
CCCG 2010, Winnipeg MB, August 9–11, 2010

Visibility Maintenance of a Moving Segment Observer inside Polygons with

Holes

Hoda Akbari∗ Mohammad Ghodsi†

Abstract

We analyze how to efficiently maintain and update the
visibility polygons for a segment observer moving in a
polygonal domain. The space and time requirements for
preprocessing are O(n2) and after preprocessing, visibil-
ity change events for weak and strong visibility can be
handled in O(log |VP|) and O(log(|VP1| + |VP2|)) re-
spectively, or O(log n) in which |VP| is the size of the
line segment’s visibility polygon and |VP1| and |VP2|
represent the number of vertices in the visibility poly-
gons of the line segment endpoints.

1 Introduction

Visibility problems have broad applications in several
areas such as computer graphics, robotics and motion
planning, and geographic information systems. Two
points inside a polygon are said to be mutually visi-
ble iff their connecting segment remains completely in-
side the polygon. For a collection of point observers
— or a segment observer as a special case — a point
is weakly visible if it is visible from at least one of the
points, and strongly visible if it is visible from all the
points. For a line segment in a planar polygonal scene,
the collection of all points weakly (strongly) visible to
the observer forms a polygon called the weak (strong)
visibility polygon.

In this paper, we discuss the problem of efficiently
maintaining the weak and strong visibility polygons of
a line segment moving in a static planar polygonal do-
main. As the observer moves, its visibility polygon
changes combinatorially at discrete instants. We as-
sume that the observer’s coordinates at any instant can
be determined by a fixed degree algebraic function of
time. We further assume that the observer’s motion
equation is allowed to change. We’ll discuss how all the
above changes are handled efficiently.

Related Work: Calculating the visibility polygon of
a point observer in a simple polygon or a polygon with
holes have optimal linear time [1] and O(n log n) time [8]

∗Computer Engineering Department, Sharif University of

Technology, Tehran, Iran, hodaa@sfu.ca
†Computer Engineering Department, Sharif University of

Technology, and IPM School of Computer Science, Tehran, Iran,

ghodsi@sharif.edu

A
B

C

C1
B1

A

B2
C2

Figure 1: Vertex types in (left) strong and (right) weak
visibility polygons. Observer is the horizontal line segment,
and the shaded areas constitute its visibility polygon.

algorithms respectively. There are optimal solutions for
computing the strong visibility polygon of a line seg-
ment in simple polygons and polygons with holes, using
O(n) space and O(n log n) time [1]. There are also re-
sults for weak visibility in [3] and [1].

Some related query problems have also been solved
for computing the visibility of a point in a simple poly-
gon [2] or polygon with holes [9].

There is also related work on kinetic problems for a
point moving along a polygonal path [2], a point moving
in a polygon with holes [10] and a segment observer
moving in a simple polygon [6].

2 Problem Solution

2.1 Visibility Polygon Vertices and Events

Vertices of a segment observer’s visibility polygon can
be considered of three types: type A vertices are the
vertices of environment visible to the observer. type B

vertices are vertices of the visibility polygon located on
the boundary segments but somewhere other than their
endpoints. type C vertices are those vertices formed
inside the free area of environment, not on the polygon
line segments (Figure 1). In strong visibility, the visibil-
ity polygon is always a simple polygon in which type A

vertices are fixed and vertices of type B and C move as
the observer changes place. type B and C vertices in
a weak visibility polygon may be either fixed (subcases
B2 and C2) or moving (subcases B1 and C1).

During the observer’s motion, several events may oc-
cur. Vertices of each type can be added to or removed
from the visibility polygon. We call the events leading to
addition or deletion of type A vertices, as type A events.
There are two ways for type B vertices to appear: at

22nd Canadian Conference on Computational Geometry, 2010

the same time a type A vertex is added or removed; or
when a type C vertex approaches an edge until a col-
lision occurs. The former can be handled at the same
time of handling the corresponding type A event, and
the latter is called a split event. Similarly, disappear-
ance of type B vertices occurs either simultaneous with
a type A event, or when during the motion two type B

vertices on an edge get closer and closer until they col-
lide. We name the latter a merge event.

2.2 Data Structures

Here, we give an outline of the data structures which will
be referred to in subsequent sections. For explanation
of technical details see section 3.

(V Penv) For each reflex vertex in the environment, we
calculate in preprocessing its visibility polygon using a
circular list of vertices around it sorted by angle.

