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Abstract—Electrical power demands have increased signifi-1

cantly over the last years due to the rapid increase in air2

conditioning units and home appliances per domestic unit partic-3

ularly in Iraq. Having uninterrupted power supply is essential for4

the continuity of power-generated home services and industrial5

platforms. Currently, in Iraq, electrical power interruption has6

become a big concern to the utility suppliers even with the7

successive attempts in putting end to this dilemma, but the8

issue still prevailed. One of the main factors in power outages9

in local zones is persistent faults in distribution transformers10

(DT). DT is considered one of the main elements in the electrical11

network that is essential for the reliability of the grid supply.12

Due to the internal lack of monitoring system and periodic13

maintenance, DT is relentlessly subject to faults due to high14

overhead utilization. Therefore, in order to enhance the grid15

reliability, transformer health check and maintenance practices,16

we propose a remote condition IoT monitoring and fault pre-17

diction system that is based on a customized Software-Defined18

Networking (SDN) technology. This approach is a transition19

to smart grid implementation by fusing the power grid with20

efficient and real-time wireless communication architecture. The21

SDN implementation is considered in two phases; one is a22

controller installed per local zone and the main controller that is23

installed between zones and connected to the core network. The24

core network consists of redundant links to recover from any25

future fails. Furthermore, we propose a prediction system that is26

based on Artificial Neural Network algorithm called Distribution27

Transformer Fault Prediction (DTFP) that is installed in the28

management plane for periodic prediction based on real-time29

sensor traffic to our proposed cloud. Moreover, we propose a30

communication protocol in the local zone called Local SDN-31

sense. The SDN-sense ensures a reliable communication and local32

node selection to relay DT sensor data to the main controller.33

Our proposed architecture showcase an efficient approach to34

handle future interruption and faults in power grid using cost-35

effective and reliable infrastructure that can predict and provide36

real-time health monitoring indices for the Iraqi grid network37

with minimal power interruptions. After extensive testing, the38

prediction accuracy was about 96.1%. The39

Index Terms—Software-Defined Networks (SDN), neural net-40

works (NN), smart grid, monitoring network, fault prediction,41

LoRa-IoT, sensors.42

I. INTRODUCTION43

Generally, high power has to be generated and supplied to44

the domestic and industrial units on a 24/7 basis. The power45

source and distribution network of the electrical system has46

to be maintained continuously to provide non-stop electricity47

consumption. Traditional power grid relies on human operators48

to manage and monitor the status and the efficiency of the grid49

and coordinate supply and demands to ensure reliable stability50

of the power grid [1]. The significant increasing requirements51

for quality power management is implemented via deploying 52

monitoring and control strategies all over the grid system. 53

Traditional distribution transformers have an average life of 54

20-25 years; however, most of these transformers are at the 55

end cycle of their life and are posing an intermittent risk 56

to the power grid system. The current monitoring system 57

of the power grid in Iraq is only associated with major 58

electrical parameters that provide no health check status on 59

the internal components of the local distribution network. 60

Lack of Periodic maintenance and follow up checks is a 61

major factor in these repetitive DT failures that is due to 62

non-established visibility system. Therefore, a robust moni- 63

toring and prediction system is needed to establish real-time 64

monitoring of each distribution unit of the local grid [2] by 65

using SDN principle. Software-Defined Networking or (SDN) 66

is a new programmable network concept paradigm that has 67

been proposed recently to facilitate management and data 68

steering of the network. SDN is the concept of separating the 69

control plane from the data plane in which the forwarding 70

hardware is segregated from the decision-making platform 71

such as routing and control software [3]. The separation of 72

the planes provides a flexible, programmable and cost-effective 73

network infrastructure. In the SDN network, the policies will 74

be running on the controller only instead of running them 75

on each device as in the traditional network. The controller 76

will have a full overview of the network topology and all 77

nodes can be configured from single point of management. 78

This approach will provide a robust management of large scale 79

network with less overhead. Each engine has a table called 80

forwarding table that forwards on the basis of matching the 81

incoming packet to the table. The communication between the 82

SDN and OpenFlow switches is governed by the OpenFlow 83

protocol. The OpenFlow protocol is a set of messages that 84

are exchanged between the controller and the switches over a 85

secure connected channel. The controller sends modification 86

messages to the switch node such as add, modify, remove 87

entries from the forwarding table. When an incoming packet 88

enters the OpenFlow switch, it maps the packet info to the 89

forwarding table, if there is a match, then it forwards the 90

packet to the designated port; otherwise, it sends a query 91

request to the controller to request advice from the controller 92

on where to send the packet. The SDN controller then consults 93

its topology table and decide whether to send new rules or 94

notify the switch to drop the packet. Furthermore, SDN has 95

two main interfaces, one is Northbound Interface (NBI) that is 96

used to push configuration, read, install rules and implement 97
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modifications on excising rules. The second interface is the98

