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An individual differences model for multidimensional sealing is ouN 
lined in which individuals are assumed differentially to weight the several 
dimensions of a common "psychological space". A corresponding method 
of analyzing similarities data is proposed, involving a generalization of 
"Eckart-Young analysis" to decomposition of three-way (or higher-way) 
tables. In the present case this decomposition is applied to a derived three- 
way table of scalar products between stimuli for individuals. This analysis 
yields a stimulns by dimensions coordinate matrix and a subjects by dimen- 
sions matrix of weights. This method is illustrated with data on auditory 
stimuli and on perception of nations. 

There has been an interest for some time in the question of dealing 
with individual differences among subjects in maldng similarity judgments 
on which a multidimensional scaling of stimuli is to be based. Kruskal [1968] 
and McGee [1968] have both incorporated different ways of dealing with 
individual differences into their scaling procedures. Tucker and Messick 
[1963] proposed aa approach, which they called "Points of view analysis," 
which is probably the most widely used method for dealing with such individ- 
ual differences. In this method, intercorrelations are first computed between 
subjects (based on their similarity judgments) and the resulting correlation 
matrix is factor analyzed to produce a subject space. One then looks for 
clusters of subjects in this subject space, and if such clusters are found, 
proceeds in one way or another to define "idealized" subjects corresponding 
to clusters. (The "idealized subject" for a given cluster may be defined, for 
example, by finding the pattern of similarity judgments corresponding to a 
hypothetical subject at the cluster ceatroid, by choosing the actual subject 
closest to that eentroid, or, most simply, by averaging the similarity judg- 
ments for subjects in the given cluster.) The similarities for these "idealized 
subjects" are then, individually and independently, subjected to multi- 
dimensional scaling. 

This approach has been criticized by a number of people, most recently 
by Ross [1966] (see Cliff, 1968, for a reply to Ross's criticism and a further 
discussion of the "idealized individuals" interpretation of "Points of view 
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analysis"). Perhaps the most cogent criticism is that the method is little 
more powerful than doing separate scalings on the individuM subjects--and 
it makes no explicit assumptions about possible or probable communality 
of the dimensional structures for different real or idealized individuals. I t  
would be very surprising if the various configurations had no structure in 
common. Rather, one might suspect that, for example, one or two dimensions 
are the same in two different configurations while a third is different, or 
that the same dimensions are present, but they have different relative saliences, 

or importances, for different people. Both of these possibilities, as well as 
the extreme case in which the configurations have nothing at all in common, 
are included in our model which, we might say, represents a different point 
of view about "Points of view." 

The  Mode l  

We assume a set of r dimensions or "factors" underlying the n stimuli. 
These are assumed to be common to all individuals. We shall use x~, to re- 
present the value of the j th stimulus on the tth dimension (so j ranges from 1 
to n and t from 1 to r). We assume the similarity judgments for each subject 
to be related in a simple way to a kind of modified Euclidean distance in 
this space. In particular, for now, we shall assume that 

(1) s (') = L t'~(')~ i k  k ~ i k  / 

where -(') is the similarity of the j th and kth stimuli for the ith individual 
(i = 1, 2 . . .m) ,  and L is a linear function (with negative slope). The " m o d i -  

fied" Euclidean distance for the ith subject is given by: 

,J2 2 ( ~ )  - -  X 2 (2) = w,,(x. 

This formula differs from the usual Euclidean distance formula only 
in the presence of the weights w ,  , which represent the saliences or impor- 
tances mentioned above. Another way of looking at this formula is to say 
that the d~ )'s are ordinary Euclidean distances computed in a space whose 
coordinates are: 

(3) =  V/x. 

that is, in a space that is like the x space except that the configuration has 
has been expanded or contracted (differentially) in directions corresponding 
to the coordinate axes. This is the kind of transformation that would, for 
example, convert circles into ellipses with major and minor axes parallel to 
the coordinate axes, or spheres into (parallel) ellipsoids in three dimensions. 

This model is sufficiently general to include all the models discussed 
above. Two completely different spaces could be accommodated, for example, 
by assuming a "common" space combining all the dimensions of the two 
separate spaces (the direct sum, in technical terms). The dimensionality 
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of this "super-space" would be the sum of the two dimensionalities. Then, 
by assuming that one group of subjects attaches zero weights or saliences 
to the dimensions of the first space, while a second group attaches zero weights 
to those of the second, this model becomes equivulent to the "two-separate 
spaces" model. Of course, the more interesting and exciting case is that in 
which some, but not complete, communality exists. The model is by no means 
completely general, however. In particular it does not allow differential 
rotation as well as differential weighting of dimensions. Possible methods 
of analysis in terms of such a more general model will be discussed in a later 
section. Suffice it to say that, in our viewpoint, it is actually easier, in principle, 
to develop a method of analysis in terms of the more general model, but 
that  we feel this model to be of less interest than the present, more restricted 
one. The fact that the present model allows stretching and shrinking trans- 
formations only along the fixed coordinate axes means that these axes have a 
much stronger meaning than is the case in the usual scaling situation involving 
Euclidean metric. This means that the method to be proposed here should, 
and will, determine these axes uniquely. If the model we postulate is true, 
then these uniquely determined coordinate axes will correspond to meanirgful 
psychological dimensions in a very strong sense (as postulated, they cor- 
respond to fundamental sensory, perceptual or judgmental processes that 
vary in salience, or strength of effect on perception, across individuals). This 
argument has been developed in more detail by Horan [1969]. 

The model may not hold in every case, but if it does we gain a unique 
and hopefully psychologically meaningful orientation of axes, thus obviating 
the rotational problem and defining much stronger scales of measurement 
than is usual in multidimensional scaling. One example will be presented 
in a later section to support the argument that this in fact does happen. 
Many more cases have now been collected [Wish, 1970a, b; Wish, 1971; 
Wish, Deutsch and Biener, 1971; Carroll, 1971; Carroll and Chang, 1970; 
Carroll and Wish, 1970; Bricker and Pruzansky, 1970; Rao, 1970; Green and 
Rao, 1970; Green and Carmoae, 1971] that lend credence to this notion. 
In essentially every case the dimensions have proved to be interpretable 
directly as they are derived from this analysis (i.e., without rotation). In 
cases where a set of a priori physical or theoretical dimensions were known, 
the recovered (unrotated) dimensions have always (to date) corresponded 
to them in an essentially one to one fashion. We therefore argue that it  is 
appropriate to analyze data in terms of this very strong and specific model, 
and that only if this model fails to fit the data adequately should one have 
recourse to a more general model. 

The Method o] Analysis 

The first step in the method of analysis is to convert the similarities 
into distance estimates. Under the linear assumptions we have made, this 
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can be done by using one of the standard procedures described in Torgerson 
[1958]. We then use the equations also described in Torgerson [1958, pp. 
254-259] to convert the distance estimates for each subject into scalar prod- 
ucts of vectors (to get the matrix of scalar products, we simply double center 
the matrix whose entries are --1/2 2 gives us via , di~). This numbers ~(~ which, 
in the present case, can be regarded as scalar products between the vectors 

t ,  ; i . e .  (ignoring error terms): 

~,~k = Y i l  yk ,  = w . x i , x k ~  • 
¢=1 ~ - 1  

The last expression results from substituting the expression in (3) for 

We solve for (least squares) estimates of these parameters by a procedure 
we have called "canonical decomposition of N-way tables". This method 
will be described in general terms at a later point. For now let us see how 
the method is applied to the specific problem of solving for parameters of 
the model in equation (4). Let us, first, replace (4) with (4-a) below: 

(4-a) z~i~ ~ w , x i t  ~, 
t s l  

where " _ ~ "  implies, in the present context, that  we seek a least squares 
solution for the parameters on the right. 