(V Pobs) Visibility polygons of the observer’s endpoints
can be calculated in preprocessing at the same time as
V Penv. Throughout the visibility maintenance process,
we update these visibility polygons, and maintain the
following pieces of information associated with each ray
r from an observer’s endpoint toward a visible vertex
v: (pos): the angular position of r in v’s circular list
constructed as part of V Penv; and (hit edge) : the first
polygon edge met by extending r beyond v.

(BT) With each edge of the environment, we asso-
ciate a binary tree. In binary tree of e, we maintain
all type B vertices of the observer’s visibility polygon
which lie on edge e ordered based on position along e,
such that predecessors/successors in the tree are adja-
cent type B vertices on e. Whenever a type B vertex is
formed (because of a type A or split event), the vertex
is inserted in the binary tree corresponding to its edge.

(TrigQuery) A preprocessing data structure created
by considering all the vertices, that can efficiently report
the number of points inside any triangular query region.

(PolygIntersect) Each of the visibility polygons con-
structed in V Penv, is preprocessed as a simple polygon,
such that given a query ray, we can efficiently determine
if the ray intersects the polygon.

2.3 Detecting Events

type A Events – Vertex Appearance: Consider a
type A event that causes a previously unseen vertex v of
the environment to be added to the visibility polygon.
We need to calculate the first time at which a ray from
an endpoint of the observer toward a reflex vertex acting
as an obstacle, reaches v. We use (V Pobs(pos)) to track

extensions of all the rays connecting one endpoint of the
observer to a visible reflex vertex which may act as an
obstacle. type A vertex appearance events are in one-to-
one correspondence with changes in (V Pobs(pos)). Posi-
tion change times can be determined considering equa-
tions of fixed rays, and motion equations of the moving
rays. When an appearance event occurs, we update
each (V Pobs(pos)) to its neighboring position in the ob-
stacle’s (V Penv) list.

type A Events – Vertex Disappearance: This kind of
event happens when a visible reflex vertex begins to act
as an obstacle for the ray toward a previously visible
vertex. To detect these events, we use (V Pobs) and con-
sider the rays from one endpoint of the observer to two
of its visibility polygon vertices. We compute instants
at which two adjacent rays possibly become collinear.
This can simply be done in O(n) at the initial step, af-
ter the visibility polygons of the endpoints are found in
preprocessing.

B−C Events – Merge Event: When two type B ver-
tices on a polygon edge move, they may gradually be-
come closer until a collision takes place and the vertices
become replaced with a type C vertex. When a new
type B vertex is formed, (BT) is updated accordingly.
Then considering positions and motion equations of pre-
decessor and successor of the new vertex in the tree, we
can predict possible collisions.

B − C Events – Split Event: Split events are the re-
verse of merge events, meaning that a type C vertex ap-
proaches an edge, and after a collision takes place, it is
replaced by two type B vertices on the edge it’s collided
with. Detecting this type of event can be performed
noting the fact that at the very last instants before the
collision, the hit edges associated with the two line seg-
ments adjacent to the type C vertex must be the same.
Otherwise, we can conclude that the C vertex isn’t close
enough to any polygon edge to cross it. Changes in the
hit edges can only occur when a type A event occurs,
and therefore can be handled at the same time as type A

events. The new hit edge is the edge adjacent to the
previous hit edge in the visibility polygon of the vertex
playing the obstacle’s role in the type A event. Having
maintained updated information about the hit edges, we
can use it to predict split events: According to the mo-
tion equation of the observer and moving coordinates of
the type C vertex, we can insert the possible split event
(the instant at which the moving vertex crosses the hit
edge) into the event queue if the extensions hit the same
edge.

2.4 Event Handling

type A Events – vertex appearance: To process a ver-
tex appearance event, we examine the event based on

CCCG 2010, Winnipeg MB, August 9–11, 2010

Table 1, and determine if it is an internal or external
event. If external, the type A vertex should be inserted
in the visibility polygon, and type B vertices must be
properly updated. If the new vertex appears as a result
of a type B vertex approaching a corner, the type B

vertex is removed. Otherwise the type B vertex is up-
dated such that its corresponding obstacle changes from
the event’s reflex vertex to the newly appeared vertex.
Depending on whether or not the hit edge on which
the type B vertices must be placed is adjacent to the
newly appeared vertex in the original polygon, one or
two new type B vertices should be inserted beside the
newly appeared vertex respectively. In strong visibility,
these two vertices may be merged at the same time to
form a type C vertex. These vertices should reside on
the edge of the visibility polygon of the reflex vertex,
which is adjacent to the newly appeared point.

