A Reference Bayesian Test for Nested Hypotheses
and Its Relationship to the Schwarz Criterion
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To compute a Bayes factor for testing Hy: ¥ = v in the presence of a nuisance parameter 8, priors under the null and alternative
hypotheses must be chosen. As in Bayesian estimation, an important problem has been to define automatic, or “reference,” methods
for determining priors based only on the structure of the model. In this article we apply the heuristic device of taking the amount of
information in the prior on y equal to the amount of information in a single observation. Then, after transforming 8 to be “null
orthogonal” to ¥, we take the marginal priors on 8 to be equal under the null and alternative hypotheses. Doing so, and taking the
prior on ¥ to be Normal, we find that the log of the Bayes factor may be approximated by the Schwarz criterion with an error of
order O,(n~'/?), rather than the usual error of order O,(1). This result suggests the Schwarz criterion should provide sensible
approximate solutions to Bayesian testing problems, at least when the hypotheses are nested. When instead the prior on  is elliptically
Cauchy, a constant correction term must be added to the Schwarz criterion; the result then becomes a multidimensional generalization

of Jeffreys’s method.
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1. INTRODUCTION

Bayesian tests are carried out using Bayes factors, which
require prior distributions on the parameters appearing in
the null and alternative models. In principle, priors formally
represent available information, but in practice automatic
or “reference” procedures are often used; these are computed
from modeling assumptions and do not depend otherwise
on specifics of the problem. For estimation problems, ref-
erence priors are often “flat” (uniform) in some sense on
parameters of interest but in testing such a prescription leads
to serious difficulties. (See Kass and Wasserman 1995¢ for
a survey of the literature on reference priors and Kass and
Raftery 1995 for a review of Bayes factors.) Thus an impor-
tant problem is to define a reference Bayesian testing pro-
cedure that uses a proper prior on the parameter of interest.
This article presents such a procedure, which we find intu-
itively reasonable, and then shows that it leads to the Schwarz
criterion (Schwarz 1978) and also, with a simple modifica-
tion, generalizes a proposal of Jeffreys (1961, chap. 5). We
also connect the idea with work of Smith and Spiegelhalter
(1980) and Zellner and Siow (1980).

Let Y=(Y;...,7,) beiid observations from a family
parameterized by (8, ¢), with dim(8, ¢) = m and dim(3)
= my. The hypothesis Hy: ¢ = y is to be tested against the
alternative H,: y € R” " using a Bayes factor,

5o J p(y18, Yo)mo(B) dB
P18 )T, ¥ dB dy’

where p(y| 8, ¢) denotes the probability density for the data
and wy(B) and w(8, ¢) are the priors under the null and
alternative hypotheses. The Schwarz criterion is
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5 P 1
S = lo(Bo) = I(B, ¥) + 5 (m = mo)log n,

where 8, maximizes of the null-hypothetical log-likelihood
Ib(B) =log p(¥| B, ¥o) and (8, ) maximizes the unrestricted
log-likelihood /(8, ¥).

The Schwarz criterion (also known as the Bayes infor-
mation criterion or BIC, though in the usual definition 2.5
= BIC) is well established in the literature on model selection
(Smith and Spiegelhalter 1980)—especially in time series
analysis (Hannan 1980), where its asymptotic consistency
separates it from some of its competitors. It achieves this
consistency by crudely approximating the log Bayes factor,
which is necessarily asymptotically consistent under fairly
general conditions. For example, from Doob’s theorem
(Doob 1949), the consistency of the Bayes factor follows
easily, almost surely with respect to the prior. The approx-
imation ignores terms of constant order, including those
arising from the prior. This gives

log(B) — Sp

log(B) 0

which suffices for consistency, but the crudeness of the ap-
proximation allows

exp(S) ..
5 b

that is, at least for some priors, exp(S) will be a poor ap-
proximation to the Bayes factor and thus a dubious quan-
tification of evidence in favor of a model. Our main result
is that an intuitive reasonable choice of priors leads to
exp(S)/B — 1, with error of order O,(n~'/?); see also Stone
(1979). This says that for large samples, the Schwarz criterion,
when exponentiated, provides an interesting approximate
Bayes factor and thus a potentially useful quantification of
evidence. On the other hand, for model selection, the result
gives a calibration for the Schwarz criterion (in terms of
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posterior probability ), so that “large” values may be distin-
guished from unremarkable values.

