed composition. Explicitly, it is a functor

⊠r : D × C → D together with natural isomorphisms:

ρD : D → D ⊠r I

βD,C,B : D ⊠r (C ⊗ B) → (D ⊠r C) ⊠r B

subject to the following coherence conditions:

D ⊠r C
D⊠r lC

ρD⊠rC

D ⊠r (I ⊗ C)

βD,I,C

(D ⊠r I) ⊠r C

D ⊠r C
D⊠rrC

ρD⊠rC

D ⊠r (C ⊗ I)

βD,C,I

(D ⊠r C) ⊠r I

D ⊠r (C ⊗ (B ⊗ A))
βD,C,(B⊗A)

D⊠laC,B,A

(D ⊠r C) ⊠r (B ⊗ A)

β(D⊠rC),B,AD ⊠r ((C ⊗ B) ⊗ A)

βD,(C⊗B),A

(D ⊠r (C ⊗ B)) ⊠r A βD,C,B⊠rA
((D ⊠r C) ⊠r B) ⊠r A.



3.2. M 

Given two monoidal categories C and E, a two-sided action of C and E on D consists of

a leµ action (⊠l , λ, α) of C on D, a right action (⊠r, ρ, β) of E on D, and natural isomor-

phisms

τC,D,E : C ⊠l (D ⊠r E) → (C ⊠l D) ⊠r E

such that the following diagrams commute:

C ⊠l D
C⊠lρD

ρC⊠lD

C ⊠l (D ⊠r I)

τC,D,I

(C ⊠l D) ⊠r I

D ⊠r E
λD⊠rE

λD⊠rE

I ⊠l (D ⊠r E)

τI,D,E

(I ⊠l D) ⊠r E

B ⊠l (C ⊠l (D ⊠r E))

B⊠lτC,D,E

αB,C,D⊠rE
(B ⊗ C) ⊠l (D ⊠r E)

τ(B⊗C),D,EB ⊠l ((C ⊠l D) ⊠r E)

τB,(C⊠lD),E

(B ⊠l (C ⊠l D)) ⊠r E αB,C,D⊠rE
((B ⊗ C) ⊠l D) ⊠r E

C ⊠l (D ⊠r (E ⊗ F))

C⊠lβD,E,F

τC,D,E⊗F
(C ⊠l D) ⊠r (E ⊗ F)

β(C⊠lD),E,FC ⊠l ((D ⊠r E) ⊠r F)

τC,(D⊠rE),F

(C ⊠l (D ⊠r E)) ⊠r F τC,D,E⊠rF
((C ⊠l D) ⊠r E) ⊠r F .

We will sometimes adopt ‘modular’ terminology; if C has a leµ action on D we call D a

leµ C-module; similarly we may talk about a right C-module, a leµ C-, right E-module

or a C-bimodule.

Note that we can equivalently present a leµ C-, right E-module as a two-object bicate-

gory as follows:

•C

D

•
0

E

Examples .

• Any monoidal category C has a canonical two-sided action on itself, given by C ⊠l

C ′ = C ⊠r C
′ = C ⊗ C ′.

• If C acts on D and C
′ is a sub-monoidal category of C (i.e., a subcategory which is

monoidal with the same operations) then C
′ acts on D.



C 3. M ,     C 

• Any strong monoidal functor F : C → D induces an action of C on D via C ⊠l D =

FC ⊗D and D ⊠r C = D ⊗ FC . ße associativity and unit isomorphisms are given

in the obvious way using the associativity and unit constraints forD and the strong

monoidal structure of F . We might then think of D as a ‘C-algebra’.

• In particular, given a leµ action of C on D, we have a strong monoidal functor

C → [D,D] and hence a two-sided action of C on [D,D] given by (C ⊠l F)(–) =
C⊠lF(–) andF⊠rC(–) = F(C⊠l–). Similarly, a right action ofConD induces a two-

sided action ofC on [D,D] via (C⊠l F)(–) = F(–⊠rC) and (F⊠rC)(–) = F(–)⊠rC .

• Suppose that C is a right-closed monoidal category, and that D is a category en-

riched in C. If D admits tensor products with C, so that for all C ∈ C, D ∈ D we

have isomorphisms, C-natural in all variables,

D(C ⋆ D,D′) ∼= [C,D(D,D′)],

then⋆ induces a leµ action of the underlying ordinary categoryC0 onD0. In fact, as

we shall later see in section , this action is enriched, since the above isomorphism

becomes

D0(C ⋆ D,D′) ∼= C0(C,D(D,D′)),

so that every functor (–) ⋆ D has a right adjoint D(D, –).

• IfD is amonoidal category, andT amonoidal comonad onD, thenD
T , the category

of coalgebras for the comonad, is a monoidal category and the forgetful functor

U : D
T → D is strict monoidal; hence D

T acts on D. In particular, if D is a model

of intuitionistic linear logic with ! its exponential, then D
! acts on D, and since the

Kleisli category D! is closed under the tensor product on D
!, we have that D! also

acts on D.

3.3 Maps of modules

Again, the details of this section are folklorish in the sense that they amount to sim-

ply doing the obvious thing; however I am unaware of any references in the literature.

Comparison with [CKVW] is instructive, however.

Definition. GivenD a leµC-module andD
′ a leµC

′-module, we define a leµ-modular

functor (L, K) : (C,D) → (C′,D′) to be a pair of functors (L : C → C
′, K : D → D

′)

together with structure (mI , mB,C)making L a monoidal functor, and structure

pC,D : LC ⊠l KD → K(C ⊠l D),



3.3. M  

natural in C and D, making the following diagrams commute:

KD
λD

KλD

I ⊠l KD

mI⊠lKD

K(I ⊠l D) LI ⊠l KDpI,D

LB ⊠l (LC ⊠l KD)
αLB,LC,KD

LB⊠lpC,D

(LB ⊗ LC) ⊠l KD

mB,C⊠lKD

LB ⊠l K(C ⊠l D)

pB,(C⊠lD)

L(B ⊗ C) ⊠l KD

p(B⊗C),D

K(B ⊠l (C ⊠l D)) KαB,C,D
K((B ⊗ C) ⊠l D).

GivenD a right E-module andD
′ a right E

′-module, we define similarly a right-modular

functor (K,M) : (D, E) → (D′, E′), with structure (qD,E , rE,F , rI).

Definition . If D is a leµ C-, right E-module and D
′ a leµ C

′-, right E
′-module, then

a two-sided modular functor (C,D, E) → (C′,D′, E′) is a triple (L, K,M) equipped with

structure (mI , mB,C , pC,D)making (L, K) leµ-modular, and structure (qD,E , rE,F , rI)making

(K,M) right-modular, subject to diagrams of the following form commuting:

LC ⊠l (KD ⊠r ME)
τLC,KD,ME

LB⊠lqD,E

(LC ⊠l KD) ⊠r ME

pC,D⊠rME

LC ⊠l K(D ⊠r E)

pC,(D⊠rE)

K(C ⊠l D) ⊠r ME

q(C⊠lD),E

K(C ⊠l (D ⊠r E)) KτC,D,E
K((C ⊠l D) ⊠r E)

.

In the special case where C = E and C
′ = E

′, a bimodular functor (C,D) → (C′,D) is a

pair (L, K) equipped with structure (mI , mB,C , pC,D, qD,C) such that (L, K, L) is a two-sided
modular functor when equipped with structure (mI , mB,C , pC,D, qD,C , mC,B, mI).

Viewing our modules as bicategories, these maps correspond to morphisms of bicat-

egories. As usual, we shall call a modular functor of any sort strong when its structure

maps are isomorphisms, and strictwhen they are identities. On the bicategory side, such

maps are homomorphisms (respectively, strict homorphisms) of bicategories.

Definition . Given leµ-modular functors (L, K), (L′, K ′) : (C,D) → (C′,D′), a leµ-

modular transformation (L, K) ⇒ (L′, K ′) is a pair of natural transformations (α : L ⇒

L′, β : K ⇒ K ′) such that α is a monoidal natural transformation, and such that every

diagram of the form

LC ⊠l KD
pLC,KD

αC⊠lβD

K(C ⊠l D)

βC⊠lD

L′C ⊠l K
′D

p′C,D
K ′(C ⊠l D)



C 3. M ,     C 

commutes. We define similarly right-modular transformations between right-modular

functors.

Definition . A two-sidedmodular transformation between two-sidedmodular func-

tors (L, K,M) and (L′, K ′,M′) is a triple (α, β, γ) such that (α, β) is a leµ-modular trans-

formation and (β, γ) is a right-modular transformation. A bimodular transformation

between bimodular functors (L, K) and (L′, K ′) is a pair (α, β) such that (α, β, α) is a two-
sided modular transformation.

Note that, viewing our modular functors as morphisms of bicategories, the bicategor-

ical notion of transformation is not the same as that of modular transformation as given

above.

Proposition . We have -categories {LAct,RAct, LRAct,BAct} with:

• -cells {leµ, right, two-sided, bi}-modules;

• -cells {leµ, right, two-sided, bi}-modular functors;

• -cells {leµ, right, two-sided, bi}-modular transformations.

Proof. Weconsider the case ofLAct; the others follow similarly. Wehave obvious notions

of composition inherited from Cat × Cat, so it suffices to check that we can compose

the structural maps for modular functors and that composition of -cells respects this.

Indeed, given maps

(C0,D0)
(L0,K0)
−−−−−→ (C1,D1)

(L1,K1)
−−−−−→ (C2,D2)

with respective structure (mI , mB,C , pC,D) and (m
′
I , m

′
B,C , p

′
C,D), we equip (L1L0, K1K0)with

structure

m′′
I : I

m′
I

−−→ L1I
L1mI
−−−−→ L1L0I

m′′
B,C : L1L0B ⊗ L1L0C

m′
L0B,L0C

−−−−−−−→ L1(L0B ⊗ L0C)
L1mB,C
−−−−−→ L1L0(B ⊗ C)

p′′C,D : L1L0C ⊠l K1K0D
p′L0C,K0D
−−−−−−−→ K1(L0C ⊠l K0D)

K1pC,D
−−−−−→ K1K0(C ⊠l D),

and it is routine to verify that the required diagrams commute.

Note that we have a -functor BAct → LRAct which is injective on -, - and -cells,

and forgetful -functors {LRAct,BAct} → {LAct,RAct}.
ßere is another perspective on these -categories. We can see the -categoryMonCat

of monoidal categories, monoidal functors andmonoidal natural transformations as the

-category of pseudo-algebras, lax algebramaps and algebra transformations for the free

strict monoidal category -monad T on Cat; similarly, there is a ‘free strict monoidal

module monad’M on Cat × Cat sending (C,D) to (TC, TC × D), and we can view LAct

as the -category of pseudo-algebras, lax algebra maps and algebra transformations for

this -monad; and similarly for the other varieties of module.



3.4. C  

Examples .

• Monoidal functors L : C → D betweenmonoidal categories liµ to two-sidedmodu-

lar functors (L, L, L) : (C,C,C) → (D,D,D), with structure maps derived in the ob-

vious way from those for L. Likewise, monoidal natural transformations liµ to two-

sided modular transformations; thus we have a -functor F : MonCat → LRAct.

• Given leµC-modulesD andD
′, we can contemplate leµ-modular functors between

them of the form (idC, K). In our modular terminology, we might refer to these as

‘C-linear’ functors; more traditionally, they are functors K : D → D
′ equipped with

a strength in the sense of [Koc]. If the module structures of D and D
′ are derived

from an enrichment in C as in Example , then these correspond precisely to (the

underlying ordinary functors of) C-enriched functors.

• Recall that a strong monoidal functor F : C → D gives an two-sided action of C on

D; then we have a factorisation:

(C,C,C)
(id,F,id)
−−−−−−→ (C,D,C)

(F,id,F)
−−−−−−→ (D,D,D)

of two-sided modular functors.

3.4 Coherence for bimodules

Wewish to prove a coherence resultmirroring the classical coherence result formonoidal

categories. Explicitly, we wish to show that every bimodule (C,D) ∈ BAct has a bimodu-

lar equivalence to a strict bimodule (i.e., one where all structure maps are identities). We

shall need the following two basic lemmas which allow us to liµ structure fromCat×Cat

to BAct.

Proposition . Suppose (F, F) : (C,D) → (C′,D′) is a strong bimodular functor. ßen

we can liµ an adjunction (F, F) ⊣ (G,G) in Cat × Cat to an adjunction (F, F) ⊣ (G,G) in

BAct.

Proof. From the remarks from the end of the previous section, BAct can be viewed as the
-category of algebras for a -monad onCat×Cat; so this is an immediate consequence of
[Kel] (‘doctrinal adjunction’). However, it may be informative to give a direct proof.
Suppose our adjunction has unit (η, y) and counit (ǫ, e), and that (F, F) has structure
isomorphisms (mI , mB,C , pC,D, qD,C), say. ßen we equip (G,G) with structure

I ηI GFI Gm−1
I GI

GB ⊗ GC η(GB⊗GC) GF(GB ⊗ GC) Gm−1
B,C G(FGB ⊗ FGC) G(ǫB⊗ǫC) G(B ⊗ C)

GC ⊠l GD y(GC⊠lGD) GF(GC ⊠l GD) Gp−1C,D G(FGC ⊠l FGD) G(ǫC⊠leD) G(C ⊠l D)

GD ⊠r GC y(GD⊠rGC) GF(GD ⊠r GC) Gq−1D,C G(FGD ⊠r FGC) G(eD⊠rǫC) G(D ⊠r C),

and routine checking shows that all required diagrams commute.



C 3. M ,     C 

Proposition . Suppose that (F1, F2) : (C,D) → (C′,D′) is a strong bimodular functor.

ßen the factorisation of (F1, F2) as

(C,D)
e.s.o.
−−−−→ (C′′,D′′)

full replete subcategory
−−−−−−−−−−−−−−−−−→ (C′,D′)

liµs from Cat × Cat to BAct.

Proof. (C′′,D′′) is the full subcategory of (C′,D′) whose objects are those isomorphic to

objects in the image of (F1, F2); so it suffices to show that (C′′,D′′) is a sub-bimodule of

(C′,D′). For this, since (C′′,D′′) is full in (C′,D′), it suffices to show that the objects of

(C′′,D′′) are closed under the module operations of (C′,D′).

So let X , Y ∈ C
′′ with X ∼= F1B and Y ∼= F1C , say, and let Z ∈ D

′′ with Z ∼= F2D. Now
we have I ∼= FI , so I ∈ C

′′, and

X ⊗ I ∼= X ∼= F1B; I ⊗ Y ∼= Y ∼= F1C ;

Z ⊠r I ∼= Z ∼= F2D; I ⊠l Z ∼= Z ∼= F2D

X ⊗ Y ∼= F1B ⊗ F1C ∼= F1(B ⊗ C)

Y ⊠l Z ∼= F1C ⊠l F2D ∼= F2(C ⊠l D)

Z ⊠r Y ∼= F2D ⊠r F1C ∼= F2(D ⊠r C)

as required.

Our proof is analogous to that of [JS]. ßis proof does not, however, merely reduce

to the coherence theorem for bicategories; indeed, if D is a C-bimodule, then the coher-

ence theorem for bicategories would yield a strict leµ C
′-, right C

′′-bimodule, for strict

monoidal categories C
′ and C

′′; but there would be no reason to suspect that C
′ = C

′′.

Hence our proof is only analogous and not the same. So suppose thatD is aC-bimodule.

Let C
′ be the following category:

• Objects are pairs of functors (L : C → C, K : D → D) equipped with natural iso-

morphisms

lB,C : B ⊗ LC → L(B ⊗ C)

kD,C : D ⊠r LC → K(D ⊠r C);

• Maps are pairs of natural transformations (α : L ⇒ L′, β : K ⇒ K ′) making the

following diagrams commute:

B ⊗ LC
lB,C

B⊗αC

L(B ⊗ C)

αB⊗C

B ⊗ L′C
l′B,C

L′(B ⊗ C)

D ⊠r LC
kD,C

D⊠rαC

K(D ⊠r C)

βD⊠rC

D ⊠r L
′C

k′D,C
K ′(D ⊠r C).



3.4. C  

Proposition . C
′ is a strict monoidal category.

Proof. We set I = (idC, idD) and set (L, K)⊗(H, J) = (HL, JK), equippedwith the natural
isomorphisms

B ⊗HLC hB,LC H(B ⊗ LC) HlB,C HL(B ⊗ C)

D ⊠r HLC jD,LC J(D ⊠r LC) JkD,C JK(D ⊠r C).

On maps, given (α, β) : (L, K) ⇒ (L′, K ′) and (γ, δ) : (H, J) ⇒ (H ′, J ′) we take (α, β) ⊗
(γ, δ) = (γ ◦ α, δ ◦ β) (where ◦ is the usual horizontal composite of natural transforma-

tions). Routine verification shows that the required coherence diagrams commute.

Proposition . Each (L, K) in C
′, can be equipped with derived natural isomorphisms

k̂C,D : C ⊠l KD → K(C ⊠l D) in such a way that for any map (α, β) : (L, K) → (L′, K ′),

diagrams of the following form commute:

C ⊠l KD
k̂C,D

C⊠lβD

K(C ⊠l D)

βC⊠lD

C ⊠l K
′D

k̂′C,D
K ′(C ⊠l D).

Proof. We define k̂C,D by

C ⊠l KD
C⊠lK(ρ

−1
D)

C ⊠l K(D ⊠r I)
C⊠lk

−1
D,I

C ⊠l (D ⊠r LI)

τC,D,LI

K(C ⊠l D) K((C ⊠l D) ⊠r I)KρC⊠lD
(C ⊠l D) ⊠r LI .kC⊠lD,I

whence the required diagrams can be shown to commute.

So now let D
′ be the following category:

• Objects are functorsM : C → D equipped with natural isomorphisms

mB,C : B ⊠l MC → M(B ⊗ C);

• Maps are natural transformations γ : M ⇒ M′making the following diagrams com-

mute:

B ⊠l MC
mB,C

B⊠lγC

L(B ⊗ C)

γB⊗C

B ⊠l M
′C

m′
B,C

M′(B ⊗ C).



C 3. M ,     C 

Proposition . C
′ has a strict two-sided action on D

′.

