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ABSTRACT

During exploratory data analysis in a variety of domains
we have found it useful to summarize the available data via
sets of rules and their exceptions. Often, a practitioner is
interested in exploring more than one such summary before
settling on any single explanation. It is important for each
summary to be succinct, cover a significant fraction of the
data as well as highlight rules enjoying high confidence, sup-
port and lift. It is often difficult to achieve all these objec-
tives simultaneously, and retain a meaningful dialogue with
the user. To help achieve these goals, we have found it useful
to combine some existing tools for data analysis: association
rule-mining to find broad patterns in the data; clustering to
group these patterns into similar sets; exception-mining to
find deviations from the patterns; and a coverage-based ex-
traction of explanations for the data. We demonstrate how
a combination of these methods can be used for exploratory
data analysis on both synthetic and industrial data sets for
which we derived interesting insights.

1. INTRODUCTION

During exploratory analysis we often seek the causes or
effects of specific situations, such as the kind of consumers
who often use a particular product feature, the situations in
which a vehicle heats up, or how an engine behaves when
under heavy load. In such cases rule-based explanations are
easy to understand and therefore desirable. Practitioners
often want:
Alternatives: To automatically identify alternative descrip-
tions for a subset of data; (or at least, different patterns that
roughly describe the same subset of data);
Comprehensibility: To ensure that the descriptions found
are meaningful, given what is already known;
Explanations: To extract from the descriptions, one or
more combinations that can adequately “explain” the data;
Deviations: To understand outliers to these explanations.

With rules as a representation language, most coverage-
based methods do not allow a user access to alternative de-
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scriptions. Instead, a greedy procedure is usually adopted,
in which the next best rule is found, the corresponding data
explained (“covered”) is removed from further consideration,
and the process is repeated. This results in a single expla-
nation of the data. So, while they satisfy the “Explanation”
requirement by constructing one explanation for the data,
they typically do not present any solutions to finding alter-
natives or deviations. Comprehensibility may follow if the
rules do not represent overly complex concepts.1

Although association rule mining [1] is particularly a widely
used approach for finding patterns in data, by itself it will
not satisfy any of the requirements of a practitioner, as de-
scribed above, since it is simply aimed at finding patterns
that exist in the data. Nevertheless, in conjunction with
other techniques, some useful headway can be made. For
example, clustering of association rules has been proposed
to group similar sets of rules [7, 8, 11, 16, 18, 20], thus
addressing the requirement of “Alternatives” above. Excep-
tion mining in conjunction with association rules has been
proposed as a way of identifying comprehensible association
rules and deviations from them [4, 5, 12, 17, 20].

It would appear that a combination of the methods de-
scribed may result in a tool that could satisfy each of the re-
quirements listed. In this paper we describe a tool of such a
kind. ACRE (AlternatingCovers of Rules and Exceptions),
uses a combination of association-rule mining, clustering,
and exception-mining to allow us to address the “Alterna-
tives”, “Comprehensibility” and “Deviations” requirement.
In addition, it allows multiple rule-sets to be extracted, us-
ing a coverage-based approach (the “Explanation” need).

The basic procedure is as follows. ACRE first computes
a rule set via association rule mining. Many of these rules
usually overlap with each other, i.e., they cover many of the
same data instances. ACRE clusters the rules based on their
mutual overlap. Each cluster of rules thus roughly covers
the same subset of the data. Whenever an explanation is
sought for the entire dataset, a rule is selected in turn from
each cluster until no further rules are required, or possible.
By altering the choice of the rule chosen from each cluster,
ACRE is able to provide alternative explanations for the
same dataset. For each rule, ACRE is also able to identify
exceptions in the data. These data instances can then be
analyzed by ACRE in the same manner as before, namely
using association rule-mining, clustering, explanation and,
if needed, further levels of exception-mining.

From the user’s viewpoint, we expect ACRE to be used

1The work of Srinivasan et al [15] is an example of a covering
procedure that also highlights deviations.
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as follows. The user identifies a data set for exploratory
analysis. Data analysis is selection of rules iteratively from
clusters found by ACRE, and examination of exceptions un-
til a satisfactory set of patterns are found.

In the sections that follow we summarize the related work
on clustering of association rules as well as exception min-
ing and then describe ACRE. We present our results qual-
itatively using our previous technique [14] for visualizing
interactively, rules and exceptions as well as quantitatively
in terms of F1-measure, both for ACRE as well as standard
rule-based classifier (CN2, [3]).