Southbound Interface or (SBI) that is used by the controller99

to push rules and modification to the lower level nodes or100

OpenFlow switches. [4]–[8].101

To implement a structural health monitoring system for the102

distribution transformers, a wireless sensor network (WSN) is103

considered. A WSN is a network that is constructed using a104

large number of distributed nodes where each node consists105

of a specific sensor that detects a physical condition of an106

object such as temperature, heat, liquid levels, pressure, etc.107

Sensor nodes monitor the condition and transmit the data108

along to other nodes until it reaches the management node or109

gateway that represents the collection of all data. The sensors110

are powered by either a fixed power source such as batteries111

or by using an energy harvesting technology such as solar,112

thermal or kinetic [9]. However, wireless sensors are limited113

by over the air transmission obstacles that could hinder the114

transmission rate of data comparable to the wired network115

systems. Installation of sensors on electrical grid components116

can provide an immediate status of components condition117

which helps in understanding how the grid can handle a certain118

electrical load and can provide early fault alert with minimum119

low cost of repair. The result of using WSN correlate with the120

increase in profitability and stability of the electrical grid .121

Traditional tools are not always capable of achieving efficient122

accuracy and reliability regarding fault classification of distri-123

bution transformers. The process of identifying faults in the124

DT components is significantly crucial for the continuity of125

the power supply. It can help in reducing the number of unex-126

pected faults, reduce maintenance cost and help in extending127

the life cycle of the transformer [10]. Additionally, by using128

a smart intelligent system, it becomes a coherent process to129

assist in analysis and fault classification of the operational130

transformer based on its current load status. Moreover, Neural131

Networks (NN) has been greatly used in the electrical power132

network for predicting power production and estimating power133

demands.134

Recently, researchers have been using statistical modeling and135

methods to evaluate and analyze the behavior of the power136

grid network. However, NN is considered a new approach137

in prediction compared to conventional prediction methods.138

The strength of NN is that they do not need any assumptions139

and they use previous historical data to generate prediction140

by optimizing the non-linearity issues in the system. The141

prediction is done by constructing a complex relationship142

between the input and the output by applying rounds of143

training and optimization on a given dataset [11]. Moreover,144

NN consist of neurons or perceptrons that are interconnected145

with each other via links. There are three main layers in a146

neural network that are the input layer, hidden layer, and147

an output layer. A perceptron has multiple inputs to it with148

weights for each link. Details of the proposed neural networks149

architecture are described later in Section III, respectively.150

II. RELATED WORK151

Software-defined networks or SDN [12] have played a152

significant role in reconstructing the network architecture to153

less complex and flexible elements in terms of deployment 154

and flexibility. Moreover, Neural Networks (NN) has been 155

establishing a solid ground in many sectors by predicting the 156

status of system behavior and provide accurate predictions 157

based on historical data. Nonetheless, researchers have been 158

working on different modeling techniques to implement the 159

neural network in power grid to predict power supply perfor- 160

mance and fault diagnosis. Below, we list some of the work 161

that was implemented by researchers to put solutions for some 162

of the challenges and concerns that occurred in the power grid 163

as follows: 164

Grid component faults are significant problems in power 165

distribution, for that, Senlin et al. [13] proposed a method 166

for prediction of the trip fault using long-short-term- memory 167

and support vector machines which are a high margin classifier 168

in neural networks. The data were captured with the LSTM 169

network with a long time span. About 500 sampling of voltage, 170

current and active power was collected during normal opera- 171

tion. The data were fed into the proposed system and result in 172

97% accuracy rate in trip fault prediction. Hengxu et al. [14] 173

presented a novel solution for distribution feeder relays for 174

predicting the faults levels. This technique implemented with 175

two main inputs voltage and current of the breakers. The fault 176

current was calculated using Thevenin’s theorem and actual 177

measurement was compared. The output of the neural network 178

algorithm showed an accuracy of about 98% with less than 2% 179

error rate. Moreover, Yuan et al. [15] proposed a systematic ap- 180

proach that investigates the fault of power electronics elements 181

under different working conditions. Investors and rectifiers are 182

crucial elements in power conversion. However, the life cycle 183

of these components is influenced by a concurrent number of 184

operations. The author implemented multiple machine learning 185

techniques that have taken into account the operation condition 186

and data imbalance for efficient converters fail prediction. 187

multiple probabilistic models have been used such as SVM 188

and SOM. The final results showed variance with the best 189

prediction for the ensemble classification. 190

Mohammed et al. [16] proposed an artificial system for 191

predicting the power network stability after the fault is cleared. 192

The input variables were used are fault statues such as pre- 193

fault, during-fault, and post-fault valuers. The proposed neural 194

network uses the cross-entropy function as the cost function to 195

optimize the weights, and the softmax is used as the activation 196

function. data were divided into three sets, 60% for training, 197

20% for validation and finally 20% for testing. The results 198

of the simulation have shown an overall accuracy of 99.3%. 199

Fei et al. [17] presented a statistical neural network approach 200

for predicting the power quality disturbances that may affect 201

the power grid. The author has used the multi-hidden Markov 202

model. The data set of power quality disturbance and weather 203

condition were used as the main data to train the model. 204

Moreover, the author has used Hadoop clustering to process 205

the data efficiently and to reduce computation time. The 206

author provided that an improvement of 20% were achieved 207

compared to other model used. Younghun et al. [18] proposed 208

a predictive neural network model to predict and evaluate the 209

dissolved gas analysis in substation transformers based on the 210

previous history of operation. Optimization technique has been 211
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used to solve the fitting issue. The data were collected from212