~(~) and put superscripts We have, simply, made the substitution z,k ----- v;k , 
(L) and (R) on the x ' s  (to distinguish the x on the left from the one on the 
right). We will let W, XL and XR represent the corresponding (m X r), (n X r) 
and (n X r) matrices. Suppose, now, that we are given initial estimates 
of XL and XR (these may, and generally would be, exactly the same), and 
want to derive a least squares estimate for W. 

Letting s = n(j -- 1) -b k, so that s varies from 1 to n *, define g., -- 
x(L~ _(R) and z~ ---- Then (4-a) can be written in the equivalent form: i #  " ~ k l  $ Z i i k  • 

(5) z* = ~ ~ w,,g. ,  

Given the equation in this form, it is immediately apparent that a least 
squares solution is available for the w's (holding the x's, and thus the g's ,  

fixed). To see this more clearly, write (5) in the matrix form: 

(6) Z* ~ -  W G  ~ 

where Z* is the m X n * matrix with entries z* , and G is the n * X r matrix 
with entries g., . (The columns of G can also be defined as the Kronecker 
product of corresponding column vectors of XL and XR .) The least squares 
solution for W is, by well known results: 

(7) W = Z *  G ( G r G )  -~ 
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(that is, we define W by postmultiplying Z* by the right pseudoinverse of Gr). 
Now, having solved for W we may get a better estimate of XL (say) 

by similar means. In this ease, let u ---- m ( i  - 1) + k, (so that u varies from 
1 to ran) and define h~, 
equation (4-a) as 

(s) 

or, in matrix form as 

(9) 

w,  .x c~k, and z** ~ z:,.~ . Now we may rewrite 

~ig t~u$ 
t=_-I 

Z** _~ X L H  r 

from which the least squares estimate for XL is 

(10) ~L = Z** H ( H r H )  - '  

Given the new values for both W and XL we may, by a similar procedure, 
solve for better estimates of X~ . We then return to solve again for a still 
better estimate of W, then of XL and of XR, continuing this procedure iter- 
atively until the process converges. Note that, at each step of this iterative 
procedure we are reducing (or, certainly, not increasing) the total error sum 
of squares. At each stage we are seeking out the vMues of one of the three 
sets of parameters yielding a precise minimum sum of squares for the given 
(fixed) values of the other two sets. This can be regarded as a generalization 
of standard "relaxation" procedures for optimizing a function of many vari- 
ables, in which the optimum is sought out with respect to one variable, 
holding all the other fixed, then with a second variable, holding the first 
and the remaining variables fixed, and so on, iteratively, until convergence 
is achieved. The difference in the present procedure is that whole subsets 
of variables are treated in this way. It  is also important to note that we can 
go to the precise minimum for the given subset at each stage in the process. 

The reader may also note that, during the iterative process there is no 
constraint making XL = X~ . In fact these two matrices may be quite dif- 
ferent in early stages of the process. However, the basic symmetry of the 
data (the b~)'s or z~jk's) reflected in the fact that z , ,  = z~,~ for all i, i and/c, 
guarantees that, when the process finally converges, XL and X~ will be, if 
not precisely equal, equivalent in a slightly more general sense. That is to 
say, they will be related by a diagonal transformation, as follows: 

(i1) ~ L = CXR 

tz  C-1XL 

where C is an r × r diagonal matrix with nonzero entries on the diagonal. 
From inspection of (4-a) it should be evident that any two of the three mat- 
rices, W, X,  and X~ can be premultiplied by arbitrary non-singular diagonal 
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matrices, and the third multiplied by the product of the inverses of these 
two diagonal matrices, without changing the right side of that  equation. 

_CL~ by c~ L~ and MCR~ by C~ ~ ,  (In non-matrix notation, we can multiply, say, xi, ~k, 
and compensate by multiplying w,, by 1/c~L).c~)). This means that we 
can expect our solution to be defined only up to this class of transformations. 
In particular it means we can easily make X~. and XR precisely equal by an 
appropriate choice of diagonal matrices. (In practice, we actually, as a final 
step, simply set XL equal to XR and recompute W. This assures that any 
discrepancies between XL and X~ due to lack of perfect convergence will 
be corrected. X~ is set equal to XR rather than the converse because X~ is 
the last computed, and should, therefore, be closer to the optimal value). 
These arbitrary diagonal transformations wi~ be involved also in the next 
section on normalization of the final solution. 

I t  might be supposed, at this point, that we could have easily constrained 
the two matrices to be the same at every stage of the algorithm by recom- 
puting only one at each iterative cycle rather than both, and simply forcing 
the other to take on the same set of values. While such an algorithm may 
work, and might even prove to be more efficient than the present one in 
some cases, it has been rejected at present because its properties are not so 
well understood. In particular, while it is easy to see that the method we 
have proposed will converge at least to a local minimum (and, we believe, 
to the global minimum in "almost all" cases), no such statement can be made 
at present for this alternative algorithm. 

Normalization 

There are two different normalization questions that should be considered. 
The first relates to normalization of the initial data, and is basically a question 
of relative weighting of the data for different subjects; that is, with how much 
each subject should influence the analysis. The second question has to do 
with normalization of the final solution. This does not concern the actual 
solution obtained, but only the most appropriate or informative way to 
present that solution. 

The first problem, that  of initial data normalization, reduces, in the 
present case, to the relative scaling of the scalar products matrix for each 
subject. The sum of squares of the scalar products provides an appropriate 
measure of the relative scaling of these matrices. Since the mean of the scalar 
products is necessarily zero for each subject (by virtue of the way these are 
defined) the sums of squares will be proportional to the variances. The most 
natural normalization procedure, in our view, is to equate these variances. 
Accordingly, we have normalized the data to be presented below by scaling 
each matrix so that its sum of squares equals one. In an earlier analysis 
of the same data, in which these variances were not equated, one subject so 
dominated the analysis that one of the dimensions was evidently determined 
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on the basis of that subject's data alone. This normalization not only equalizes 
the subjects influence on the analysis, but also simplifies interpretation 
of the subject space. This will be seen more clearly subsequently. We recom- 
mend this normalization procedure in general, unless there is a compelling 
reason for weighting subjects differentially. 

The need for a normalization of the final solution becomes evident 
upon inspection of (2) and (4). In both of these equations it can be seen that 
it is possible to multiply the x,'s by any arbitrary (nonzero) constant, and 
compensate by multiplying the w,'s by the reciprocal of the square of that 
constant. This scaling problem can be seen in a more general form in (4-a), 
as discussed above, and will later be seen to apply more generally to the models 
defined in (36) and (45). In the present application to "individual differences" 
scaling analysis, this means that we may scale the dimensions of the stimulus 
space in an arbitrary way, and compensate by introducing the appropriate 
scaling of the subject space. 