An especially simple special case of the method illustrates
the basic idea. Let Y; ~ N(¢, ¢2),iidfori=1,..., n, with
o known, the hypotheses to be tested being Hy: ¥ = ¥, versus
H,: ¢ €R. The prior distribution on ¥ under H,,

¥ ~ N(¥o, 7%) with

has the interpretation that “the amount of information in
the prior on ¥ is equal to the amount of information about
Y contained in one observation.” This is precisely what we
find intuitively appealing. Furthermore, an easy calculation
shows that the resulting logarithm of the Bayes factor is ap-
proximated by the Schwarz criterion with error of order
O,(n""/?). In Section 2 we generalize to arbitrary regular
parametric families using Fisher information to define
“amount of information” and suitably transforming any
nuisance parameters.

It would be possible (and may be desirable) to use non-
Normal priors with the scheme that we propose. We note in
particular that if a Cauchy prior is used, then a correction
must be added to the Schwarz criterion; this results in a
generalization of Jeffreys’s proposal (Jeffreys 1961), which
we describe in Section 3.

The conclusion that we draw from the results in Sections
2 and 3, together with the examples in Section 4, is that there
is good motivation for using the Schwarz criterion, or some
modification of it, as a large-sample testing procedure. In
addition, the main result explains what has sometimes
seemed a surprisingly good agreement between the Schwarz
criterion and Bayes factors computed with subjectively de-
termined priors (e.g., Carlin, Kass, Lerch, and Huguenard
1992; Raftery 1993). In these cases the subjectively deter-
mined priors are not very different from those that take the
information in the prior to be equal to that in one obser-
vation.

T=0,

2. RESULT USING NORMAL PRIORS

The results presented here concern iid data as discussed
in'Section 1 (though see Sec. 5 for remarks on generality)
and require two important simplifying assumptions and
some regularity conditions. First, we assume that 8 and ¢
are null orthogonal, meaning that the Fisher information
matrix I(8, ¢) is block diagonal for null hypothetical pa-
rameter values; that is, I5(8, ¥o) = O for all 5. As noted by
Kass and Vaidyanathan (1992), it is always possible to
transform S so that it becomes null orthogonal to ¥. Second,
we assume that the marginal prior on (3 is the same under
both hypotheses; that is,

wo(8) = [ 78, 9) dy.

We write the marginal prior on y under H, as my(¥). For
now we assume, in addition, that 8 and  are a priori in-
dependent under the alternative but will comment on this
at the end of the section.

As far as regularity conditions are concerned, we assume
that Laplace’s method may be applied in both the numerator

929

and denominator of the Bayes factor (the models are “La-
place regular” in the terminology of Kass, Tierney, and Ka-
dane 1990) and also

—nf‘Dzl(B, $) — I8, ¥) = (1)

where (8, ) is the maximum likelihood estimator (MLE).
Finally, we perform the computation with the assumptlon
that the MLE ¢ under the alternative satisfies ¥y —

= 0,(n7"?) as it would if the “true” value of y were
either ¥, or a neighboring alternative ¢, such that ¥, — ¢,
= O(n~""?). As Kass and Vaidyanathan (1992) noted, when
this situation does not hold, the Bayes factor is exponentially
small, almost surely, and will quickly become decisive for
large samples, and it will no longer make much practical
difference whether an approximation is accurate or crude.

Under the foregoing conditions, Kass and Vaidyanathan
obtained the approximation to the Bayes factor,

Op(n_l/z):

— (2 )(mo—m)/Z I I

Sy e B, ¥o) = 8, D))

1
v [1 o (n)} 2)

where 2y = (—D?y(8,)) " and = = (—D?I(B, ¥))~", with
B, defined as in Section 1 to be the MLE under H,. (Equation
(2) followed from the observation that the likelihood equa-
tions are approximately separable in the two variables, so
that the MLE’s of 8 under the two hypotheses are close;
specifically, B — 8 = O,(n™").) Notice that the approxi-
mation in (2) does not involve the prior on 8. This was the
main motivation of Kass and Vaidyanathan for transforming
8 so that it becomes null orthogonal to y; see also Cox &
Hinkley (1980 pp. 160-162).
The following proposition drives the main result.