2. RELATED WORK

Rule Summarization: Pruning and grouping association
rules using clustering was introduced in [18]. A rule cover is
a subset of rules that covers almost all data instances as the
original set. In [16] a normalized distance metric (different
from ours) is used to cluster association rules along with self
organizing feature maps. These two approaches are similar
to our approach, however, they do not augment the rules
with exceptions. Rule-templates [6] can be used to select
interesting rules from a larger set, based on user-defined cri-
teria. [11] prunes a rule set by removing the insignificant
ones, and then finds a special subset called Direct Setting
(DS) rules to form a summary; however, DS-rules do not
include rule-exceptions as we do. A technique similar to
ACRE was used in [19] for summarizing a collection of fre-
quent itemsets, using K representatives by clustering them
to create a pattern profile representing sets of similar fre-
quent itemsets. [8] introduces a technique for clustering as-
sociation rules using a geometric-based algorithm. However,
both these approaches filter rules based on the pattern of the
clustered frequent itemsets, rather than coverage.
Exception Mining: Deviation analysis was used in [12]
to identify interesting exceptions and explore reliable ones;
[5] used information theory measures and evaluated excep-
tions based on the common sense rules, negative association
rules were used in [4] to find exceptions and [17] used an
autonomous probabilistic model to find out exceptions and
common sense rule pairs with high confidence. However,
mining of exceptions, and pruning of association rules have
always been separate areas of research. We have combined
both these techniques so as to derive a hierarchical sum-
mary that alternates between small sets of covering rules
and their exceptions to provide a succinct summary for a
desired consequent of interest. An approach similar to ours
has also been used in [20] to find useful association rules and
exceptional association rules for each of them, however, they
do not cluster rules or exceptions to offer choices as we do.
Finally, [13, 10] find ‘unexpected’ rules that are exceptions
to user-supplied existing knowledge about the domain.

3. ACRE ALGORITHM

Each data instance is called a transaction that contains
one or more items from a set of items I = {i1, i2......., in}:
For example each survey response is a transaction, in which
items are the customer’s responses to each question asked.
In multi-sensor data, each time step is a transaction with the
individual values of different sensors forming items, after
suitable discretization. A subset of I is referred to as an
itemset ; frequent itemsets are those that occur more often
than others. Each frequent itemset, say {X, y}, may form

a rule r for a pre-determined ‘consequent of interest’ (COI)
y, with the subset of items (X) as antecedent, i.e., X → y.
The support of a rule S(r) is the percentage of transac-

tions that contain all items in (X ∪ y). The confidence of a
rule C(r) is P (y|X). Further, lift of a rule is a measure of
its interestingness and is the ratio of its confidence and the
probability of consequent, i.e., L(r) = P (y|X)/P (y).
Since confidence is not usually equal to one, we also at-

tempt to find patterns in the subset of transactions satisfy-
ing the antecedents of a rule. Such rules, i.e., X,Z → ¬y,
are called exceptions of the main rule X → y.

The coverage of a rule is ρ(r) = P (X∪y)/P (y), indicating
the percentage of transactions where the rule is satisfied, out
of those that contain the consequent of interest y. However,
rules can overlap in the data, so the coverage of multiple
rules may be far less than the sum of their coverages.

Given a set of rules R = {r1, r2, ..., rN} having common
consequent (y), we define Rule cover Rco = {r1, r2, ..., rk}
as a subset of R, which cover almost the same set of transac-
tions as covered by R. We quantify the degree of overlap Oij

between two rules {ri, rj} as Oij =
S(ri

⋂
rj)

min(S(ri),S(rj))
. A dis-

tance measure dij between a pair of rules {ri, rj} is defined
as dij = 1

(Oij+κ)
(κ = .01 is a small constant).

ACRE : consists of data processing steps that are per-
formed for data understanding at two levels, to generate
alternative yet ‘coverage equivalent’ rule-exception covers.
Data Processing:

Step-1: Rule Generation, we generate a set of rules R
for a COI with support > τs, and confidence > τp using
frequent itemsets derived by PFP-growth algorithm [9].
Step-2: Rule Cover: We find a rule cover from R, such
that the cumulative coverage of the rule cover Rco is at-least
τr%. For this we scan the rules in R in descending order of
support, and add them to rule cover Rco until τr% of the
transactions containing COI are covered, or top-K rules are
included in Rco, whichever comes first.
Step-3: Rule Clustering: The rules in Rco are clustered
based on overlap using the distance measure dij using DB-
SCAN (optimizing parameters using gradient descent).
Multilevel Data Understanding:

