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ABSTRACT
As GPU’s compute capabilities grow, their memory hierarchy
increasingly becomes a bottleneck. Current GPU memory
hierarchies use coarse-grained memory accesses to exploit
spatial locality, maximize peak bandwidth, simplify control,
and reduce cache meta-data storage. These coarse-grained
memory accesses, however, are a poor match for emerging
GPU applications with irregular control flow and memory
access patterns. Meanwhile, the massive multi-threading of
GPUs and the simplicity of their cache hierarchies make
CPU-specific memory system enhancements ineffective for
improving the performance of irregular GPU applications.
We design and evaluate a locality-aware memory hierarchy for
throughput processors, such as GPUs. Our proposed design
retains the advantages of coarse-grained accesses for spatially
and temporally local programs while permitting selective
fine-grained access to memory. By adaptively adjusting the
access granularity, memory bandwidth and energy are reduced
for data with low spatial/temporal locality without wasting
control overheads or prefetching potential for data with high
spatial locality. As such, our locality-aware memory hierarchy
improves GPU performance, energy-efficiency, and memory
throughput for a large range of applications.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures]: Single-
instruction-stream, multiple-data-stream processors (SIMD)

General Terms
Design, Experimentation, Performance

Keywords
GPU, SIMD, SIMT, Fine-Grained Memory Access, Irregular
Memory Access Patterns, Adaptive Granularity Memory

1. INTRODUCTION
General purpose computation with graphics processing

units (GPUs) has become increasingly popular thanks to the
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high compute throughput and peak memory bandwidth of
these devices. A coarse-grained (CG) memory hierarchy1

enables GPUs to exploit programs with high spatial locality,
increasing peak memory bandwidth and decreasing control
overheads. Regularly structured, compute-intensive applica-
tions can readily utilize the high peak memory bandwidth
and ample computational resources of GPUs to great effect.
However, not all applications can be re-factored to exhibit
regular control flow and memory access patterns, and many
emerging GPU applications suffer from inefficient utilization
of off-chip bandwidth and compute resources [1, 2, 3]. Recent
proposals have primarily focused on overcoming irregular-
ity by improving device utilization and latency tolerance [4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but the memory band-
width bottleneck still remains as a significant issue in future
throughput computing [16].

Coarse-grained memory accesses waste off-chip bandwidth
and limit the energy-efficiency of current GPUs for irregular
applications by over-fetching unnecessary data. Figure 1
shows the number of 32-byte sectors (out of each 128-byte
cache block) that are actually referenced over the lifetime of
L1/L2 cache blocks. Regularly structured programs with high
spatial and temporal locality use most or all of the sectors
within each cache block, effectively utilizing the CG memory
accesses of the current GPU memory hierarchy. As we study
in this paper, however, the massively multithreaded nature of
GPUs allows little cache capacity per thread, resulting in high
cache miss rates and reducing the amount of temporal locality
that can be exploited for certain applications. Such behavior
(combined with the CG-only memory hierarchy) significantly
over-fetches off-chip data for irregular applications, wasting
memory bandwidth, on-chip storage, and DRAM power.

This paper presents the first memory hierarchy design that
can efficiently handle irregular memory access patterns and
scatter-gather programs in modern GPU architectures. We
design a reactive and efficient memory system that is locality-
aware such that it can cater to the behavior of irregular
GPU programs. Prior work has used the dynamic estima-
tion of spatial data locality for selective fine-grained (FG)
memory accesses in control-intensive, general-purpose CMP
environments [17, 18]. We show that such approaches, while
successful for CPUs, fall short for massively multithreaded
throughput-oriented GPUs because many emerging GPU
applications with irregular control/memory accesses exhibit
low temporal locality and caching efficiency. To this end,

1A coarse-grained memory hierarchy is currently assumed to
be part of the baseline GPU design in the academic commu-
nity (Section 2.2).
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Figure 1: The number of sectors referenced in L1 (top) and L2 (bottom) cache blocks using a CG-only memory hierarchy. Each
128-byte cache block is logically divided into 4 32-byte sectors. While some applications (e.g., SPROD, MCARLO, FWT, etc)
utilize most of the fetched data, thereby maximizing the benefits of CG memory accesses, others (e.g., IIX, SSSP, etc) over-fetch
memory sectors, inefficiently utilizing the CG-only memory hierarchy.

our locality-aware memory hierarchy (LAMAR) provides the
ability to tune the memory access granularity for GPUs. We
first discuss the possibility of statically determining CG/FG
decisions (guided by a profiler/autotuner) such that the mem-
ory access granularity best suits application characteristics.
We then develop a scalable, low-cost hardware predictor
that adaptively adjusts the memory access granularity with-
out programmer or runtime system intervention. LAMAR
maintains the advantages of CG accesses for programs with
high spatial and temporal locality, while selective FG ac-
cesses reduce over-fetching and enable more efficient off-chip
bandwidth utilization. By using multiple granularity mem-
ory accesses in a manner appropriate for the GPU memory
hierarchy, LAMAR improves the efficiency of a wide range
of GPU applications, significantly improving memory band-
width, energy-efficiency, and overall performance. Also, the
implementation of LAMAR is kept transparent to the user
and without major changes to the underlying microarchi-
tecture, easing its adoption into future GPU systems. To
summarize our most important contributions:

• This paper provides a thorough, quantitative analysis of
the primary inefficiencies in the CG memory hierarchy.
We analyze the root cause behind the inefficient caching
and low locality of irregular applications and make a
case for a locality-aware GPU memory hierarchy.

• Unlike previous literature that aims to improve the com-
pute resource utilization or latency tolerance, we pro-
pose the first design that resolves the under-utilization
of memory bandwidth in GPU architectures.

• We demonstrate that LAMAR does not harm the perfor-
mance or energy-efficiency of the CG-only baseline for
conventional programs with good caching behavior and
regular control/memory accesses, while significantly im-
proving the energy-efficiency of irregular applications.