Proof. We define on objects

(L, K) ⊠l M = ML; M ⊠r (L, K) = KM.

equipped with structure maps

B ⊠l MLC mB,LC M(B ⊗ LC) MlB,C ML(B ⊗ C)

B ⊠l KMC k̂B,MC K(B ⊠l MC) KmB,C KM(B ⊗ C).

Onmorphisms, given (α, β) : (L, K) ⇒ (L′, K ′) and γ : M → M′, we define (α, β)⊠lγ = γ◦
α and γ⊠r (α, β) = β◦γ. Again, the required diagrams are easily verified to commute.

Proposition . ßere is a full and faithful strong bimodular functor (C,D) → (C′,D′).

Proof. We have the functor ⊗ : C × C → C; from this we get a functor L– : C → [C,C]
sending X to – ⊗ X . Similarly, we have K– : C → [D,D] sending X to – ⊠r X , and
M– : D → [C,D] sending Y to – ⊠l Y . We claim that (L–, K–) can be liµed to a functor

F1 : C → C
′. Indeed, if we equip (LX , KX) with structure maps

lB,C : B ⊗ LX(C) → LX(B ⊗ C) = aB,C,X : B ⊗ (C ⊗ X) → (B ⊗ C) ⊗ X

kD,C : D ⊠r LX(C) → KX(D ⊠r C) = βD,C,X : D ⊠r (C ⊗ X) → (D ⊠r C) ⊠r X ,

then the coherence diagrams for (Lf , Kf) commute as required. Likewise M– liµs to a

functor F2 : D → D
′, by equippingMY with structure maps

mB,C : B ⊠l MY(C) → MY(B ⊗ C) = αB,C,X : B ⊠l (C ⊠l Y) → (B ⊗ C) ⊠l Y .

So we have functors F1 : C → C
′ and F2 : D → D

′; now we require structure maps

mI : I ⇒ (LI , KI)

mB,C : (LB, KB) ⊗ (LC , KC) ⇒ (L(B⊗C), K(B⊗C))

pC,D : (LC , KC) ⊠l MD ⇒ MC⊠lDand

qD,C : MD ⊠r (LC , KC) ⇒ MD⊠rC ,

making (F1, F2) into a strong bimodular functor. We set

mI = r × ρ : (idC, idD) ⇒ (– ⊗ I, – ⊠r I)

mB,C = a−1–,B,C × β−1–,B,C : ((– ⊗ B) ⊗ C, (– ⊠r B) ⊠r C) ⇒ (– ⊗ (B ⊗ C), – ⊠r (B ⊗ C))

pC,D = α−1–,C,D : (– ⊗ C) ⊠l D ⇒ – ⊠l (C ⊠l D)

qD,C = τ−1–,D,C : (– ⊠l D) ⊠r C ⇒ – ⊠l (D ⊠r C),

and the coherence conditions that these structure maps must satisfy are precisely the

coherence diagrams for the action of C on D.



3.4. C  

Now we show that (L–, K–) is fully faithful. We send (α, β) ∈ C
(
(LB, KB), (LC , KC)

)
to

the map Y(α, β) in C(B, C) given by

Y(α, β) = B
lB

I ⊗ B
αI

I ⊗ C
l−1C

C .

Given f ∈ C(B, C), clearlyY(Lf , Kf) = f ; however, we need to check that (LY(α,β), KY(α,β)) =

(α, β). Write (α̂, β̂) for (LY(α,β), KY(α,β)); then we have

X ⊗ B

α̂X

X⊗lB
X ⊗ (I ⊗ B)

lX,I

X⊗αI

(X ⊗ I) ⊗ B

αX⊗I

r−1X ⊗B
X ⊗ B

αX

X ⊗ C
X⊗lC

X ⊗ (I ⊗ C)
lX,I

(X ⊗ I) ⊗ C
r−1X ⊗C

X ⊗ C

Y ⊠r B

β̂Y

Y⊠r lB
Y ⊠r (I ⊠r B)

kY,I

Y⊠rαI

(Y ⊠r I) ⊠r B

βY⊠r I

r−1Y ⊠rB
Y ⊠r B

βY

Y ⊠r C Y⊠r lC
Y ⊠r (I ⊠r C) kY,I

(Y ⊠r I) ⊠r C
r−1Y ⊠rC

Y ⊠r C

commuting; but the composites along the top and bottom of each diagram are the iden-

tity, and hence we have (α, β) = (α̂, β̂) as required; so (L–, K–) is full and faithful. Similar

considerations show thatM– is also full and faithful.

Proposition . Every bimodule (C,D) has a bimodular equivalence with a strict bimod-

ule (C′′,D′′).

Proof. By Proposition , we can take the full replete image of (F1, F2) : (C,D) → (C′,D′)

as above; say it is (C′′,D′′). ßen the functor (C,D) → (C′′,D′′) is full and faithful and

e.s.o., hence an (adjoint) equivalence in Cat × Cat. Since it is also strong bimodular,

Proposition  yields an (adjoint) equivalence in BAct as desired.

ßus we have shown that every bimodule (C,D) in BAct has a bimodular equivalence

to a strict bimodule; hence also every canonical diagram of associativities we can draw

in (C,D) will commute (since it does in (C′,D′)). Henceforth, therefore we will feel free

to assume that we are working with strict actions where this simplifies matters.

Although we have only proved a coherence result for bimodules, we could have pro-

ceeded in a perfectly analogous manner for two-sided modules, by contemplating an

analogous subcategory

(C′,D′, E′) ⊂ ([C,C], [C,D], [D,D] × [E, E])

and embedding (C,D, E) → (C′,D′, E′) via

(C,D, E) 7→ (– ⊗ C, – ⊠l D, (– ⊠r E, – ⊗ E)).



C 3. M ,     C 

3.5 Symmetric actions

Definition . If C is a symmetric monoidal category (with symmetry s, say), then a

symmetric action of C on D is a two-sided action of C on D together with natural iso-

morphisms

σC,D : C ⊠l D → D ⊠r C

such that the following diagrams commute:

B ⊠l (C ⊠l D)
B⊠lσC,D

αB,C,D

B ⊠l (D ⊠r C)

τB,D,C

(B ⊗ C) ⊠l D

σ(B⊗C),D

(B ⊠l D) ⊠r C

σB,D⊠rC

D ⊠r (B ⊗ C)
βD,B,C

(D ⊠r B) ⊠r C

,

B ⊠l (C ⊠l D)
B⊠lσC,D

αB,C,D

B ⊠l (D ⊠r C)

τB,D,C

(B ⊗ C) ⊠l D

sB,C⊠lD

(B ⊠l D) ⊠r C

σ−1C,(B⊠lD)

(C ⊗ B) ⊠l D
α−1C,B,D

C ⊠l (B ⊠l D)

,

(D ⊠r C) ⊠r B
σ−1B,(D⊠rC)

β−1D,C,B

B ⊠l (D ⊠r C)

τB,D,C

D ⊠r (C ⊗ B)

D⊠rsC,B

(B ⊠l D) ⊠r C

σB,D⊠rC

D ⊠r (B ⊗ C)
βD,B,C

(D ⊠r B) ⊠r C .

Such a D may also be called a symmetric C-module.

In terms of coherence, we have:

Proposition . If D is a symmetric C-module, then the category (Ĉ, D̂) described in the

previous section can be equipped with a symmetry such that the equivalence (C,D) ≃

(Ĉ, D̂) is a symmetric monoidal equivalence.

Proof. We can transport the structure along the equivalence

(C,D)
(G,G)

⊤ (Ĉ, D̂)
(F,F)

so the symmetry for Ĉ is given by

sC,C ′ = C⊗C ′ → GFC⊗GFC ′ → G(FC⊗FC ′) → G(FC ′⊗FC) → GF(C ′⊗C) → C ′⊗C

and that for D̂ by

σC,D = C⊠lD → GFC⊠l GFD → G(FC⊠l FD) → G(FD⊠r FC) → GF(D⊠rC) → D⊠rC .



3.5. S 

It’s straightforward to check that this definition produces a coherent symmetry onD and

makes the above equivalence a symmetric equivalence.

Since not every symmetricmonoidal category is equivalent to a strictly symmetricmonoidal

category, we have no chance of an analogous result here. However, we do have a slightly

weaker ‘strictification’ we can perform.

Proposition . If C is a symmetric monoidal category, then the leµ actions of C on D are

in bijection with the right actions of C on D. Further, every such bijective pair gives rise

canonically to a symmetric action of C on D.

Proof. Given a leµ action (⊠l , λ, α), we define a right action (⊠r, ρ, β) by

D ⊠r C = C ⊠l D;

D
ρD

D ⊠r I

D
λD I ⊠l D

;

(D ⊠r C
′) ⊠r C

βD,C′ ,C
D ⊠r (C

′ ⊗ C)

C ⊠l (C
′ ⊠l D)

αC,C′ ,D
(C ⊗ C ′) ⊠l D

σC,C′⊠lD
(C ′ ⊗ C) ⊠l D

.

To make this pair into a symmetric action of C on D, we define τ by:

C ⊠l (D ⊠r C
′)

τC,D,C′
(C ⊠l D) ⊠r C

′

C ⊠l (C
′ ⊠l D)

αC,C′ ,D
(C ⊗ C ′) ⊠l D

σC,C′⊠lD
(C ′ ⊗ C) ⊠l D

α−1
C′ ,C,D

C ′ ⊠l (C ⊠l D)

,

and σ by σC,D = idC⊠lD. A diagram chase confirms that these obey the required coherence

laws.

Whence we can say that every symmetric action is isomorphic to one in which the leµ

and right actions are the same. To make this statement precise, we first need the right

notion of ‘is isomorphic to’:

Definition . If D is a symmetric C-module, and D
′ a symmetric C

′-module, then a

symmetric modular functor (C,D) → (C′,D′) is a bimodular functor (L, K) such that L
is a symmetric monoidal functor, and such that

LC ⊠l KD
σLC,KD

pC,D

KD ⊠r LC

qD,C

K(C ⊠l D) KσC,D
K(D ⊠r C)



C 3. M ,     C 

commutes. A symmetricmodular transformation is simply a bimodular transformation.

We define the -category SAct with:

• -cells symmetric modules;

• -cells symmetric modular functors;

• -cells symmetric modular transformations.

Proposition . Every symmetric module (C,D) ∈ SAct is isomorphic to one satisfying

C ⊠l D = D ⊠r C.

Proof. We take the module (Ĉ, D̂) with Ĉ = C and D̂ = D, equipped with the actions

⊠̂l = ⊠l and ⊠̂r = ⊠l as described in the previous proposition. We equip the identity

functor (idC, idD) : (C,D) → (C,D) with the structure of a symmetric modular functor

(C,D) → (Ĉ, D̂) via

pC,D = idC⊠lD : C ⊠l D → C ⊠l D; qD,C = σC,D : C ⊠l D → D ⊠r C .

It’s easy to check that the required diagrams commute, and thatwe can similarly equip the

identity functor with the structure of a symmetricmodular functor (Ĉ, D̂) → (C,D).

So are justified, in the symmetric case, in essentially ignoring the right action completely,

and assuming that it is derived in the canonical manner from the leµ action. However,

we will not simply define a symmetric action to be determined by its leµ action for the

following reason: the canonical liµing of a symmetric monoidal category C into SAct is

not of this form, since it has C ⊠l C
′ = C ⊗C ′ = C ⊠r C

′, rather than C ⊠l C
′ = C ⊗C ′ =

C ′ ⊠r C .

3.6 Closed modules

We turn now to closure for modules, which is comparable to closure for monoidal cate-

gories. ßere is some degree of overlap between the material presented here and [JK];

compare also the ‘starred equipments’ of [CKVW].

Now, since the notation for monoidal categories is not wholly standard in the non-

symmetric case, we begin by establishing our conventions.

Definition . A monoidal category C is leµ closed when for each C ∈ C, the functor

(–)⊗C has a right adjoint whichwewrite asC (–). It is right closedwhen each functor

C ⊗ (–) has a right adjoint which we write as (–) C .

Note that our notation is that of [Bar], although we have interchanged the symbols

and ; his notation is consistent with a preference for right actions, whereas ours is

biased in favour of leµ actions. ße units and counits of our adjunctions will thus be:

(A B) ⊗ A → B A → B (A ⊗ B)

A ⊗ (B A) → B A → (B ⊗ A) B



3.6. C 

and we obtain maps such as

(B C) ⊗ (A B) → (A C) (A ⊗ B) C ∼= A (B C)

(B A) ⊗ (C B) → (C A) C (B ⊗ A) ∼= (C B) A

Definition . Let D be a leµ C-module with action ⊠l . We say that the module is en-

riched if each functor (–)⊠l D : C → D has a right adjoint, which we write as D l (–),

and cotensored if each functor C ⊠l (–) : D → D has a right adjoint, which we write as

(–) l C .
Similarly, for D a right E-module, we say it is enriched if each functor E ⊠r (–) : C → E

has a right adjoint (–) r E, and cotensored if each functor (–) ⊠r E : D → D has

a right adjoint E r (–). If D is a leµ C-, right E-module, we use the terms leµ and

right enriched/cotensored to indicate that the component leµ and right actions are en-

riched/cotensored; similarly if D is a C-bimodule.

To summarise, for D a leµ C-, right E-module, we have natural isomorphisms:

C(A ⊗ B, C) ∼= C(A, B C) if C is leµ closed;

D(C ⊠l D,D
′) ∼= C(C,D l D

′) if D is leµ enriched;

D(D ⊠r E, D
′) ∼= D(D, E r D

′) if D is right cotensored;

E(E ⊗ F, G) ∼= E(E, F G) if E is leµ closed;

C(A ⊗ B, C) ∼= C(B, C A) if C is right closed;

D(C ⊠l D,D
′) ∼= D(D,D′

l C) if D is leµ cotensored;

D(D ⊠r E, D
′) ∼= E(E, D′

r D) if D is right enriched; and

E(E ⊗ F, G) ∼= E(F, G E) if E is right closed.

Viewing our modules as bicategories, asking for these conditions to hold is to ask for

the existence of various right extensions and right liµings.

Definition . To say simply that D is leµ closed is to say that the first four of the above

closure properties hold; and to say that it is right closed is to say that the latter four hold.

Note in particular that if D is leµ enriched, we have maps

(D′
l D

′′) ⊗ (D l D
′) → (D l D

′′)

which say that D may be viewed as the underlying ordinary category of a category en-

riched in C. Further, the action ⊠l becomes a tensor for this enrichment, and l (if it

exists) a cotensor; hence the terminology. Similarly, if the right action is enriched, then

D can be viewed as a category enriched in E
rev (i.e., E with the tensor product reversed in

orientation) with tensors (and possibly cotensors).



C 3. M ,     C 

Conversely, given a monoidal category C, any category D enriched in C and having

tensors with C gives an enriched leµ action of C on the underlying ordinary category D0

of D. However, if D is enriched with tensors in C and E, it is not in general true that it

becomes a leµ C-, right E
rev-module; the compatibility of the two actions is by no means

guaranteed. In fact, this is a very particular example of a category enriched from C to E

[KLSS].

Proposition . If D is a symmetric C-module, then it is leµ enriched (respectively coten-

sored) if and only if it is right enriched (respectively cotensored).

Proof. Suppose the leµ action is enriched. ßen we have

D(D ⊠r C,D
′) ∼= D(C ⊠l D,D

′) ∼= C(C,D l D
′)

naturally in all variables, so that setting D′
r D = D l D

′ makes the right action

enriched. Similarly, if the leµ action is cotensored, then we have

D(D′
⊠r C,D) ∼= D(C ⊠l D

′, D) ∼= D(D′, D l C)

naturally in all variables, so that setting C r D = D l C makes the right action

cotensored.

So we can unambiguously say simply ‘enriched’ or ‘cotensored’ when referring to sym-

metric actions, and are still justified in identifying a symmetric module with its leµ ac-

tion. Note also that it thus follows that a symmetric action is leµ closed if and only if it

is right closed, so that we may simply refer to it as ‘closed’.

3.7 Cotensored actions

IfC has a cotensored leµ action onD, thenwe can derive rather suggestive isomorphisms

of the form

D l (C
′ ⊗ C) ∼= (D l C

′) l C ,

from which one might deduce that l is rather like a right action of C
op on D. In fact,

it is a right action of C
op on D; but it turns out to be much more natural to think of it as

a right action of C on D
op, since then any other closed structure the leµ module (C,D)

might have had is carried over. In detail, we have the following:

Proposition . Given a monoidal category C, cotensored leµ actions of C on D are in

bijection with cotensored right actions of C on D
op; moreover, the property of being an

enriched action is preserved under this bijection.

Proof. Let D be a cotensored leµ C-module. We have the following adjunctions D → D:

A ⊠l (B ⊠l –) ⊣ (– l A) l B

(A ⊗ B) ⊠l (–) ⊣ (–) l (A ⊗ B)



3.7. C 

ßerefore the natural isomorphism α : A ⊠l (B ⊠l –) → (A ⊗ B) ⊠l (–) has as an adjoint

mate a natural isomorphism α′ : (–) l (A ⊗ B) → (– l A) l B, naturally in A and

B. Similarly we have the adjunctions

idD ⊣ idD

I ⊠l (–) ⊣ (–) l I

so the natural isomorphism λ : idD → I ⊠l (–) has as an adjoint mate a natural isomor-

phism ρ : (–) l I → idD. ße coherence diagrams for ⊠l transfer under the adjunction

into the following diagrams in D:

D l C (D l I) l C
ρ lC

D l (I ⊗ C)

D l l
α′

,

D l C (D l C) l I
ρ

D l (I ⊗ C)

D l l
α′

,

((D l C) l C
′) l C

′′ (D l (C ⊗ C ′)) l C
′′α′ lC

′′

(D l C) l (C
′ ⊗ C ′′)

α′

D l (C ⊗ (C ′ ⊗ C ′′))

α′

D l ((C ⊗ C ′) ⊗ C ′′)
D la

α′

which are precisely the required coherence diagrams inD
op asserting that (

op
l , ρop, α′op)

is a right action of C on D
op. So we set ⊠̂r =

op
l . Now, to see that this action is

cotensored, we set ˆ r = ⊠l
op. For we have

D
op(D⊠̂rC,D

′) = D(D′, D l C) ∼= D(C ⊠l D
′, D) = D

op(D, C ˆ rD
′)

as desired. Finally, if the action ofC onD is enriched, then we defineD ˆ rD
′ = D lD

′,

and so:

D
op(D⊠̂rC,D

′) = D(D′, D l C) ∼= D(C ⊠l D
′, D) ∼= C(C,D′

l D) = C(C,D′ ˆ rD)

as required.