seven substation transformers. Transformer’s health status is213

recorded using the SCADA monitoring system. standard mean214

absolute error and percentage have been used for the regression215

performance check. After extensive testing, the prediction216

error of each dissolved gas generated by increased oil temper-217

ature in the transformer index is very low that are 15% for H2,218

7% for C2H2, 5% for C2H4, 5% for C2H6 and 1.5% for CH4.219

The prediction error is limited within 2% for each gas level220

prediction. The overall prediction accuracy is between 84%221

to 97%. Huang et al. [19] presented a monitoring system for222

large scale IoT in countryside areas. The author have deployed223

19 LoRa nodes over area with dimensions of 800m x 600m224

with access gateway of 1 min interval data collection. The225

author provided that the PDR ratio for the proposed mesh226

network achieved about 88.49% while traditional star topology227

achieved 58.7%.The author have added that the project aim is228

to explorer the potential of IoT mesh deployment architecture229

in areas that require long range transmission. Zefang et al.230

[20] proposed optimization clustering method for mixed data231

for SDN-based smart grid networks. The output algorithm is232

based on a a combination of k-means and k-modes algorithms.233

The author provided that the proposed algorithm satisfies the234

differential privacy experiment with efficient accuracy. Kun et235

al. [21] adopted an energy efficient sense layers architecture236

to address the energy that is consumed by large number of IoT237

nodes. The author provided that the proposed framework is in238

three layers, that are sense, gateway and control layers. The239

author used sleep and wake scheduling protocol with predic-240

tion of sleep intervals. Furthermore, the author has deployed in241

simulation 300 nodes in a large area, whereas 250 nodes are for242

sensing and 50 as gateways. After extensive testing, the results243

shows that a significant drop in power consumption improving244

resource utilization and energy consumption. Kun et al. [22]245

discussed concerns of dense deployment of small cells that246

are inconsistent interfaces, frequent handovers and extensive247

backhauling. The author have introduced SDN for the NWNs248

architecture by decomposing the control plane from the data249

plane. The author have used virtual RATs design to support250

different services. The author concluded that the proposed251

SDNC is able to predict user’s movement path that is near the252

AP to implement the handover. After extensive testing, the253

author added that the proposed approach was validated and254

handover is thus accelerated and overall latency is reduced.255

Kun et al. [23] The author discussed the large amount of256

data that is generated from big data platforms such as health257

monitoring networks that require real-time processing and258

analysis. Many of these data is not needed and cause delay259

in processing and storage. Therefore, the author proposed an260

RVNS optimization search method that operate in three layers.261

For that reason, the author have used three layers approach262

that are fault-tolerant approach to ensure the reliability of263

the eHEALTH system and second is the layer that checks264

for accuracy of the data and the final layer is where RVNS265

optimization is implemented where only valuable data will266

be reported to the health provider system for processing. This267