2. BACKGROUND

2.1 CUDA Programming Model
Current GPUs [19, 20, 21] consist of multiple shader cores2,

with each core containing a number of SIMD lanes for vector
2Each GPU shader core is referred to as a streaming multi-
processor (SM) in NVIDIA’s CUDA terminology; we share
this terminology throughout the rest of this paper.

instructions. In NVIDIA’s CUDA programming model, scalar
threads are grouped into thread blocks that execute a single
program (or kernel). To facilitate the execution of scalar
threads in the SIMD pipeline, the thread scheduler coordi-
nates the issue/execution of threads at a warp granularity;
currently, a warp is defined as a group of 32 threads exe-
cuting in lockstep. Because current GPUs are built around
the single-instruction multiple-thread (SIMT) model [22, 23],
each SIMD lane can execute its own logical thread with
hardware support for independent branching and load/store
instructions. This native support for diverging scalar threads
allows memory accesses to exhibit fine-grained scatter-gather
characteristics, as memory addresses are determined at a per-
thread granularity. This means a warp can generate up to
32 independent memory transactions. To reduce the control
overheads of a memory operation, GPUs contain a memory-
coalescing unit that agglomerates the memory requests of
active threads within each warp; whose requesting data size
can ranges from 32 to 128-byte.

While FG memory accesses are allowed by the program-
ming model, current GPU memory system is ill-suited for
efficient execution of such workloads. Rather, the GPU mem-
ory system is optimized for CG accesses, as described below.

2.2 Coarse-Grained GPU Memory Systems
GPU manufacturers do not reveal deep microarchitectural

details of their memory systems, so previous literature [8, 10,
11, 12, 15] assumes a baseline GPU memory system optimized
for CG memory accesses (Figure 2). This is based on the fact
that each memory-channel of Fermi (GF110, [19]), Kepler
(GK110, [20]), and SouthernIslands [21] are 64-bits, making
a 64-byte minimum-access granularity (8-bursts, 64-bits per
burst) with GDDR5 chips [24]. Following memory coalescing,
accordingly, the off-chip memory system of GPUs presents
a uniform interface to the processor with a large minimum
access granularity of cache block size, as shown in Figure 2.

2.3 Fine-Grained Data Management
Coarse-grained accesses can be useful, as they reduce miss

rates and amortize control costs for spatially and temporally
local requests. Emerging applications, however, exhibit dy-
namic and heterogeneous amounts of spatial locality, and
the massively-multithreaded GPU architecture limits the
temporal locality that can be exploited. In the absence of
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Figure 2: The baseline memory hierarchy using a CG-only
memory system with a 64-byte (64b × 8-bursts) minimum
access granularity per channel. CBUS and DBUS represent
the command and data bus, respectively.
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Figure 3: A memory system with two sub-ranks, providing a
32-byte (32b × 8-bursts) minimum access granularity. When
used with a sector cache, the size of each sector is 32-bytes.

high locality, FG memory accesses avoid unnecessary data
transfers, save power, and improve system performance. Sec-
tion 2.3.1 and Section 2.3.2 introduce key microarchitectural
structures that are adopted by this work to enable the FG
management and storage of data.

2.3.1 Sub-ranked Memory
A conventional GPU memory system uses multiple DRAM

chips organized in a rank to provide coarse-grained accesses
to memory. In order to exploit the benefits of FG accesses
for irregular workloads, LAMAR must reduce the minimum
access granularity to off-chip memory. To do so, LAMAR
leverages a sub-ranked memory system to non-intrusively
allow fine-grained memory requests. The sub-ranked memory
system adopted by LAMAR is inspired by many prior works,
including HP’s MC-DIMM (multi-core dual in-line memory
module) [25, 26], Rambus’s micro-threading [27] and threaded
memory module [28], the mini-rank memory system [29], and
Convey’s S/G DIMM (scatter/gather dual in-line memory
module) [30]. In a sub-ranked DIMM, peripheral circuitry
is used to divert memory command signals to a sub-rank
of DRAM chips without changing the DRAM structure it-
self. Figure 3 shows the sub-ranked memory system used for
LAMAR, which provides a minimum access granularity of
32-bytes, equivalent to the smallest data request generated
by an SM [22]. Because LAMAR provides an adaptive ac-
cess granularity to suit program needs, CG memory requests
are also allowed—with sub-ranking disabled, CG memory
requests proceed as normal.

2.3.2 Fine-Grained Cache Architecture
Fine-grained memory accesses require some cache changes

to maintain FG information in the on-chip memory hierarchy.
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Figure 4: The proposed LAMAR GPU architecture. Each on-
chip cache is sectored and is augmented with a GDU; off-chip
memory is sub-ranked in order to allow fine-grained accesses.

This work utilizes a simple sector cache [31] to enable the
on-chip management and storage of FG data. The sector
cache partitions each cache block into sectors, each with its
own validity meta-data; this allows for data to be managed
at a granularity finer than a cache block. Figure 3 illustrates
how data are partitioned and stored into a sectored cache
block. The sector cache used for LAMAR partitions each
cache block into 4 32-byte sectors.

2.4 Related Works
Prior work uses programmer-annotated [17, 32] or dynami-

cally estimated [18] spatial locality data for multi-granularity
memory accesses in a control-intensive, general-purpose CMP
environment. This study demonstrates that these adaptive-
granularity memory systems fall short for throughput proces-
sors, as they lack consideration for massive multithreading.

As was previously mentioned, CG-only memory systems
inefficiently utilize off-chip bandwidth in the presence of pro-
gram irregularity. As such, high-end vector processors (such
as Cray’s Black Widow [33]) sometimes use a FG-only mem-
ory system approach to good effect. However, such systems
squander the benefits of CG accesses for programs with am-
ple locality. It is unlikely that a FG-only approach would be
competitive in the GPU market, where the performance of
regular graphics workloads is of paramount importance.