Proposition. Under the regularity conditions outlined
previously, as n = oo,

= e5- {(2m) M2 | TL(B, o)l T Pry(d) !

X {1+ 0,(n""?)}. (3)

Proof. From (1) and the block diagonality of I(3, o)
it follows that

n(mo=m2 det(— Do(§))~"/2det (—~ D(B, )12
= det (LB, ¥0)) (1 + O,(n~112)).

Putting this in Equation (2) yields (3).

We now specialize to the case in which the prior on
¢ under H, is elliptically symmetric having location ¥,
and scale matrix 2Z,, with density m(y) = [Z,|7'2f((¢
—¥0) "2, (¥ — o)) for some m — my-dimensional multi-
variate density /. When fis the standard multivariate Normal
density, we have y ~ N(yy, Z,). We choose Z, by gener-
alizing the requirement given in Section 1 that the amount
of information in the prior be equal to the amount of infor-
mation in one observation. We take 2, to satisfy

124171 = [ 1(B, ¥o)l, (4)
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where 1,,(8, ¥o) is the block of I(B, y,) corresponding to
¥. (By null orthogonality, under (8, yo), the matrix Iy(8,
¥p) is the inverse of the asymptotic variance matrix of the
MLE {.)

Result. Under the conditions leading to the foregoing
proposition, if the prior on y is elliptically symmetric with
density m(y) = | 172 (¥ — ¥0) "27" (¥ — Vo)), where
2, satisfies (4), then as n = oo,

B =eS.{(2m)momm2 f(§)} {1 + 0,(n~/?)}.
In the special case in which the prior on ¥ is N(y, Z,),
log B=S+ 0,(n~""?). (6)

Proof. Equation (5) is an immediate consequence of the
proposition, and (6) then follows from w,,(@) = my(Yo){1
+ 0,(n71?)}.

These results show how null-orthogonality and (4) greatly
simplify the Bayes factor; when the prior is Normal, its log
is approximately equal to the Schwarz criterion; otherwise
a correction term must be added to obtain a similarly ac-
curate approximation. In the next section we consider the
latter situation for an elliptically Cauchy distribution. We
call priors based on (4) unit information priors.

Before leaving this section we note that in these main re-
sults, (5) and (6), we have assumed y to be Normal according
to (4) independently of 8. But it can happen that I8, ¢)
depends on (. In this case we must assume that = ,(y ) spec-
ifies the conditional distribution of Y given B rather than the
marginal distribution. The results then continue to hold.

3. JEFFREYS’'S METHOD

For Normal location testing problems, Jeffreys (1961, pp.
268-270) argued that the prior should be symmetric and
should have no moments. He considered the Cauchy density
to be the “simplest function” satisfying his requirements and
thus chose it for the prior. He then applied his argument to
general additional steps, which we outline. We then note
that when the prior in (5) is elliptically Cauchy, the result
(5) furnishes a multivariate generalization of Jeffreys’s
method.

In treating Bayes factors generally, Jeffreys (1961, p. 249)
assumed that they were globally orthogonal, meaning that
I(8, ¢') was diagonal for all (8, ). (Kass and Vaidyanathan
(1992) used null-orthogonality because it is not always pos-
sible to produce globally orthogonal parameters in multi-
dimensional cases.) Jeffreys (pp. 275 and 277) took the prior
under the alternative to be Cauchy in terms of the square
root of the symmetrized Kullback-Leibler number, which
we may write here as J = K((8, ¥), (8, ¥o)) + K((8, %),
(8, ¥)), so that

(3)

1 |dJ"?
T (Y)dy = ;'IT‘_;‘TI ,

J being a function of y for each given 8. He also (essentially,
p. 277) used the approximation

K((8,¥), (B, ¥o)) + K((B, ¥0), (B, ¥))
= I8, vo)(¥ — %) + O(I¥ — ¥ol?)

for computational purposes.

(7)

(8)
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The intuition behind (7) comes from Jeffreys’s having
recognized that his method for Normal location problems
could be interpreted as putting a Cauchy prior on what we
might call the “distance from the null model,” with “dis-
tance” measured by the square root of the Kullback-Leibler
number. (He had already established that the symmetrized
Kullback-Leibler number behaves like a squared distance
function locally (see Kass 1989 for additional geometrical
discussion).