Dually, cotensored right actions of C on D are in correspondence with cotensored leµ

actions of C on D
op. Moreover, we have the following two results:

Proposition . Suppose that D is a leµ C-, right E-module, cotensored on both sides.

ßen D
op is a leµ E-, right C-module cotensored on both sides.



C 3. M ,     C 

Proof. We write ⊠l and ⊠r for the original actions of C and E and ⊠̂l and ⊠̂r for those

derived from the above proposition; that is, ⊠̂l =
op
r , etc. ßus all we require are

coherent natural isomorphisms

E ⊠̂l (D ⊠̂r C) → (E ⊠̂r D) ⊠̂l C

in D
op, i.e., natural isomorphisms (E r D) l C → E r (D l C) in D. Again, we

have adjunctions

C ⊠l (– ⊠r E) ⊣ E r (– l C)

(C ⊠l –) ⊠r E ⊣ (E r –) l C

so that τC,D,E : C ⊠l (D ⊠r E) → (C ⊠l D) ⊠r E has as a mate

τ̂E,D,C : (E r D) l C → E r (D l C).

And proceeding as before, the coherence diagrams for τ in D transfer under adjunction

to coherence diagrams for τ̂op in D
op.

Proposition . Symmetric cotensored actions of C on D are in bijection with symmetric

cotensored actions of C on D
op.

Proof. We know that every symmetric cotensored action of C on D gives a two-sided

cotensored action of C on D
op; so it suffices to give coherent natural isomorphisms C ⊠̂L

D → D ⊠̂R C in D
op, i.e. natural isomorphisms D l C → C r D in D; and we get

these as mates of the isomorphisms C ⊠l D → D ⊠r C under the adjunctions

C ⊠l (–) ⊣ (–) l C

(–) ⊠r C ⊣ C r (–);

and the coherence also transfers across the adjunction.

ße above operations are in fact the object part of certain -functors. First, we need to

define the sources of these -functors:

Definition . Given any -categoryM whose objects are modules, we writeM∗ for the

sub--categorywith objects the cotensoredmodules inM, together with all - and -cells

between them.

And second, the targets. ße -categories we are about to define are a ‘different kind of

(–)co’ peculiar to these particular -categories, and encapsulated by the slogan

LRAct is to Cat × Cat × Cat as LRAct◦ is to Cat × Catco × Cat.



3.7. C 

Definition . Given two-sidedmodular functors (L, K,M) and (L′, K ′,M′) : (C,D, E) →
(C′,D′, E′), a two-sided modular cotransformation (α, β, γ) : (L, K,M) ⇒ (L′, K ′,M′) is

a triple of natural transformations

(α : L ⇒ L′, β : K ′ ⇒ K, γ : M ⇒ M′)

such that α and γ are monoidal natural transformations, and such that diagrams of the

following form commute:

LC ⊠l KD
pLC,KD

LC⊠lβD

K(C ⊠l D)

βC⊠lDLC ⊠l K
′D

αC⊠lK
′D

L′C ⊠l K
′D

p′C,D
K ′(C ⊠l D)

KD ⊠r ME
qKD,MC

βD⊠rME

K(D ⊠r E)

βD⊠rEK ′D ⊠r ME

K ′D⊠rγE

K ′D ⊠r M
′E

q′D,E
K ′(D ⊠r E).

We define analogously leµ, right, bimodular and symmetric cotransformations, and -

categories {LAct◦,RAct◦, LRAct◦,BAct◦, SAct◦} with:

• -cells {leµ, right, two-sided, bi, symmetric}modules;

• -cells {leµ, right, two-sided, bi, symmetric}modular functors;

• -cells {leµ, right, two-sided, bi, symmetric}modular cotransformations.

Proposition . ßere are involutary -functors

op: {LR,B, S}Act∗ → {LR,B, S}Act◦∗
op: LAct∗ → RAct◦∗

op: RAct∗ → LAct◦∗

Proof. op : LRAct∗ → LRAct◦∗ is given by:

(C,D, E)op = (E,Dop,C)

(L, K,M)op = (M,Kop, L)

(α, β, γ)op = (γ, βop, α).

ße main point of note is the structure maps for functors. If (L, K,M) : (C,D, E) →

(C′,D′, E′)has structure given by (mI , mB,C , pC,D, qD,E , rE,F , rI), then the structure for (M,Kop, L)
is given by (rI , rF,E , q̂E,D, p̂D,C , mC,B, mI), where q̂E,D and p̂D,C are the maps

q̂E,D : ME r KD → K(E r D)

p̂D,C : KD l LC → K(D l C)



C 3. M ,     C 

in D
′op corresponding to the maps

q̂E,D : K(E r D) → ME r KD

p̂D,C : K(D l C) → KD l LC

in D
′ given by

K(E r D) ⊠r ME
q(E rD),E
−−−−−−−→ K((E r D) ⊠r E)

ev
−−→ KD

LC ⊠l K(D l C)
pC,(D lC)

−−−−−−−→ K(C ⊠l (D l C))
ev
−−→ KD.

under exponential transpose. It is now straightforward to check that the required coher-

ence laws for - and -cells are satisfied with this definition. We proceed analogously for

the other -categories of modules.

Example . Recall the canonical two-sided action of amonoidal categoryC on itself. IfC

happens to be monoidal biclosed, then this canonical action is enriched and cotensored,

with

C l C
′ = C r C

′ = C C ′ and C ′
l C = C ′

r C = C ′ C.

Hence we have an enriched and tensored action of C on C
op. If we suggestively annotate

objects of C with a + and objects of C
op with a −, then this action is given by:

I = I+ B+ ⊗ C+ = (B ⊗ C)+

B+ C+ = (B C)+ C+ B+ = (C B)+

B+
⊠l C

− = (B C)− C−
⊠r B

+ = (C B)−

B−
r C

− = (B C)+ C−
l B

− = (C B)+

B+
r C

− = (B ⊗ C)− C−
l B

+ = (C ⊗ B)−

which one can view as capturing a logical ‘algebra of polarities’.

3.8 ∗-autonomy

3.8.1 ∗-autonomous modules

Recall that a (non-symmetric) monoidal category C is said to be ∗-autonomous if it is

equipped with an adjoint equivalence (–)∗ : C → C
op satisfying natural isomorphisms:

C(A ⊗ B, C∗) ∼= C(B ⊗ C, ∗A),

where we write ∗(–) for the adjoint inverse of (–)∗. For more details and many other

equivalent definitions, see [Bar]. One point which this particular definition obscures

is that every ∗-autonomous category is leµ and right closed, with

B C = (B ⊗ ∗C)∗ and C B = ∗(C∗ ⊗ B).



3.8. ∗-

Now we turn to an equivalent notion for modules.

Definition . We say that (C,D) ∈ BAct is ∗-autonomous if it comes equipped with

adjoint equivalences

◦(–) : C → D
op ⊣ ⊢ (–)◦ : D

op → C

•(–) : D
op → C ⊣ ⊢ (–)• : C → D

op

(called the leµ star and right star respectively) such that

C(B ⊗ C,D◦) ∼= D(C ⊠l D,
◦B),

D(C ⊠l D, B
•) ∼= D(D ⊠r B,

◦C),

D(D ⊠r B, C
•) ∼= C(B ⊗ C, •D)

naturally in all variables.

It may not be obvious at first glance that this is the correct generalisation of ∗-autonomy;

but we shall see that it yields all the properties we would wish from something called ‘∗-

autonomous’. First:

Proposition . A ∗-autonomous module (C,D) is closed in every respect.

Proof. We define

C1 C2 = (C1 ⊠l
◦C2)

◦ C2 C1 =
•(C •

2 ⊠r C1)

D1 l D2 = (D1 ⊠r
•D2)

◦ D2 r D1 =
•(D◦

2 ⊠l D1)

D l C = ◦(D◦ ⊗ C) C r D = (C ⊗ •D)•.

We verify, for example,

D(C ⊠l D1, D2) ∼= D(C ⊠l D1,
◦(D◦

2))

∼= C(D◦
2 ⊗ C,D◦

1)

∼= D(D1,
◦(D◦

2 ⊗ C))

as required; similarly for the others.

Next, we note that we have

D(D, ◦I) ∼= D(D ⊠r I,
◦I) ∼= D(I ⊠l D, I

•) ∼= D(D, I •)

so that ◦I ∼= I • by Yoneda. We set ⊥ = I •; and now note that

D l ⊥ =
(
D ⊠r

•(I •)
)◦ ∼= D◦

⊥ l C =
◦(
(I •)◦ ⊗ C

)
∼=

◦
((◦I)◦ ⊗ C) ∼= ◦C

C r ⊥ =
(
C ⊗

•(I •)
)• ∼= C •

⊥ r D =
•(
(I •)◦ ⊠l D

)
∼=

•
((◦I)◦ ⊠l D) ∼=

•D



C 3. M ,     C 

so that ⊥ acts as a ‘dualising object’. It follows that the canonical maps

C → (⊥ l C) l ⊥

C → ⊥ r (C r ⊥)

are isomorphisms. Conversely, suppose we are given a cotensored and enriched bimod-

ule together with an object ⊥ such that the two displayed maps are isomorphisms. ßen

setting (–)◦ = (–) l⊥, etc., we see that we have a pair of equivalences forming putative

leµ and right star operations. We merely need to check the required isomorphisms of

homsets; so we calculate

C(B ⊗ C,D◦) = C(B ⊗ C,D l ⊥)

∼= C
(
(B ⊗ C) ⊠l D,⊥)

∼= C(B ⊠l (C ⊠l D),⊥)
∼= C(C ⊠l D,⊥ l B)

= C(C ⊠l D,
◦B)

and similarly for the others. Hence we have shown

Proposition . ∗-autonomous modules are in equivalence with cotensored and enriched

modules (C,D) equipped with an object ⊥ ∈ D such that the natural maps

C → (⊥ l C) l ⊥

C → ⊥ r (C r ⊥)

are isomorphisms.

3.8.2 Cyclic and symmetric ∗-autonomous modules

Recall that a ∗-autonomous monoidal category is said to be cyclic ∗-autonomous if it so

happens that (–)∗ is its own adjoint inverse. In this case we have

C(A ⊗ B, C∗) ∼= C(B ⊗ C, A∗).

We have a notion of cyclic ∗-autonomy for modules too.

Definition . A bimodule (C,D) ∈ BAct is cyclic ∗-autonomous if it is ∗-autonomous

and moreover we have (–)• and (–)◦ naturally isomorphic to ◦(–) and •(–) respectively.

More simply, we may define cyclic ∗-autonomy in terms of a single adjoint equivalence

(–)• : C → D
op ⊣ ⊢ (–)◦ : D

op → C

satisfying natural isomorphisms

C(B ⊗ C,D◦) ∼= D(C ⊠l D, B
•) ∼= D(D ⊠r B, C

•) ∼= D(B ⊗ C,D◦).



3.8. ∗-

Now, it’s straightforward to calculate that any symmetric ∗-autonomous category is nec-

essarily cyclic ∗-autonomous. In a similar vein, we have

Proposition. Any symmetric ∗-autonomousmodule is necessarily cyclic ∗-autonomous.

Proof. We need to show that there is a natural isomorphism (–)◦ ∼=
•(–). We calculate:

C(C,D◦) ∼= C(I ⊗ C,D◦)

∼= D(C ⊠l D,
◦I)

∼= D(D ⊠r C,
◦I)

∼= D(I ⊠l D, C
•)

∼= D(D, C •)

∼= D(C, •D)

natural in C and D; hence by Yoneda, we have (–)◦ ∼= •(–); similarly ◦(–) ∼= (–)•.

Hence we can without loss of generality define symmetric ∗-autonomy purely in terms

of a leµ star.

Examples .

• If C is a ∗-autonomous category, then (C,C) is a ∗-autonomous module, with

(–)◦ = (–)• = (–)∗ and ◦(–) = •(–) = ∗(–).

Clearly if C is cyclic ∗-autonomous, then so is (C,C).

• Recall the canonical action ofC onC
op from Section ; this is a cyclic ∗-autonomous

action. Indeed, we set (–)◦ : C → (Cop)op = id = (–)• : (Cop)op → C, and we

confirm:

C(B ⊗ C,D◦) = C(B ⊗ C,D)
∼= C(B, C D) ∼= C

op(C D, B) = C
op(C ⊠l D, B

•)

∼= C(C,D B) ∼= C
op(D B, C) = C

op(D ⊠r B, C
•)

as required.

3.8.3 Maps of ∗-autonomous modules

Before we begin this section, an obvious point needs to be made; namely, that when

dealing with involutions it is vital to be clear about which way maps are going. So unless

explicitly stated otherwise, all the diagrams and maps in this section will be maps in C

and D as appropriate, and not maps in C
op or D

op. We also abuse notation by writing K
for Kop, etc.; but this should not pose a problem.



C 3. M ,     C 

Definition . A ∗-autonomous modular functor (L, K) : (C,D) → (C′,D′) between ∗-

autonomousmodules is a bimodular functor (L, K) equippedwith natural isomorphisms

sC : (LC)
•
→ K(C •) and tD : (KD)

◦
→ L(D◦)

(and therefore with derived natural isomorphisms

ŝD :
•(KD) → L(•D) and t̂C :

◦(LC) → K(◦C))

such that diagrams of the following form commute:

(
K(◦C)

)◦ (t̂C)
◦

t◦C

(
◦(LC)

)◦

∼=

L
(
(◦C)◦

) ∼=
LC

(
L(•D)

)• (ŝD)
•

s•D

(
•(KD)

)•

∼=

K
(
(•D)•

) ∼=
KD.

[Note that it follows that the dual diagrams

◦(
L(D◦)

) ◦(tD)

t̂D◦

◦(
(KD)◦

)

∼=

K
(
◦(D◦)

) ∼=
KD

•(
K(C •)

) •(sC)

ŝC•

•(
(LC)•

)

∼=

L
(
•(C •)

) ∼=
LC

also commute.] Similarly, a cyclic ∗-autonomous modular functor (L, K) : (C,D) →

(C′,D′) between cyclic ∗-autonomous modules is a bimodular functor (L, K) equipped
with natural isomorphisms

sC : (LC)
•
→ K(C •)

(and therefore with derived natural isomorphisms

ŝD : (KD)
◦
→ L(D◦))

such that diagrams of the following form commute:

(
L(D◦)

)• (ŝD)
•

sD◦

(
(KD)◦

)•

∼=

K
(
(D◦)•

) ∼=
KD

[whence it follows that diagrams of the form

(
K(C •)

)◦ (sC)
◦

ŝC•

(
(LC)•

)◦

∼=

L
(
(C •)◦

) ∼=
LC

also commute.]



3.9. C 

Now, we need to be somewhat subtle about -dimensional maps. ßey are not nat-

urally modular transformations but rather modular cotransformations in the sense of

Definition . Recall that in the monoidal setting, all natural transformations between

∗-autonomous functors are necessarily invertible; but here, the flexibility to pass to co-

transformations allows this degeneracy to be liµed.

Definition . A ∗-autonomous modular cotransformation (α, β) : (L, K) ⇒ (L′, K ′)

between ∗-autonomousmodular functors is amodular cotransformation (α, β) such that
diagrams of the following form commute:

(LC)•
sC

(αC)
•

K(C •)

βC•

(L′C)•
s′C

K ′(C •)

(KD)◦
tD

(βD)
◦

L(D◦)

αD◦

(K ′D)◦
t ′D

L′(D◦).

And analogously, a cyclic ∗-autonomous modular cotransformation is a modular co-

transformation (α, β) such that diagrams of the following form commute:

(LC)•
sC

(αC)
•

K(C •)

βC•

(L′C)•
s′C

K ′(C •).

Hence we can define a -categories ∗-Act and c∗-Act with

• -cells (cyclic) ∗-autonomous modules;

• -cells (cyclic) ∗-autonomous modular functors;

• -cells (cyclic) ∗-autonomous modular cotransformations.

Note that as a result, ∗-Act and c∗-Act live naturally inside BAct◦∗ rather than BAct∗.

Examples .

• If L : C → D is a monoidal functor, then the canonical functor (L, Lop) : (C,Cop) →

(D,Dop) so induced is a cyclic ∗-autonomous functor, with sC : (LC)
•
→ (Lop)op(C •) =

idLC : LC → LC . Similarly, a monoidal natural transformation α : L ⇒ L′ liµs to a

cyclic ∗-autonomous modular cotransformation (α, αop).

3.9 Comma objects

We recall the single glueing construction for monoidal categories:



C 3. M ,     C 

Proposition . Given a monoidal functor L : C → C
′, the comma object in Cat

C
′ ↓ L

F
⇐

G

C
L C

′

can be liµed to a diagram in MonCat such that F and G are strict monoidal functors.

Further, if C and C
′ are both {leµ, right} closed, and C

′ has enough pullbacks, then C
′ ↓ L

is also {leµ, right} closed, and U preserves the structure strictly.

Proof. ßemonoidal structure on C is given by

I = I → LI ; (U → LB) ⊗ (V → LC) = U ⊗ V → LB ⊗ LC
mB,C
−−−−→ L(B ⊗ C).

If C and C
′ are leµ or right closed, then the respective operations for L ↓ C are given by

the leµ hand arrows in these pullbacks:

(U → LB) (V → LC) :

M U V

L(B C) mB,C
LB LC U LC

(V → LC) (U → LB) :

M V U

L(C B) mC,B
LC LB LC U .