3. LOCALITY-AWARE MEMORY SYSTEM
This work is motivated by the dual observations that many

GPU applications demonstrate highly dynamic and heteroge-
neous amounts of spatial locality, and that the low per-thread
cache capacity of throughput processors limits the amount of
temporal locality that can be exploited by running programs.
With a CG-only memory system, these factors conspire to
squander off-chip memory bandwidth and energy by over-
fetching unnecessary data (Figure 1). Established techniques
estimate and exploit the spatial locality of cache blocks in
multi-core CMPs to deal with a similar phenomenon [17, 18,
34, 35]. However, as we demonstrate, these prior techniques do
not provide robust benefits for all GPU applications because
they do not consider the temporal locality of data. We make
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Figure 5: The distribution of repeated accesses to cache blocks in the L1 (top) and L2 (bottom) caches (using a CG-only memory
hierarchy).

the case for a locality-aware memory hierarchy (LAMAR)
that provides robust, effective multi-granularity accesses for
throughput processing.

3.1 High-Level Overview of LAMAR
LAMAR uses a sector cache (both L1 and L2) and a sub-

ranked memory system3 in order to demonstrate the full
benefits of our proposed scheme (Figure 4). The width of
each sector, as well as the minimum access granularity of the
sub-ranked memory system, is equivalent to the smallest data
request size generated by the memory-coalescing unit within
the SM, which in current generation of GPUs is 32-bytes
(Section 2.1)4. Each cache is augmented with a granularity
decision unit (GDU) that determines the access granularity
of each cache miss. In the baseline CG-only memory system,
all cache misses are requested at a cache block granularity,
whereas LAMAR leverages the GDU to determine which
access granularity best suits the application.

3.2 Statically-Driven GDU
LAMAR provides the programmer the option to tune the

access granularity by statically designating whether to fetch
all program data at a coarse or fine granularity. Such a
decision may be guided by profilers/autotuners and is sent
to the runtime system (e.g., through compiler options, APIs,
etc.) to update each GDU. Skilled programmers can therefore
configure the GDU as appropriate to the application’s needs,
achieving optimal bandwidth utilization and energy-efficiency.
As detailed in Section 5, we find the average number of sectors
referenced within a cache block (Table 3, Avgsec ) to be a good
metric for characterizing the program access granularity.

3.3 Dynamically Adaptive GDU
Despite the advantages of a statically-driven GDU, identi-

fying and specifying the optimal access granularity requires
both extra effort from the programmer and system support.
To this end, we describe a hardware-only mechanism that

3We also discuss the implications of LAMAR with minimum
changes to the GPU architecture by only using a sectored
L1/L2 cache without a sub-ranked memory system, the result
of which is detailed in Section 5.5.
4Enabling a minimum access granularity smaller than 32-
bytes requires restructuring the memory-coalescing unit in
the SM. In this work, we leverage the current SM architecture
as-is to demonstrate the benefits of LAMAR while minimizing
the changes to the current GPU architecture.

dynamically derives the optimal access granularity at run-
time, achieving comparable benefits of the statically-driven
GDU in a robust manner across all studied applications.

3.3.1 Spatial-Pattern Predictor
Previous work exploits adaptive granularity memory ac-

cesses in a multi-core CMP system [18] using a spatial-pattern
predictor [34, 35] (SPP) in place of the GDU. Spatial pattern
prediction uses a pattern history table (PHT) to collect and
predict likely-to-be-used sectors upon a cache miss. Each
cache block in an SPP-based system is augmented with a
set of used bits that designate whether a given sector has
been referenced or not. When a cache block is evicted, the
corresponding used bit information is committed to the PHT.
Future misses to each block query the PHT to determine
which sectors are likely to be referenced in the future, allow-
ing targeted sector fetches. Details of the microarchitectural
aspects of the SPP can be found in [18, 35].

3.3.2 Pitfalls of SPP-based GDU in GPUs
While spatial pattern prediction has been effectively em-

ployed in multi-core CMP research, we explain in this section
why the SPP does not perform well in the massively mul-
tithreaded GPU environment. As pointed out in previous
literature [10, 36], many GPU applications do not cache well
and suffer from high cache miss rates and low block reuse.
Such low caching efficiency occurs both due to streaming
data accesses and also because the threads contend for cache
resources and constrain the effective on-chip storage avail-
able to each thread. While massive multithreading enables
GPUs to be highly latency tolerant, it comes at the cost of
poor cache performance, which (combined with the CG-only
memory system) wastes memory bandwidth and can limit
system energy-efficiency.

The SPP is not as effective for multi-granularity access
in GPUs as it is in CMPs, because the high cache turnover
rate and low cache block reuse of GPUs significantly lowers
the temporal locality that can be exploited by the on-chip
memory hierarchy. Figure 5 shows the distribution of repeated
accesses across all cache blocks in the baseline memory sys-
tem. 12 of the 20 benchmarks suffer from poor cache block
reuse due to low temporal locality and high on-chip storage
contention, resulting in more than 50% of the L2 cache blocks
never being reused before eviction. While the SPP accurately
estimates the spatial locality of data, it is not robust in the
presence of low temporal locality and poor cache performance
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N
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insertion history

from the newly active bitarray, avoiding periods where it contains zero history.

as we quantitatively demonstrate in Section 5.1.

3.4 Bi-Modal Granularity Predictor
In general, we observe that the SPP fails to provide robust

prediction quality and high energy-efficiency to a wide range
of GPU applications. While a more sophisticated prediction
algorithm could potentially enhance the effectiveness of SPP,
the complexity and high area overhead of a modified SPP
will not scale to a many-core environment. We propose a
simple, low cost bi-modal granularity predictor (BGP) that
is much more suitable for throughput-oriented architectures.

