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Abstract. This article demonstrates the possibility of cansting indicators of
critical and crisis phenomena in the volatile maidecryptocurrency. For this
purpose, the methods of the theory of complex systeuch as recurrent analy-
sis of dynamic systems and the calculation of pé&atian entropy are used. It is
shown that it is possible to construct dynamic raess of complexity, both re-
current and entropy, which behave in a proper waynd actual pre-crisis peri-
ods. This fact is used to build predictors of erighenomena on the example of
the main five crises recorded in the time serieshef key cryptocurrency
bitcoin, the effectiveness of the proposed indicafwrecursors of crises has
been identified.
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1 Introduction

Bitcoin is an important electronic and decentraizeyptographic currency system
proposed by Satoshi Nakamoto as the “greatest ¢dotical breakthrough since the
Internet” [1]. It is based on a peer-to-peer neknarchitecture and secured by cryp-
tographic protocols and there is no need for arakatithority or central bank to con-
trol the money supply within the system. Bitcoitigg on a proof-of-work system to

verify and authenticate the transactions that arged out in the network. Anonymity

and avoidance of double spending are realized biack chain, a kind of transaction

log that contains all transactions ever carriediodhe network. For further verifica-

tion purposes all transactions are public [2].

The bitcoin has emerged as a fascinating phenomendime financial markets.
Without any central authority issuing the currenthg bitcoin has been associated
with controversy ever since its popularity, acconipd by increased public interest,
reached high levels.

Despite an influx of media buzz and venture capdtaital currencies face an un-
certain future amid an ever-changing global lanpscdanvestment requires careful
consideration of the potential use cases and dasksciated with various cryptocur-
rencies.



A look back at bitcoin price swings in the lastefiyears, which include several
stomach-churning tumbles of 40% and even 50%, mikelgar the world’s most
popular cryptocurrency was—and is—extremely vadatit is also apparent that most
of the bitcoin crashes coincide with speculativa-ops coupled with exogenous
shocks, such as a major hack or a government asagkdAlso, in most cases, bitcoin
has bounced back from the crashes in months or eesks—suggesting nervous
bitcoin buyers will be okay if they are holding fitlie long run. On the other hand, the
crashes of late 2013 and early 2014 are a cautioiaég—recall it took years for
those who first bought bitcoin at $1,000 to seé theestment recover.

Bitcoin attracts considerable attention of researcloérslifferent levels, using
modern methods and models of analysis of the padtigis of the dynamics of the
popular digital currency.

The authors [3] examine the relation between préterns and volatility changes
in the bitcoin market using a daily database denated in various currencies. The
results for the entire period provide no evident@am asymmetric return-volatility
relation in the bitcoin market. They test if thésea difference in the return-volatility
relation before and after the price crash of 20d@ show a significant inverse rela-
tion between past shocks and volatility before ¢reessh and no significant relation
after.

A noncausal autoregressive process with Cauchysemoapplication to the ex-
change rates of the bitcoin electronic currencgothiiced in [4]. The dynamics of the
daily bitcoin/USD exchange rate series displaysages of local trends, which can be
modelled and interpreted as speculative bubbles. Aubbles may result from the
speculative component in the on-line trading.

Taking Bitcoin as a representative example, théaat[5] first uses autoregres-
sive moving average (ARMA) functions to explaindireg values, then applies log-
periodic power law (LPPL) models [6] in an attertgppredict crashes. The results of
ARMA modeling show that bitcoin values react to B@E Volatility Index, suggest-
ing that a primary force currently driving bitcoualues is speculation by investors
looking outside traditional markets. In additiohetLPPL models accurately predict
ex-ante the crash that occurred in December 20&Rinm LPPL models a potentially
valuable tool for understanding bubble behaviadigital currencies.

In the work [7], a comparative correlation and feh@nalysis of time series of
bitcoin cryptocurrency rate and community actigti@ social networks associated
with bitcoin was conducted. A significant corretetibetween the bitcoin rate and the
community activities was detected. Time seriest&iaanalysis indicated the presence
of self-similar and multifractal properties. Thesulis of researches showed that the
series having a strong correlation dependence &aumilar multifractal structure.

It is analyzed the time-varying behavior of longmmey of returns on bitcoin and
volatility 2011 until 2017, using the Hurst expon8]. Daily returns exhibit persis-
tent behavior in the first half of the period undérdy, whereas its behavior is more
informational efficient since 2014. Price volagilitmeasured as the logarithmic dif-
ference between intraday high and low prices etdiling memory during all the
period. This reflects a different underlying dynamrocess generating the prices and
volatility.