We extend this result to the modular case:

Proposition . Given a modular functor (L, K,M) : (C,D, E) → (C′,D′, E′), the comma

object

(C′ ↓ L,D′ ↓ K, E′ ↓ M)
F

⇐
G

(C,D, E)
(L,K,M)

(C′,D′, E′)

inCat×Cat×Cat can be liµed to a diagram in LRAct such that F andG are strict modular

functors. Further, if themodulesD andD
′ are both {leµ, right} {enriched, cotensored}, and

enough pullbacks exist inC
′,D′ andE

′, thenD
′ ↓ M is also {leµ, right} {enriched, cotensored},

and U preserves the structure strictly.



3.9. C 

Proof. ßemonoidal structures onC
′ ↓ L and E

′ ↓ M are given as above, and the leµ and

right actions by:

(U → LC) ⊠l (X → KD) = U ⊠l X → LC ⊠l KD
pC,D
−−−→ K(C ⊠l D)

(X → KD) ⊠r (U → ME) = X ⊠r U → KD ⊠r ME
qD,E
−−−→ K(D ⊠r E).

For the closure properties, wemay as well assume that bothmodulesD andD
′ are closed

in every way, since there is no dependence between the various forms of closure. We first

note that from the structure maps pC,D and qD,E for (L, K,M) we can derive structure

maps

pD,D′ : L(D l D
′) → KD l KD

′ pD,C : K(D l C) → KD l LC

qE,D : K(E r D) → ME r KD qD′,D : M(D′
r D) → KD′

r KD.

ßen we give the various forms of closure by the respective leµ-hand arrows in the fol-

lowing pullback diagrams:

(X → KD) l (Y → KD′) :

Q X l Y

L(D l D
′) pD,D′

KD l KD
′ X l KD

′

(X → KD) l (V → LC) :

Q X l V

K(D l C) pD,C
KD l LC KD l V

(V → ME) r (X → KD) :

Q V r X

K(E r D) qE,D
ME r KD V r KD

(Y → KD′) r (X → KD) :

Q Y r X

M(D′
r D) qD′ ,D

KD′
r KD KD′

r X .

ßis construction specialises in the obvious way to bimodules (C,D). In the case of sym-



C 3. M ,     C 

metric modules (C,D) ∈ SAct, we can equip (C ↓ L) with a symmetry as follows:

U ⊗ V
sU,V

V ⊗ U

LB ⊗ LC
sLB,LC

mB,C

LC ⊗ LB

mC,B

L(B ⊗ C)
LsB,C

L(C ⊗ B)

,

where the bottom square commutes since L is a symmetric monoidal functor. Similarly,

we have the required symmetry for the actions:

U ⊠l X
σU,X

X ⊠r U

LC ⊠l KD
σLC,KD

pC,D

KD ⊠r LC

qD,C

K(C ⊠l D) KσC,D
K(D ⊠r C)

,

where the bottom square commutes since (L, K) is a symmetric modular functor.

Finally, the ∗-autonomous case. In the case of monoidal categories, the glueing con-

struction fails to liµ ∗-autonomous structure. However, herewe are saved by the differing

variances of the -cells in ∗-Act:

Proposition . Given a ∗-autonomous modular functor (L, K) : (C,D) → (C′,D′), if D
′

has enough pushouts then the comma object

(C′ ↓ L, K ↓ D
′)

F
⇐

V

(C,D)
(L,K)

(C′,D′)

in Cat × Catco can be liµed to a diagram in ∗-Act such that F is a strict ∗-autonomous

modular functor.

Proof. We equip (C′ ↓ L) with monoidal structure as usual. For the actions of C
′ ↓ L on

K ↓ D
′, we take the respective right-hand arrows in the following pushout diagrams in



3.9. C 

D
′:

(U → LC) ⊠l (KD → Y) :

U ⊠l KD LC ⊠l KD
pC,D

K(C ⊠l D)

U ⊠l Y Q

(KD → X) ⊠r (V → LC) :

KD ⊠r V KD ⊠r LC
qD,C

K(D ⊠r C)

X ⊠r V Q

and the star operations are given as follows:

(KD → X)◦ = X ◦ → (KD)◦ → L(D◦)
◦(U → LC) = K(◦C) → ◦(LC) → ◦U

(U → LC)• = K(C •) → (LC)• → U •

•(KD → X) = •X →
•(KD) → L(•D).

It is straightforward to check that these operations form two equivalences and that the

required isomorphisms of homsets hold.

Remark. ße construction just given for ∗-autonomous modules may look somewhat

ad hoc. However, consider instead performing the following actions:

. apply the -functor op: BAct◦∗ → BAct∗;

. glue along (L, Kop) in BAct∗;

. apply op: BAct∗ → BAct◦∗.

ße modules produced by these two methods are easily checked to be isomorphic as

closed modules.

Example . Double glueing. ße ‘single glueing’ construction of Proposition  fails to

liµ ∗-autonomous structure from the base categories to the glued category. To rectify this,

Hyland and Schalk, in the paper [HS], generalise it to a ‘double glueing’ construction.

At its heart are some rather mysterious double pullbacks; but it turns out that these can

be demystified using the language of modules. We recall the data required of us for the

double glueing construction:

• Symmetric monoidal closed categories C and E;

• Functors L : C → E and K : C → E
op;

• Symmetric monoidal structure (mI , mR,S) for the functor L;



C 3. M ,     C 

• A ‘contraction’ kR,S : LR ⊗ L(R ⊗ S) → KS satisfying axioms.

(We refer the reader to Section . of that paper for full details.) Now, from the contrac-

tion maps kR,S we derive maps

pC,D = LC ⊗ KD
LC⊗K(ev)
−−−−−−−−→ LC ⊗ K

(
C ⊗ (C D)

) k
−→ K(C D)

qD,C = KD ⊗ LC
s
−→ LC ⊗ KD

pC,D
−−−→ K(C D)

and, noting that the canonical action of C on C
op is given, in the symmetric case, by:

C ⊠l D = D ⊠r C = C D,

we see that (mI , mB,C , pC,D, qD,C) provide the required structure for (L, Kop) to be a sym-

metric modular functor (C,Cop) → (E, E); the axioms required of the ‘contraction’ in

[HS] are precisely those required of pC,D and qD,C in Section  above.

So now we apply Proposition  to obtain the symmetric closed module (E ↓ L, E ↓

Kop) and a strict modular functor

(F, G) : (E ↓ L, E ↓ Kop) → (C,Cop).

Applying Proposition , we get the symmetric module (A,B) := (E ↓ L, (E ↓ Kop)op)

and a strict modular functor

(F, G) : (A,B) → (C,C).

Let us spell out in detail what (A,B) consists of. First,A has objects (U → LR); andmaps

(U → LR) → (V → LS) are pairs (φ : U → V, f : R → S) such that

U

φ

LR

Lf

V LS

commutes. B has objects (X → KR) and maps (X → KR) → (Y → KS) are pairs
(ψ : Y → X, f : R → S) such that

X KR

Y

ψ

KS

Kf

commutes. ße modular structure on (A,B) is as follows:

I = (I
mI
−−→ LI),

(U → LR) ⊗ (V → LS) = U ⊗ V → LR ⊗ LS
mR,S
−−−→ L(R ⊗ S),

(Z → KT) l (V → LS) = Z ⊗ V → KT ⊗ LS
kS,T
−−−→ K(S T)

(V → LS) r (Z → KT) = V ⊗ Z → LS ⊗ KT
kS,T
−−−→ K(S T)



3.10. T      

with the remaining operations being given by the leµ-hand arrows in the following pull-

back diagrams:

(U → LR) ⊠l (Y → KS) :

Q U Y

K(R ⊗ S)
kR,S

LR KS U KS

(X → KR) ⊠r (V → LS) :

Q V X

K(R ⊗ S)
kR,S

LS KR V KR

(V → LS) (W → LT)

= (W → LT) (V → LS)
:

Q U V

L(S T) mS,T
LS LT V LT

(Y → KS) l(Z → KT)

= (Z → KT) r(Y → KS)
:

Q Z Y

L(S T)
kS,T

KT KS Z KS.

Comparison with Proposition  of [HS] shows that the pullbacks above are precisely

the two sides of the double pullback diagrams there.

ße ∗-autonomous case (Section . of [HS]) also fits well into this framework. So

we now suppose that C is symmetric ∗-autonomous and take K(–) = L(–∗). Recall that
(E, Eop) is cyclic ∗-autonomous in a canonical way, and in fact symmetric ∗-autonomous

if E is. Now (L, K) becomes in a natural way a ∗-autonomous modular functor from

(C,C) to (E, Eop); and thus we get the symmetric ∗-autonomous module (E ↓ L, K ↓

E
op) ∼= (A,B), together with a strict ∗-autonomous functor

(F, G) : (A,B) → (C,C);

And by the remark aµer Proposition , this has the same closed structure as that spelt

out above. We shall see later how to get from (A,B) to the double glueing category G.

3.10 ße cofree monoidal category on a module

3.10.1 ße basic case

Our starting point in this section is thewell-known construction of ‘simple self-dualisation’:

given amonoidal biclosedCwith finite products, it produces a cyclic ∗-autonomous cat-



C 3. M ,     C 

egory C ×C
op. We produce a similar notion for modules, and characterise it universally.

First, we need a mild representability condition on our modules.

Definition . We write LRAct+ for the sub--category of LRAct with objects all mod-

ules (C,D, E) such that

• D has finite coproducts, and

• the actions of C and E preserve them,

together with - and -cells between them. Similarly we write LAct+, RAct+, BAct+,

SAct+, etc.

Note in particular that if amodule is cotensored, thenC⊠l(–) and (–)⊠rE are leµ adjoints

and hence automatically preserve finite coproducts. Now, recall from Examples  that

we have a -functor F : MonCat → LRAct taking C to (C,C,C). ßen our construction

is the ‘cofree monoidal category’ on ourmodule, in that it provides a partial right adjoint

to F :

Proposition . ßere is a -functor G : LRAct+ → MonCat such that we have natural

isomorphisms of categories:

LRAct
(
FB, (C,D, E)

)
∼= MonCat

(
B, G(C,D, E)

)
,

where we note that FB need not lie in LRAct+ for the above isomorphism to hold.

Proof. Suppose (C,D, E) ∈ LRAct+. ßen we take G(C,D, E) to be C × D × E, equipped

with the structure of a monoidal category as follows:

I = (I, 0, I)

(C1, D1, E1) ⊗ (C2, D2, E2) = (C1 ⊗ C2, C1 ⊠l D2 + D1 ⊠r E2, E1 ⊗ E2).

ßis is clearly bifunctorial, and associativity and unit isomorphisms are given by

(C,

r

D,

ρ

E)

rD ⊠r I,

inr

(C ⊗ I, C ⊠l 0 + D ⊠r I, E ⊗ I)

(C,

l

D,

λ

E)

lI ⊠l D,

inl

(I ⊗ C, I ⊠l D + 0 ⊠r E, I ⊗ E)



3.10. T      

(
C1 ⊗ (C2 ⊗ C3),

a

C1 ⊠l (C2 ⊠l D3 + D2 ⊠r E3) + D1 ⊠r (E2 ⊠r E3),

∼=

E1 ⊗ (E2 ⊗ E3)
)

a

C1 ⊠l (C2 ⊠l D3) + C1 ⊠l (D2 ⊠r E3) + D1 ⊠r (E2 ⊗ E3)

α+τ+β

(C1 ⊗ C2) ⊠l D3 + (C1 ⊠l D2) ⊠r E3 + (D1 ⊠r E2) ⊠r E3

∼=

(
(C1 ⊗ C2) ⊗ C3, (C1 ⊗ C2) ⊠l D3 + (C1 ⊠l D2 + D1 ⊠r E2) ⊠r E3, (E1 ⊗ E2) ⊗ E3

)
.

It is routine to check coherence. Next, if (L, K,M) : (C,D, E) → (C′,D′, E′) in LRAct+,

then wemake L×K×M into amonoidal functorG(C,D, E) → G(C′,D′, E′) by equipping

it with monoidal structure

(
I,

mI

0,

!

I
)

rI

(
LI, KI, MI

)

(
LC1 ⊗ LC2,

m

LC1 ⊠l KD2 + KD1 ⊠r ME2,

p+q

ME1 ⊗ME2

)

rK(C1 ⊠l D2) + K(D1 ⊠r E2)

[K(inl),K(inr)]

(
L(C1 ⊗ C2), K(C1 ⊠l D2 + D1 ⊠r E2), M(E1 ⊗ E2)

)
.

and on -cells, we take G(γ, δ, η) = γ × δ × η. Coherence is again straightfoward. Next,

we show that LRAct
(
FB, (C,D, E)

)
∼= MonCat(B, G(C,D, E)

)
. Indeed, to give a -cell

FB → (C,D, E) is to give functors

L : B → C, K : B → C, and M : B → E

together with structure maps

I → LI I → MI

LA ⊗ LB → L(A ⊗ B) MA ⊗MB → M(A ⊗ B)

LA ⊠l KB → K(A ⊗ B) KA ⊠r MB → K(A ⊗ B)

obeying axioms; and this is to give a functor 〈L, K,M〉 : B → C × D × E together with



C 3. M ,     C 

structure maps

(I, 0, I) → (LI, KI,MI)
(
LA ⊗ LB, LA ⊠l KB + KA ⊠r MB, MA ⊗MB

)

(
L(A ⊗ B), K(A ⊗ B), M(A ⊗ B)

)

obeying axioms; which is to give a monoidal functor B → G(C,D, E). Finally, giving
a -cell (γ, δ, η) : (L, K,M) ⇒ (L′, K ′,M′) : FB → (C,D, E) is easily seen to be equiv-

alent to giving a monoidal transformation
〈
γ, δ, η

〉
: 〈L, K,M〉 ⇒ 〈L′, K ′,M′〉 : B →

G(C,D, E). Hence we have the desired isomorphisms of hom-categories; and their nat-

urality is straightforward.

We have a similar result for bimodules:

Proposition . ßere is a -functor G ′ : BAct+ → MonCat such that we have natural

isomorphisms of categories:

BAct
(
FB, (C,D)

)
∼= MonCat(B, G ′(C,D)

)
,

where F now denotes the natural embedding MonCat → BAct. Further, G ′ restricts to a

-functor G ′′ : SAct+ → SymMonCat and we have isomorphisms

SAct
(
FB, (C,D)

)
∼= SymMonCat(B, G ′′(C,D)

)
,

Proof. Entirely analogous; we set G ′(C,D) = C × D, with structure

I = (I, 0)

(C1, D1) ⊗ (C2, D2) = (C1 ⊗ C2, C1 ⊠l D2 + D1 ⊠r C2),

and the remainder of the proof follows similarly. For the symmetric case, we note that

C × D can be made symmetric as follows:

(
C1 ⊗ C2,

s

C1 ⊠l D2 + D1 ⊠r C2

)

σ+σ−1

D2 ⊠r C1 + C2 ⊠l D1

[inr,inl]

(
C2 ⊗ C1, C2 ⊠l D1 + D2 ⊠r C1

)
.



3.10. T      

3.10.2 ße closed and ∗-autonomous cases

ßefunctorswe have defined above arewell-behavedwith respect to the additional struc-

ture wemay have on ourmodules, so long as furthermild representability conditions are

satisfied.

Proposition . Let (C,D, E) ∈ LRAct+. ßen

• if C has finite products and the module is leµ closed, then so is G(C,D, E);

• if E has finite products and the module is right closed, then so is G(C,D, E).

Proof. For leµ closure, we define

(C2, D2, E2) (C3, D3, E3) =
(
(C2 C3) × (D2 l D3), E2 r D3, E2 E3

)

and for right closure,

(C3, D3, E3) (C1, D1, E1) =
(
C3 C1, D3 l C1, (D3 r D1) × (E3 E1)

)
.

We calculate:

C×D × E
(
(C1, D1, E1) ⊗ (C2, D2, E2), (C3, D3, E3)

)

∼= C(C1 ⊗ C2, C3) × D(C1 ⊠l D2 + D1 ⊠r E2, D3) × E(E1 ⊗ E2, E3)

∼= C(C1 ⊗ C2, C3) × D(C1 ⊠l D2, D3) × D(D1 ⊠r E2, D3) × E(E1 ⊗ E2, E3)

∼= C(C1, C2 C3) × C(C1, D2 l D3) × D(D1, E2 r D3) × E(E1, E2 E3)

∼= C
(
C1, (C2 C3) × (D2 l D3)

)
× D(D1, E2 r D3) × E(E1, E2 E3)

∼= C × D × E
(
(C1, D1, E1), (C2, D2, E2) (C3, D3, E3)

)

as required; similarly for right closure.

Proposition . Let (C,D) ∈ BAct+. ßen if C has finite products and the module is

{leµ, right} closed, then so is G ′(C,D).

Proof. As before; we define

(C2, D2) (C3, D3) =
(
(C2 C3) × (D2 l D3), C2 r D3

)

and for right closure,

(C3, D3) (C1, D1) =
(
(C3 C1) × (D3 r D1), D3 l C1

)
.

Now ∗-autonomy. Note that if (C,D) is a ∗-autonomous module and D has coprod-

ucts, then the actions necessarily preserve them (since D is a cotensored module) and C

necessarily has products (since it is equivalent to D
op).



C 3. M ,     C 

Proposition . If (C,D) ∈ BAct+ is a (cyclic) ∗-autonomous module, then G(C,D) is

a (cyclic) ∗-autonomous category. Further, the closed structure thus induced on C × D

agrees with that derived by the previous proposition from the canonical closed structure

on (C,D).