For multidimensional y, the apparent generalization is to
use an elliptically Cauchy prior that is uniform on all points
equally “distant” from the model with its scale factor deter-
mined by the Kullback-Leibler “distance.” Substituting the
multidimensional version of (8), in which the right-hand
side becomes (Y — o) Iyy(B, ¥o) (¥ — ¥o) + O(ll¥ — Yol ?),
this prescription amounts to taking an elliptically Cauchy
prior on ¥ centered at y, with scale matrix I8, ¥o)~".
Thus, by replacing Jeffreys’s requirement of orthogonal pa-
rameters with the weaker (and always possible ) specification
that 8 be null-orthogonal to ¥, we obtain the following as a
multidimensional generalization of Jeffreys’s approximate
method for testing hypotheses.

Result. In the special case of (5) in which the prior is
elliptically Cauchy, centered at ¢, with scale matrix Z, sat-
isfying (4), '

log B = Sc + 0,(n'"?), €))

where S¢ = S — log r with r being the ratio of the (m — my)-
dimensional spherical Cauchy and Normal densities at the
origin; that is,

,= 2<m-mo>/zp(uzn_o_u) / Vo

Proof. Immediate from (5) and wy(¥) = my(¥o)[l
+ 0(n~'%)].

4. EXAMPLES

Here we consider several examples to illustrate the accu-
racy of the approximations (6) and (9). The first two com-
pare S and S¢ to the exact Bayes factors using Normal and
Cauchy priors in one-dimensional Normal and Cauchy
models. The third example compares S to the exact Bayes
factor in a multivariate Normal. In the fourth example we
compare the Schwarz approximation and the exact Bayes
factor when performing model selection in a probit regression
setting. The assumptions of the results in Section 2 are vio-
lated in the fourth example; nonetheless, the approximation
turns out to be quite accurate.

Example 1: Normal Model. We begin by returning to
the simple motivating example discussed in Section 1. Let
Y ~ N(¥, 0%/n) with ¢ known. Without loss of generality,
we take ¢ = 1 and consider the test of Hy: ¢ = 0 versus H,:
¥ € R. The Normal unit-information prior, used in (6),
under H, is then ¢y ~ N(0, 1). The exact log Bayes factor
is

ny’ n

2 n+1’

1
logB=§log(n+ 1) —
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whereas the Schwarz approximation is

The plots in the first column of Figure 1 show these two
quantities when n = 5 and n = 25 for several values of y.
The plots in the second column of Figure 1 show the cor-
responding quantities when S¢ is used. The plots are on a
log;o scale. The approximation is very accurate even for small
sample sizes and even when the observed value is more than
three standard errors form the null (i.e., even when |y|
>3/ \/;).

Example 2: Cauchy Model. Now suppose that Y, ...,
Y, are iid observations with a Cauchy (¢, 1) distribution, the

Q
-

0.5

log b.f.
...schwarz

-0.5 0.0

-1.5

05 1.0

log b.f.
...schwarz

-0.5 0.0
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hypotheses being Hy: ¢ = 0 versus H,: ¥ € R. The Normal
unit-information reference prior under H, using (4) is then
¥ ~ N(O0, 2). Figure 2 shows the results from some simulated
data sets plotted as exact Bayes factor B versus the Schwarz
criterion S. The solid line is B = S. The top two rows are
based on the N(0, 2) prior; the bottom two rows correspond
to the Cauchy(0, 2) prior, which is the prior used in (9),
together with S¢ in place of S. The columns correspond to
¥v=0,1,2.

The results show that for n as small as 5, the approxi-
mations are reasonably good. For n = 25, the agreement
between exact and approximate values is excellent even when
¥ is far from the null hypothesis.