The research [9] is concerned with predicting thieepof bitcoin using machine
learning. The goal is to ascertain with what accythe direction of bitcoin price in
USD can be predicted. The price data is sourced fiee Bitcoin Price Index . The
task is achieved with varying degrees of successutih the implementation of a
Bayesian optimised recurrent neural network (RNRJ &ong Short Term Memory
(LSTM) network. The LSTM achieves the highest dfésstion accuracy of 52% and
a RMSE of 8%. The popular ARIMA model for time sariforecasting is implement-
ed as a comparison to the deep learning modelg.i®\expected, the non-linear deep
learning methods outperform the ARIMA forecast whjerforms poorly.

The bitcoin price was modeled as a geometric fBmd, @rice predictions were put
forward through a Monte Carlo approach with' t@alisations [10]. The predicted
mid-2017 price, based on historical values ungl ¢imd of 2016, taken as the median,
was slightly underestimated. This is considerea g®od agreement, thus justifying
the applicability of the model. Therefore, priceedictions for the beginning of 2018
were made in the same way. It is found that thegppredicted as the median of a log-
normally distributed set of realisations is 63580J®n the other hand, the chance of
falling below the current price of 2575.9 USD is4%.

In the paper [11] it has been presented that antdigesed artificial cryptocurrency
market in which heterogeneous agents buy or sgptacurrencies, in particular
bitcoins. In this market, there are two typolog@sagents, Random Traders and
Chartists, which interact with each other by trgdbitcoins. Each agent is initially
endowed with a finite amount of crypto and/or fiatsh and issues buy and sell or-
ders, according to the strategy and resources.nth#er of bitcoins increases over
time with a rate proportional to the real one, eiféhe mining process is not explicit-
ly modeled.

The model proposed is able to reproduce some ofethlestatistical properties of
the price absolute returns observed in the bitoeéh market. In particular, it is able to
reproduce the autocorrelation of the absolute nstuand their cumulative distribution
function. The simulator has been implemented usinjgct-oriented technology, and
could be considered a valid starting point to stagy analyse the cryptocurrency
market and its future evolutions.

Authors [12] have reported the results of a prelany exploratory analysis of
bitcoin market value from a popular exchange maBi&tamp. They have collected
the data for a period of five days in January 2814 rate of about one minute and
construct different network representation of tingetseries [13]. The above network
representations can also model multidimensionat series, which enables the analy-
sis of bitcoin market value and trade from sevesahange markets simultaneously.
Since the value can differ substantively acrosathekets, predicting the future fluc-
tuations at one market from the dynamics of anotieitd be of considerable practi-
cal value.

During the last two decades, a humber of intergstiethods have been proposed
to detect dynamical changes. They include, amohgrst recurrence plots and recur-
rence quantification analysis [14], concept of patation entropy (PEn) [15] as a
complexity measure for time series analysis. Simeavill use them in the future, it is
necessary to consider the above methods in moad.det



2 Recurrence plots and recurrence quantification analysis

Recurrence plots (RPs) have been introduced tg/ sheddynamics of complex sys-

tems that is represented in mrdimensional phase space by its phase space trgject
X; O R™ (assuming discrete samplirigs 1, ...,N) [14]. A phase space trajectory can
be reconstructed from a time seriggt = iAt, whereAt is the sampling time) by the

time delay embedding scheme

Xi = (Ui, Ui 1y +ons Ui m-)e), Q)

with m the embedding dimension anthe embedding delay. Both parameters can be
estimated from the original data using false neareghbors and mutual information
[16].

A Recurrence Plot is a 2-dimensional representaifchose times when the phase
space trajectory; recurs. As soon as a dynamical state at firmemes close to a
previous (or future) state at timethe recurrence matrRR at (, j) has an entry one:

R =0(e-|x~-%[), ii=1..,N 2)

where || || is a norm (representing the spatithie between the states at timasd
), € is a predefined recurrence threshold, énid the Heaviside function (ensuring a
binaryR).

The RP has a square form and usually the ideRjity 1 is included in the graph-
ical representation, although for calculations igjim be useful to remove it [16]. The
graphical representation of the RP allows to degialitative characterizations of the
dynamical systems. For the quantitative descriptibthe dynamics, the small-scale
patterns in the RP can be used, such as diagodaleatical lines. The histograms of
the lengths of these lines are the base of thenawe quantification analysis (RQA)
developed by Webber and Zbilut and later by Maregal. [17-19].

The simplest measure of RQA is the density of ienge points in the RP, the re-
currence rate:

1 N
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that can be interpreted as the probability thatstate of the system will recur.
The fraction of recurrence points that form diaddimes of minimal lengthu is
the determinism measure:
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where



D(l) = i{(l_R—l,j—l) 1~ R+1j+1)Elf! Ri i « } (5)

is the histogram of the lengths of the diagonadinThe understanding of ‘determin-
ism’ in this sense is of heuristic nature.