Proof. We set (C,D)∗ = (D◦, C •) and hence ∗(C,D) = (•D, ◦C). To check ∗-autonomy, it

suffices to check that we have C × D(X ⊗ Y, Z∗) ∼= C × D(Y ⊗ Z, ∗X). We calculate:

C × D
(
(C1, D1) ⊗ (C2, D2), (C3, D3)

∗
)

∼= C(C1 ⊗ C2, D
◦
3) × D(C1 ⊠l D2 + D1 ⊠r C2, C

•
3)

∼= C(C1 ⊗ C2, D
◦
3) × D(C1 ⊠l D2, C

•
3) × D(D1 ⊠r C2, C

•
3)

∼= D(C2 ⊠l D3,
◦C1) × D(D2 ⊠r C3,

◦C1) × C(C2 ⊗ C3,
•D1)

∼= C(C2 ⊗ C3,
•D1) × D(C2 ⊠l D3 + D2 ⊠r C3,

◦C1)

∼= C × D
(
(C2, D2) ⊗ (C3, D3),

∗(C1, D1)
)

as required. Clearly, if (C,D) is cyclic ∗-autonomous, then C × D will be too. Now, the

closed structure this induces on C × D is given by Y Z = (Y ⊗ ∗Z)∗ and Z Y =
∗(Z∗ ⊗ Y). We calculate:

((C1, D1) ⊗
∗(C2, D2))

∗ ∼= (C1 ⊗
•D2, C1 ⊠l

◦C2 + D1 ⊠r
•D2)

∗

∼= ((C1 ⊠l
◦C2)

◦
× (D1 ⊠r

•D2)
◦, (C1 ⊗

•D2)
•)

∼=
(
(C1 C2) × (D1 l D2), C1 r D2

)

and similarly for leµ closure.

Example . Given a monoidal closed category C, we have shown that the canonical ac-

tion of C on C
op is cyclic ∗-autonomous. If C has finite products, then C

op has finite

coproducts, so (C,Cop) ∈ BAct+. Hence we can apply the previous result to see that

C ×C
op is a cyclic ∗-autonomous category; and the structure on C ×C

op is precisely that

prescribed by the ‘simple self-dualisation’ construction. However, even ifC does not have

products, (C,Cop) is still a cyclic ∗-autonomous module; it is merely that this structure

fails to be representable.

3.11 Modules modulo C

Our principal motivation here is to develop theory that will allow us to complete the

explanation of double gluing begun in section . Recall that there we produced a sym-

metric closedmodule (A,B) = (E ↓ L, (E ↓ Kop)op) togetherwith a strictmodular functor



3.11. M  C

(F, G) : (A,B) → (C,C). ßedouble glueing categorywe are aµer is given by the pullback

G B

G

A
F

C,

and it is our goal in this section to equip G with monoidal structure. Essentially, we will

do this by extending the cofree construction given above from Cat to Cat/C.

First we need a notion of ‘module in Cat/C’. We note that if C is a monoidal category,

thenCat/C can be equippedwith the structure of a -monoidal -category in the sense of

[GPS]; i.e., a monoidal Cat-category. Explicitly, this structure is given by I = 1
∆I
−−→ C,

the functor picking out the unit object of C, and

(A → C) ⊗ (B → C) = (A × B → C × C
⊗
−→ C).

Now, just as a monoidal category A is a pseudomonoid in Cat, so a pseudomonoid

in Cat/C equipped with this -monoidal structure is precisely a monoidal category A

equipped with a strict monoidal functor F : A → C.

Similar considerations lead us to conclude that a module (A,B) in Cat/C should be a

module (A,B) equipped with a strict modular functor (F, G) : (A,B) → (C,C), where
the latter is C viewed as a module over itself. Now, we have a notion of module, but

for representability of this structure, we need an analogue of ‘category with coproducts’.

Since we shall also need an analogue of ‘category with products’ later, we deal with this

at the same time.

Notation. Given a functor G : B → C, we write X (R) ∈ B to indicate that X ∈ B and

G(X) = R. Similarly on maps we write f (φ) to indicate f ∈ B and G(f) = φ.

Definition . Given a functorG : B → C, we say thatB has binary coproductsmodulo

C if the -cell ∆

B

G

∆
B ×C B

G

C

in Cat/C has a leµ adjoint. Explicitly, we have a functor ⊕ : B ×C B → B such that

G(B1
(R) ⊕ B2

(R)) = R, and such that

B ×C B((B1, B2)
(R), (X, X)(S)) ∼= B((B1 ⊕ B2)

(R), X (S)).

Similarly, we say that B has an initial object modulo C if the -cell ! = G

B

G

!
C

id

C



C 3. M ,     C 

has a leµ adjoint. Explicitly, we have a functor 0 : C → B such that G(0(R)) = R, and
such that

C(R, S) ∼= B(0(R), X (S)).

If B has binary coproducts modulo C and an initial object modulo C, we say that it has

finite coproducts modulo C. Similarly, for B to have products modulo C is for the two

functors∆ and ! to have right adjoints inCat/C. If wewrite⊙ : B×CB → B and 1 : C → B

for these adjoints, then we have G(B1
(R) ⊙ B2

(R)) = R, G(1(R)) = R,

B ×C B((X, X)(R), (B1, B2)
(S)) ∼= B(X (S), (B1 ⊙ B2)

(S)), and

C(R, S) ∼= B(X (R), 1(S)).

Note that for B to have finite coproducts modulo C, it is a necessary condition that

each preimage category G−1(R) has finite coproducts; and these provide the object part

of the functors ⊕ and 0. Now, if the map G : B → C happens to be a fibration, then it is

straightforward to check that it is also a sufficient condition.

Similarly, given a cofibration G : B → C, B has finite products modulo C if and only if

each fibre G−1(R) has finite products. Almost all naturally occuring examples arise from

fibrations and cofibrations in this way.

Examples .

• Given a functor L : C → E, we can form the comma category E ↓ L. ßen the

forgetful functor F : E ↓ L → C is a cofibration. Further, if Ehas sufficient pullbacks,

then each fibre has finite products, given by

1(R) = (LR → LR); (X
φ
−→ LR) ⊙ (Y

ψ
−→ LR) =

Q X

Y LR.

Further, in this case the forgetful functor also becomes a fibration; and if E has finite

coproducts, then so does each fibre, given by

0(R) = (0 → LR); (X
φ
−→ LR) ⊕ (Y

ψ
−→ LR) = (X + Y

[φ,ψ]
−−−−→ LR).

• ße forgetful functor F : Coh → Rel is a fibration and a cofibration; indeed, given

a coherence space Y = (S,aY) and f : R 7→ S, the cartesian liµing f ∗Y is (R,af ∗Y),

where

r1 `f ∗Y r0 ⇔ there exist s1, s2 ∈ S with r1 f s1, r2 f s2, and s1 `Y s2.

Similarly, given X = (R,aX) and f : R 7→ S, the cocartesian liµing f∗X is (S,af∗X),

where

s1 af∗X s0 ⇔ there exist r1, r2 ∈ R with r1 f s1, r2 f s2, and r1 aX r2.



3.11. M  C

Further, the fibres have products and coproducts; indeed, F−1(R) is just the lattice
of coherence space structures on R.

So now we can state the promised representability result:

Proposition . Suppose we have a modular functor (F, G) : (A,B) → (C,C) such that

• (F, G) is strict modular (i.e.

FI = I , F(U⊗V) = FU⊗FV , G(U⊠lY) = FU⊗GY , and G(X⊠rV) = GX⊗FV);

• B has coproducts modulo C, and the actions of A on B preserve them (i.e.,

U (R)
⊠l (X

(S)⊕Y (S)) ∼= (U ⊠l X)
(R⊗S)

⊕ (U ⊠l Y)
(R⊗S) and U (R)

⊠l 0S ∼= 0(R⊗ S),

and similarly for the right action);

then A ×C B is a monoidal category.

Proof. Given objects (U (R), X (R)) and (V (S), Y (S)) in A ×C B, we note that

G(U ⊠l Y) = FU ⊗ GY = R ⊗ S = GX ⊗ FV = G(X ⊠r V),

so that (U ⊠l Y, X ⊠r V) ∈ B×C B. Hence we can form (U ⊠l Y)⊕ (V ⊠r X), and similarly

on maps. Now we give the monoidal structure on A ×C B as follows. On objects:

(U (R), X (R)) ⊗ (V (S), Y (S)) = (U ⊗ V, (U ⊠l Y) ⊕ (X ⊠r V))

and on maps

(U,

fU
(φ)

X)

fX
(φ)

(U ′, X ′)

⊗

(V,

gV
(ψ)

Y)

gY
(ψ)

(V ′, Y ′)

=

(U ⊗ V,

fU⊗gV

(U ⊠l Y) ⊕ (X ⊠r V))

(fU⊠lgY)⊕(fX⊠rgV)

(U ′ ⊗ V ′, (U ′ ⊠l Y
′) ⊕ (X ′ ⊠r V

′)),

whilst the unit is

I = (I, 0(I)).

ßat the tensor is associative and unital follows from the fact that the actions preserve

coproducts modulo C; bifunctoriality follows from that of the actions and of ⊕.

Our result extends in an evident way to the closed and ∗-autonomous cases:

Proposition . Suppose further that

• (A,B) is leµ (respectively right) closed;



C 3. M ,     C 

• (F, G) is a strict leµ (respectively right) closed modular functor (i.e.,

F(B C) = FB FC, F(D l E) = GD GE, G(C r D) = FC GD,

and similarly for right closure);

• A has products modulo C;

then A ×C B is also leµ (respectively right) closed.

Proof. Similarly to above, we note that for (V (S), Y (S)) and (W (T), Z(T)), we have

F(V W) = FV FW = S T = GY GZ = F(Y l Z),

so that we can form (V W) ⊙ (Y l Z), and similarly on maps. ßus we set

(V (S), Y (S)) (W (T), Z(T)) = ((V W) ⊙ (Y l Z), V r Z),

with the by now evident action on maps. To ease notation for the next part, let us write

A(U, V) ×C B(X, Y) for A ×C B
(
(U (R), X (R)), (V (S), Y (S))

)
, and similarly for A(–, –) ×C

A(–, –), etc. We calculate:

A ×C B
(
(U,X) ⊗ (V, Y), (W,Z)

)
∼= A(U ⊗ V,W) ×C B

(
(U ⊠l Y) ⊕ (X ⊠r V), Z

)

∼= A(U ⊗ V,W) ×C B(U ⊠l Y, Z) ×C B(X ⊠r V, Z)
∼= A(U, V W) ×C A(U, Y l Z) ×C B(X, V r Z)
∼= A

(
U, (V W) ⊙ (Y l Z)

)
×C B(X, V r Z)

∼= A ×C B
(
(U,X), (V, Y) (W,Z)

)
,

and can proceed similarly for right closure.

Proposition . Suppose that:

• (A,B) is (cyclic) ∗-autonomous;

• (F, G) is a strict (cyclic) ∗-autonomous functor (i.e., a strict modular functor such

that

(FA)∗ = G(A•), and (GB)∗ = F(B◦));

• B has coproducts modulo C;

then A ×C B is ∗-autonomous.

Proof. We equip A ×C B with ∗-autonomous structure via

(U (R), X (R))∗ = (X ◦, U •),

(and hence ∗(U,X) = (•X, ◦U)), noting that F(X ◦) = (GX)∗ = (FU)∗ = G(U •) as

required. Evidently if (A,B) is cyclic ∗-autonomous, then sowill beA×CB. Now the same

calculations as previously show that this gives a ∗-autonomous structure on A×C B.



3.11. M  C

Examples .

• Note that the forgetful functor F : Coh → Rel is a strict ∗-autonomous functor; and

as evidenced above, Coh has products and coproducts modulo C. Hence we may

form the following category:

– Objects are triples (R,a1,a2) such that (R,a1) and (R,a2) are coherence spaces;

– Maps (R,a1,a2) → (S,a1,a2) are relations f : R 7→ S which are maps of

coherence spaces (R,a1) → (S,a1) and (R,a2) → (S,a2).

ßis category is symmetric ∗-autonomous. ße tensor product of (R,a1,a2) with

(S,a1,a2) is given by (R × S,a1,a2), where

(r1, s1) a1 (r2, s2) iff r1 a1 r2 and s1 a1 s2

(r1, s1) a2 (r2, s2) iff (r1 a1 r2 and s1 a2 s2) or (r1 a2 r2 and s1 a1 s2)

and duality is given by

(R,a1,a2)
∗ = (R,`2,`1).

• We can now conclude our treatment of double glueing. Recall fromExample  that,

given the data for double glueing, we can construct a closed (or ∗-autonomous)

symmetric module (A,B) := (E ↓ L, (E ↓ Kop)op) and a strict closed (or ∗-auton-

omous) symmetric modular functor (F, G) : (A,B) → (C,C). From , we know

that A has products modulo Rel and B coproducts, and hence we can apply  to

get the symmetric closed (or ∗-autonomous) category A ×C B. It’s now immediate

to see that what we have are precisely the double glueing categories of [HS].



Chapter 4

Polycategories

4.1 Introduction

Much has been written over the past few years about the area ofmulticategories and their

abstract generalisation. Multicategories were introduced as a logical system by Lam-

bek [Lam] and put on an algebraic footing by Burroni [Bur], whose theory has

lately been independently rediscovered and popularised by Leinster [Lei] and Her-

mida [Her]. ße theory is elegant and puts multicategories on a sound mathematical

footing. But multicategories have a poor relation: the polycategories of [Sza]. Here

the situation is rather different; no elegant way of describing polycategories has yet been

found.

ßere has been one attempt at such a formulation, given in [Kos]; however, to these

eyes it is not wholly successful, for the following reason. Consider first the case of plain

Set-basedmulticategories; Burroni, Leinster andHermida are united in takingwhat is es-

sentially a ‘fibrational’ approach to the algebraic structures concerned. We can see some

problems with this: there is a definite issue withmoving from non-symmetric multicate-

gories to symmetricmulticategories, essentially due to a lack of sufficient structure in the

category of sets; and similarly, the concept of ‘V-enrichedmulticategory’ fails entirely to

be captured.

One may rectify both these problems by moving from a ‘fibrational’ to a ‘cofibrational’

approach; that is, by working with the bicategoryMod of profunctors. In this context, we

can capture successfully and concisely the notion of symmetric multicategory, and, by

replacing Mod by V-Mod, the notion of ‘V-enriched (symmetric) multicategory’. ßis

much is essentially already known: see [CT] or [BD] for example.

Now, Koslowski’s approach to polycategories is an attempt to extend the ‘fibrational’

approach for multicategories; however, it is in fact much more natural to work in the

‘cofibrational’ context. ßere, the composition of maps in polycategories is captured by

a certain pseudo-distributive law between a pseudomonad (describing the ‘source arities’)

and a pseudocomonad (describing the ‘target arities’) in the bicategoryMod.

In the overview to this essay, we talked of the species of mathematical objects which



C 4. P

blur the distinction between source and target; polycategories are verymuch of this class;

there is a strong sense of information flowing ‘backwards’ as well as ‘forwards’, so we

should not be surprised by the necessity of moving from the -category of categories

(which like the category of sets, has a very strong sense of directedness) to the bicategory

of profunctors.

Now, many of the bald assertions made in the penultimate paragraph hide prodigious

amounts of coherence. A subsidiary theme of this chapter will therefore be to consider

ways in which we can avoid offending the reader with innumerable coherence pasting

diagrams.

Much of the material presented here is still in flux, and many of the ‘propositions’

will in fact be just that: propositions, pending proofs. However, the statements without

proofs are usually of the ‘abstract nonsense’ sort which, if not actually in the literature,

at least ought be in the literature, whilst those with proofs include all the non-trivial

combinatorics which lies at the heart of this construction. ßerefore I hope not to overly

strain the reader’s credulity on this front.

4.2 Multicategories

We begin by recapping briefly the theory of multicategories, cast in terms of the bicate-

gory of profunctors. ße material here summarises material from [BD] and [Lei],

amongst others. We begin with some notation:

Notation. WewriteX∗ for the free monoid on a setX , and Γ,∆,Σ,Λ for typical elements

thereof. We will use comma to denote the concatenation operation on X∗, as in “Γ,∆”;
and we will tend to conflate elements ofX with their image inX∗. Given Γ = x1, . . . , xn ∈
X∗, we define |Γ| = n, and given σ ∈ Sn, write σΓ for the element xσ(1), . . . , xσ(n) ∈ X∗.

Definition . A symmetric multicategory M consists of:

• A set obM of objects;

• For every Γ ∈ (obM)∗ and y ∈ obM, a set M(Γ; y) of multimaps from Γ to y (we

write a typical element of such as f : Γ → y); further, for every σ ∈ S|Γ|, an exchange
isomorphism

M(Γ; y) → M(σΓ; y).

ßis data satisfies axioms expressing the fact that exchange isomorphisms compose as

expected. Furthermore, we have:

• For every x ∈ obM, an identity map idx ∈ M(x; x);

• For every Γ,∆1,∆2 ∈ (obM)∗ and y, z ∈ obM, a composition map

M(Γ; y) × M(∆1, y,∆2; z) → M(∆1, Γ,∆2; z),



4.2. M

all subject to axioms expressing that composition is associative and unital, and compat-

ible with the exchange isomorphisms.

Now, this data expresses composition as a local operation performed between twomul-

timaps; however, there is an alternative global view, where we ‘multicompose’ a family of

multimaps gi : Γi → yi with a multimap f : y1, . . . , yn → z. ße transit from one view to

the other is straightforward: we recover the global composition from the local by per-

forming, in any order, the local compositions of the gi’s with f – and the axioms for

local composition ensure that this is uniquely defined. Conversely, we can recover the

local composition from the global by setting all but one of the gi’s to be the identity.
We can express this global composition as follows: fix the object set X = obM, and

consider it as a discrete category. Now, writing T for the symmetric strict monoidal

category monad T on Cat, we consider the functor category [(TX)op × X, Set]. To give

an object F of this is to give sets of multimaps as above, together with coherent exchange

isomorphisms. Further, this category has a ‘substitution’ monoidal structure given by

(G ⊗ F)(Γ; z) =
∑

k∈N
y1,...,yk∈X

∫ ∆1,...,∆k∈TX

G(y1, . . . , yk; z) ×
k∏

i=1

F(∆i; yi) × TX(Γ,
k⊗

i=1

∆i),

and

I(Γ; z) =

{
; if Γ 6= z

{∗} otherwise;

and to give a multicategory is precisely to give a monoid with respect to this monoidal

structure. Indeed, unpacking the above definition, we see that (G ⊗ F)(Γ; z) can be de-

scribed as follows. Let ∆1, . . . ,∆k ∈ (obM)∗ be such that

•
∑

|∆i| = |Γ| = n;

• there exists σ ∈ Sn such that σΓ = ∆1, . . . ,∆k.