3.4.1 Key Idea and Observation
The main inefficiency of spatial pattern prediction is that

the spatial locality information tracked by the PHT is useless
for cache blocks with low temporal locality. With this in
mind, our proposed BGP microarchitecture is structured
such that it estimates both the temporal and spatial locality
of missed cache blocks and determines whether to fetch all
of the sectors within the cache block (CG-mode) or only the
sectors that are requested (FG-mode). The key observation
behind BGP is that for cache blocks with poor temporal
locality, it is sufficient to fetch only the sectors that are
actually requested (on-demand) because the other sectors
will most likely not be referenced during their lifetime (e.g.,
cache blocks with zero reuse in Figure 5). Meanwhile, blocks
with both high temporal and spatial locality make effective
use of coarse-grained accesses, such that a simple bi-modal
prediction is sufficient to greatly improve memory system
performance and efficiency.

3.4.2 Microarchitecture
Our lightweight BGP microarchitecture determines whether

each missed cache block has enough locality to warrant a
coarse-grained fetch. We implement the storage of BGP us-
ing a bloom filter [37] to minimize the cost of tracking the
multitude of cache blocks in the system. A bloom filter is
a space-efficient probabilistic data structure that is used to
test whether an element is a member of a set. It consists of
a bitarray with m-bits and n-hash functions. An element is
inserted (Figure 6(a)) into the set by calculating n different
hashes of the element and setting the corresponding bits of
the bitarray. Testing if an element belongs to the set (Fig-
ure 6(b)) is done by feeding it to the n hash functions and
checking if all the corresponding bit positions are 1s. If any of
the queried bits are 0, the element is definitely not a member
of the set (true negative) while all 1s indicates either that
the element actually was inserted to the set (true positive)

Table 1: Configuration parameters of BGP microarchitecture.

Bitarray size 2K-bit per bitarray (4K-bit per BGP)
Refresh period Every 512 insertions
# of hash functions 6
Hash function Byte-sliced XOR [39]
THFG 2 sectors
SKEWthres 0.7

or that there are many hash collisions with other elements
of the set (false positive). The false positive rate of a bloom
filter, accordingly, is determined by the number and type of
hash functions chosen and the size of the bitarray. For the
purpose of the BGP , a bloom filter is used to track the set
of evicted blocks having low (or high) locality, using their
respective block address as the inserted element.

In order to temporally degrade old insertions and maintain
a certain amount of locality history, the locality predictor
is implemented using a dual-bitarray microarchitecture as
detailed in Figure 6. This dual-bitarray bloom filter uses two
temporally overlapped bitarrays that are periodically cleared
and swapped in order to eliminate interference due to stale
locality data. Such structure has several implementation ad-
vantages. First, the dual-bitarray bloom filter allows for the
removal of aging elements in an application-appropriate man-
ner without resorting to more expensive bloom filter variants
(such as a counting filter [38]). Also, the rolling history of the
dual-bitarray naturally captures temporal locality informa-
tion. Finally, because the dual-bitarray structure periodically
resets, it allows us to tailor the default insertion/prediction
mode (CG or FG) to dynamic phase behavior in order to
reduce the false positive rate, as described below.

3.4.3 Prediction Mechanism
Figure 7 summarizes how bi-modal granularity prediction

operates and when and how evicted blocks are inserted into
the bloom filter. The BGP contains a default prediction
(CG or FG) that determines what kind of evicted blocks
are inserted into the filter (and the corresponding prediction
upon a query to the filter). The CG/FG fetch decision is
made by querying the bloom filter with the evicted block’s
address—upon a miss, the querying cache block has the
opposite locality characteristics to the blocks inserted into
the bloom filter, so BGP grants the default prediction. For
those queries that hit in the bloom filter, the BGP predicts
the opposite of the default prediction (Figure 7(a)).

The BGP uses the number of sectors accessed as means
to approximate the locality of cache block (rather than the
number of accesses to the cache blocks) for simplicity in
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Figure 7: The prediction algorithm of the BGP. SKEWinsert is evaluated every thousand cache block evictions (NUMevict).

Table 2: Baseline GPGPU-Sim configuration.

Number of SMs 15
Threads per SM 1536
Threads per warp 32
SIMD lane width 32
Registers per SM 32768
Shared memory per SM 48KB
Warp scheduling policy Oldest CTA First [7]
L1 cache (size/assoc/block size) 16KB/4-way/128B
L2 cache (size/assoc/block size) 768KB/16-way/128B
Number of memory channels 8
Memory bandwidth 179.2 GB/s
Memory controller Out-of-order (FR-FCFS)

design. When a cache block is evicted, accordingly, the asso-
ciated sector used-bit information is examined to estimate the
block’s locality—if the number of sectors accessed is below a
pre-determined threshold (THFG), that block is estimated as
having low locality and high locality otherwise (Figure 7(b)).
This locality estimate is compared with the BGP ’s current
default prediction in order to determine whether the eviction
should be inserted into the filter.

When the percentage of evicted cache blocks inserted into
the bloom filter (SKEWinsert) is high, each filter will be
filled quickly and the BGP will track little temporal history
(Figure 6(c)). Inspired by the intuition of agree predictors [40],
the BGP rotates the default prediction whenever SKEWinsert

is higher than a pre-determined threshold (SKEWthres) in
order to avoid the bloom filter from being rapidly saturated by
an overwhelming number of insertions (Figure 7(c)). Table 1
summarizes the microarchitectural parameters used for the
baseline BGP configuration. The BGP bloom filter hash
functions are inexpensively implemented in hardware by
byte-slicing each evicted address and XOR-ing the slices
together [39]. Overall, we observe that the prediction accuracy
of BGP is relatively insensitive to these parameters, unless
the bitarray size is less than 2K-bits or the refresh period is
less than a quarter of the bitarray size.