3 Per mutation entropy (PEn)

The PEn is conceptually simple, computationallyest and can be effectively used
to detect dynamical changes in complex time series.

The degree of disorder or uncertainty in a systambe quantified by a measure of
entropy. The uncertainty associated with a phygicatess described by the probabil-
ity distribution

P={p,i=1,..M} (6)
is related to the Shannon entropy,

M

SA=-) pih p (7)

i=1

Constructing probability distributions using ordipatterns from recorded time se-
ries was proposed by Bandt and Pompe [15]. Thefiberiausing this symbolic ap-
proach is improved robustness to noise and invegiam nonlinear monotonous trans-
formations (e.g. measurement equipment drift) wé@mpared with other complexity
measures [15]. This is due to the way the ordia#tiepns are constructed based on the
relative amplitude of time series values and matkparticularly attractive for use on
experimental data.

To obtain the ordinal pattern distribution on whichcalculate entropy, one must
first choose an appropriate ordinal pattern lergjthind ordinal pattern delay There
are D! possible permutations for a vector of lenfthso in order to obtain reliable
statistics the length of the time seridéshould be much larger th&éx [20].

The time scale over which the complexity is quaedifcan be set by changing the
ordinal pattern delay. This is the time separation between values ugezbmstruct
the vector from which the ordinal pattern is deteed. Its value corresponds to a
multiple of the signal sampling period. For a giteane series §, t = 1, ...,N}, ordi-
nal pattern lengt®, and ordinal pattern delaywe consider the vector

Xs - (u?( D-1)r? usf( I}Z)T””’us-r ’us)' (8)

At each times the ordinal pattern of this vector can be conwkttea unique sym-
bolz = (ro, Iy, ....Tp-) defined byug_ . =2 U, ., 2..2U_, 2 U ..

S— 1T S— T =
The ordinal pattern probability distributidd={p(z), i = 1, ..., D!} required for
the entropy calculation is constructed by deterngrthe relative frequency of all the



D! possible permutations. The normalized permutation entropy is then defias
the normalized Shannon entrofyassociated with the permutation probability distri
butionP

SLA _ ~X PUR)In p(rg)
S In D! '

max

He[P =

(9)

This normalized permutation entropy gives valuesHx< 1 where a completely
predictable time series has a value of 0 and a t@ielp stochastic process with a
uniform probability distribution is represented dwalue of 1. It is important to real-
ize that the PE is a statistical measure and isahl& to distinguish whether the ob-
served complexity (irregularity) arises from stosti@ or deterministic chaotic pro-
cesses. It is also important that the PEn provideans to characterize complexity on
different time scales, given by the delay.

Thus Hs gives a measure of the departure of the time seneler study from a
complete random one: the smaller the valuklgfthe more regular the time series is.
It is clear that ifD is too small, such as 1 or 2, the scheme willmoitk, since here
are only very few distinct states. In principleingsa large value db is fine, as long
as the length of a stationary time series undetystan be made proportional Ed.

In their paper [15], Bandt and Pompe recommBere 3, ... ,7. We found that a value
of D=5, 6, or 7 seems to be the most suitable.

4 Experimental testing of the effectiveness of indicators-
precursors of crisis phenomena

We have already reached a point where the cragsheobitcoin will have serious
global consequences. The degree of involvemenhahéial institutions in a transac-
tion with cryptocurrencies is now unclear, and, apptly, it will be fully disclosed
after the financial catastrophe. This is very samib the situation in 2007-2008, when
nobody really knew where, ultimately, subprime rmages are concentrated. Until
the crash, everyone was only wondering which fire@nastitutions could be bank-
rupt. Thus, the identification of possible trendshe cryptocurrency movement, con-
struction and modeling of indicators of stabilitydapossible crisis states is extremely
relevant.

During the entire period (16.07.2010 - 10.02.2048yerifiable fixed daily values
of the bitcoin price (BTC) (https://finance.yahamu/cryptocurrencies) in relative
units, five crisis phenomena were recorded and etavkth arrows on Fig. 1.
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Fig. 1. Dynamics of price fluctuations of bitcoin ovem#. The arrows indicate the beginning
of one of the five known crises

In order to study the possibility of constructimglicators of crisis phenomena in the
market of cryptocurrency, the price range of bitcaias divided into five parts in
accordance with the periodization of crises [21]:

1). From 19.02.2013 to 31.05.2013.

2). From 10.10.2013 to 31.12.2013.

3). From 18.12.2013 to 02.03.2014.

4). From 22.04.2017 to 31.07.2017.