Example 3: Multivariate Normal. Suppose now that Y,
., Y ~ N,(¢, I), where I is a p by p identity matrix and

05 1.0

log b.f.
...schwarz

-05 0.0

-1.5

05 1.0

log b.f.
...schwarz

-0.5 0.0

Figure 1. The Log Bayes Factor (Solid Line) and Schwarz Approximation (Dotted Line) as a Function of y ~ N(9, 1/n). The two plots on the left
correspond to a normal prior; the two plots on the right correspond to a Cauchy prior. The sample sizes are n = 5 for the two plots on the top row

and n = 25 for the two plots on the bottom row.
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Figure 2. Plots of Schwarz Approximation Versus Log Bayes Factor From Several Simulations. The data are from a Cauchy distribution with median
6. The three columns of plots correspond to § = 0, 1, 2. The first two rows of plots are based on normal priors; the second two rows are based on
Cauchy priors. Points near the diagonal represent cases where the Schwarz approximation is accurate.

we wish to test Hy: ¢ = 0 versus H,: y € R?. If we identify The ratio R is given by
one unit of information as a single scalar observation so that 1\7/2 k| y|?
( 1+ ;l-) exp[ }

each vector Y; contains p units of information, then the ref- R Snt D) n+1)
erence prior is N,(0, pI), the Bayes factor is
1 )p(n+l)/(2n)
B

)]
n

—1/n

k _ n
B=(n+ l)”/zexp[—z |y|2n n 1]
Table 1 gives R for various k, p, and B. Again we see that
where n = kp, and the Schwarz criterion is S is quite accurate. (Note that we need B < (n + 1)?/?;
otherwise, there is no point y in the sample space that gives
k _
exp{S} = n?’? exp[ -3 17| 2] ) that value of B. But for completeness, we have computed R

for all combinations of k, p, and B in the table.)
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Table 1. The Ratio R = B/exp(S) as a Function of Dimension (p), Replications (k), and B
p=1 p=10
B=1/10 B=1/3 B=1 B=3 B=10 B=1/10 B=1/3 B=1 B=13 B=10
5 21 1.6 1.3 11 0.8 1.7 1.7 1.6 1.6 1.6
10 1.5 1.3 1.2 141 0.9 1.4 1.3 1.3 1.3 1.3
25 1.2 1.1 1.1 1.0 1.0 1.1 11 11 1.1 1.1 ‘
100 11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Example 4: Probit Regression. Suppose that Y,,...,Y, simple modification such as S¢) furnishes an interesting ap-

are binary random variables and that p; = Pr(Y; = 1|x;)
= ®(x} (), where @ is the standard Normal cdf, x; is a K
X 1 vector of covariates, and 8is a K X 1 vector of unknown
parameters. We consider a data set from Finney (1947),
where Y; corresponds to presence (Y; = 1) or absence (Y;
= 0) of vasoconstriction; Bayesian model selection for these
data was discussed by Raftery (1993). The covariate x; = 1
is an intercept, x; is rate of inspiration, and x; is volume of
air inspired. First, consider testing H;: (3, = 0, 83 = 0) versus
H »: (B2, B3) € R?, so that our ¢ becomes ¢ = (8,, 83).
The subscript on H indicates which variables are included
in the regression. We note that, technically this example vi-
olates the assumptions of the result (6), because the data
are not identically distributed and the information is not
null-orthogonal. We reduce the effect of the latter by cen-
tering all the covariates so that the expected information
matrix based on all the data is

072 044 010
nl=| .04 .51 23].
010 23 21

We write this as #l, because the per unit information is
taken to be 1/x times this matrix. We take 8, to have a flat
prior and ¥ to have the reference Normal distribution with
covariance matrix 2, = I} (8, ¥o) where I, represents the
2 by 2 information matrix for ¢ and n = 37 is the number
of observed Y'’s.

It is difficult to compute an exact answer here, so we re-
sorted to the following Monte Carlo method. First, we drew
a sample from the posterior using Gibbs sampling as de-
scribed by Albert and Chib (1993). Following Kass and
Wasserman (1992) and Raftery (1994), we used the sample
to estimate the Laplace approximation to the Bayes factor.
We also considered several corrections proposed by Kass
and Wasserman and by DiCiccio, Kass, Raftery, and Was-
serman (1995). All these methods gave approximately the
same value as the simulated Laplace method. (The calcu-
lations were based on 10,000 draws from the posterior; the
answer did not change appreciably after 1000 draws.) This
value, along with the Schwarz approximation and some other
model comparisons are given in Table 2. In each, the ap-
proximation is very accurate.