3.4.4 Summary of the Benefits of BGP
The benefits of the proposed BGP are twofold. First,

by granting FG accesses for only those accesses that have
past history of low temporal locality, applications with good
caching behavior (e.g., most of the sectors are utilized) or
those with a working set fitting well in the cache (e.g., low
miss rates and thus low evictions within a timeframe) are
guaranteed to fetch data in CG-mode, maintaining the bene-
fits of the CG-only memory system. Second, the bloom filter
based BGP provides a cost-effective mechanism to determine
the access granularity, as opposed to SPP-based schemes that
require a separate PHT and complex control/update logic.

4. METHODOLOGY

4.1 Simulation Model
We model LAMAR using GPGPU-Sim (version 3.2.0) [41,

42], which is a cycle-level performance simulator of a general
purpose GPU architecture that supports CUDA 3.1 and
its PTX ISA. The memory hierarchy of GPGPU-Sim is
augmented with sectored L1/L2 caches and DrSim [43, 44], a
detailed DRAM simulator that supports sub-ranked memory
systems (Section 3). We configure our DRAM model to adhere
to the GDDR5 specification [24], except for the bank-grouping
effects (which are projected to be eliminated in future GDDR
products [24, 45]). To demonstrate how the BGP is affected
by limited hardware resources (e.g., dual 2K-bitarrays), we
also simulate the SPP and BGP with unrealistically large
histories (1M-entries); these impractical designs are denoted
by SPP and BGPinf henceforth.

In general, the GPU simulator is configured to be similar to
NVIDIA’s GTX480 [19] using the configuration file provided
with GPGPU-Sim [46]. Key microarchitectural parameters
of the baseline configuration are summarized in Table 2; we
explicitly mention when deviating from these parameters for
the sensitivity studies in Section 5.5.

4.2 GDDR5 Power Model
We model DRAM power based on the Hynix GDDR5

specification [24] as summarized in the equation below. Our
power model includes the background power, refresh power
(PREF ), activation & precharge power (PACT PRE), read
power (PRD) and write power (PWR). The background power
includes precharge standby power (PPRE STBY ) and active
standby power (PACT STBY ). Read and write power includes
the power consumed by the DRAM bank (PRD BANK) and
by the IO pins (PRD IO).

PGDDR5 = PPRE STBY + PACT STBY︸ ︷︷ ︸
Background Power

+PREF + PACT PRE

+PRD BANK + PRD IO︸ ︷︷ ︸
PRD

+PWR BANK + PWR IO︸ ︷︷ ︸
PWR

4.3 GPU Processor Power Modeling
This study is concerned primarily with the performance and

efficiency of the memory hierarchy. To evaluate how LAMAR
affects the overall system energy-efficiency, however, we model
the GPU processor power using the analytical IPC-based
power model suggested by Ahn et al. [25]. The peak power
consumption of each SM is extracted using GPUWattch [47].
The leakage power of the system (including GPU processors
and DRAM) is estimated to be 59 Watts. The peak dynamic
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Table 3: Evaluated CUDA benchmarks. Avgsec refers to the
average number of sectors accessed across all cache blocks.

Abbr. Description #Instr. Avgsec Ref.
IIX Inverted index 1.8B 1.09 [2]

SSSP Shortest paths 1.5B 1.24 [3]
BFS1 Breadth first search 3B 1.25 [3]

SP Survey propagation 1.3B 1.28 [3]
SSC Similarity score 4.9B 1.46 [2]

BFS2 Breadth first search 469M 1.48 [1]
MUM MUMmerGPU 149M 1.49 [49]
NW Needleman-Wunsch 220M 1.67 [1]
PVC Page view count 5.4B 1.75 [2]
WP Weather prediction 365M 2.00 [41]
MST Min. spanning tree 5B 2.39 [3]
RAY Ray-tracing 750M 3.29 [41]

SCLST Streamcluster 4.1B 3.41 [1]
BACKP Back propagation 196M 3.62 [1]

NN Neural network 78M 3.65 [41]
SRAD Structured grid 8.5B 3.88 [1]

LAVAMD N-body 22B 3.89 [1]
SPROD Scalar-product 25M 3.99 [48]

MCARLO Monte-carlo 1B 3.99 [48]
FWT Fast-walsh-transform 3.9B 4.00 [48]

power consumption per SM is estimated to be 9.5 Watts, out
of which 2.3 Watts belongs to constant power that does not
scale with IPC. Such simple IPC-based power modeling offers
> 90% agreement with GPUWattch and is used to estimate
the overall system efficiency in Section 5.4.

4.4 Benchmarks
LAMAR is evaluated with 32 benchmarks from Rodinia [1],

CUDA-SDK [48], MapReduce [2], LonestarGPU [3], and the
benchmarks provided with GPGPU-Sim [41]. We report the
20 applications (Table 3) that exhibit noticeable differences
across different schemes for brevity. All benchmarks are sim-
ulated to completion, with the exception of SSSP, SP, PVC,
SCLST, and FWT—due to the long simulation time of these
applications, we execute them only up to the point where IPC
is saturated with small variation among different iterations
of the kernel. We categorize the 20 chosen benchmarks as
either being FG-leaning or CG-leaning based on the average
number of sectors accessed within all L1/L2 cache blocks
(Figure 1) — applications that average more than two sectors
accessed per cache block are categorized as CG-leaning (and
FG-leaning otherwise).

5. EVALUATION
This section evaluates LAMAR, considering its impact on

cache efficiency, the improvements that LAMAR brings about
in overall performance and energy-efficiency. We also discuss
its sensitivity to key microarchitectural parameters and its
implementation overheads. We compare five different GPU
memory hierarchy designs: CG-only, FG-only, SPP, BGPinf

and BGP , which are denoted by C/F/S/I/B, respectively, in
all figures throughout this section. A LAMAR configuration
based on static GDU decisions is equivalent to the best of
CG-only and FG-only for each application. Note that we used
the same dataset for both the profiling and measurement run.
All average values are based on harmonic means.