ßen let f i : ∆i → yi in F (for i = 1, . . . , k), and let g : y1, . . . , yk → z in G. ßis gives us

a typical element of (G ⊗ F)(Γ; z), which we visualise as

Γ

σ

∆1, . . . ,∆k

f1,...,fk

y1, . . . , yk

g

z.



C 4. P

At this point we observe that we can express this more abstractly if we are prepared to

take the following on trust:

Proposition . T liµs from a monad on Cat to a pseudomonad onMod.

Equipped with this, we can form the ‘Kleisli bicategory’ Kl(T) of the pseudomonad

T ; its objects are those ofMod, and it has Kl(T)(A, B) = Mod(A, TB), with the obvious

composition and identities furnished by the structure of the pseudomonad T . It is a long
and tedious calculation with pasting diagrams to show that this genuinely does yield a

bicategory, butwe can now see that themonoidal structure on [(TX)op×X, Set]described
above is just horizontal composition in Kl(T)(X, X). Hence we arrive at an alternative,

but equivalent, definition:

Definition . A symmetric multicategory is a monad on a discrete object X in the bi-

category Kl(T).

4.3 Frommulticategories to polycategories

We recall now the notion of (symmetric) polycategory.

Definition . A symmetric polycategory P consists of

• A set obP of objects,

• For each pair (Γ,∆) of elements of (obP)∗, a set P(Γ; ∆) of polymaps from Γ to ∆,

• For each Γ, ∆ ∈ (obP)∗, each σ ∈ S|Γ| and τ ∈ S|∆|, exchange isomorphisms

P(Γ; ∆) → P(σΓ; τ∆),

• For each x ∈ obP, an identity map idx ∈ P(x; x), and

• For Γ,∆1,∆2,Λ1,Λ2,Σ ∈ (obP)∗, and x ∈ obP, composition maps

P(Γ; ∆1, x,∆2) × P(Λ1, x,Λ2; Σ) → P(Λ1, Γ,Λ2; ∆1,Σ,∆2),

subject to laws expressing the associativity and unitality of composition, expressing that

the exchange isomorphisms compose, and that they are compatible with associativity.

For the full details of this, we refer the reader to [Sza] or [CS]. We recover the notion

of amulticategory if we assert that P(Γ; ∆) is empty unless ∆ is a singleton.

Now, as before, wemay shiµ from a local notion of composition to a global one; we aim

to define a ‘polycomposite’ of two families of composable polymaps, but first we need to

say what we mean by composable.



4.3. F   

Definition . Let f := {fm : Λm → Σm}16m6j and g := {gn : Γn → ∆n}16n6k be families

of polymaps over a set of object X , such that

∑
|Σm| =

∑
|Γn| = l.

We say that a permutation σ ∈ Sl is amatching if σ(Σ1, . . . ,Σj) = (Γ1, . . . , Γk).

Informally, this matching shows ‘which output has been plugged into which input’,

and so we can define a composite map g ◦σ f . However, we would like our global notion

of composition to coincide with our local notion; hence, we should be able to generate

the global compositionmaps from repeated application of local compositions. However,

not all matchings have this property. Let us define what the ‘suitable’ matchings are:

Definition . Given a matching σ for f and g, form the bipartite graph G0 as follows:

its two vertex sets are Vf =
∑

Σm and Vg =
∑

Γn, and we join a vertex of Vf and a vertex

of Vg just when they are paired under the action of σ.
Now, for each m ∈ {1, . . . , j}, contract the vertices of G0 corresponding to Σm to a

point, and similarly for the Γn’s; this gives us a bipartite multigraph G1 with vertex set

n+m; we shall say that the matching σ is suitable just when G1 is acyclic, connected and

has no multiple edges.

For example:

id id

f g

h

A

C B

B

B

C C

CD

C

D

D A

and we see that this matching is indeed suitable. It’s not hard to prove that

Proposition . Amatching σ is suitable if and only if the associated composite map g◦σ f

can be formed by repeated local compositions.

Hence our global notion of composition of polymaps is given by composing a family f

with a family g along a suitable matching σ.
How can we express this more abstractly? Ideally we would like to express polycate-

gories as monads in a suitable bicategoryB. We observe the following:

Proposition . T is a pseudocomonad as well as a pseudomonad onMod.



C 4. P

Proof (sketch). Each component of the natural transformations η : 1 ⇒ T and µ : TT ⇒

T for the pseudomonad T on Mod has a right adjoint; and these components taken

together equip T with counit and comultiplication natural transformations T ⇒ 1 and

TT ⇒ T .

When regarded in this way, we shall write ‘S’ as a pseudonym for T to avoid confu-

sion. Now, the structure we have described above should fit into this picture as a pseudo-

distributive law between the monad T and the comonad S; that is, there should be a

pseudo-natural transformation

d : ST ⇒ TS

along with invertible modifications

ST
d

ǫT

TS

Tǫ

α

S

ST
d

Sη

TS

ηS

β

S

SST
Sd

∆T

γ

STS

dS

ST

d

TSS

T∆

TS

STT
dT

Sm

δ

TST

Td

ST

d

TTS

mS

TS

subject to ten coherence laws (see [Tan]). Now, we already know what d should look

like: indeed, in light of the above discussion, we would like to give its component at a

discrete category X ∈ Mod by taking for dX({Σm}16m6j; {Γn}16n6k) the set of admissible

matchings of {Σm} with {Γn}.

So, supposing we are able to produce such a pseudo-distributive law, how do we pro-

duce polycategories out of it? ße answer lies in forming the ‘two-sided Kleisli bicate-

gory’ of the pseudo-distributive law. Since this gadget may not be familiar, we describe

it first one dimension down:

Let C be a category, let T be a monad and S a comonad on C, and let d : ST → TS be
distributive law of the monad over the comonad; so the four diagrams above which were

filled in with invertible modifications now commute on the nose. ßen we define

Definition . ße two-sided Kleisli category Kl(d) of the distributive law d has:

• Objects those of C,

• Maps A → B in Kl(d) given by maps SA → TB in C,

with



4.4. T  T Mod

• Identity maps idA : A → A in Kl(d) given by the map

SA
ǫA
−−→ A

ηA
−−→ TA

in C;

• Composition for maps f : A → B and g : B → C in Kl(d) given by the map

SA
∆A
−−→ SSA

Sf
−−→ STB

dB
−−→ TSB

Tg
−−→ TTC

mC
−−→ TC

in C.

We claim that such a construction can be emulated in a bicategory, given a pseudo-

distributive law of a pseudomonad over a pseudocomonad. At present, no proof of such

a fact exists in the literature; but given the strongly analogous results of [Tan], I ask the

reader’s indulgence on this point. Hence we are now in a position to set out our goals for

the rest of this chapter: to prove the existence of the aforementioned pseudo-distributive

law in the least unpleasant way possible.

4.4 ße pseudomonad T on Mod

Before we attempt this, we need to describe in a little more detail the pseudomonad T
onMod. First, the homomorphism T itself. Its action on objects is the same as for Cat;

and on morphisms, its action is given as follows: for f : A → B inMod,

(Tf)(b1, . . . , bn; a1, . . . , am) =

{∑
σ∈Sn

∏n
i=1 f (bi; aσ(i)) ifm = n;

; otherwise,

with the evident action thus induced on -cells.

Now, for the unit and multiplication maps, recall that given a functor f : A → B in

Cat, we write f∗ and f ∗ for the profunctors:

f∗ : B
op × A → Set; f∗(b; a) = B(b, f a),

f ∗ : A
op × B → Set; f ∗(a; b) = B(f a, b).

If we write e and t for the unit andmultiplication of the -monad T onCat, then the unit

η andmultiplicationm of the pseudomonad T onMod have components ηA = (eA)∗ and

mA = (tA)∗ respectively. Further, when viewed as a pseudocomonad S, the counit ǫ and
comultiplication ∆ have components ǫA = (eA)

∗ and ∆A = (tA)
∗ respectively. We shall

also need the following result:

Proposition . Given f : A → B in Cat, we have T(f∗) = (Tf)∗ and T(f
∗) = (Tf)∗.



C 4. P

Proof. We have

T(f∗)(b1, . . . , bn; a1, . . . , an) =
∑

σ∈Sn

n∏

i=1

f∗(bi; aσ(i))

=
∑

σ∈Sn

n∏

i=1

B(bi; f (aσ(i)))

= TB(b1, . . . , bn; f (a1), . . . , f (an))

= TB(b1, . . . , bn; (Tf)(a1, . . . , an))

= (Tf)∗(b1, . . . , bn; a1, . . . , an)

and similarly for f ∗.

ße use to which we shall put this is as follows: we will need to consider arrows such

as Sη1 : S1 → ST1 in Mod, and it is simplest to define this simply as (Se1)∗; and the

above proposition allows us to do so, since Sη1 = S(e1)∗ = (Se1)∗; similarly for the other

structure maps.

4.5 Free monoidal structure at 1

Now, our aim is to build a distributive law d : ST ⇒ TS onMod; but initally, we will be

rather more modest. We wish to extract the combinatorial core of the proof; and to do

so, we shall only exhibit the desired data at the terminal category 1. Later we shall utilise

the well-behaved nature of T to attempt to liµ this structure from 1 to all ofMod. First,

we shall describe the categories T1, T21 and T31. We present T1 as the category with:

• Objects the natural numbers;

• Maps σ : n → m bijections of n withm.

Note that the unique functor a0 : T1 → 1 exhibits T1 as a T-algebra. Next, we present
T21 as the following category:

• Objects are order-preserving maps φ : nφ → mφ, where nφ,mφ ∈ N. We write such

an object simply as φ, with the convention that φ has domain and codomain nφ and
mφ respectively.

• Maps f : φ → ψ are pairs of bijections fn : nφ → nψ and fm : mφ → mψ such that

the following diagram commutes:

nφ

φ

fn nψ

ψ

mφ
fm

mψ .



4.5. F    1

It may not be immediately obvious that this is a presentation of T21. ße picture is as

follows: an object φ of T21 is to be thought of as a collection of nφ points partitioned into
mφ parts in accordance with φ. Given such an object, one can permute internally any of

itsmφ parts, or can in fact permute the set ofmφ parts itself; and a typical map describes

such a permutation. For example, the objects

φ : 5 → 4 ψ : 5 → 4

1, 2, 3, 4, 5 7→ 1, 1, 3, 4, 4 1, 2, 3, 4, 5 7→ 2, 2, 3, 4, 4

should be visualised as

[[•, •] , [] , [•] , [•, •]] and [[] , [•, •] , [•] , [•, •]]

respectively, whilst a typical map φ → ψ is given by

fn : 5 → 5 fm : 4 → 4

1, 2, 3, 4, 5 7→ 5, 4, 3, 1, 2 1, 2, 3, 4 7→ 4, 1, 3, 2

and should be visualised as

[[• , •], [], [•], [• , •]]

[[], [• , •], [•], [• , •]].

Andhencewe see that this indeed a valid presentation ofT21. Note also the two canonical

projection functors

πn : T
21 → T1 πm : T

21 → T1

φ 7→ nφ φ 7→ mφ

(fn, fm) 7→ fn (fn, fm) 7→ fm.

ße first of these, a1 : T
21 → T1, exhibits T1 as a (free) T-algebra, whilst the second is

in fact Ta0 : T
21 → T1. Proceeding similarly, we can present T31 as follows:

• Objects are diagrams φ = nφ
φ1
−−→ mφ

φ2
−−→ rφ in the category of finite ordinals and

order preserving maps;

• Maps f : φ → ψ are triples (fn, fm, fr) of bijections making

nφ
φ1

fn nψ
ψ1

mφ

φ2

fm mψ

ψ2

rφ
fr

rψ .



C 4. P

commute.

ßere are now three canonical projections onto T21:

πnm : T
31 → T21 πnr : T

31 → T21 πmr : T
31 → T21

φ 7→ (nφ
φ1
−−→ mφ) φ 7→ (nφ

φ2φ1
−−−−→ rφ) φ 7→ (mφ

φ2
−−→ rφ)

(fn, fm, fr) 7→ (fn, fm) (fn, fm, fr) 7→ (fn, fr) (fn, fm, fr) 7→ (fm, fr),

the first of which is the map a2 : T
31 → T21 exhibiting T21 as a T-algebra, the second of

which is Ta1, and the third of which is T2a0.

4.6 Spans

Before we can get on to stating and proving the existence of the distributive law, we shall

need a few preliminaries about acyclic and connected graphs. We would like to cap-

ture the combinatorial essence of these constructions categorically, allowing a smooth

presentation of the proof of the distributive law. Happily, this is possible.

ße main objects of our attention are spans in FinCard, i.e., diagrams n ← k → m in

the category of finite cardinals and all maps. When we write ‘span’ in future, it should be

read as ‘span in FinCard’ unless otherwise stated. We also make use without comment

of the evident inclusions FinOrd → FinCard and T1 → FinCard.

Now, each span n ← k → m determines a (categorist’s) graph k n +m ; if we

forget the orientation of the edges of this graph, we get a (combinatorialist’s) undirected

multigraph. We say that a span n ← k → m is acyclic or connected if the associated

multigraph is so. Note that the acyclic condition includes the assertion that there are no

multiple edges.

Proposition . Given a span n
θ1
←−− k

θ2
−−→ m, the number of connected components of the

graph induced by the span is given by the cardinality of r in the pushout diagram

k
θ2

θ1

m

τ2

n
τ1 r

(∗)

in FinCard.

Proof. Given the above pushout diagram, set ni = τ−11 (i) and mi = τ−12 (i) (for i =

1, . . . , r). Now we observe that, for i 6= j, we have

θ−11 (ni) ∩ θ−12 (mj) = θ−11 (ni) ∩ θ−11 (nj) = ;,

so that induced graph of the span has at least r unconnected parts (with respective vertex
sets ni+mi). On the other hand, if the induced graphG had strictlymore than r connected



4.6. S

components, we could find vertex sets v1, . . . , vr+1 which partition v(G), and for which

vi ∩ vj = ; for i 6= j. (†)

But now define maps τ1 : n → r + 1 and τ2 : m → r + 1 by letting τi(x) be the k such that

x ∈ vk. Evidently, then, τ1(θ1(x)) = τ2(θ2(x)) for all a ∈ k, by equation (†), so we have a

commuting diagram

k
θ2

θ1

m

τ2

n τ1
r + 1

for which the bottom right vertex does not factor through r, contradicting the assump-

tion that r was a pushout. Hence G has precisely r connected components.

Corollary . A span n
θ1
←−− k

θ2
−−→ m is connected if and only if the diagram

k
θ2

θ1

m

n 1

is a pushout in FinCard.

Proposition . A span n
θ1
←−− k

θ2
−−→ m is acyclic if and only, for every monomorphism

ι : k′ ,→ k,

k
θ2

θ1

m

n r

a pushout implies
k′

θ2ι

θ1ι

m

n r

not a pushout.

Proof. Suppose the leµ hand diagram is a pushout; then the associated graph G of the

span has r connected components.

Suppose first that G is acyclic, and ι : k′ ,→ k. ßen the graph G ′ associated to the

span n
θ1ι
←−− k′

θ2ι
−−→ m has the same vertices as G but strictly fewer edges; and since G is

acyclic, G ′ must have > r connected components, and hence r cannot be a pushout for
the right-hand diagram.

Conversely, ifG is not acyclic, thenwe can remove some edge ofG without changing its

number of connected components; and thus we obtain some monomorphism ι : k′ ,→ k
making the right-hand diagram a pushout.



C 4. P

Proposition . Suppose we have a commuting diagram

k
θ2

θ1

m

φ2

n φ1
r.

(∗)

ßen the spansm(i) ← k(i) → n(i) (for i = 1, . . . , r) induced by pulling back along elements

i : 1 → r are all connected if and only if (∗) is a pushout.

Proof. Suppose all the induced spans are connected; then each diagram

k(i)
θ
(i)
2

θ
(i)
1

m(i)

n(i) 1

is a pushout; hence the diagram

∑
ik

(i)

∑
iθ

(i)
2

∑
iθ

(i)
1

∑
im

(i)

∑
in

(i) r

is also a pushout, whence it follows that (∗) is itself a pushout.

Conversely, if (∗) is a pushout, then pulling this back along the map i : 1 → r yields
another pushout in FinCard, so that each induced span is connected.

Proposition . LetG be a graph with finite edge and vertex sets. Any two of the following

conditions implies the third:

• G is acyclic;

• G is connected;

• |v(G)| = |e(G)| + 1.

Proof.

• If G is acyclic and connected, then it is a tree, and so |v(G)| = |e(G)| + 1;

• if G is connected with |v(G)| = |e(G)| + 1, then it is minimally connected, hence a

tree, and so acyclic;

• if G is acyclic with |v(G)| = |e(G)| + 1, then it is maximally acyclic, hence a tree,

and so connected.



4.7. T    1

Corollary . A span n
θ1
←−− k

θ2
−−→ m is acyclic and connected if and only if the diagram

k
θ2

θ1

m

n 1

is a pushout in FinCard, and n +m = k + 1.

Corollary . Suppose we have a commuting diagram

k
θ2

θ1

m

φ2

n φ1
r.

(∗)

then the induced spans m(i) ← k(i) → n(i) (for i = 1, . . . , r) are acyclic and connected if

and only if (∗) is a pushout andm + n = k + r.

4.7 ße distributive law at 1

Recall that we are using S as a pseudonym forT when viewed as a pseudocomonad rather

than a pseudomonad onMod. In particular, the action of S and T on objects is the same,

so we may write TS1, ST1, STS1, etc., to refer to T21 or T31. We are now ready to give

the component of our distributive law at 1; we define d1 : TS1
op × ST1 → Set as follows:

• On objects: elements f ∈ d1(φ;ψ) are bijections fn fitting into the diagram

nφ
fn

φ

nψ
ψ

mφ mψ

such that the spanmφ

φ
←− nφ

ψ◦fn
−−−−→ mψ is acyclic and connected.