approach help efficiently increase processing time and delivery268

ratio. Min et al. [24] proposed multiple approaches starting269

with a probabilistic modelling using Markov Chain method to 270

verify the energy routing system in smart green city networks 271

and MDP model to check the cost of the service requester 272

and provider. The author also introduced a monitoring tool 273

over the ER system to monitor the scheduling process. The 274

processing of power transactions process were implemented 275

in the cloudlet platform. 276

The main contributions of this paper can be summarized as 277

follows: 278

• We propose a customized SDN infrastructure that consists 279

of long-range power IoT sensor network called Grid 280

Management Network (GMN). The GMN consist of two 281

parts: (1) the wireless sensor network section that is 282

implemented on each distribution transformer per each 283

zone. A list of sensors is installed on each transformer 284

such as a temperature sensor, oil level sensor, hum- 285

ming noise sensor and over-loading sensor. These sensors 286

represent the health status check for each distribution 287

transformer. Each one of these sensors is linked to an RF 288

transmitter using long-range LoRa WAN communication. 289

The second part of the architecture is (2) wireless-static 290

data center. The data center consist of multiple paths to 291

provide redundancy with fault tolerance route recovery. 292

The network will use SDN controller as the gateway entry 293

node to the static data center. 294

• We propose a Fault Prediction algorithm (DTFP) for 295

fault prediction in distribution transformer. The neural 296

network algorithm consists of multiple interconnected 297

mesh hidden layers with various weights. Optimization 298

is implemented using back probation (BP) to tune the 299

weights for efficient prediction accuracy. The DTFP is 300

installed in the management layer with periodic fault 301

prediction based on hourly historical data. 302

• We propose a communication protocol called Software 303

Defined communications (SDN-sense) for the wireless 304

IoT nodes on the distribution transformers network. The 305

protocol runs on both layers, control layer represented 306

as sink node and forwarding layer representing the for- 307

warding engines. The forwarding tables are built using 308

received BC packets and then information is relayed to 309

the sink SDN node for constructing the topology table. 310

The best route is selected to be used as the main route; 311

however, an alternative fail-recovery is addressed with the 312

most reliable route. 313

The remainder of the manuscript is organized as follows. 314

In Section III, system testbed architecture is presented. 315

Section IV, experimental results and analysis are dis- 316

cussed and explained. Finally, section VI is the conclu- 317

sion were a summarization of the work is illustrated. 318

III. SYSTEM TESTBED ARCHITECTURE 319

Our proposed grid management network consists of real- 320

virtualized hardware components that run on a Linux server. 321

The core network data center runs on pure sdn architecture that 322

consists of two SDN controllers with a fail-over capability 323

and forwarding engines as OpenFlow vswitch (2.9.2) [25]. 324

The operating system platform we have used is the Ubuntu 325
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Server (14.04.5) [26] with 4 port Intel Ethernet NIC cards.326