5.1 Prediction Quality, Traffic, and Caching
Efficiency

The GDU of LAMAR determines whether a cache block
should be fetched in CG or in FG mode. It can therefore
predict to: 1) correctly fetch sectors that are actually ref-
erenced (PRED REF ), 2) incorrectly fetch sectors that are

not referenced (PRED NREF ), and 3) incorrectly not fetch
sectors that are referenced later (NPRED REF ). We there-
fore categorize each fetched sector as either being fetched
on-demand from the upper level (DEMAND) or based on
prediction (Figure 8)5 The overall read/write traffic and the
associated cache miss rates are depicted in Figure 9 and Fig-
ure 10. Overall, the FG-only scheme has the smallest off-chip
traffic thanks to its conservative fetch decision. This reduced
traffic, however, comes at the cost of a significant portion
of sectors being NPRED REF with increased miss rates for
some applications. NN, for instance, contains 65%/54% of its
L1/L2 sectors being fetched NPRED REF . Because these
sectors would have been pre-fetched had the initial access
been predicted as CG-fetches, memory access behavior and
caching efficiency are degraded, potentially leading to per-
formance penalties for certain applications (see Section 5.2
for details). CG-leaning applications generally contain less
overfetched data (even with the CG-only scheme), with only
13%/3% more sectors fetched to L1/L2 compared to the FG-
only scheme. For FG-leaning benchmarks, however, CG-only
falls short by having 171% and 93% more L1/L2 read-in traf-
fic than FG-only, most of which is due to the large number
of mispredicted PRED NREF sectors.

Dynamically-driven LAMAR, on the other hand, is able to
balance the benefits of both CG-only and FG-only schemes.
All three LAMAR predictors can reduce off-chip traffic sig-
nificantly without degrading the memory access behavior of
CG-leaning applications. SPP is the least effective mecha-
nism among the three, having 60%/72% more L1/L2 read-in
sectors than FG-only, whereas BGPinf and BGP contain
20%/22% and 37%/47% more, respectively, thanks to the
GPU-context appropriate prediction algorithm (Section 3.4).

In general, the CG-only scheme falls short by significantly
overfetching data for FG-leaning applications while the FG-
only scheme (despite its advantage in reducing off-chip traffic)
disrupts the memory access behavior of several benchmarks.
Accordingly, we observe that a static GDU configuartion,
preferrably matching application characteristics (e.g., Avgsec
provided by the profiler/autotuner), typically performs best
in terms of overall bandwidth utilization, maximizing energy-
efficiency. While less effective than the best-performing CG-
/FG-only scheme for each application, dynamically-driven
LAMAR approximates the characteristics of the static GDU
schemes, balancing the benefits of CG-fetches while reducing
traffic when feasible. Compared to the BGP , SPP-based
prediction lacks robustness and fails to effectively reduce off-
chip traffic for SSSP, BFS1, SP, MUM and NW. However, SPP
is still advantageous compared to a static memory hierarchy.

5.2 Performance
Figure 11 shows the overall speedup from adopting LAMAR

memory schemes. In general, all LAMAR predictors provide
significant benefit over the conventional CG-only memory sys-
tem while executing FG-leaning applications thanks to more
efficient utilization of the off-chip bandwidth, demonstrating
a maximum 49% boost and an average 12–14% improvement
in performance. LAMAR predictors also provides comparable
performance to the CG-only scheme in executing CG-leaning
applications—the biggest degradation is for MST (whose L1

5Note that sectors requested from the L1 to L2 cache are
interpreted as DEMAND sectors from L2’s perspective, even
though these sectors can be PRED REF , PRED NREF , and
NPRED REF from the L1’s point of view.
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Figure 8: The number of sectors read into the L1 (top) and L2 (bottom) caches, categorized based on prediction quality (normalized
to the FG-only scheme).
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Figure 9: Byte traffic to DRAM (both read/write) normalized by 1) the number of instructions (left axis) and 2) by the traffic/instr.
of the CG-only scheme (right axis).
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Figure 10: The cache miss rates of the L1 (top) and L2 (bottom) caches.

caching efficiency is disrupted by LAMAR, lowering the IPC
by 13% with BGPinf ). The static FG-only scheme adversely
impacts 5 of the CG-leaning benchmarks, ranging from 4%
(SPROD) to 22% (MST) degraded performance.

5.3 Impact on DRAM Power Efficiency
Correctly predicted FG-fetches reduce the number of read

and write commands issued to DRAM. However, CG-fetches
have the advantage of leveraging DRAM bank row locality by
only having to open the corresponding bank row once. This

is not the case for mispredicted FG-fetches (NPRED REF ),
which require re-opening the bank row at a later time and
lead to additional activate/precharge (ACT/PRE) commands.
Figure 12 illustrates how the reduction in off-chip traffic cor-
relates with DRAM power consumption. Overall, the benefit
of reduced read/write commands outweighs the overhead
of increased ACT/PRE commands. For FG-leaning applica-
tions,FG-only achieves the largest average power reduction of
19% (max 42%) while SPP/BGPinf/BGP obtain an average
1%/13%/8% reduction (max 16%/39%/33%), respectively.
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Despite its low implementation cost, BGP is competitive
with BGPinf and outweighs SPP both in power reduction
as well as Performance/Watt (Perf/Watt), with an average
27% increase in Perf/Watt while SPP and BGPinf achieve
an average 16%/34% improvement, respectively.

For CG-leaning applications, all LAMAR predictors per-
form comparable to the CG-only scheme whereas FG-only
suffers from an average 5% degradation in Perf/Watt (maxi-
mum 20% degradation).