At Level 1, steps 1-3 are performed on the entire set of
transactions, yielding a set of rules R. Using an interactive
rule visualization such as VARC [14], the user chooses one
rule from each cluster. At Level-2, we repeat steps 1-3 for
the set of transactions covered by the antecedents of each
rule in R, however, this time we use ¬y as the COI. This
yields a set of exceptions for every rule in R. Note that
the confidence threshold used for mining exceptions for rule
r : X → y is τe = (100+∆c−C(r)), where ∆c is called the
confidence gap: For example, consider using a gap of 20% - if
r has 85% confidence, 15% of the time we anyway expect ¬y
whenX is true, so we would consider any exception implying
¬y as significant if it had a confidence of even 35%.

4. RESULTS AND EVALUATION

We distinguish between two ways of using ACRE: in batch

mode, at each level, we choose the highest support rule from
each cluster, in interactive mode, the user interactively
chooses alternative rules from each cluster (at each level)
thereby allowing many equivalent alternating rule-exception
covers to be examined. We expect batch mode to be more
useful for data sets that have relatively few items. In higher
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Figure 1: VARC depiction of a Sensor-I rule

Figure 2: Precision, Recall and F1-measure graph for Mushroom, Car-Survey, Sensor-I, and Sensor-II datasets
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dimensional spaces, an interactive mode is expected to be
more useful because one is more likely to find relatively dis-
joint rules that nevertheless overlap in the data. However,
in such cases frequent itemset mining itself has performance
challenges (which, to our knowledge, remains an open prob-
lem). Here we present the results for batch mode on rela-
tively narrow data.

We used the standard public Mushroom dataset [2] (poi-
sonous vs non-poisonous mushrooms), as well as three real-
life datasets: Car-survey, which captures customer driving
patterns as well as usage of special vehicle features, and
two vehicular sensor datasets: Sensor-I and Sensor-II. The
Car-survey dataset has 1,153 transactions with 17 attributes
while Sensor-I has 1,603 transactions with 18 attributes and
Sensor-II has 54,565 transactions with 14 attributes.

ACRE requires input parameters such as minimum sup-
port threshold τs, minimum confidence threshold τp, cover-
age percentage τr, top-K rules K, and ∆c. We used τp as
70% in general, unless the class-probability of the COI is
greater, in which case τp = COIclassProbability +10. For top
rules τr = 90% and K = 200 in case if the required coverage
is not achieved. However, for discovering exceptions we set
τr = 75% and ∆c = 20%.

Figure 1 depicts one of the rules discovered for Sensor-
I data using the VARC visualization [14]. Our real-life
datasets are proprietary, so the actual items are masked.
Using 15 car-survey rules we described 40% of customers
who used a particular enhanced mode based on their driv-
ing. Four Sensor-I rules described the effect of highly load-
ing an engine, and one Sensor-II rule (with four exceptions)
causally explained high-temperature situations.

Even though our goal is data-understanding rather than
classification accuracy; still we can use F1-measure for quan-
titative evaluation from an IR perspective, i.e., balancing
precision vs. recall of the consequent of interest. Figure 2
shows the F1-measure obtained by ACRE, both for top-level
rules alone as well as rules+exceptions. These are compared
with the top association rules as well as rules obtained using
CN2 [3]. (Rule-sets are ordered similarly for a fair compari-
son, i.e., the best n rules in terms of F1-measure are chosen.)

Notice that ACRE has been always as good as CN2 (for
Mushroom and Car-survey), at least for the succinct expla-
nation it provides. Further, ACRE provides a markedly bet-
ter F1-measure than CN2 for Sensor-I and Sensor-II. Next,
notice how exceptions improve precision while reducing cov-
erage somewhat. Thus, if coverage is more important top-
level ACRE rules can be used without exceptions if their
precision is deemed adequate. At the same time, their ex-
ceptions are always available for a deeper explanation that
also improves precision, albeit affecting recall to some ex-
tent.

5. CONCLUSIONS

We have described ACRE, a technique for computing a set
of rules and their exceptions that achieves high coverage of a
desired consequent of interest as well as reasonable precision.
ACRE clusters association rules at two levels to minimize
inter-rule overlaps. Experimental results show that ACRE
provides a succinct explanation with an adequately higher
F1-measure, and is found to be as good or better than CN2
especially on our real-life data. Further, ACRE naturally en-
ables qualitatively alternative yet quantitatively equivalent
rule-exception covers by allowing for choosing different rule

sets from each cluster of rules, at each level, thus allowing
for more interactive and effective use in practice.
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