We implemented Mininet [27] and Floodlight controller [28]327

as sdn devices that we subsequently modified and developed328

to match our proposed network architecture requirements and329

to support the grid network communication. The traffic for-330

warding depends on the matching statement in the forwarding331

table. If a match is identified, then the action is to forward332

the packet to the next device, whereas, if no match has been333

identified, then a query message is sent to the sdn controller334

(floodlight) to request on what to do to the packet. The sdn335

controller then responds back by either installing new rules or336

advising to drop the packet. The wireless sensor nodes are337

considered one of the crucial parts for the success of this338

project that provides an essential and precise status overview339

of the grid. We propose the use of LoRa RF communication340

that equipped with a variety of sensors to support multi-feature341

sensor readings. We designed the wireless network on the basis342

of sdn concept, whereas, the sink node represents the gateway343

sdn controller and the rest of the nodes represents OpenFlow344

forwarding engines. A proposed algorithm that governs the345

node’s communication is defined in Fig 4.346

The experimental setup combines both virtualized and hard-347

ware environment; whereas, the virtualized environment rep-348

resents the core network with the sdn and OpenFlow switches349

and the hardware setup consist of IoT module with different350

sensors that are attached on the distribution transformer. The351

sensors measure different parameters that are considered per-352

formance degradation factors in the life cycle of a transformer353

that are (1) temperature sensor that is installed on the outer354

tank shell of the transformer. The output of the sensor is an355

analog that is fed to the microcontroller such as Arduino Uno356

for analog to digital conversion then to the LoRa module for357

transmission. Second (2) is the oil level sensor that is placed358

inside the oil tank to measure the decreased oil levels. The359

output of the analog voltage is supplied to the microcontroller360

for conversion to readable value. The overloading profile mon-361

itoring is read using a sensor that measures voltage, current362

and power factor. The last sensor used is the humming noise.363

Many transformers in Iraq suffer from the noise instability that364

is important to be measured to provide preventive maintenance365

if required.366

Respectively, the next main part of our architecture is to367

provide fault prediction over transformer operational cycle.368

The model we proposed is able to predict the faults based369

on the previous historical data of the sensors. Fig 1 below370

shows a typical neural network model with multiple hidden371

layers.372

Fig. 1: multi-layer perceptron architecture diagram [29]

The main factor in calculating the error level in our predic- 373

tion model and to test the usefulness of our fault prediction 374

platform is the Mean Square Error (MSE) and Root Mean 375

Square Error(RMSE), which both typically are called objective 376

or cost function. The cost has to be a very small value in 377

order for our system to be reliable in fault prediction analysis. 378

The MSE and RMSE can be expressed as in eq 1 and eq 2. 379

The difference between the two equations is that taking the 380

RMSE gives high weights to large errors which can be used 381

exceptionally useful when undesirable errors occur. 382

Obj(x1,x2,....,xn) =
1

n

n∑
i=1

(Fltpred − Flttrgt)2 (1)

Obj(x1,x2,....,xn) =

√
1

n

∑n
i=1(Fltpred − Flttrgt)2 (2)

Fig. 2: proposed architecture block diagram

The block diagram of the proposed architecture is depicted 383

in Fig 2. The diagram consists of a forwarding plane that 384

represents the OpenFlow engines for the core and wireless 385

network. The next layer is the control plane that represents 386

the data steering and route management platforms. A secure 387

channel is established between the main sdn and sink sdn 388

controller for data security and reliability. Furthermore, the top 389

layer is the management layer that represents the storage and 390

real-time sensing platform with the fault prediction network 391

that is trained repeatedly with new events every hour. The 392

re-training is implemented using the backpropagation model. 393

After using our developed proposed Distribution Transformer 394

Fault Prediction (DTFP) algorithm as in Fig 3, we found that 395

the proposed model 396

In order to track the overall status of the DT system, 397

We assume a status index (SI) factor of the distribution 398
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Fig. 3: proposed DTFP algorithm pseudo code

transformer that is considered a powerful tool for identifying399

the overall operational health status of the system. We assume400

that the status index is based on scale (0-1) where 0 is401

no critical status and 1 is a high critical health condition,402

whereas, the subdivision between 0 and 1 are considered the403

real operation values of the transformer. If we log the sensor404

data into a Sigmoid function, we can get the probability405

of how well the transformer is performing. Let xi be a406

variable status index that represents the status of the specific407

sensor. The Status Index (SI) for multi-variable inputs can be408

expressed in a logistic regression model as follows:409

410

SI(%) =
1

1 + e−
∑n

i=1(αxi)
× 100 (3)