5.4 System-Level Power Efficiency
We evaluate the system-level efficiency of different memory

schemes by combining the DRAM power model (Section 5.3)
with the IPC-based GPU processor power model (Section 4).
Recent literature [47, 50] estimates that the memory sys-
tem consumes approximately 5 to 45% of the overall GPU
power, depending on the application. LAMAR mainly im-
proves the energy-efficiency of the memory hierarchy, so the
overall improvement in Perf/Watt is less pronounced than
its DRAM counterpart. Among FG-leaning applications,
BGPinf and BGP obtains an average 18%/17% improve-
ment in Perf/Watt respectively. SPP helps the least among
LAMAR predictors with an average 13% improvement in
Perf/Watt . The FG-only mechanism, while achieving the
highest average Perf/Watt improvement (19%), struggles in
executing CG-leaning applications and significantly degrades
Perf/Watt for MST, NN, and SRAD.

5.5 Sensitivity Study
We summarize LAMAR’s sensitivity to key parameters in

this subsection. Due to space limitations, we mainly discuss
the effectiveness of LAMAR on FG-leaning applications.

5.5.1 Cache Capacity
As shown in Figure 14(a), DRAM traffic is generally re-

duced with larger on-chip caches (and vice versa for smaller
caches) thanks to better caching efficiency. The benefits of
LAMAR are still maintained across all FG-leaning applica-
tions and the relative reduction in traffic (compared to each
configuration’s CG-only scheme) is more pronounced with
smaller caches (e.g., IIX, BFS1, SSC, BFS2, WP). BGP , for
instance, provides an average 37%/33%/17% reduction in
traffic with the three cache size configurations.

5.5.2 Cache Block Size
With a larger L2 cache block (256B), the baseline CG-only

scheme is likely to overfetch even more off-chip sectors and to
suffer from severe bandwidth under-utilization. Such behavior
is illustrated in Figure 14(b) where a 256B configuration of

CG-only uses an average 96% more memory traffic than the
baseline. The benefits of LAMAR, accordingly, are much more
evident under the 256B configuration, where BGP reduces
off-chip traffic by an average of 58% compared to the 33%
reduction using the baseline cache block size.

5.5.3 Larger Sector Size
To demonstrate the benefits of LAMAR with minimal

changes to the GPU system, we evaluate the proposed mech-
anisms without a sub-ranked off-chip memory system. A
conventional GDDR5-based memory system provides a mini-
mum access granularity of 64-bytes (Figure 2), so we evaluate
LAMAR with a 64-byte sector size and minimum access gran-
ularity. As depicted in Figure 14(c), the benefit of LAMAR is
reduced from an average 33% traffic reduction to 20% under
BGP due to the lack of sub-ranking.

5.5.4 Thread-Level Parallelism
Recent literature [36, 10] shows that throughput proces-

sors make poor use of data caches, due to the high cache
access intensity and the resulting low per-thread cache ca-
pacity. To this end, previous work makes the warp scheduler
cache-conscious [10] such that the number of warps able to
access the cache are dynamically reduced (hence throttling
thread-level parallelism [TLP] available at the SM) if the
cache is thrashing. Such cache-conscious warp scheduling
(CCWS) is therefore only effective when the application is
both cache-sensitive and is thrashing. While LAMAR focuses
on wasted-transfers due to granularity mismatches in the
system and is orthogonal to CCWS, we nonetheless evaluate
the effectiveness of LAMAR on top of this technique. Since
CCWS is effectively a dynamic mechanism that approximates
the statically chosen optimal level of TLP, we experiment
LAMAR on top of CCWS as detailed in Figure 15. As de-
picted, three of the 20 applications we study (IIX, MUM,
SCLST) benefit from TLP throttling and LAMAR remains
effective in the presence of TLP tuning.

5.5.5 Miscellaneous
As mentioned in Section 3.4, the prediction quality of

the baseline BGP microarchitecture is relatively robust with
bitarray sizes larger than 2K-bits. Performance is improved by
2% to 7% with a 4K-bitarray, but saturates when going from
4K-bits to 8K-bits. Changing THFG and SKEWthres (Fig-
ure 7) also affects off-chip traffic and performance, but overall
trends remain similar to the analysis discussed throughout
this section (so long as SKEWthres is above 0.7 and THFG

is less than three sectors).

5.6 Implementation Overhead
LAMAR is implemented using a sector cache and a sub-

ranked memory system, the overheads of which are well
established in previous literature [25, 26, 27, 28, 29, 30]. In
addition, each cache partition is augmented with a GDU.
Static GDU configurations require no additional hardware,
but necessitate profiler/autotuner support to provide recom-
mended granularity information. We leave further exploration
of identifying the optimal granularity to future work.

For dynamic GDU schemes, the proposed BGP microar-
chitecture (using a dual-bitarray bloom filter) requires 1)
4K-bits of storage per GDU, 2) 6 sets of XOR logic gates
for the hash functions, and 3) control logic to insert/test the
membership of the bloom filter (Table 1).
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Figure 12: A breakdown of DRAM power (Watt, left axis) and the corresponding Perf/Watt (normalized to CG-only, right axis).

0.8 

1 

1.2 

1.4 

1.6 

1.8 

0 

40 

80 

120 

160 

200 

C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B 

IIX SSSP BFS1 SP SSC BFS2 MUM NW PVC WP 

Leakage SM DRAM Perf/Watt 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

0 

50 

100 

150 

200 

250 

C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B C F S I B 

MST RAY SCLST BACKP NN SRAD LAVAMD SPROD MCARLO FWT 

Leakage SM DRAM Perf/Watt 

Figure 13: The system power consumption (Watt, left axis) and the corresponding Perf/Watt (normalized to CG-only, right axis).
Note that the range of the upper plot is 0.8–1.8, whereas it is only 0.7–1.2 for the bottom plot.

