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Abstract. This article demonstrates the possibility of constructing indicators of 
critical and crisis phenomena in the volatile market of cryptocurrency. For this 
purpose, the methods of the theory of complex systems such as recurrent analy-
sis of dynamic systems and the calculation of permutation entropy are used. It is 
shown that it is possible to construct dynamic measures of complexity, both re-
current and entropy, which behave in a proper way during actual pre-crisis peri-
ods. This fact is used to build predictors of crisis phenomena on the example of 
the main five crises recorded in the time series of the key cryptocurrency 
bitcoin, the effectiveness of the proposed indicators-precursors of crises has 
been identified. 
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1 Introduction 

Bitcoin is an important electronic and decentralized cryptographic currency system 
proposed by Satoshi Nakamoto as the “greatest technological breakthrough since the 
Internet” [1]. It is based on a peer-to-peer network architecture and secured by cryp-
tographic protocols and there is no need for a central authority or central bank to con-
trol the money supply within the system. Bitcoin relies on a proof-of-work system to 
verify and authenticate the transactions that are carried out in the network. Anonymity 
and avoidance of double spending are realized via a block chain, a kind of transaction 
log that contains all transactions ever carried out in the network. For further verifica-
tion purposes all transactions are public [2]. 

The bitcoin has emerged as a fascinating phenomenon in the financial markets. 
Without any central authority issuing the currency, the bitcoin has been associated 
with controversy ever since its popularity, accompanied by increased public interest, 
reached high levels. 

Despite an influx of media buzz and venture capital, digital currencies face an un-
certain future amid an ever-changing global landscape. Investment requires careful  
consideration of the potential use cases and risks associated with various cryptocur-
rencies. 



A look back at bitcoin price swings in the last five years, which include several 
stomach-churning tumbles of 40% and even 50%, makes it clear the world’s most 
popular cryptocurrency was—and is—extremely volatile. It is also apparent that most 
of the bitcoin crashes coincide with speculative run-ups coupled with exogenous 
shocks, such as a major hack or a government crackdown. Also, in most cases, bitcoin 
has bounced back from the crashes in months or even weeks—suggesting nervous 
bitcoin buyers will be okay if they are holding for the long run. On the other hand, the 
crashes of late 2013 and early 2014 are a cautionary tale—recall it took years for 
those who first bought bitcoin at $1,000 to see their investment recover. 

Bitсoin attracts considerable attention of researchers of different levels, using 
modern methods and models of analysis of the peculiarities of the dynamics of the 
popular digital currency. 

The authors [3] examine the relation between price returns and volatility changes 
in the bitcoin market using a daily database denominated in various currencies. The 
results for the entire period provide no evidence of an asymmetric return-volatility 
relation in the bitcoin market. They test if there is a difference in the return-volatility 
relation before and after the price crash of 2013 and show a significant inverse rela-
tion between past shocks and volatility before the crash and no significant relation 
after. 

A noncausal autoregressive process with Cauchy errors in application to the ex-
change rates of the bitcoin electronic currency introduced in [4]. The dynamics of the 
daily bitcoin/USD exchange rate series displays episodes of local trends, which can be 
modelled and interpreted as speculative bubbles. The bubbles may result from the 
speculative component in the on-line trading. 

Taking Bitcoin as a representative example, the authors [5] first uses autoregres-
sive moving average (ARMA) functions to explain trading values, then applies log-
periodic power law (LPPL) models [6] in an attempt to predict crashes. The results of 
ARMA modeling show that bitcoin values react to the BOE Volatility Index, suggest-
ing that a primary force currently driving bitcoin values is speculation by investors 
looking outside traditional markets. In addition, the LPPL models accurately predict 
ex-ante the crash that occurred in December 2013, making LPPL models a potentially 
valuable tool for understanding bubble behavior in digital currencies. 

In the work [7], a comparative correlation and fractal analysis of time series of 
bitcoin cryptocurrency rate and community activities in social networks associated 
with bitcoin was conducted. A significant correlation between the bitcoin rate and the 
community activities was detected. Time series fractal analysis indicated the presence 
of self-similar and multifractal properties. The results of researches showed that the 
series having a strong correlation dependence have a similar multifractal structure. 

It is analyzed the time-varying behavior of long memory of returns on bitcoin and 
volatility 2011 until 2017, using the Hurst exponent [8]. Daily returns exhibit persis-
tent behavior in the first half of the period under study, whereas its behavior is more 
informational efficient since 2014. Price volatility, measured as the logarithmic dif-
ference between intraday high and low prices exhibits long memory during all the 
period. This reflects a different underlying dynamic process generating the prices and 
volatility. 