While a number of options are open, the most natural procedure, in 
our view, is to normalize the stimulus space so that the variances of projections 
of stimuli on the several coordinate axes are equal (to one, in the present 
ease). When the appropriate companion normalization is applied to the 
weight space, this leads to certain interpretive niceties. I t  means that the 
square of the Euclidean distance of a subject's point from the origin can be 
interpreted (approximately) as total variance accounted for in the scalar 
products data for that subject. We say "approximately" because the exact 
"variance accounted for" will depend, as well, on the correlations among 
stimulus dimensions. If these dimensions are orthogonal, in the sense that 
their correlations are zero, the square of the Euclidean distance (of the 
subject point from the origin) will provide a direct measure of variance ac- 
counted for. If the initial data are normalized in the way discussed earlier, 
a subject's point will be of unit distance from the origin only if all the variance 
for that subject is accounted for. In case the dimensions are correlated, 
however, the converse is not true. That is to say, the distances of a subject's 
point from the origin may be less than one, but all his variance may none- 
theless be accounted for. 

Analysis o] Illustrative Sets o] Data 

P. D. Bricker and S. Pruzansky (see Bricker and Pruzansky, 1970) have 
kindly made available data collected at Bell Telephone Laboratories on 24 
auditory tones. The stimuli and data were very similar to a set described 
earlier by Bricker, Pruzansky, and McDermott, 1968. The tones were gen- 
erated by varying three physical properties, modulation waveform (sine 
wave vs. square wave), modulation percentage, and modulation frequency~ 
in a 2 X 3 X 4 factorial design. Dissimilarity data were obtained from 20 
subjects, who were asked to rate the degree of difference of each pair on a 
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scale ranging from 0 (for a maximally similar, or indistinguishable pair) to 
9 (for a maximally dissimilar pair). The dissimilarities were assumed linear 
with distances. To convert  them into (ratio scale) distance estimates additive 
constants were est imated (separately for each subject) b y  the "one dimen- 
sional subspace" method described in Torgerson [1958]. Scalar products 
matrices were computed from these est imated distances, normalized to unit  
sum of squares, and subjected to the analysis described above. This analysis 
accounted for about  59.8% of the variance in the individuals' scalar products 
matrices. This seemed reasonable, in view of the fact tha t  these were indi- 
vidual data,  and thus susceptible to large error variances. 

The  "group"  stimulus space obtained via this three-way analysis is 

IT! 

OS 

O S  

I S  

ClIO 

® 

eS 

• [0  

Om 

MODULATION 
DIMZ PERCENTA ''-'~ 

0 4 0  
U40 

04o 
O ~  

DIM ! 

MODULATIO~I 
FREQUENCY 

[320  

a4a  

@ 

FIGURE 1 
The one-two plane of the group stimulus space for the 24 tones (data due to Bricker, 

e~ o2.). Circles stand for sinusoidal modulation waveform, and squares for square or rec- 
tangular modulation waveform. Small closed figures indicate 3% modulation percentage, 
intermediate open figures indicate 10% modulation percentage, and the largest figures 
(with numbers inside) indicate 25% modulation percentage. The number either beside 
or inside the figure encodes modulation frequency (in hertz). Projections into this one-two 
plane of the straight lines optimally corresponding to modulation frequency and modulation 
percentage are also shown. 
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PIGURE 2 
The one-three plane of the group stimulus space for the 24 tones (from Brlcker, et al.). 

Projections of straight lines optimally corresponding to modulation percentage and mod- 
ulation waveform are also shown. 

shown in Figures 1, 2 and 3, showing the planes defined by dimensions one 
and two, one and three, and dimensions two and three, respectively. In 
these figures circles represent the sinusoidal waveforms while the squares 
represent the square (or rectangular) waveforms. Small filled figures cor- 
respond to the smallest modulation percentage (3%), intermediate open 
figures to the intermediate modulation percentage (10%) and the largest 
figures (with numbers inside) to the highest modulation percentage (25%). 
Finally, the number either beside or within the figure representing a stimulus 
encodes its modulation frequency (in cycles per second, or "hertz"). 

The coordinate axes of the stimulus space in this analysis are not arbi- 
trary, as is usually the case in multidimensional scaling involving the Euclid- 
ean metric. This is true because of the differential weights or saliences for 
different individuals. The class of permissible transformations of the stimulus 
space induced by differential stretching or shrinking of axes is not invariant 
under orthogonal rotation. For this reason it makes sense to interpret this 
space in terms of the particular axes obtained in this analysis. Since, in the 
present case, an a priori  set of "fundamental" physical dimensions exists, one 
might expect these axes to correspond in a one-to-one manner to the known 
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The two-three plane of the group stimulus space for the 24 tones (from Bricker, 

et al.). Projections of straight lines optimally corresponding to modulation percentage and 
modulation waveform are also shown. 

physical dimensions. To test this notion we used a non-linear regression tech- 
nique to locate directions in the stimulus space optimally corresponding to the 
three physical dimensions. As postulated, these directions seemed to corre- 
spond very direct]y to the coordinate axes as determined by the individual 
differences analysis. Dimension one corresponded very closely to modulation 
frequency, dimension two to modulation percentage and dimension three to 
modulation waveform (it should be noted here that the ordering of the dimen- 
sions corresponds approximately to relative "variance accounted for"). 
The cosine of the angle between the line corresponding to a physical property 
and the axis most nearly corresponding to that property provides an appro- 
priate measure of the extent of this correspondence. These cosines were .990, 
.995 and .968 for modulation frequency, percentage and waveform respect- 
ively. The correlation ratio, 72, was computed as a measure of correspondence 
between projections of stimulus points on these best fitted lines and the 
physical properties. These ~2's were .945, .970, and .678 respectively. Since 
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the nonlinear regression procedure used in the present case is equivalen~ 
to maximizing 2 which is in turn equivalent to a linear discriminant analysis, 
we may use standard methods to test the significance of these ~2's. Applying 
the appropriate test from the theory of linear discriminant functions reveals 
that all of these fits are significant beyond the .001 level. A procedure based 
on linear correlation was also used to locate property axes, and the resulting 
directions were virtually indistinguishable from those based on nonlinear 
correlation. The resulting linear correlations were .956, .969 and .824 respec- 
tively, all significant beyond the .001 level, by the standard test for multiple 
correlations. 
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In Figures 1 through 3 the projections of these property lines are shown 
in the planes formed by the three coordinate axes. In each plane we show 
only the proiections of the two lines most closely corresponding to the two 
coordinate axes defining that plane. These figures provide a visual impression 
of the degree of correspondence between physical dimensions and the par- 
ticular "psychological coordinates" determined by this analysis. 

In Figures 4, 5 and 6, we show these same three planes in a somewhat 
different way. In these figures, an attempt has been made to divide the stim- 
ulus space up into regions corresponding to the various levels of the three 
physical variables. This division has been done, as far as possible, by lines 
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with dotted lines drawn to divide plane into regions corresponding to distinct levels of 
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perpendicular to the psychological axis most closely corresponding to the 
given physical dimension. The fact that we have been very nearly successful 
at this is indicative of the degree of correspondence between the unrotated 
dimensions from the individual differences scaling analysis and the physical 
dimensions. The only failure, as can be seen, involves the two 5 hertz tones 
at the lowest modulation percentage. This seems to be due to a mild interac- 
tion between modulation percentage and modulation frequency, that has 
the character of making modulation frequency somewhat less salient at 
this lowest modulation percentage than at the higher modulation percentage. 
Even these stimuli can be accommodated by allowing a boundary defined 
by  two straight line segments rather than a single straight line perpendicular 
to the modulation frequency axis. 