5). From 15.07.2017 to 02.10.2018.

For each of the time series phase portraits, rentidiagrams were constructed,
their quantitative analysis was carried out, aretdhwere entropies of permutations
estimated. Calculations were carried out within fita@nework of the algorithm of a
moving window. For this purpose, the part of theeiseries (window), for which
there were measures of complexity (RR, DET, PEm)s selected, then the window
was displaced along the time series in a one-dagiment and the procedure repeated
until all the studied series had exhausted. Furtbemparing the dynamics of the
actual time series and the corresponding meastresnoplexity, we can judge the
characteristic changes in the dynamics of the heha&¥ complexity with changes in
the cryptocurrency. If this or that measures of plaxity behaves in a definite way
for all periods of crisis, for example, decreasesoreases during the pre-crisis peri-
od, then it can serve as an indicator or precwtsuch a crisis phenomenon.

We expect that the variation of RR, DET, PEn asretion of time or certain time-
varying parameter can accurately indicate intemgstiynamical changes in a time
series.

The simulation results are quite sensitive to tiredew width selection. Indeed, if
the window is too large, several crisis or shodktifal states) may enter it. As a re-
sult, we get an average case where it is impossibteliably divide one crisis from
another. On the contrary, when over a small windihe, measures of complexity is
not that exact, it fluctuates noticeably and regmsmoothing.

In Fig. 2 for the first crisis the phase portratie recurrent diagram and the
measures of complexity calculated for the window5ndays in a one-day increments
are given.
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Fig. 2. Phase portrait (a), recurrence diagram (b) aghetctively, the measure of recurrence
RR and determinism DET (c) and the permutation egtRipn (d)

Unlike, for example, the stock markets, the cryptoencies market is more volatile,
and critical phenomena are separated by a smiierlag. This justifies the choice of
the size of the window of a few days. We have pdosaculations for windows in 15,

25 and 35 days. The best way is to share critioahts in time when choosing a win-
dow in 15 days.

At the phase portrait there are no attractive aralisough fluctuations during the
first crisis are visible both on the phase porteaitl on the recurrence diagram. But
the measures of complexity look interesting: befiwe crisis, both recurrent and en-
tropy measures are noticeably diminished, thusadiiggn the oncoming crisis.

For the second crisis, the indicators-precursooslyce dynamics, which is depict-
ed in Fig. 3.
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Fig. 3. Dynamics of RR and DET (a) and permutation ent®pn (b) for the second crisis

For the third crisis, the behavior of indicatorgqursors has the form, presented in
Fig. 4.
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Fig. 4. Dynamics of RR, DET (a) and permutation entropy Bgrior the third crisis

A fourth crisis could also have been predicted gi$ire indicators introduced (Fig. 5).

window = 15, step = 1

window = 15, step = 1

o
=)

o
o

o
'S

BTC, meansures
BTC, PEn

0 20 40 60 80
time, days

a) b)
Fig. 5. Dynamics of RR, DET (a) and PEn (b) for the fouribkis

time, days



Finally, the last crisis is preceded by shock statghich are identified by the intro-
duced indicator measures. But most clearly, thegvent" the rapid fall of the main
phase of the crisis of the end of 2017 beginningGif8 (Fig. 6).
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Fig. 6. Dynamics of RR, DET (a) and PEn (b) for the fiftisi

It should be noted that other of the most capializryptocurrencies, such as Ethere-
um, Ripple, Bitcoin Cash have coefficients of pairrelation with bitcoin at the level
of 0.6-0.8 and similarly react to crisis phenomena.

5 Concluding remarks

Consequently, in this paper, we have shown thatitoramg and prediction of possi-
ble critical changes on cryptocurrency is of paramiamportance. As it has been
shown by us, the theory of complex systems hasveegol toolkit of methods and
models for creating effective indicators- precussof crisis phenomena. In this paper,
we have explored the possibility of using the reentr and entropy measures of com-
plexity to detect dynamical changes in a complmetseries. We have shown that the
measures that have been used can indeed be effgaised to detect crisis phenom-
ena for the time series of bitcoin. Certainly thex@o reason to expect that the RR,
DET or PE is universally and indiscriminately apphle. It is most likely that no
such measure exists; instead, various measuresiwanie to be used in a comple-
mentary fashion, to take best advantage of thepeetive merits within their ranges
of applicability. We have concluded though by engihiag that the most attractive
features of the RR, DET and PE, namely its con@pgimplicity and computational
efficiency make it an excellent candidate for a,fasbust, and useful screener and
detector of unusual patterns in complex time series

As for the prospects for further research, we péaimvestigate the fractal and net-
work properties of cryptomarket, as well as itsrefation with other sectors of the
global financial market.
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