The research [9] is concerned with predicting the price of bitcoin using machine 
learning. The goal is to ascertain with what accuracy the direction of bitcoin price in 
USD can be predicted. The price data is sourced from the Bitcoin Price Index . The 
task is achieved with varying degrees of success through the implementation of a 
Bayesian optimised recurrent neural network (RNN) and Long Short Term Memory 
(LSTM) network. The LSTM achieves the highest classification accuracy of 52% and 
a RMSE of 8%. The popular ARIMA model for time series forecasting is implement-
ed as a comparison to the deep learning models. As it is expected, the non-linear deep 
learning methods outperform the ARIMA forecast which performs poorly. 

The bitcoin price was modeled as a geometric fBm, and price predictions were put 
forward through a Monte Carlo approach with 104 realisations [10]. The predicted 
mid-2017 price, based on historical values until the end of 2016, taken as the median, 
was slightly underestimated. This is considered as a good agreement, thus justifying 
the applicability of the model. Therefore, price predictions for the beginning of 2018 
were made in the same way. It is found that the price predicted as the median of a log-
normally distributed set of realisations is 6358 USD. On the other hand, the chance of 
falling below the current price of 2575.9 USD is 11.4%. 

In the paper [11] it has been presented that an agent-based artificial cryptocurrency 
market in which heterogeneous agents buy or sell cryptocurrencies, in particular 
bitcoins. In this market, there are two typologies of agents, Random Traders and 
Chartists, which interact with each other by trading bitcoins. Each agent is initially 
endowed with a finite amount of crypto and/or fiat cash and issues buy and sell or-
ders, according to the strategy and resources. The number of bitcoins increases over 
time with a rate proportional to the real one, even if the mining process is not explicit-
ly modeled. 

The model proposed is able to reproduce some of the real statistical properties of 
the price absolute returns observed in the bitcoin real market. In particular, it is able to 
reproduce the autocorrelation of the absolute returns, and their cumulative distribution 
function. The simulator has been implemented using object-oriented technology, and 
could be considered a valid starting point to study and analyse the cryptocurrency 
market and its future evolutions. 

Authors [12] have reported the results of a preliminary exploratory analysis of 
bitcoin market value from a popular exchange market BitStamp. They have collected 
the data for a period of five days in January 2014 at a rate of about one minute and 
construct different network representation of the time series [13]. The above network 
representations can also model multidimensional time series, which enables the analy-
sis of bitcoin market value and trade from several exchange markets simultaneously. 
Since the value can differ substantively across the markets, predicting the future fluc-
tuations at one market from the dynamics of another could be of considerable practi-
cal value. 

During the last two decades, a number of interesting methods have been proposed 
to detect dynamical changes. They include, among others, recurrence plots and recur-
rence quantification analysis [14], concept of permutation entropy (PEn) [15] as a 
complexity measure for time series analysis. Since we will use them in the future, it is 
necessary to consider the above methods in more detail. 



2 Recurrence plots and recurrence quantification analysis 

Recurrence plots (RPs) have been introduced to study the dynamics of complex sys-
tems that is represented in an m-dimensional phase space by its phase space trajectory 
Xi ∈ Rm (assuming discrete sampling, i = 1, ..., N) [14]. A phase space trajectory can 
be reconstructed from a time series ui (t = i∆t, where ∆t is the sampling time) by the 
time delay embedding scheme 

 Xi = (ui, ui+1, ..., ui+ (m–1)τ), (1) 

with m the embedding dimension and τ the embedding delay. Both parameters can be 
estimated from the original data using false nearest neighbors and mutual information 
[16]. 

A Recurrence Plot is a 2-dimensional representation of those times when the phase 
space trajectory Xi recurs. As soon as a dynamical state at time j comes close to a 
previous (or future) state at time i, the recurrence matrix R at (i, j) has an entry one: 

 ( ),   , 1,...,  ,ij i jR x x i j Nε= Θ − − =  (2) 

where || || is a norm (representing the spatial distance between the states at times i and 
j), ε is a predefined recurrence threshold, and Θ is the Heaviside function (ensuring a 
binary R). 

The RP has a square form and usually the identity Rij ≡ 1 is included in the graph-
ical representation, although for calculations it might be useful to remove it [16]. The 
graphical representation of the RP allows to derive qualitative characterizations of the 
dynamical systems. For the quantitative description of the dynamics, the small-scale 
patterns in the RP can be used, such as diagonal and vertical lines. The histograms of 
the lengths of these lines are the base of the recurrence quantification analysis (RQA) 
developed by Webber and Zbilut and later by Marwan et al. [17-19]. 

The simplest measure of RQA is the density of recurrence points in the RP, the re-
currence rate: 
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that can be interpreted as the probability that any state of the system will recur. 
The fraction of recurrence points that form diagonal lines of minimal length µ is 

the determinism measure: 
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is the histogram of the lengths of the diagonal lines. The understanding of ‘determin-
ism’ in this sense is of heuristic nature. 