After applying changes to the visibility polygon, the
event queue should be updated by recalculating the ver-
tex disappearance events corresponding to the vertices
adjacent to newly added vertex. Also, if a reflex vertex,
the newly appeared vertex may act as an obstacle, and
therefore according to the angular ordering of vertices
in its visibility polygon and the observer’s movement,
the first vertex that may appear from behind this ob-
stacle can be found by a binary search in the visibility
polygon of this vertex.

Table 1: Different cases of a type A event.

Weak Visibility Strong Visibility
Vertex
Appear-
ance

Appears. Appears if seen
by all the points
on the observer.
(Case 1)

Vertex
Disap-
pearance

Disappears if
not seen by any
point on the
observer. (Case
2)

Disappears.

type A Events – vertex disappearance: After veri-
fying that the event is external based on table 1, we
update the visibility polygon to reflect the changes. Vis-
ibility polygon updates in vertex disappearance events
are the reverse of those of vertex appearance events.
Vertex appearance and disappearance events whose ob-
stacles are the newly disappeared vertex should be re-
moved from the event queue.

B−C Events Updating visibility polygon when merge
or split events occur is as simple as the definitions of
these events themselves. Either two type B vertices
must be replaced by a type C vertex or the reverse of
this change happens. In weak visibility, this change may
cause the merging of two holes into one or merging a
hole with the outer polygon for split events. The reverse

Figure 2: (left) Strong and (right) weak visibility of the
vertex cannot be deduced solely based on visibility status of
the endpoints of the observer.

of this scenario happens for merge events, resulting in
forming a hole. When a split event happens, possible
merge events of the new type B vertices and their adja-
cent type B vertices must be recalculated and inserted
in the event queue. For a merge event, possible split
event of the newly created type C vertex is inserted in
the event queue.

2.5 Detecting internal events

Table 1 summarizes different cases we may face while
handling a type A event, in which the italicized cells rep-
resent cases that are candidates of being internal. When
these internal events occur, considering only states of
the two endpoints of the observer is not sufficient to
deduce visibility status of the vertex subject to the
event (Figure 2). To identify internal events, using
(TrigQuery) we check if any obstacle resides in the
triangle bounded by the observer’s endpoints and the
point subject to the event. If this is the case, there
are still some points on the observer behind obstacles
with respect to the vertex and the event is an inter-
nal event of case 1. If an event of case 2 occurs, using
(PolygIntersect) we can check if the observer still in-
tersects the point’s visibility polygon and therefore the
point remains visible.

2.6 Handling Changes in the Motion Equation

Suppose the equation of motion of the observer changes.
For appearance or disappearance events of type A,
the vertex which is going to appear or disappear may
change, but as this change is limited to one position
change in the angular ordered lists, both detecting new
events and updating event times can be done in time
linear to the number of events. A similar discussion is
valid for split and merge events. In all cases, the event
queue must be reordered, which can be performed in
O(k log k) time if k is the number of events in the queue.

3 Analysis of Time and Space Requirements

Preprocessing time and space: For each ver-
tex(polygon vertices or observer’s endpoints) we can
construct a circular list of vertices around it sorted by

22nd Canadian Conference on Computational Geometry, 2010

angle using O(n2) preprocessing time and space [7]. Us-
ing angular sweep technique on these lists both (V Penv)
and (V Pobs) can be initialized. To initialize (pos) val-
ues, we apply a binary search technique on (V Penv) of
each reflex vertex visible from one of the observer’s end-
points. To set up (TrigQuery), we use the following
lemma:

Lemma 1 We can preprocess a set of n points using
O(n2) time and space, to create a data structure such
that given a triangular query region ∆, the number of
points inside ∆ can be reported in O(log n) time [4].

We apply the following lemma to each visibility polygon
in (V Penv), to obtain the (PolygIntersect) preprocess-
ing data structure:

Lemma 2 In a simple polygon with n vertices, using
O(n) time and space in preprocessing, the first intersec-
tion of an arbitrary ray with the polygon can be reported
in O(log n) time [5].