Figures 7, 8 and 9 show the planes formed by the three corresponding 
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FIGURE 7 

The one-two plane of the subject space for the Bricker, et al. tone data. 

dimensions of the subject space. Recall that the coordinates of the point for a 
given subject in this space correspond to the weights of the various dimensions 
(in the stimulus space) for that subject. These weights should be positive 
or zero, since a negative weight means that the "distances" are not Euclidean 
distances at all (and, indeed, may not even satisfy the triangle inequality 
or other metric axioms, and may be imaginary rather than real numbers in 
some cases). In the canonical decomposition solution obtained here, however, 
no explicit positivity constraint is applied to the weights. However, as fre- 
quently happens with this method (this will be discussed in more detail later), 
all the weights are positive, as is evident in the fact that all the points lie in 
the positive oetant of the three dimensional subject space. 

In interpreting the subject space, it is important to keep in mind that 
in this space the origin is not arbitrary, but has a fixed meaning. In Stevens' 
terms, the weights are measured on a ratio rather than simply an interval 
scale. As noted earlier, distance from the origin corresponds, at least roughly, 
to variance accounted for, so that if a subject's point is precisely at the origin 
no variance at all is accounted for in the data for that subject. Direction 
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from the origin relates to the pattern of the data for that subject, or, more 
precisely, to the pattern of his "perceptual space" as solved for in this analysis. 
Two subjects who lie on the same straight line issuing from the origin would 
have configurations identical except for a single overall scale factor, so that 
the two configurations differ only by a similarity transformation. 

One subject's being closer to the origin on that line would indicate simply 
that less of the variance in his data is accounted for by that common configura- 
tion (either because his data are noisier or because additional dimensions 
are needed to fully account for this subject's data). For some purposes, 
then, it may be more useful to describe the subject space in polar rather than 
rectangular coordinates. 

I t  is of interest to note that the magnitude of individual differences 
for these data is relatively small, as attested to by the small spread of the 
subjects within the positive octant of the subject space. There seem to be 
almost no differences in the weights for dimensions 3, the principal difference 
being in the relative weights for dimensions 1 and 2 (which correspond, 
essentially, to modulation frequency and modulation percentage, respec- 
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The two-three plane of the subject space for the Bricker, et al. tone data. 

tively). Subjects 8 and 19 provide a good contrast in this respect. Subject 8 
weights dimension 2 considerably more than dimension 1, while subject 19 
shows the opposite tendency. Figure 10 contrasts the "perceptual spaces" 
for these two subjects, by showing plots of the planes formed by the three 
coordinate axes for each, transformed by the appropriate weighting factors 
(the square roots of the w's). In this figure no attempt has been made to 
make the scales between subjects comparable, but the scale factors have 
been maintained w i t h i n  the plots for each subject. I t  is evident from this 
figure that subject 8's "space" gives much more weight to dimension two, 
while the "space" for subject 19 weights dimension one more heavily. 

A second set of data which illustrates very nicely the power of the subject 
space in discriminating among subjects was collected by Wish (in press) 
who has generously allowed its use here. The stimulus and subject spaces 
resulting from analysis of these data are shown in Figures 11 through 14. 
Since the description of subjects, data collection and basis for interpretation 
of dimensions are described by Wish (in press) we shall not describe these. 
The reader may confirm for himself the adequacy of labeling of the three 
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dimensions, called (by Wish) communist-noncommunist, economically de- 
veloped-underdeveloped, and East-West, respectively. These are the un- 
rotated dimensions from the individual differences scaling analysis. Wish 
categorized his subjects as "dove", "moderate" or "hawk" (with respect 
to attitudes on the Vietnam war) on the basis of an independent question- 
naire. The straight line drawn in the one-two plane of the subject space 
shows that the "doves" and "hawks" can be distinguished very well on 
the basis of the dimensions of this space. We can characterize this distinction 
by saying that the "doves" appear to give much more weight to economic 
development than do "hawks", with the "moderates" falling, generally, 
somewhere between (as evidenced by the fact that "moderates" fall on both 
sides of the line). This example shows that the subject space provides a 
useful paramaterization of the subjects, which may relate very systematically 
to other relevant subject attributes. 

Relation to Other Work on Individual Differences in Scaling 

The work of Kruskal [1968] and McGee [1968] on individual differences 
in scaling has already been mentioned. These approaches are both quite 
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plots have been equated, but the scales between subjects are not comparable (i.e., while 
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The one-two plane of the group stimulus space for 12 nations (data due to Wish). 
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noncommunist) and economic development (economically developed-underdeveloped) 
respectively. 

different in philosophy from the approach discussed here. Kruskal has two 
approaches. The first assumes each subject to have a different monotone 
function (relating distances to similarity or dissimilarity judgments) but 
constrains them to have identically the same configuration (no degrees of 
freedom for weighting of dimensions or the like are allowed). The second 
assumes all subjects to have the same monotone function, but allows each 
his own idiosyncratic configuration. These two represent two extremes of a 
continuum (or, perhaps, of two continua) of which there are, of course, many 
intermediate points. McGee's approach covers at least some of these inter- 
mediate points. McGee allows for either the case in which each subject has 
his own monotone function, or all are constrained to have the same. He then 
introduces a parameter that monitors the degree to which the configurations 
for different subjects are constrained to be similar. At one extreme, these 
configurations must be identical; at the other there is no constraint at all 
on how similar they must be. At intermediate values of this parameter, they 
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must be "intermediately" similar. ]VIcGee's approach, however, says nothing 
explicitly about how these configurations may depart from identity (the 
criterion of departure is simply a "sum of squared coordiante differences" 
criterion, which monitors degree, but not direction of departure from identity). 

The Tucker-Messick procedure, which has already been touched on, 
also makes no explicit assumption about communality of dimensions among 
different subjects. We shall discuss this in more detail at a later point. For 
the moment, let us consider the work of two other investigators, both of 
whom have dealt with essentially the same model as the present authors. 

Horan [1969] is the first author to publicly propose the model we have 
assumed here. Horan devised a method to solve for what we call the "group 
stimulus space" (he calls it the "normal attribute space") under the assump- 
tions of our model. Horan's method is based on the observation that, if the 
model stated in our equation (2) is correct then, 

(12) r,a(,~12 L~ik  J = ?J)~t X i t  ~ X,k,) 2 
i=1 i=1 

so that the root mean square of the distances (over individuals) will be ordinary 
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Euclidean distances in a space with coordinates y~ given by 
y .  , /~  (13) 

where 

(14) w., = m ,-1 

Thus, Horan shows, if the data are sufficiently strong to estimate ratio 
scaled distances, averaging the data via root mean squares will produce 
distances between points in a space which includes all the requisite dimen- 
sions. The individual spaces will then be related to this "common space" 
by at most a linear transformation. 

The problem with this, from our point of view, is that there is nothing 
in Horan's averaging procedure to guarantee that  the "common space" 
as derived from it wiU be described in terms of the correct orientation of 
axes. Since his procedure reduces al] the distances to a common set of Euclid- 
ean distances, and then applies a scaling procedure to produce a space from 
these distances, the rotationally invariant property of Euclidean distances 
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means that no unique orientation of axes will be defined. While one can 

uniquely define the orientation of axes by fiat (say, by rotating to principal 
axes), there is nothing at all to guarantee that such an orientation will cor- 
respond to the "correct" orientation. Our procedure, we claim, does guarantee 
this unique orientation and, furthermore, solves at the same time for the 
matrix of weights. 