3 Permutation entropy (PEn) 

The PEn is conceptually simple, computationally very fast and can be effectively used 
to detect dynamical changes in complex time series. 

The degree of disorder or uncertainty in a system can be quantified by a measure of 
entropy. The uncertainty associated with a physical process described by the probabil-
ity distribution 

 P = { pi, i = 1, ..., M} (6) 

is related to the Shannon entropy, 
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Constructing probability distributions using ordinal patterns from recorded time se-
ries was proposed by Bandt and Pompe [15]. The benefit of using this symbolic ap-
proach is improved robustness to noise and invariance to nonlinear monotonous trans-
formations (e.g. measurement equipment drift) when compared with other complexity 
measures [15]. This is due to the way the ordinal patterns are constructed based on the 
relative amplitude of time series values and makes it particularly attractive for use on 
experimental data. 

To obtain the ordinal pattern distribution on which to calculate entropy, one must 
first choose an appropriate ordinal pattern length D and ordinal pattern delay τ. There 
are D! possible permutations for a vector of length D, so in order to obtain reliable 
statistics the length of the time series N should be much larger than D! [20]. 

The time scale over which the complexity is quantified can be set by changing the 
ordinal pattern delay τ. This is the time separation between values used to construct 
the vector from which the ordinal pattern is determined. Its value corresponds to a 
multiple of the signal sampling period. For a given time series {ut, t = 1, ..., N}, ordi-
nal pattern length D, and ordinal pattern delay τ, we consider the vector 

 ( 1) ( 2)( , , , , , , , ).S s D s D s su u u uτ τ τ− − − − −→X  (8) 

At each time s the ordinal pattern of this vector can be converted to a unique sym-

bol π = (r0, r1, ..., rD–1) defined by 
0 1 2 1

... .
D Ds r s r s r s ru u u uτ π τ τ− −− − − −≥ ≥ ≥ ≥  

The ordinal pattern probability distribution P = { p(π), i = 1, ..., D!} required for 
the entropy calculation is constructed by determining the relative frequency of all the 



D! possible permutations πi. The normalized permutation entropy is then defined as 
the normalized Shannon entropy S associated with the permutation probability distri-
bution P 
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This normalized permutation entropy gives values 0 ≤ HS ≤ 1 where a completely 
predictable time series has a value of 0 and a completely stochastic process with a 
uniform probability distribution is represented by a value of 1. It is important to real-
ize that the PE is a statistical measure and is not able to distinguish whether the ob-
served complexity (irregularity) arises from stochastic or deterministic chaotic pro-
cesses. It is also important that the PEn provides means to characterize complexity on 
different time scales, given by the delay. 

Thus HS gives a measure of the departure of the time series under study from a 
complete random one: the smaller the value of HS, the more regular the time series is. 
It is clear that if D is too small, such as 1 or 2, the scheme will not work, since here 
are only very few distinct states. In principle, using a large value of D is fine, as long 
as the length of a stationary time series under study can be made proportional to D!. 
In their paper [15], Bandt and Pompe recommend D = 3, ... ,7. We found that a value 
of D = 5, 6, or 7 seems to be the most suitable. 

4 Experimental testing of the effectiveness of indicators-
precursors of crisis phenomena 

We have already reached a point where the crash of the bitcoin will have serious 
global consequences. The degree of involvement of financial institutions in a transac-
tion with cryptocurrencies is now unclear, and, apparently, it will be fully disclosed 
after the financial catastrophe. This is very similar to the situation in 2007-2008, when 
nobody really knew where, ultimately, subprime mortgages are concentrated. Until 
the crash, everyone was only wondering which financial institutions could be bank-
rupt. Thus, the identification of possible trends of the cryptocurrency movement, con-
struction and modeling of indicators of stability and possible crisis states is extremely 
relevant. 

During the entire period (16.07.2010 - 10.02.2018) of verifiable fixed daily values 
of the bitcoin price (BTC) (https://finance.yahoo.com/cryptocurrencies) in relative 
units, five crisis phenomena were recorded and marked with arrows on Fig. 1. 