6. DISCUSSION

6.1 LAMAR on Future Memory Technologies
In order to be concrete and to allow a detailed evaluation,

we use GDDR5 as our memory technology. Future GPUs,
however, may use evolving memory interface standards that
utilize 3D packaging technology, such as the Hybrid Memory
Cube (HMC) [51] or High-Bandwidth Memory (HBM) [52].
Although these interfaces are likely to offer much higher band-
width than GDDR5, GPU arithmetic performance will in-
crease as well, such that effectively utilizing memory through-
put will remain critical to performance and efficiency. In fact,
capacity-to-bandwidth ratio is likely to increase with the use
of HMC packages—this implies that bandwidth utilization
will increase in importance, amplifying the potential benefits
of LAMAR. The proposed access granularity for these inter-
faces is also similar to that of GDDR5 devices today, with
HMC proposing an access granularity of 32 − 256-bytes and
with HBM likely to use a 32-byte granularity similar to the
WideIO standard [53]. Thus, the opportunity and policies
we propose for LAMAR should generally apply equally well.

With 3D packaging, it is likely that the memory controller
will be partitioned between the processor and the DRAM die

stacks: scheduling is likely to remain close to the processor,
where knowledge of priorities and requests is readily avail-
able, while implementation of the DRAM access protocol will
be relegated to the controller within each stack [51]. This
partitioning will require a re-design of how LAMAR controls
the memory modules (owing to the fact that sub-ranks are
essentially internalized and hidden within each stack). Be-
cause scheduling is still delegated to the processor, LAMAR
will have to be modified to account for sending the appropri-
ate request packets to maximize transfer efficiency. We will
develop and analyze such designs in future work.

6.2 Error Correction
Current GPUs support error correction with error correct-

ing codes (ECC). While the details of the memory protection
schemes in industry are not publicly known, one way of flex-
ibly supporting error correction without dedicated DRAM
chips is through virtualized ECC [54]. The approach taken
by LAMAR is amenable to such error correction, in a similar
manner to prior work [18, 32].

6.3 Alternative FG Cache Management
LAMAR uses a simple sector cache to manage FG data in

the on-chip cache hierarchy, as our current study focuses on
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(a) The sensitivity of LAMAR to reduced (0.25 times) and increased (8 times) L1/L2 cache capacity.
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(b) The sensitivity of LAMAR to L2 cache block size. The overall L2 cache capacity is maintained equal to the baseline.
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(c) The sensitivity of LAMAR to the minimum access granularity (32-byte/64-byte). Note that the L1/L2 cache capacity and cache block size are
maintained equal to the baseline.

Figure 14: The sensitivity of off-chip traffic to differing (a) L1/L2 cache capacities, (b) L2 cache block sizes, and (c) minimum access
granularities. The left axis represents the off-chip traffic of five different memory hierarchies, normalized to each configuration’s CG-
only scheme. The right axis is used to compare the traffic of each configuration’s CG-only scheme (CG-normalized) and is normalized
to the baseline configuration (Table 2).
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Figure 15: Sensitivity of LAMAR to available TLP. We exper-
iment by sweeping through the number of schedulable CTAs
within an SM from one (min) to its maximum allowable num-
ber (max), which is limited by available hardware resources.
The speedup with the optimal number of CTAs is reported
as opt. The figure shows the IPC normalized to the CG-only
scheme with opt TLP. Only three applications (IIX, MUM,
SCLST) benefit from TLP throttling, meaning that, the best
performance is generally achieved with the maximum level of
TLP. Such common-case application behavior is represented
by SSC whose performance is degraded with reduced TLP.

the efficient management of off-chip data for irregular GPU
applications. However, alternative FG cache management
schemes exist, such as the decoupled sectored cache [55],
pool-of-sectors cache [56], or the spatio/temporal cache [57].
Such more advanced cache architectures could be adopted
to increase the effective capacity of the cache for irregular
applications. Some irregular applications are very sensitive
to the (typically limited) on-chip storage capacity, such that
these alternative caches could significantly increase perfor-
mance. Optimization of the on-chip portion of LAMAR is
left for future study.

6.4 Other Dynamic Bloom-Filter Mechanisms

The BGP incorporates two temporally-separated Bloom
filters to support the aging of membership data and to allow
space-efficient operation with a dynamic stream of accesses.
The temporal aging of Bloom filter entries for dynamic data
has been addressed by Deng and Rafiei [58] by associating
a slowly degrading count with each storage cell. However,
this design makes inefficient use of storage and is unlikely
to perform competitively with the BGP . The concept of
maintaining and swapping two temporally-separated Bloom
filters has been previously employed in software for filtering
dynamic data [59, 60, 61]. BGP is the first application of such
a scheme to memory access granularity prediction in hardware
and is unique in its implementation and default prediction
inverting algorithm. Yoon [62] recently proposed an alternate
two-buffer algorithm for filtering dynamic data that could
provide modest accuracy benefits for the BGP . Incorporating
and analyzing this algorithm (along with BGP ’s novel default
prediction inversion algorithm) is left for future work.

7. CONCLUSIONS
The increasing popularity of general-purpose GPU pro-

gramming and the growing irregularity of throughput-oriented
programs necessitate a fine-grained GPU memory system.
Meanwhile, the continuing need for the high-performance
acceleration of regular, well structured programs and graph-
ical workloads make coarse-grained memory accesses com-
pulsory as well. This paper proposes LAMAR, an adaptive
and reactive hardware-only memory scheme for GPUs and



throughput-oriented processors that achieves superior effi-
ciency across a range of general-purpose GPU applications.
By dynamically predicting the temporal and spatial locality of
memory accesses, LAMAR mitigates the deficiencies of static-
granularity memory systems and prior mixed-granularity
memory schemes for control-intensive CPUs. In addition, the
hardware required for LAMAR is simple and non-intrusive
enough to be readily implemented in a many-core GPU and
its adoption requires no programmer intervention. Our re-
sults show that LAMAR provides an average 14% increase
in performance (max 49%), 33% reduction in average off-
chip traffic (max 64%), and an average 17% improvement in
system-level energy-efficiency (max 47%).
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