The second approach is one due to Bloxom [1968], who derived the 
equations for solving numerically (via a gradient method optimization proce- 
dure) for the parameters of the model expressed in (1) through (4). At the 
time of the memorandum referred to above Bloxom had not actually pro- 
grammed the procedure he proposed, but he now indicates (personal com- 
munication) that this has been accomplished. It has not yet been possible 
to compare the two procedures for relative efficiency, freedom from local 
minima, etc., but Bloxom has indicated (personal communication) that his 
procedure is somewhat slow in converging. His method has the advantage 
of being capable of solving for the "group stimulus space" (presumably with 
the correct orientation of axes) without simultaneously solving for subject 
weights (these can be solved for at a later time, if desired). Our method has 
the advantage, we believe, of generalizing very easily and straightforwardly 
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to the nonsymmetric and to the higher-way case. We believe it will also 
prove to be more efficient numerically. 

The final procedure to which we shall compare this method in some 
detail is that of Tucker and Messick [1963]. They introduce an equation 
[their equation (16)] which has some resemblance to our equation (6). Re- 
writing this equation in notation closer to our own, this could be expressed as 

(15) D ~-- D * V  

where D is an [ n ( n  - -  1)/2] X m matrix whose elements are the distances, 
d~ ) (with the n ( n  - -  1)/2 distance elements for each subject arrayed into 
a n  n ( n  - 1)/2 column vector), while D* is an [ n ( n  - -  1)/2] X r matrix with 
elements d* (for s = 1, 2, .--  n ( n  - 1)/2) and V is an r X m matrix which 
bears a strong resemblance to the transpose of our matrix, W, of subject 
weights. The columns of D* (after appropriate rotation) are supposed to 
correspond to patterns of distances or dissimilarities typical of "ideal sub- 
jects", while V represents a set of linear combinations transforming these 
"ideal subject distances" into the actually observed distances given in D. 
Tucker and Messick's equation (16) is actually more correctly stated, in 
our notation, as: 

(16) b~ = CV 

where/)~ is the best p dimensional approximation (in a ]east squares sense) 
to the originally given matrix D. (To make the translation from the above 
equation to Tucker and Messick's equation (16), we need only make the 
substitutions/5, = ~ ,  C = Z and V = B). As Ross [1966] has pointed out, 
it does not make analytic sense to suppose that arbitrary linear combinations 
of Euclidean distances will yield Euclidean distances. It  turns out, however, 
that had Tucker and Messick originally conceived their method in terms of 
s q u a r e d  Euclidean distances, no such theoretical problem would have arisen. 
To see this in terms of our model, as stated in (2), we may write the equivalent 
matrix equation: 

( 1 7 )  D t21 = At21W r 

where D t2J is the [ n ( n  - -  1)/2] X m matrix whose entries are [d~)] 2 (appropri- 
ately arrayed into a two-way matrix), while A TM is the [ n ( n  - 1)/2] X r 
matrix whose general entry is given by: 

(18) ,2(,~,, = ( x i ,  - -  xk,) 2 

with the parentheses about the (jlc) subscript pair indicating, again, the 
appropriate dispersal of the half matrix (for i < k) into an n ( n  - 1)/2 array. 
W has exactly the same meaning as in our earlier equations. This shows 
that if, in fact, the model we propose in equations (1) through (4) holds, 
the "subject space" determined from this modified Tucker-Messick analysis 
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ought to bear a close resemblance to our subject space. All that can be said 
in practice is that the two should be related by some affine transformation. 
At a minimum, a rotation would be required to bring them into correspon- 
dence. In fact, it is possible for the modified Tucker-Messick "subject space" 
to have fewer dimensions than our subject space. That is, p may be less thanr. 
The two should, if the model we assume holds, have the same rank, however. 
This apparent anomaly is explained by the fact that our "subject space" is 
not constrained to be of full rank (that is, the dimensions of the subject space 
from our analysis may be linearly dependent). It  is not possible, however, for 
both the "subject space" and the "group stimulus space" from our analysis 
to be of less than full rank. If this model holds and yet the "modified" Tucker- 
Messick "subject space" is of lower dimension than ours, it means that it is 
not possible to find a dimension preserving transformation that would make 
the D ~ matrix of tile form described in (17) and (18). Rather, some or all of 
the columns of A t~j would have to be (positive) linear combinations of the 
[~)]2's. As such they would themselves correspond to squared (weighted) 
Euclidean distances defined on the X-space, or to squared (unweighted) 
distances defined on an appropriate transformation of the X-space. 

I t  should also be clear that if the D matrix that appears in (15) were 
factored nonmetrically, by, say, the Shepard-Kruskal nonmetrie factor 
analysis (see Shepard, 1966) the result would be essentially the same as a 
metric factoring of the D 2 matrix (if the distances are, in fact, measured up 
to a ratio scale). This nonmetric analysis would also compensate for possible 
nonlinearities in the relation between similarities or dissimiliarities and 
distances. Since, however, Shepard [1966] has shown via a Monte Carlo 
study that a metric factoring reveals essentially the same structure as the 
nonmetric if the correct dimensionality is known (differing from the non- 
metric analysis primarily in the introduction of spurious extra dimensions), 
one might expect that it would not make too much difference whether D 
or D t21 is factored, as long as the dimensionality is correctly assessed. From 
this reasoning it would seem to follow that a strong relation should hold 
between at least a subspace of the "subject space" from the (unmodified) 
Tucker-Messick analysis and our own subject space. This conjecture was 
confirmed empirically by Green and Morris, [1969] who found very high 
canonical correlations between a three dimensional "subject space" from 
our analysis and the first three dimensions of the "subject space" from a 
Tucker-Messick points of view analysis. (Interestingly enough, the Tucker- 
Messick space will usually tend to be of higher dimension, although it could, 
theoretically, be of lower dimension. This appears to be primarily due to 
the extra dimensions that are needed to account for nonlinearities in the 
function relating similarities to squared distances.) 

A more general reformulation of the Tucker-Messick approach in terms 
of squared distances is possible in the following form. Let us suppose there 
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exists a "group stimulus space" of r dimensions, and that the similarity 
judgments of individual subjects are (linearly) related to an arbitrary linear 
combination of these dimensions. That is to say, we assume, again, that 

(19) 

where 

(20) 

and 

(21) 

( i )  ( Q  
si~ = L ( d i k  ) 

4$~_1 .................. ,~iJ, = (Yit 

x 
$ ' - - 1  

(of course, the transformation matrix /~, = llf~),l] may be singular, and 
therefore rank reducing). 

I t  might be noted at this point that the model expressed in (19), (20) 
and (21) is very general indeed. In effect, all it specifies in addition to the 
linearity assumption of equation (19) is that distances in the stimulus space 
of every subject are Euclidean. This is so because we can always define a 
Euclidean space sufficiently general that any one of a finite number of other 
Euclidean spaces can be defined as linear transformations of that space. One 
way to define this general space would be to define the direct sum of all the 
individual spaces, rotate to principal axes in this direct sum space, and elimi- 
nate axes corresponding to zero eigenvectors (as a way of eliminating re- 
dundant dimensions). Again, the linear assumption of (19) could be dropped 
if the factoring to be discussed below were done nonmetricaUy, and even 
the Euclidean assumption is not too critical, since a n y  metric could be incor- 
porated by allowing some of the components in the transformation matrices 
to be imaginary (which simply means that some or all of the R~ matrices 
defined below may not be positive definite or semi-definite; that is, they may 
have some negative eigenvalues). 