5. DISCUSSION

The main conclusion we draw from our results and nu-
merical comparisons is that the Schwarz criterion S (or some

proximately Bayesian testing procedure. The point is that S
is easy to compute and does not require explicit introduction
of prior distributions into its calculation, and moreover, the
implicit priors that make it approximately a log Bayes factor
[according to (6)] are intuitively reasonable and the sample
sizes needed to provide accuracy of the approximation are
not prohibitively large. We thus find the Schwarz criterion
a useful “automatic Bayesian testing procedure for nested
models. As such, we believe that it may be preferable to the
intrinsic Bayes factors of Berger and Pericchi (1993, 1995)
and the fractional Bayes factors of O’Hagan (1995), although
in some cases these approaches will yield similar results (see
Kass and Wasserman (1995a, 1995b).

Several issues deserve further comment. First, an impor-
tant practical point concerning use of .S is that the sample
size n appearing in the formula must be determined carefully.
It is apparent from the derivation of (6) using (1) that n
should be the rate at which the Hessian matrix of the log-
likelihood function grows; thus # becomes the number of
data values contributing to the summation that appears in
the formula for the Hessian. In our multivariate Normal
example, for instance, we took # = kp, so that n is the total
number of scalar observations. In doing so we have actually
substituted (1/p)I(y) for I(¥) in (1). An alternative would
be to take n = k (which, for fixed p, is of the same order as
kp). We hope to elaborate on this subtle but important matter
elsewhere.

Second, the analytical results presented here apply
fairly generally to iid random variables, requiring stan-
dard regularity conditions for asymptotic expansions.
These include the restriction that the MLE lies in the
interior of the parameter space. Occasionally problems
arise in which the MLE is on the boundary of the param-
eter space (e.g., when a variance component has an MLE
of zero). Hsiao (1994) discussed this case and used a

Table 2. Comparison of log,, B and S, for
the Data From Finney (1947)

Models Log;0B S
M, vs. Mz —-3.60 -3.63
My vs. My, —.76 -.77
My vs. M43 -.17 -.17

NOTE: Where Sy, = logye - S is the Schwarz criterion expressed
in terms of log and base-10.
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modified version of the method presented here in treating
the problem of testing for extrabinomial variability; the
new approximation is again quite accurate in the ex-
amples that Hsiao treated.

Strictly speaking, our results do not actually apply to spe-
cial cases, such as in linear and generalized linear models,
when the sampling is not iid. The heuristics appear sound,
however, and we are confident that a rigorous extension is
possible in such situations; we hope to have some further
results on this in the future (following the approach of Kass
et al. 1990). In fact, the accuracy of the approximation (6)
in the probit regression example indicates its applicability in
non-iid settings—indeed, in settings in which exact null-
orthogonality also does not hold.

In the special case of Normal linear models with known
variance and orthogonal design matrices, Smith and Spie-
gelhalter (1980) gave a version of result (6) together with
the appealing interpretation of the prior that we have em-
phasized here. (Orthogonal design matrices entail orthog-
onality of the parameters, which satisfies the assumption
of null-orthogonality used here; it should be noted that
the design matrices can always be made orthogonal by
transformation without changing the nested testing prob-
lem.) A closely related alternative to our Sc, again in the
special case of Normal linear models with orthogonal de-
sign matrices but allowing the variance to be unknown,
was given by Zellner and Siow (1980). Their approxi-
mation was also intended to furnish a generalization of
Jeffreys’s method. It has the same order of accuracy as (9)
but involves an analytical integration over the unknown
variance. This brings up the additional important point
that there are simple alternatives to .S and S that might
be of interest. For instance, one could apply an approxi-
mation after integrating out some parameter, as in the
work of Zellner and Siow (1980), who followed Jeffreys
(1961), or one could use a different estimator in place of
the MLE (such as the usual “unbiased’ estimator of vari-
ance); one could also replace the value of the prior density
at Yo used in (6) and (9) with its value at ¢ as in (5).
Whether there are important numerical advantages to such
modifications is another topic for future research.

Finally, the Schwarz criterion is well defined for nonnested
models. There are thus, in that case, the dual open questions
of whether a reference Bayesian test similar to the one used
here may be formulated, and how, if at all, the Schwarz
criterion would have to be modified to become an approx-
imate Bayes factor to order O,(n~'/?). We expect to report
work on this problem in a future paper.

[Received September 1993. Revised August 1994.]
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