• On maps: Let g : ψ → ρ in ST1 and let f ∈ d1(φ;ψ). ßen we give an element

g ◦ f ∈ d1(φ; ρ) by

nφ
gn◦fn

φ

nρ

ρ

mφ mρ



C 4. P

ßis action is evidently functorial, but we still need to check that it really does yield

an element of d1(φ; ρ); that is, we need the associated span to be acyclic and con-

nected. But this span is the top path of the diagram

nφ

fn

φ nψ

ψ

gn nρ

ρ

mφ mψ gm
mρ;

and therefore also the bottom path, since the right-hand square commutes. But

since gm is an isomorphism, the graph induced by the span mφ

φ
←− nφ

ψfn
−−−→ mψ is

isomorphic to the graph induced by the span mφ

φ
←− nφ

gmψfn
−−−−−→ mρ, and hence the

latter is acyclic and connected since the former is. So we have a well-defined leµ

action of ST1 on d1; proceeding similarly we give a well-defined right action of TS1
on d1.

Now, we shall also need the distributive law at S1; for the moment, we shall simply state

what it should be, and later on we will check its consistency. So, we define the functor

dS1 : TSS1
op × STS1 → Set as follows:

• On objects: elements f ∈ dS1(φ;ψ) are pairs of bijections fn and fm fitting in the

diagram

nφ
fn

φ1

nψ
ψ1

mφ
fm

φ2

mψ

ψ2

rφ rψ

such that the span rφ
φ2
←−− mφ

ψ2◦fm
−−−−−→ rψ is acyclic and connected.

• On maps: Let g : ψ → ρ in STS1 and let f ∈ dS1(φ;ψ). ßen we give an element



4.7. T    1

g ◦ f ∈ dS1(φ; ρ) by

nφ
gn◦fn

φ1

nρ

ρ1

mφ
gm◦fm

φ2

mρ

ρ2

rφ rρ.

For this to be an element of dS1(φ; ρ), we need firstly that

nφ

φ1

fn nψ

ψ1

gn nρ

ρ1

mφ
fm

mψ gm
mρ,

commutes; and indeed it does, the leµ hand square since f ∈ dS1(φ;ψ) and the

right hand square since g is a map in STS1. Furthermore, we need that the span it

induces is acyclic and connected. But this span is the top path of the diagram

mφ
fm

φ2 mψ

ψ2

gm mρ
ρ2

rφ rψ gr
rρ;

and therefore also the bottom path, since the right-hand square commutes. So as

before, the graph induced by this span is acyclic and connected, since gr is an iso-

morphism. So we have a well-defined leµ action, and can give a right action simi-

larly.

Similarly, we state the definition of the functor Sd1 : STS1
op × SST1 → Set.

• Onobjects: elements f ∈ Sd1(φ;ψ) are pairs of bijections fn : nφ → nψ and fr : rφ →
rψ fitting in the diagram

nφ
gn

φ1

nψ
ψ1

mφ

φ2

mψ

ψ2

rφ gr
rψ



C 4. P

such that for each i = 1, . . . , rψ , the induced spans

n(i)φ
g
(i)
n

φ
(i)
1 n(i)ψ

ψ
(i)
1

m(i)
φ m(i)

ψ

are acyclic and connected.

Let us clarify what the induced spans referred to above actually are. We have the com-

muting diagram

nφ
gn

φ1

nψ
ψ1 mψ

ψ2

mφ
φ2

rφ gr
rψ

(∗)

and the induced spans are the result of pulling this diagram back along elements i : 1 →

rψ . By the results of the previous section, these spans are all acyclic and connected if and
only if (∗) is a pushout and rψ + nφ = mφ +mψ .

• On maps: Let g : ψ → ρ in SST1 and let f ∈ Sd1(φ;ψ). ßen we give an element

g ◦ f ∈ Sd1(φ; ρ) by

nφ
gn◦fn

φ1

nρ

ρ1

mφ

φ2

mρ

ρ2

rφ
gr◦fr

rρ.

As before, this makes

nφ

φ2φ1

fn nψ

ψ2ψ1

gn nρ

ρ2ρ1

rφ
fr

rψ gr
rρ

commute as required; it remains to show that the spans it induces are acyclic and

connected. By the above remarks, it will do to show firstly that rρ + nφ = mφ +mρ,



4.8. T  2-  1

which is true since rψ + nφ = mφ +mψ , rψ = rρ andmψ = mρ, and secondly that

nφ
fn

φ1

nψ
gn nρ

ρ1 mρ

ρ2

mφ
φ2

rφ
fr

rψ gr
rρ

is a pushout; for which we observe that both squares in

nφ
fn

φ1

nψ
ψ1 mψ

gm

ψ2

mρ

ρ2

mφ
φ2

rφ
fr

rψ gr
rρ

are pushouts, and hence the outer square is as well; and since gmψ1 = ρ1gn we are
done. ße right action we give similarly.

4.8 ße mediating 2-cells at 1

Now we have defined the distributive law, we need to produce the component of the

invertible modifications α, β, γ and δ at 1. We note that the functors Se1 : S1 → ST1 and
eS1 : S1 → TS1 are given by

Se1 : n 7→ (n
id
−→ n) eS1 : n 7→ (n

!
−→ 1)

f 7→ (f , f) f 7→ (f , !)

and hence Sη1 : ST1
op × S1 → Set and ηS1 : TS1

op × S1 → Set are given by:

Sη1(φ; n) = ST1(φ, (n
id
−→ n))

ηS1(φ; n) = TS1(φ, (n
!
−→ 1))

Proposition . Consider the diagram

S1
Sη1

ηS1

ST1

d1

TS1

inMod. ßere is a natural isomorphism αmediating the centre of this diagram.

Proof. ße lower side of this diagram has

ηS1(φ; n) = TS1(φ, (n
!
−→ 1)) ∼=

{
S1(nφ, n) ifmφ = 1;

; otherwise,



C 4. P

naturally in φ and n, whilst the upper side has

(d1 ⊗ Sη1)(φ; n) =

∫ ψ∈ST1

ST1(ψ, (n
id
−→ n)) × d1(φ;ψ),

which is isomorphic to d1(φ; (n
id
−→ n)), naturally in φ and n. Now, any element f of

d1(φ; (n
id
−→ n)), given by

nφ

φ

fn
n

id

mφ n

say, must satisfy mφ + n = nφ + 1; but since n = nφ, this can only happen if mφ = 1; and

in this case, the diagram

nφ

φ

fn
n

!

mφ
!

1

is necessarily a pushout. Hence

d1(φ; (n
id
−→ n)) ∼=

{
S1(nφ, n) ifmφ = 1;

; otherwise,

naturally in φ and n; so we are done.

Likewise, Tε1 : T1
op × TS1 → Set and εT1 : T1

op × ST1 → Set are given by:

Tε1(n;φ) = TS1((n
id
−→ n), φ)

εT1(n;φ) = ST1((n
!
−→ 1), φ),

and there is a similar natural isomorphism βmediating the diagram

ST1
εT1

d1

T1

TS1

Tε1

Next, we must produce the more complicated mediating -cells for the multiplication.

ße functors tT1 : SST1 → ST1 and Tt1 : TSS1 → TS1 in Cat are given by

mT1 : (nφ
φ1
−−→ mφ

φ2
−−→ rφ) 7→ (nφ

φ1
−−→ mφ) Tm1 : (nφ

φ1
−−→ mφ

φ2
−−→ rφ) 7→ (nφ

φ2φ1
−−−−→ rφ)

(fn, fm, fr) 7→ (fn, fm) (fn, fm, fr) 7→ (fn, fr)



4.8. T  2-  1

and hence ∆T1 : SST1
op × ST1 → Set and T∆1 : TSS1

op × TS1 → Set are given by:

∆T1(φ;ψ) = ST1((nφ
φ1
−−→ mφ), ψ)

T∆1(φ;ψ) = TS1((nφ
φ2φ1
−−−−→ rφ), ψ)

Proposition . Consider the diagram

ST1
∆T1

d1

SST1

Sd1

TS1

T∆1

STS1

dS1

TSS1

inMod. ßere is a natural isomorphism γmediating the centre of this diagram.

Proof. ße lower side of this diagram has

(T∆1 ⊗ d1)(φ; ρ) =

∫ ψ∈TS1

d1(ψ; ρ) × TS1
(
(nφ

φ2φ1
−−−−→ rφ), ψ

)
,

which is isomorphic to d1
(
(nφ

φ2φ1
−−−−→ rφ); ρ

)
, naturally in φ and ρ, whilst the upper side of

this diagram has

K(φ; ρ) = (dS1 ⊗ Sd1 ⊗ ∆T1)(φ; ρ) =

∫ ψ∈STS1,
ξ∈SST1

ST1((nξ
ξ1
−−→ mξ), ρ) × Sd1(ψ; ξ) × dS1(φ;ψ).

So, we need to set up an isomorphism between K(φ; ρ) and d1((nφ
φ2φ1
−−−−→ rφ); ρ) which is

natural in φ and ρ. Suppose first of all that we are given an element x of K(φ; ρ); we may

represent x by elements f ∈ dS1(φ;ψ), g ∈ Sd1(ψ; ξ), and h ∈ ST1((nξ
ξ1
−−→ mξ), ρ):

nφ
fn

φ1

nψ
gn

ψ1

nξ
hn

ξ1

nρ
ρ

mφ
fm

φ2

mψ

ψ2

mξ
hm

ξ2

mρ

rφ rψ gr
rξ .



C 4. P

We send x to the element x̂ of d1
(
(nφ

φ2φ1
−−−−→ rφ); ρ

)
given by

nφ
hngnfn

φ2φ1

nρ

ρ

rφ mρ.

Note that this element is independent of the representation of x that we chose, and this

assignation is natural in φ and ρ; but for it to be well-defined, we need still to check that

the span rφ
φ2φ1
←−−−− nφ

ρhngnfn
−−−−−−→ mρ is acyclic and connected. For this, we observe first that

in the following diagram

nφ
fn

φ1

nψ
gn

ψ1

nξ
ξ1 mξ

ξ2

hn mρ

mφ

φ2
fm

mψ
ψ2

rψ gr
rξ

rφ 1 1 1

each of the smaller squares is a pushout; and hence the outer square is also a pushout.

But the top edge is hnξ1gnfn = ρhngnfn, so that the square

nφ
ρhngnfn

φ2φ1

nρ

rψ 1

is a pushout as required. Furthermore, the following equalities hold:

rφ + rψ = mφ + 1

mψ +mξ = nψ + rξ

mψ = mφ

mρ = mξ

rψ = rξ

nψ = nφ,

whence we have mρ + rφ = nφ + 1. So the span rφ
φ2φ1
←−−−− nφ

ρhngnfn
−−−−−−→ mρ is acyclic and

connected as required.



4.8. T  2-  1

Conversely, suppose we are given an element k of d1((nφ
φ2φ1
−−−−→ rφ); ρ):

nφ
kn

φ2φ1

nρ

ρ

rφ mρ;

then we take the following pushout:

nφ
ρkn

φ1

mρ

i2

mφ
i1

r.

Now, the map i1 in this pushout square need not be order-preserving; but it has a (non-

unique) factorisation as mφ
α1
−−→ r1

σ1
−−→ r, where α1 is order-preserving and σ1 a bijection.

Similarly, we can factorise i2 as mρ
α2
−−→ r2

σ2
−−→ r with α2 is order-preserving and σ2 a

bijection. [Note that it follows that each of the diagrams

nφ
ρkn

φ1

mρ

σ−11 i2

mφ α1
r1

and

nφ
ρkn

φ1

mρ

α2

mφ
σ−12 i1

r2

is also a pushout.] Now we send k to the element k̂ of K(φ; ρ) represented by the follow-
ing:

nφ id

φ1

nφ
kn

φ1

nρ id

ρ

nρ
ρ

mφ
id

φ2

mφ

α1

mρ
id

α2

mρ

rφ r1
σ−12 σ1

r2.

We need to check that this is a valid element of K(φ; ρ). Clearly all squares commute in

the diagram above, but we also need to check the acyclic and connected conditions.

We check first connectedness; for the middle map, the diagram

nφ
kn

φ1

nρ
ρ mρ

α2

mφ α1
r1

σ−12 σ1
r2

=

nφ
ρkn

φ1

mρ

α2

mφ
σ−12 i1

r2



C 4. P

is indeed a pushout, so the induced spans for the middle map are connected. For the

leµ-hand map, consider the diagram

nφ
ρkn

φ1

mρ

σ−11 i2

mφ α1

φ2

r1

rφ 1;

the outer square and the upper square are both pushouts, and hence so is the lower

square; so the leµ-hand span is connected.

And now acyclicity. For the middle map, we need that, given any monomorphism

ι : n′φ ,→ nφ, the diagram

n′φ
ρknι

φ1ι

mρ

α2

mφ
σ−12 i1

r2

is no longer a pushout. But suppose it were; then in the diagram

n′φ
ρknι

φ1ι

mρ

σ−11 i2

mφ α1

φ2

r1

rφ 1

the upper and lower squares would be pushouts, hencemaking the outer edge a pushout;

but this contradicts the acyclicity of the span rφ ← nφ → mρ. So the induced spans for

the middle map are acyclic. ßus we now know that the following equations hold:

mφ +mρ = nφ + r2

rφ +mρ = nφ + 1

r1 = r2,

and so can deduce that r1 + rφ = mφ + 1, as required for the leµ-hand span to be acyclic.

It remains to check that these two assignations aremutually inverse. It is evident, given



4.8. T  2-  1

k ∈ d1((nφ
φ2φ1
−−−−→ rφ); ρ), that

ˆ̂k = k. For the other direction, we send

x =

nφ
fn

φ1

nψ
gn

ψ1

nξ
hn

ξ1

nρ
ρ

mφ
fm

φ2

mψ

ψ2

mξ
hm

ξ2

mρ

rφ rψ gr
rξ .

to ˆ̂x =

nφ id

φ1

nφ
kn

φ1

nρ id

ρ

nρ
ρ

mφ
id

φ2

mφ

α1

mρ
id

α2

mρ

rφ r1
σ−12 σ1

r2.

We claim that these two diagrams represent the same element of K(φ; ρ). Indeed, note
that in the diagram

nφ
fn

φ1

nψ
gn

ψ1

nξ
ξ1 mξ

hm

ξ2

mρ

g−1r ξ2h
−1
m

mφ
fm

mψ
ψ2

rψ gr
rξ

g−1r

rψ

each of the smaller squares is a pushout, and hence the outer edge is. But the upper edge

is hmξ1gnfn = ρhngnfn = ρkn, so that the diagram

nφ
ρkn

φ1

mρ

g−1r ξ2h
−1
m

mφ
ψ2fm

rψ

is a pushout. Since r1 is also a pushout for this diagram, it follows that there is an iso-

morphism β1 : r1 → rψ such that β1α1 = ψ2fm; hence the following diagram commutes:

nφ
φ1

fn nψ
ψ1

mφ

α1

fm mψ

ψ2

r1
β1

rψ

Similarly, we see that

nφ
ρkn

φ1

mρ

ξ2h
−1
m

mφ
grψ2fm

rξ

is a pushout, and so there is an isomorphism β2 : rξ → r2 such that β2ξ2h
−1
m = α2, i.e.,



C 4. P

β2ξ2 = α2hm. Hence the following diagram commutes:

nξ
ξ1

hn nρ
ρ

mξ

ξ2

hm mρ

α2

rξ
β2

r2.

Furthermore, we have r1
β1
−−→ rψ

gr
−−→ rξ

β2
−−→ r2 = r1

σ1
−−→ r

σ−12
−−−→ r2, since each of these objects

is a pushout of the same span, and the isomorphisms between them are isomorphisms

of pushouts. ßus, using an evident notation for the internal actions, we have

x =

nφ
fn

φ1

nψ
gn

ψ1

nξ
hn

ξ1

nρ
ρ

mφ
fm

φ2

mψ

ψ2

mξ
hm

ξ2

mρ

rφ rψ gr
rξ .

≡

nφ id

φ1

nφ
φ1

fn nψ
ψ1

gn nξ

ξ1

hn nρ id

ρ

nρ
ρ

mφ
id

φ2

mφ

α1

fm mψ

ψ2

mξ

ξ2

hm mρ
id

α2

mρ

rφ r1
β1

rψ gr
rξ

β2
r2.

≡

nφ id

φ1

nφ
kn

φ1

nρ id

ρ

nρ
ρ

mφ
id

φ2

mφ

α1

mρ
id

α2

mρ

rφ r1
σ−12 σ1

r2.

= ˆ̂x.

So the assignations x 7→ x̂ and k 7→ k̂ are mutually inverse as required. It now follows

that the assignation d1((nφ
φ2φ1
−−−−→ rφ); ρ) → K(φ; ρ) is natural in φ and ρ, since its inverse

is. ßis completes the proof.

Entirely analgously, mS1 : TS1
op × TTS1 → Set and Sm1 : ST1

op × STT1 → Set are

given by:

mS1(φ;ψ) = ST1((nφ
φ1
−−→ mφ), ψ)

Sm1(φ;ψ) = TS1((nφ
φ2φ1
−−−−→ rφ), ψ)

and we obtain



4.9. C  -

Proposition . Consider the diagram

ST1
Sm1

d1

STT1

dT1

TS1

mS1

TST1

Td1

TTS1

inMod. ßere is a natural isomorphism δ mediating the centre of this diagram.

4.9 Clubs and pro-clubs

We now wish to show how we can liµ this pseudo-distributive law from 1 to the whole

of Mod. Due to the ongoing nature of this research, the results of this section are of a

highly speculative nature, and proofs will be sketchy.

First, we recall some background about Kelly’s clubs. ßese date back to the s,

but a more modern perspective is offered by [Kel] or [Web]. ße results that we

summarise below are drawn from the latter.

Definition . LetC andD be a finitely complete categories. We say that a natural trans-

formation α : F ⇒ G : C → D is cartesian if all its naturality squares are pullbacks.

Now, given functors F,M : C → D and a cartesian natural transformation α : F ⇒ M,

it is easy to see that F and α are determined up to isomorphism by the value of F1 and
the map α1 : F1 → M1; indeed, FX and αX are determined (up to isomorphism) by the

pullback

FX
F!

αX

F1

α1

MX
M!

M1

and Ff : FX → FY by the pullback

FX
Ff

αX

FY

αY

MX
Mf

MY .