If this very general model (as it always will in "sufficiently high" di- 
mensionality), holds, it follows that: 

(22) t~* / = (Yit - -  Y~, ; 
$ = 1  

[ ,  ]2 
~ ~¢~)(x - -  xk t , )  l ~ t t , k  i t  ~ 

= p , , , p , , , , ( x i , ,  - x k , , ) ( x , , ,  - x~ , , , )  
# , ,  ,¢~ 
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where 

(23) 

(~) 
-~ 2 ~_. r , , , , , ( x i , .  - -  xk,,)(xt,,. -- Xk,..) 

(~) 
b J , t ~ / ~ t t  ' ,  

t 

If  we, now, let s = (j, k) range from 1 to n ( n  - -  1)/2 and (noting tha t  
(~) 

r , , j , ,  ---- r~:!,,) let u = ( t ' t " )  range from 1 to r ( r  --~ 1)/2 ( note that  diagonal 
elements must be included here), and define 

(24) ~, .  ~ ~ ( , 4 ) ( , ' , " )  = (x~, ,  - -  x k , , ) ( x . , ,  - -  x k , , , )  

and 

( 2 5 )  * r *  = ' r ( ~ , t , , ) ,  ~ r . , . , .  

then (22) can be expressed as 

(26) t~(,)~2 kt~ik J Z r *  ~$u 34 
u 

or, in matrix form, as 

(27) D ~ 2 J -  --  A(R*) r 

where D [~ has the same meaning as in equation (17), A is the [n (n  - -  1)/2] X 
[r(r  + 1)/2] matrix with general entry 6(,)(,, , , ,) and R *  has general entry 
r ( , , , , , ) ~ ,  as defined above. We might note that,  if the more general model in 
(19) through (21) holds, the columns of the A matrix do not correspond at  
all to distances, in any space, but  rather to products of (signed) first differences 
be tween  pairs of dimensions. I t  is no wonder, then, tha t  in many situations 
the results of the "points of view" analysis are not meaningfully interpretable, 
for many of the "distance profiles" obtained from it  may  correspond to just 
such nondistance like entities. 

I t  should be noted, here, that  we are making the fairly strong assumption 
tha t  the data  provide distances measured on a ratio scale, and that  it  is their 
s q u a r e s  tha t  are entered into the Tucker-Messick analysis (rather than their 
first powers). I t  seems that,  even when the analysis is done in this "correct" 
manner anomalies may arise. When these assumptions do not hold, other 
kinds of distortions can occur. Some of these may  be represented by the 
factors in the "subject space" reflecting differences across subjects in the 
monotone transformation applied to the posited underlying distances. 

Finally, it would appear to be relevant to generalize Horan's procedure 
to the case where the more general model expressed in (19) through (21) 
holds. If  we start with (22) ¢o - tz")~2 , ~,,~ / , sum over i and divide by m (the number 
of subjects), we get 
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1 ~-' ca('h2 t~, F ( 1 ~  (') ( 2 s )  ( d ~ : )  2 - -  = ~, . , , . ) ( z . ,  - z , , . ) ( ~ . . .  - x . , . , )  
m i - 1  , , ,  - 

= 5 : 5 :  '" ~, , , , , ,  ( x . ,  - x,,,) ( z , , , ,  - x , , . , )  

where r , , , , ,  ¢') is the average (over subjects) of the r , , , , ,  ('~ 'o o. 

If we let R ,  =-- I t r , . , , , l l ,  then R .  - I lr~2, , , l l  is just the average of these 
matrices. Since each R, is a positive definite or semi-definite matrix, R. , 
being a positive linear combination of the R~'s must also be positive definite 
or semi-definite, and can therefore be decomposed into a product of the form 

(29) R. r = f 3 . ~ .  

or, in summational form 

(30)  ('~ r t ' t ' "  -~- E ~ ( ' ) ~ ( ' )  t-stt,bsgt "" 
t 

Tracing the development in (22) backwards, it follows that/nc.)~2 ~,k J , as defmed 
in (28), can be written as 

t - - 1  
(31) 

where 

(32) yI;' E ~'"x 
t' 

So that the root mean square distances are again, under these more general 
assumptions, Euclidean distances in a space containing all the requisite 
dimensions. 

The elements of the individual transformation matrices (the f3,'s) could 
then be determined by regression procedures. To see how the f3,'s could be 
so defined, consider (27), where D t21 is the basic data matrix defined earlier, 
and A is defined from the matrix of coordinates of stimulus points as in (24). 
I t  is clear from this equation that, given D I2~ and A we may solve for the 
least squares estimate of R* yielding the equation: 

(33) /~*= (ArA)-~arD E2' 

Having solved for /~*, we may "unpack" its entries to form the square 
symmetric matrices /~, (the least squares estimates of the R~'s). Finally, 
each/~, can be factored into a product of the form: 

(34) /~, = B~ ,  

This factoring could be accomplished by diagonalizing/~,, and defining 
the rows of /~  to be the eigenveetors multiplied by the square roots of the 
corresponding eigenvalues. If /~, is positive definite or semi-definite ~ will 
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be a real matrix; otherwise it will contain some imaginary entries, as discussed 
above (of course, if the negative roots are small, they could be assumed to 
correspond to "true" values of zero, and so actually set equal to zero). 

The matrix R~ could also be expressed as 

(35) R,  r = T~W~T~ 

where T~ is an orthogonal transformation matrix and W ,  is a diagonal matrix 
with a set of weights for dimensions along the diagonal. This shows more 
clearly the relation between this more general model and our earlier model. 
In effect this more general model allows an orthogonal rotation of the system 
of coordinate axes followed by differential weighting of dimensions as defined 
by the new coordinate axes, which allows circles or spheres to be transformed 
into ellipses or ellipsoids whose axes are not (necessarily) parallel to the 
(original) coordinate axes. In this case, ~'~ , the "estimate" of T~ would be 
defined directly by the eigenvectors of /~ , while the diagonals of W~ are 
given by the eigenvalues. This formulation makes clearer the meaning of 
negative eigenvalues. 

The procedure outlined above provides a complete solution for the model 
defined in (19), (20) and (21). I t  is not, however, a least squares solution, 
nor is there any other well defined criterion of fit that it satisfies. However, 
it probably would be very close to the least squares solution, and should 
be quite adequate in practice. One could derive an exact least squares solu- 
tion, incidentally, by use of a NILES estimation scheme similar to the one 
we have used to solve for the parameters of our earlier model. 

I t  may have occurred to the reader that it might be possible to apply 
the procedure originally proposed by Horan [1969] to get a "group stimulus 
space" (or what he calls a "normal attribute space") under the more restric- 
tive assumptions expressed in our equations (1) through (3), and then to use 
regression procedures to solve for the subject weights. This, however, is not the 
case. The reason for the unfeasilibity of this procedure is the lack of rotational 
invariance (as discussed earlier) of the dimensions postulated in this more 
restrictive model. Since the dimensions as derived from Horan's procedure 
are necessarily in an arbitrary orientation, it would not be appropriate to 
compute weights for such dimensions. Apart from the theoretical inelegance 
of this, this computation could not be expected to account for as much vari- 
ance in the (scalar products) data as would the more appropriate analysis. 
Furthermore, the important advantage of unique orientation of axes would 
be lost. 