 

Fig. 1.  Dynamics of price fluctuations of bitcoin over time. The arrows indicate the beginning 
of one of the five known crises 

In order to study the possibility of constructing indicators of crisis phenomena in the 
market of cryptocurrency, the price range of bitcoin was divided into five parts in 
accordance with the periodization of crises [21]: 

1). From 19.02.2013 to 31.05.2013. 
2). From 10.10.2013 to 31.12.2013. 
3). From 18.12.2013 to 02.03.2014. 
4). From 22.04.2017 to 31.07.2017. 
5). From 15.07.2017 to 02.10.2018. 
For each of the time series phase portraits, recurrent diagrams were constructed, 

their quantitative analysis was carried out, and there were entropies of permutations 
estimated. Calculations were carried out within the framework of the algorithm of a 
moving window. For this purpose, the part of the time series (window), for which 
there were measures of complexity (RR, DET, PEn), was selected, then the window 
was displaced along the time series in a one-day increment and the procedure repeated 
until all the studied series had exhausted. Further, comparing the dynamics of the 
actual time series and the corresponding measures of complexity, we can judge the 
characteristic changes in the dynamics of the behavior of complexity with changes in 
the cryptocurrency. If this or that measures of complexity behaves in a definite way 
for all periods of crisis, for example, decreases or increases during the pre-crisis peri-
od, then it can serve as an indicator or precursor of such a crisis phenomenon. 

We expect that the variation of RR, DET, PEn as a function of time or certain time-
varying parameter can accurately indicate interesting dynamical changes in a time 
series. 

The simulation results are quite sensitive to the window width selection. Indeed, if 
the window is too large, several crisis or shock (critical states) may enter it. As a re-
sult, we get an average case where it is impossible to reliably divide one crisis from 
another. On the contrary, when over a small window, the measures of complexity is 
not that exact, it fluctuates noticeably and requires smoothing. 

In Fig. 2 for the first crisis the phase portrait, the recurrent diagram and the 
measures of complexity calculated for the window in 15 days in a one-day increments 
are given. 



 

  a)     b) 
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Fig. 2.  Phase portrait (a), recurrence diagram (b) and, respectively, the measure of recurrence 
RR and determinism DET (c) and the permutation entropy PEn (d) 

Unlike, for example, the stock markets, the cryptocurrencies market is more volatile, 
and critical phenomena are separated by a smaller time lag. This justifies the choice of 
the size of the window of a few days. We have proved calculations for windows in 15, 
25 and 35 days. The best way is to share critical events in time when choosing a win-
dow in 15 days. 

At the phase portrait there are no attractive areas, although fluctuations during the 
first crisis are visible both on the phase portrait and on the recurrence diagram. But 
the measures of complexity look interesting: before the crisis, both recurrent and en-
tropy measures are noticeably diminished, thus signaling the oncoming crisis. 

For the second crisis, the indicators-precursors produce dynamics, which is depict-
ed in Fig. 3. 



 
  a)     b) 

Fig. 3.  Dynamics of RR and DET (a) and permutation entropy PEn (b) for the second crisis 

For the third crisis, the behavior of indicators-precursors has the form, presented in 
Fig. 4. 

 
  a)     b) 

Fig. 4. Dynamics of RR, DET (a) and permutation entropy PEn (b) for the third crisis 

A fourth crisis could also have been predicted using the indicators introduced (Fig. 5). 

 
  a)     b) 

Fig. 5. Dynamics of RR, DET (a) and PEn (b) for the fourth crisis 



Finally, the last crisis is preceded by shock states, which are identified by the intro-
duced indicator measures. But most clearly, they "prevent" the rapid fall of the main 
phase of the crisis of the end of 2017 beginning of 2018 (Fig. 6). 

 

  a)     b) 

Fig. 6. Dynamics of RR, DET (a) and PEn (b) for the fifth crisis 

It should be noted that other of the most capitalized cryptocurrencies, such as Ethere-
um, Ripple, Bitcoin Cash have coefficients of pair correlation with bitcoin at the level 
of 0.6-0.8 and similarly react to crisis phenomena. 

5 Concluding remarks 

Consequently, in this paper, we have shown that monitoring and prediction of possi-
ble critical changes on cryptocurrency is of paramount importance. As it has been 
shown by us, the theory of complex systems has a powerful toolkit of methods and 
models for creating effective indicators- precursors of crisis phenomena. In this paper, 
we have explored the possibility of using the recurrent and entropy measures of com-
plexity to detect dynamical changes in a complex time series. We have shown that the 
measures that have been used can indeed be effectively used to detect crisis phenom-
ena for the time series of bitcoin. Certainly there is no reason to expect that the RR, 
DET or PE is universally and indiscriminately applicable. It is most likely that no 
such measure exists; instead, various measures would have to be used in a comple-
mentary fashion, to take best advantage of their respective merits within their ranges 
of applicability. We have concluded though by emphasizing that the most attractive 
features of the RR, DET and PE, namely its conceptual simplicity and computational 
efficiency make it an excellent candidate for a fast, robust, and useful screener and 
detector of unusual patterns in complex time series. 

As for the prospects for further research, we plan to investigate the fractal and net-
work properties of cryptomarket, as well as its correlation with other sectors of the 
global financial market. 
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