More formally, we define the category [C,D] /c M with



C 4. P

• Objects (α, F) being cartesian natural transformations α : F ⇒ M;

• Maps γ : (α, F) → (β, G) being natural transformations γ : F ⇒ G such that

F

α

γ
G

β

M

commutes. Note that it follows that γ is itself a cartesian natural transformation.

and the above observations show that

Proposition . ßere is an equivalence of categories:

D/G1 ≃ [C,D] /c G.

Now, suppose thatM : C → C comes equipped with a monad structure (M, η, µ); then
M becomes a monoid in the strict monoidal category [C,C], and hence the glued cate-

gory [C,C]/M acquires strict monoidal structure:

(F
α
M) ⊗ (G

β
M) = (FG

αβ
MM

µ
M)

I = (idC

η
M)

with the evident action on maps. Given a monoidal category C, we say that D ,→ C is a

sub-monoidal category of C if the inclusion D ,→ C is a strict monoidal functor.

Definition . Amonad (M, η, µ) is a club onC if [C,C]/cM is a sub-monoidal category

of [C,C]/M.

Proposition  ([Kel]). Amonad (M, η, µ) is a club if and only if η and µ are cartesian
natural transformations andM preserves cartesian natural transformations intoM (i.e.,

Mα : MF ⇒ MM is cartesian whenever α : F ⇒ M is).

In particular, we may consider the case C = Cat; in this case the equivalence of cat-

egories exhibited above enriches to an equivalence of -categories which is locally an

isomorphism of categories. Now, consider again the equivalence

Cat/M1 ≃ [Cat,Cat] /c M.

We should like to replace both sides by something rather more general.

Definition . Let S be a small category; then the bicategoryMod ¯ S is given by:

• Objects (F,C) are functors C
F
−→ S;



4.9. C  -

• -cells (K, α) : (F,C) → (G,D) are pairs (K, α) where K : C → D is an arrow of

Mod, and α is a -cell α : G∗ ⊗ K → F∗ inMod(C,S):

C
K

F∗

α

D

G∗

S.

Since G∗ ⊣ G∗, we may equivalently give a -cell α′ : K → G∗ ⊗ F∗, which amounts

to giving a family of maps αdc : K(d; c) → S(Gd, Fc), natural in d and c.

• -cells γ : (K, α) → (L, β) are -cells γ : K → L inMod such that

K
γ

α′

L

β′

G∗ ⊗ F∗

commutes in Mod(C,D). Explicitly, to give such is to give maps γdc : K(d; c) →

L(d; c) in V, natural in d and c, such that

K(d; c)
γdc
−−→ L(d; c)

βdc
−−→ S(Gd, Fc) = K(d; c)

αdc
−−→ S(Gd, Fc).

Composition of 1- and 2-cells is inherited in the evident way fromMod.

So on the leµ hand side, we would like to replace Cat/M1 byMod ¯ M1; however, this

still leaves us with the question of what should replace the right-hand side. We sketch

one possible answer:

Definition . We say that an -functor F : Cat → Cat is equippable if we can find a

homomorphism F̂ : Mod → Mod and invertible modifications l and r as follows:

Cat
(–)∗

F
l

Mod

F

Cat
(–)∗

Mod

and

Cat
(–)∗

F
r

Mod

F

Cat
(–)∗

Mod.

If we fix a particular choice of F̂ , l and r, we say that F is equipped.

Conjecture . If F and G are equipped -functors on Cat and α : F → G is a cartesian

natural transformation between them, then α liµs to a strong transformation α∗ : F̂ ⇒

Ĝ : Mod → Mod with components (α∗)C = (αC)∗; it also liµs to a strong transformation

α∗ : Ĝ ⇒ F̂ : Mod → Mod with components (α∗)C = (αC)
∗.

In support of this conjecture, we note that a rather similar proposition is proven in Sec-

tion  of the paper [Her]. If this conjecture holds, we can give:



C 4. P

Definition . Suppose that M is an equipped -functor M : Cat → Cat. We write

[Mod,Mod] ¯c M for the following bicategory:

• Objects (F, α) are equipped -functors F : Cat → Cat together with cartesian nat-

ural transformations α : F ⇒ M;

• -cells (γ, u) : (F, α) → (G, β) consist of a strong transformation γ : F̂ ⇒ Ĝ and a

modification u : γ ⇛ β∗ ⊗ α∗:

F̂
γ

α∗
u

Ĝ

β∗

M̂

in [Mod,Mod];

• -cells w : (γ, u) → (δ, v) are modifications w : γ ⇛ δ such that

γ w

u

δ

v

β∗ ⊗ α∗

commutes in [Mod,Mod](F̂, Ĝ).

Conjecture . LetM be an equipped -functor; then there is a biequivalence

Mod ¯ M1 ≃ [Mod,Mod] ¯c M.

We sketch briefly why this should be plausible. First, to each object ofMod¯M1, we can

assign, via the equivalenceCat/M1 ≃ [Cat,Cat]/cM, a cartesian natural transformation

α : F ⇒ M. We claim:

Conjecture . If M is equipped, and α : F ⇒ M is a cartesian natural transformation,

then we can equip F .

Outline of putative proof. We consider a special class of equippable -functors; those

that preserve codiscrete cofibrations. Recall that a cospan

C

f

A

g

B

in Cat is a cofibration from A to C if and only if:

• f and g are full and faithful;



4.9. C  -

• given b ∈ Im f and a ∈ Im g , B(a, b) = ;;

furthermore, it is codiscrete if the map [f , g] : C +A → B is bijective on objects. Now, a

codiscrete cofibration from A to C gives rise to a profunctor f ∗⊗ g∗ : A → C; conversely

a profunctor A → C gives rise to a codiscrete cofibration by taking its lax colimit; this

gives rise to an equivalence of categories CodCofib(A,C) ≃ Prof(A,C).
Now, ifM preserves codiscrete cofibrations, then we see that the action of M̂ on arrows

ofMod can be read off from its action on a representing codiscrete cofibration in Cat. It

is not clear whether all equippable -functors arise in this way, but it is certainly the case

for the -functor T we want to consider. We aim to proceed similarly for the rest of the

structure.

So now, suppose we are given an arrow h : A → C in Mod. Let A
f
−→ B

g
←− C be its

associated cofibration; then consider the diagram

MC
Mf

M!

MA

M!

Mg

MB

M!

M1.

By pulling this diagram back along the arrow α1 : F1 → M1, we get a cospan FA →

FB ← FC. Now, in the displayed diagram, the top part is a cofibration (sinceM preserves

such), and it’s easy to see that pulling a cofibration back along α1 : F1 → M1 produces

another cofibration. ßis defines F̂ on arrows ofMod. ße action on -cells follows in the

evident way. Note that it isn’t at all clear that F̂ will preserve composition of profunctors.

We choose to elide this point at present.

Hence to each object of Mod ¯ M1 we can assign an object of [Mod,Mod] ¯c M. On

morphisms, we proceed similarly. Indeed, suppose we are given a -cell (f ,C) → (g,D)

inMod ¯ M1. Note that to give a -cell (f ,C) → (g,D) inMod ¯ M1 is equivalently to

give a commuting diagram

D

g

C

f
E

M1.

in Cat such that the top cospan is a codiscrete cofibration.

Let α : F ⇒ M and β : G ⇒ M be the associated objects of [Mod,Mod] ¯c M; we

seek a strong transformation γ : F̂ ⇒ Ĝ. To give its component γA at A, we observe that

F̂A is given by pulling back f : C → M1 along M! : MA → M1, and similarly for G;



C 4. P

hence we can produce a codiscrete cofibration from FA to GA, and hence a profunctor

γA : FA → GA, by pulling back the displayed diagram alongM! : MA
M!
−−→ M1.

So now, suppose that we are given an equipped -functorM such that M̂ has the struc-

ture of a pseudomonad. It follows that M̂ is a pseudomonoid in the monoidal bicat-

egory [Mod,Mod], and hence that the lax slice bicategory [Mod,Mod]/M̂ becomes a

monoidal bicategory. ßere is an evident inclusion

[Mod,Mod] ¯c M → [Mod,Mod]/M̂.

Definition . We say that M is a pro-club if [Mod,Mod] ¯c M is a sub-monoidal bi-

category of [Mod,Mod]/M̂.

Note that it follows that if M is a pro-club, then Mod ¯ M1 acquires the structure of a

monoidal bicategory. Indeed, we have amonoidal bicategory structure on [Mod,Mod]¯c

M which transports along the biequivalence of this bicategory withMod ¯ M1.

Conjecture . ße equipped -functor T is a pro-club.

4.10 Liµing the distributive law from 1

If we are prepared to accept that something like the results of the previous section are

true, we may now conclude our treatment of the pseudo-distributive law d. In fact, let

us state precisely what we wish to assume is true:

Conjecture . ße bicategory M = Mod ¯ T1 has the structure of a monoidal bicategory

extending the monoidal structure on Cat/T1. Furthermore, there is a homomorphism of

monoidal bicategories

Φ: M → [Mod,Mod].

Moreover, the object T = id : T1 → T1 is a pseudomonoid and a pseudocomonoid in

M (again, in this guise we will write it as S), and this structure is carried by Φ to the

pseudomonad and pseudocomonad structure on the homomorphism T : Mod → Mod.

Now, we claim we can recast all our pseudo-distributivity diagrams at 1 as diagrams

in M. Observe first that since the monoidal structure on M extends that of Cat/T1, we
already know its action on objects: in particular, the object T⊗T is given by T21

m1
−−→ T1,

etc. Furthermore, we can see what the maps T ⊗ T → T and 1 → T in M making T into

a pseudomonoid must be:

T21

m1

(m1)∗

∼=

T1

id

T1

and

1

η1

(η1)∗

∼=

T1.

id

T1



4.10. L     1

and similarly for the maps making S into a pseudocomonoid. We do, however, need to

check that we can liµ the map d1 : TS1 → ST1 from Mod to M. To do so, we need to

provide a -cell u fitting into the diagram:

T21

(m1)∗

d1

u

T21.

(m1)
∗

T1

In other words, we need to provide maps d1(φ;ψ) → T1(nφ; nψ) which are natural in

φ and ψ; and there is an evident choice of such, since d1(φ;ψ) is simply a collection of

bijections nφ → nψ satisfying certain conditions; in fact, we see that d1 is a subobject of
(m1)

∗ ⊗ (m1)∗ inMod(T21, T21).

Furthermore, it is evident from an examination of the proofs that themediating -cells

α, β, γ and δ we constructed above commute with this assignation, and hence liµ to -

cells inMod¯T1. ßus we can liµ all our pseudo-commutative diagrams from above to

pseudo-commutative diagrams inMod ¯ T1.
ße final point is to observe that we can recast the maps in these diagrams as maps

involving the monoidal bicategory structure ofMod¯T1; so for instance, the maps Td1
and dT1 are identified with the maps T ⊗ d1 and d1⊗T . ßerefore, under the homomor-

phism of monoidal bicategories Φ, this structure transports to mediating modifications

for a pseudo-distributive law between T and S as homomorphismsMod → Mod.

ßus far, we have not checked any of the ten coherence laws for a pseudo-distributivity:

there are indications that by careful use of the two-cell u, we may be able to avoid check-

ing these explicitly, but this aspect is still under consideration. However, we hope to have

conveyed to the reader at least a feel for how this pseudo-distributive law might be set

up, and hence how we might put the theory of polycategories on a sound footing.



Chapter 5

Future directions

All three of the topics presented in this essay have scope for extension. In the first sec-

tion, we saw how to construct a free ∗-autonomous category without units. One would

naturally like to remove the qualifier from this statement; and it seems plausible that the

proof-net based approach of [SL] could be adapted to the Frobenius algebra frame-

work described above.

ße second section as it stands may not appear obviously to lead anywhere; but partic-

ularly towards its end, it describes tools for constructing new ∗-autonomous categories

from old which have not been explored in any great detail. Indeed, mathematical ob-

jects such as the bistructures of [CPW] seem as if they ought to arise from construc-

tions such as these; similarly, the Dialectica interpretations for linear logic developed in

[dP] should be explicable bymeans of a -dimensional version of these sorts of glueing

constructions.

Finally, the third section has in a sense already mapped out its future directions; but

beyond these lie further possibilities. One such, though little more than a pipe-dream

at present, would be a polycategory-like presentation of the full linear logic system –

that is, of a ∗-automous category with finite products and coproducts. Explicitly, one

would expect there to be a distributive law between the ‘free symmetric strict monoidal

category with products’ pseudomonad and the ‘free symmetric strict monoidal category

with coproducts’ pseudocomonad on Mod. At present, the technology is not in place

to describe the ‘free monoidal category with products’, so this remains a rather distant

prospect; but an enticing prospect nonetheless.



Bibliography

[Bar] Michael Barr. ∗-autonomous categories, volume  of Lecture Notes in

Mathematics. Springer, Berlin, . With an appendix by Po Hsiang Chu.

[Bar] Michael Barr. Nonsymmetric ∗-autonomous categories. ßeoret. Comput.

Sci., (-):–, .

[Bar] Michael Barr. ße Chu construction. ßeory Appl. Categ., :No. , –

(electronic), .

[BD] John C. Baez and James Dolan. Higher-dimensional algebra. III. n-
categories and the algebra of opetopes. Adv. Math., ():–, .

[Bén] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Cat-

egory Seminar, pages –. Springer, Berlin, .

[Bur] Albert Burroni. T-catégories (catégories dans un triple). Cahiers Topologie

Géom. Différentielle, :–, .

[Car] Sean Carmody. Cobordism Categories. PhD thesis, Cambridge, .

[CKVW] A. Carboni, G.M. Kelly, D. Verity, and R. J.Wood. A 2-categorical approach

to change of base and geometric morphisms. II. ßeory Appl. Categ., :No.

, – (electronic), .

[CPW] Pierre-Louis Curien, Gordon Plotkin, and Glynn Winskel. Bistructures,

bidomains, and linear logic. In Proof, language, and interaction, Found.

Comput. Ser., pages –. MIT Press, Cambridge, MA, .

[CS] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories. J. Pure

Appl. Algebra, ():–, .

[CT] Maria Manuel Clementino and Walter ßolen. Metric, topology and

multicategory—a common approach. J. Pure Appl. Algebra, (-):–

, .



B

[dP] Valeria C. V. de Paiva. A Dialectica-like model of linear logic. In Cate-

gory theory and computer science (Manchester, ), volume  of Lecture

Notes in Comput. Sci., pages –. Springer, Berlin, .

[DR] Vincent Danos and Laurent Regnier. ße structure of multiplicatives. Arch.

Math. Logic, ():–, .

[DS] Brian Day and Ross Street. Quantum categories, star autonomy, and quan-

tum groupoids. In Galois theory, Hopf algebras, and semiabelian categories,

volume  of Fields Inst. Commun., pages –. Amer.Math. Soc., Prov-

idence, RI, .

[Gir] Jean-Yves Girard. Linear logic. ßeoret. Comput. Sci., ():, .

[Gir] Jean-Yves Girard. Linear logic: its syntax and semantics. In Advances in

linear logic (Ithaca, NY, ), volume  of London Math. Soc. Lecture

Note Ser., pages –. Cambridge Univ. Press, Cambridge, .

[GPS] R. Gordon, A. J. Power, and Ross Street. Coherence for tricategories. Mem.

Amer. Math. Soc., ():vi+, .

[Her] Claudio Hermida. Representable multicategories. Adv. Math., ():–

, .

[Her] Claudio Hermida. From coherent structures to universal properties. J. Pure

Appl. Algebra, ():–, .

[HS] Martin Hyland and Andrea Schalk. Glueing and orthogonality for models

of linear logic. ßeoret. Comput. Sci., (-):–, . Category

theory and computer science.

[JK] G. Janelidze and G. M. Kelly. A note on actions of a monoidal category.

ßeory Appl. Categ., :– (electronic), /. CT Conference

(Como).

[JS] André Joyal and Ross Street. Braided tensor categories. Adv. Math.,

():–, .

[Kel] G. M. Kelly. Doctrinal adjunction. In Category Seminar (Proc. Sem., Syd-

ney, /), pages –. Lecture Notes in Math., Vol. . Springer,

Berlin, .

[Kel] G. M. Kelly. On clubs and data-type constructors. In Applications of cat-

egories in computer science (Durham, ), volume  of London Math.

Soc. Lecture Note Ser., pages –. Cambridge Univ. Press, Cambridge,

.



B

[KLSS] Max Kelly, Anna Labella, Vincent Schmitt, and Ross Street. Categories en-

riched on two sides. J. Pure Appl. Algebra, ():–, .

[Koc] Anders Kock. Monads on symmetric monoidal closed categories. Arch.

Math. (Basel), :–, .

[Koc] Joachim Kock. Frobenius algebras and D topological quantum field theo-

ries, volume  of London Mathematical Society Student Texts. Cambridge

University Press, Cambridge, .

[Kos] J. Koslowski. A monadic approach to polycategories. Electronic Notes in

ßeoretical Computer Science, :–, .

[Lam] Joachim Lambek. Deductive systems and categories. II. Standard construc-

tions and closed categories. In Categoryßeory, Homologyßeory and their

Applications, I (Battelle Institute Conference, Seattle, Wash., , Vol. One),

pages –. Springer, Berlin, .

[Lei] TomLeinster. Operads in higher-dimensional category theory.ßeoryAppl.

Categ., :No. , – (electronic), .

[Pav] Duško Pavlović. Chu. I. Cofree equivalences, dualities and ∗-autonomous

categories. Math. Structures Comput. Sci., ():–, .

[SL] Lutz Straßburger and François Lamarche. On proof nets for multiplicative

linear logic with units. In Jerzy Marcinkowski and Andrzej Tarlecki, ed-

itors, Computer Science Logic, CSL , volume  of Lecture Notes in

Computer Science, pages –. Springer-Verlag, .

[Sza] M. E. Szabo. Polycategories. Comm. Algebra, ():–, .

[Tan] Audrey Tan. Full Completeness Results for Models of Linear Logic. PhD

thesis, Cambridge, .

[Tan] Miki Tanaka. Pseudo-distributive laws. PhD thesis, Edinburgh, .

[Web] Mark Weber. Generic morphisms, parametric representations and weakly

cartesian monads. ßeory Appl. Categ., :– (electronic), .