Ironically, then, it is easier computationally to analyze data in terms 
of the more general and complex model of (19) through (21) than in terms 
of the simpler and more restrictive model of (1) through (3). We believe it 
to be advisable, however, to analyze data first in terms of the stronger model 
for, if this model is true, one is likely to learn much more about one's data. In 
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particular, a unique orientation of axes is obtained which, if the model is cor- 
rect, will correspond to psychologically meaningful dimensions (and, indeed, our 
method will "seek out" this correct orientation of axes at the same time it is 
finding the right general "space"). Secondly, we believe a model of this sort 
to be more easily interpretable than one postulating different rotations as well 
as different weightings of dimensions. The principle of parsimony, after all, 
is not strictly a matter of counting the number of parameters in an equation, 
but also has something to do with the meaningfulness of these parameters 
to a human interpreter. We believe the model we have proposed here is 
parsimonious in this general sense. We also believe, as is argued quite effec- 
tively by Horan [1969], that  this model makes a great deal of psychological 
sense and, in fact, holds in a wide variety of judgmental situations. 

Canonical Decomposition o] General 3-Way Tables 

We shall now turn to a consideration of the general ease of three mode 
data which we want to analyze in terms of a model of the form: 

(36) z,j~ _~ ~ a,,bt,c~, 

where i, i and k range from 1 to nl , n2 and n3 , respectively. I t  can easily 
be seen that the earlier model for individual differences in scaling is a special 
case of this. This can be seen especially clearly by comparing (36) to the 
earlier (4-a). If we let n2 = n3 and make the identifications a~, = w , , ,  b~, = 
x(L) and _(R) the translation is complete. As will be discussed later, i t  Ck|  ~ -  "J~kt 

the model in (36) is very similar to Tucker's three mode factor analysis model, 
but is restricted in two important ways. These arc, first of all, that the dimen- 
sionality of all three "spaces" must be the same (while in Tucker's model 
all three may have different dimensionalities). The second important con- 
straint is that the "core matrix" introduced by Tucker is restricted to be 
a kind of 3-way analogue of an identity matrix (to be precise, it is a three- 
way diagonal matrix which, by convention, can be constrained to have only 
ones on the diagonal). 

The method of analysis for this model is, of course, very similar to the 
method described for the earlier special case. At the risk of redundancy, 
however, it will be described here in somewhat more general terms. We shall 
then show that it generalizes quite nicely and straightforwardly to the multi- 
way case (i.e., the case in which z may have more than three subscripts). 
This "canonical decomposition" procedure has, in fact, been programmed 
for up to seven-way tables. 

Starting with some initial estimates of the b's and c's, we compute least 
squares estimates of the a's, holding the b's and o's fixed. This can be done 
by standard multiple regression procedures. The least squares estimate 
for the a's can be stated in matrix equations as: 
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(37) A = pQ-1  
• m. 

where A is the nl X r matrix whose general entry is a .  , while P is another 
n~ X r matrix whose entries, p~,, are given by 

i - -1  k ~ l  

and Q is an r X r matrix whose general entry q,, is given by 

(3o) q. ,  = (b . c . . l (b , , c . , )  
i ~ 1  k--1 

To see that (37), (38) and (39) do, indeed, give the appropriate least 
squares estimates for the a's, we may rewrite (36) as: 

(40) z *  .~_'~' ~ a, ,g, ,  

where s = i 'k (and so ranges from 1 to n2.n3), while g., = bt, "ck, . If we 
let Z* represent the nl X (n2-n~) matrix with entries z* ,  and G the (n2.n3) × 
r matrix with entries g,, , equation (40) can be written in matrix form as: 

(41) Z* ="~ A G  r 

To determine the least squares estimate of A we postmu]tiply Z* by 
the right pseudoinverse of G r, yielding 

(42) .,~ = Z* G(GrG) - '  

This equation can be seen to be the same as equation (37), if we make 
the substitutions: 

A = LI 

(43) P = Z*G 

Q = GrG 

I t  should be evident from inspection, and from the definitions of Z* 
and G, that (38) and (39) are equivalent to the equations in (43) for defining 
the elements of the matrices P and Q. 

Having solved for these least squares estimates of the a's holding the 
b's and c's fixed, we may then, in a sinfilar manner, solve for better estimates 
of the b's holding the a's and c's fixed, and then, similarly, solve for the c's. 
When this is done, we may repeat the whole process to determine still better 
estimates of the a's, b's and c's, and continue this procedure, iteratively, 
until no further improvement is possible. While there is as yet no proof that 
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position of interaction numbers once additive effects have been subtracted). 
This " N I L E S "  estimation scheme seems to converge quite rapidly, 

even when completely arbitrary starting values are used, and to be relatively 
unsusceptible to problems of local minima. Further theoretical work would 
seem appropriate to explore the properties of such schemes, which could 
be applied to a wider variety of models, including Tucker's more general model 
for multi-way factor analysis (hopefully yielding an exact least-squares 
solution, rather than an approximate one) and, as we have mentioned, the 
model defined in (19) through (21). 

A Monte Carlo Study with Random Data 

In order to get a better idea of the characteristics of this analytic model, 
the authors undertook to study the results of applying the method to corn" 
pletely random data (this can be thought of as a Monte Carlo exploration o f 
the behavior of the method under the "null hypothesis"). The particular 
method tested in this way was that described in the first sections of this 
paper for the special case of analysis of individual differences in multidimen- 
sional scaling. The random data were generated for a hypothetical set of 25 
stimuli and 12 subjects. An off diagonal half matrix of hypothetical similarities 
was generated for each subject. The hypothetical similarities were indepen- 
dently normal with 0 mean and common variance. These half matrices were 
folded over to form complete (symmetric) similarities matrices (with diag- 
onals missing). The procedure for estimating an additive constant described 
in Torgersoa [1958, pp. 268-277] was then applied to convert these pseudo- 
similarities to pseudo-distances. The additive constant estimation scheme 
used assumes that some three points lie precisely on a straight line in the 
underlying space, and has the property that it guarantees that the triangle 
inequality wilt be satisfied for all triples of points. This means that the 
"pseudo-distances" are, in fact, distances (in the sense of satisfying the 
metric axioms), but they are not, in general, distances in a Euclidean space 
(nor are they likely to be distances in any meaningful metric space of small 
dimensionality). The pseudo-distances were then converted to pseudo-scalar 
products, which were normalized and analyzed by the procedure described 
above. Five separate analyses were done, in one through five dimensions. 
In this analysis a version of the program was used that ordered the dimensions 
on the basis of the sum of squares of subject weights (which, as mentioned 
earlier, corresponds roughly to variance accounted for ) and the first r -- 1 
dimensions of the r dimensional solution were then used as starting configura- 
tion for the r - 1 dimensional solution. To check that this procedure was not 
biasing the results in any way, one of the solutions (the two dimensional one) 
was rerun with a random starting configuration. The solution was indistin- 
guishable from the one gotten in the other way, so it was assumed that  no 
such bias existed. 