Taking all the above into account, preprocessing time
and space are O(n2).

Size of the event queue: For each vertex in visibility
polygons of the observer’s endpoints, there may be at
most one vertex appearance and one vertex disappear-
ance at each time instant during the observer’s move-
ment; thus making a total number of O(|V P1|+ |V P2|).
For each type B or type C vertex in the observer’s visi-
bility polygon, there may be at most one scheduled split
or merge event. Therefore, total size of the event queue
will be O(|VP1| + |VP2| + |VP|).

Initializing the event queue: For vertex appearance
events, as we have the ordered list of vertices around
any vertex in the environment, appearance event con-
sidering each of the visible vertices as obstacle can be
calculated in O(log n) time. Thus all events of this type
can be computed in O((|VP1| + |VP2|) log n) time. All
vertex disappearance events can be calculated by a lin-
ear scan of vertices of the observer endpoints’ visibil-
ity polygons and creating possible disappearance events
for each two adjacent vertices. This can be done in
O(|VP1| + |VP2|) time. The number of different split
and merge events is O(|VP|) and having the prepared
preprocessing structures, each of these events can be
computed in O(1) time. The initial visibility polygon
can be obtained using the existing static algorithms, re-
quiring O(n log n) and O(n4) time for strong and weak
visibility respectively.

Event handling time: For type A events, detecting
whether the event is internal can be done in O(log n)
time using the preprocessing structures. Computing
new events and inserting them in the event queue can
also be performed in total time of O(log n). Handling a
split event includes inserting new type B events in their
edge’s binary tree of type B vertices. Updating the

visibility polygon and calculating and updating merge
events can be done in constant time. Excluding the
O(log n) time needed for inserting events in the queue,
merge events can be handled in O(1) time as the nec-
essary processing consists of updating visibility polygon
and calculating possible split event of the new type C

vertex.

Query time: Query processing requires no processing
other than calculating the exact coordinates based on
the combinatorial structure, in time linear to the output
size.

4 Conclusion

We presented an algorithm for maintaining the visibility
polygon of a line segment observer moving in a polygon
with holes. Time and space requirements for preprocess-
ing are both O(n2), which is a good result compared
to worst-case optimal O(n4) time and space require-
ments of computing initial weak visibility polygon in
the same environment. Efficient logarithmic time event
handling and linear output sensitive query time have
been achieved.

References

[1] T. Asano, S. K. Ghosh, and T. Shermer, Visibility in
the Plane, Handbook of Computational Geometry, J.R.
Sack and J. Urrutia Eds., Elsevier Science Publishers
B.W., Chapter 19, 829–876, 2000.

[2] B. Aronov, L. Guibas, M. Teichmann and L. Zhang,
Visibility Queries and Maintenance in Simple Polygons,
Discrete and Computational Geometry, 27(4):461–483,
2002.

[3] B. Chazelle and L. Guibas, Visibility and Intersection
Problems in Plane Geometry, ACM Trans. of Graphics,
4:551–581, 1989.

[4] P. P. Goswami, S. Das and S. C. Nandy, Triangular
Range Counting Query in 2D and its Application in
Finding k Nearest Neighbors of a Line Segment , Comp.
Geom.: Theory and App., 29(3):163–175, 2004.

[5] J. Hershberger and S. Suri, A Pedestrian Approach to
Ray Shooting: Shoot a Ray, Take a Walk, Journal of
Algorithms, 18:403–431, 1995.

[6] A. A. Khosravi, A. Zarei and M. Ghodsi, Efficient Vis-
ibility Maintenance of a Moving Segment Observer in-
side a Simple Polygon, in CCCG, 249–252, 2007.

[7] M. H. Overmars and E. Welzl, New Methods for Com-
puting Visibility Graphs, in SoCG, 164–171, 1988.

[8] S. Suri and J. O’Rourke, Worst-Case Optimal Algo-
rithms for Constructing Visibility Polygons with Holes,
in SoCG, 14–23, 1986.

[9] A. Zarei and M. Ghodsi, Efficient Computation of
Query Point Visibility in Polygons with Holes, SoCG,
314–320, 2005.

[10] A. Zarei, A. A. Khosravi and M. Ghodsi, Maintain-
ing Visibility Polygon of a Moving Point Observer in
Polygons with Holes, 11th CSI Comp. Conference (CS-
ICC’2006), Tehran, 2006.