J .  DOUGLAS CARROLL AND J I H - J I E  C H A N G  315 

Several things are of interest. One is the way in which variance accounted 
for changes with dimensionality. These figures are shown in Table 1. Also 
shown in Table 1 is the ratio of degrees of freedom (i.e., number of free param- 
eters) in the solution to those in the data. The number of degrees of freedom 
in the solution for an r dimensional solution is just r (m A- n --  2), where m 
and n are the number of subjects and of stimuli respectively. (This number 
changes linearly with r rather than being negatively accelerated because 
there are no orthogonality constraints on successive dimensions. The only 
effective constraints are that the sum of coordinate values be zero and the 
sum of squares one for each dimension of the stimulus space, which is reflected 
in the fact that two degrees of freedom are subtracted from m -~ n.) In the 
present case, with m = 12 and n = 25, this expression is simply 35r. The 
degrees of freedom for the data is simply m n ( n  --  1)/2 = 3600. Thus in the 
present case the ratio of those degrees of freedom is about .01r. This ratio 
seems relevant because, if the model were strictly 5near in its parameters 
(which it is not), one would expect the proportion of variance accounted 
for approximately to equal this ratio. In the case of nonlinear models, this 
will not generally be true, but may still provide a rough guideline. I t  would 
thus be of interest to see how that proportion compares to the "degrees of 
freedom ratio." The last column of Table 1, therefore, shows the ratio of 
these two numbers. We can see from this column of figures that the variance 
accounted for tends to be greater than one would expect based on the "degrees 
of freedom ratio", particularly for the small dimensionalities. Thus, the value 
of VAF/DFR should, it would seem, be fairly large (certainly larger than 
5.0) for one to assume a "significant" fit (the precise figure, would depend, 
of course, on the exact number of subjects and stimuli, and to establish it 
would require extensive Monte Carlo and/or theoretical work). 

The second point of interest has to do with the weights in the space 
for the pseudo-subjects. These turn out to be positive in almost every ease, 
even though these data are completely random (the one exception was one 
subject who was slightly negative on dimension one in the 3, 4 and 5 dimen- 
sional solutions). Evidently the fitting of the "additive constant", because 
it assures satisfaction of the triangle inequality, is sufficient to make almost 
all the weights positive. This means that positivity of the weights need not 
be constrained (if the additive constant is fit), but, on the other hand, one 
would not necessarily expect to detect a poor fit of the model on the basis 
of occurrence of negative weights. Experience with real data, however, sug- 
gests that if the model is systemalically violated, this may be reflected in 
negative weights. 

S u m m a r y  and Discussion 

While further investigation is clearly indicated, the results presented 
here are very encouraging as to the validity and utility of a model accounting 
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TABLE 1 

Variance Accounted For in Random Data 

Dimens ionality 

I 

2 

3 

4 

i , 5 

Variance Accounted 
For ~AF ) . 

• 04864 

• 0 9 6 5 3  

• 13302 

• 164 71 

.... • 19232 

D. F. Ratio 
(DFR) 

.00972 

• o194# 

• 02917 

• 03889 

.04861 

5.003 

/4.966 

4.560 

4.235 

3.956 . 

for individual differences in similarity judgments in terms of differential 
"saliences" of a common set of underlying perceptual dimensions. 

The method proposed for analyzing such data promises to be very useful, 
not only for individual differences in sealing, but for analysis of other, more 
generM, kinds of data as well. There are a number of practical benefits of 
this method in the present situation. While the analysis may, in many cases, 
require no more computer time than a single multidimensional scaling analysis 
of averaged data, it provides, in a meaningful way, simultaneous scalings of 
the data for all the individual subjects. I t  is certainly more efficient than 
doing separate multidimensional scaling analyses for the individual subjects. 
Such individual analyses may not be feasible, furthermore, because the data 
for any given individual may be too weak or noisy to support such an analysis. 
The present method will tend to overcome such deficiencies by taking advan- 
tage of communalities among subjects. The result of this is likely to be more 
useful than individual scalings, since the summary provided by the "group" 
stimulus space together with the "subject" space defined by the weights 
will usually be considerably more succinct and easily comprehended than a 
series of unconnected individual spaces. The individual spaces can be con- 
structed if desired, by appropriately weighting the "group" space. For many 
purposes, however, this may not be necessary for an adequate comprehension 
of the data. Another advantage is that the "group" space in many cases 
provides a useful basis of comparison of the subjects--relating to such other 
criteria as cognitive styles, political ideology, and the like. 

A principal disadvantage of the method is that it is limited to the case 
in which individual subject spaces are related by linear transformations of a 
common space. Even the linear transformations allowed are not general, 
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but are restricted to those given by diagonal transformation matrices. The 
method may require too many dimensions in cases where the perceptual 
spaces represent nonlinear distortions of a common space (or, where more 
general linear transformations are required). Our evidence to date indicates 
that the model underlying the present method of analysis accounts very well 
for data in a number of different domains. Furthermore, the method can 
hardly fail to give a more useful description of the data than would individual 
analyses of subjects' data. We believe, too, that its results are likely to be 
more useful than those obtainable from a "Points of view" analysis, even 
in eases involving nonlinear distortions. 

As described above the individual differences scaling method must be 
classified as a "metric" rather than a "nonmetrie" one. Thus it requires the 
relatively strong assumption of a linear relation between data (on similarities 
or proximities) and distances, or that the function relating data to distances 
be known or assumed. A version has been produced that is at least "quasi- 
nonmetric," however [Carroll and Chang, 1970], by using a device very 
similar to one employed by Torgerson, in his version of non-metric scaling 
(see Young and Torgerson, 1968). As applied in the present case, this involves: 
[1] attaining a solution based on linear assumptions, [2] computing inter- 
stimulus distances for each subiect by the weighted Euclidean formula of (1), 
[3] using the monotone regression algorithm described in Kruskal (1964) to 
find the monotone function of the data (either for all subjects combined or 
separately for each subject) best agreeing with these distances, and [4] re- 
placing the data dissimilarities with values from this best-fitting monotone 
function of the data values (while retaining the original data, or at least the 
rank orders of data values, for purposes of future monotone regressions). 
Steps [1] through [4] are then repeated, iteratively, until no further change 
occurs in the solution. Such a procedure does not lead to a solution satisfying 
a least squares criterion of fit (or any other explicit badness-of-fit function, 
but  ought to provide a very good approximation to such a solution. 

Explorations with both real and artificial data have indicated, however, 
that this "quasi-nonmetric" version of individual differences scaling yields 
solutions in practice which are virtually indistinguishable from those attained 
by the "metric" version. Evidently the additional constraints imposed by 
the use of data from different subjects make this procedure even more "robust" 
against nonlinearities in the "distance function" than is ordinary metric 
scaling. While the "quasi-nonmetrie" version may have some advantage in 
dimensionality estimation, it does not appear to provide sufficient advantage 
in determination of configuration (given that the dimensionality is correctly 
chosen) to make it worth the additional cost in computer time involved 
(at most one or two replications of steps (1) through (4) above would be 
recommended in any case). A "fully nonmetric" procedure could, conceivably, 
behave quite differently, but this seems dubious to the present authors. 
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To make the procedure fully nonmetrie one would have to introduce additional 
iterations directed at  numerical optimization of an explicit badness-of-fit 
function. Such a numerical procedure would also allow one to handle missing 
da ta  in a coherent fashion. In  the present method the only approach available 
for handling missing data  is to use some scheme for estimating the missing 
entries. This is, in general, not  a completely satisfactory solution. 

Perhaps one of the strongest points of this method is its potential  gen- 
eralization to the "higher-way" case, ma!dng i t  possible, for example, to  
analyze confusions data  for different people a t  different points in the learning 
process, thus generating, in addition to stimulus dimensions and subject 
weights, another set of weights characterizing the learning trials, or to analyze 
different kinds of proximities data  for different subjects. The  method of 
"canonical decomposition of N-way tables" also has more general potential 
applications to quite different kinds of data, such as data  arising in the context 
of factorially designed experiments, or as a new var ie ty  of multi-way factor 
analysis. 
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