411

where α represents the weight effect of each sensor variable 412

that ranges between (1-10). We can classify the SI index of 413

the DT health status as follows in Table I: 414

415

TABLE I: Condition Status Index

Status Index (%) Condition
100<SI<90 very good
80<SI<70 good
70<SI<65 yellow alert (require investigation)
SI<60 system critical (fail)

The proposed communication algorithm between the IoT 416

nodes is governed using SDN-sense algorithm as described in 417

Fig 4. The distribution transformer that is being investigated 418

is described in Table II as follows: 419

420

TABLE II: Investigated Transformer Specification

Parameter Description
Rated voltage(max) 11kVA
Rated voltage (low) 433v-250v
Load current (max) 3.3A
Load current (high) 84A
Connection Delta
No. of phases 3
Frequency 50 c/s
Noise level 50db
Operating average temperature 35-40 Deg.C

IV. EXPERIMENTAL RESULTS AND ANALYSIS 421

The proposed complete smart grid architecture based SDN 422

is described in Fig 5. We can notice that the core network 423

that is represented as the cloud consist of multi-path routing 424

links governed by SDN enabling forwarding engines to op- 425

erate their designated operating requests. Furthermore, each 426

specified zone is connected via a mesh network of SDN and 427

OpenFlow switches that relay sensor data to the main SDN 428

controller which is installed at the edge of the cloud. The 429

cloud that we used in our experimental testing is based on 430

virtualized environment represented in virtual machines. The 431

SDN controller is implemented using mininet and floodlight 432

controller. The rules were configured in advance and set to be 433

installed in the Open vswitch engines. 434

The wireless nodes communication is based on our pro- 435

posed algorithm SDN-sense is shown in Fig 4. Moreover, the 436

architecture described in Fig 5 represents the overall proposed 437

architecture that combines the core network represented in the 438

cloud, the SDN wireless mesh network and the fault prediction 439

system. We consider the SDN architecture as a directed graph 440

G = (SW,L), where SW represents all the OpenFlow 441

switches ( SDN to be in case of failure), L represents a set 442

of RF links L = {(i, j) ∈ S × S, i 6= j}. The SDN and OF 443

switches are customized and programmed to match our case 444

study, and the SDN can be accessed via a python API for 445
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Fig. 4: proposed SDN-sense pseudo-code

further modification and data retrieval. Furthermore, the OF446

forwarding table can be represents as F = {λpkt, βtab, αact},447

where are three main objects composes the forwarding table448

that are flows, tables and actions. Each packet is required to be449

matched to a table then a decision is made on where to forward450

the packet based on a bucket of actions. The number of rules451

that are existed in a particular OF node can be represented in452

Eq 4 as follows:453

Rk =

n∑
1

∆k,t (4)

where ∆k,t represents the rule per OF node with t as an454

indication for sub-rule. k is subscript of total rules. The total455

matching delay that may occur in the OpenFlow table can be456

denoted in Eq 5 as follows:457

φmatch−delay =

N∑
1

Rk × σq−factor (5)

where σq−factor is the queueing delay for processing flows 458

that can affect the total processing capacity of the OF node 459

significantly. Although power consumption of the SDN sink 460

node is not high, it is worthily to mention it as it may affect on 461

the lifetime of the node sensor and designing an efficient power 462

management node can result in efficient power consumption 463

and longevity of the operating node. The power consumption 464

of the SDN sink and main SDN node can be expressed in Eq 465

6 and Eq 7 as follows: 466

Psinktotal
=

n∑
1

θtemp +

n∑
1

θoil +

n∑
1

θtemp+

n∑
1

θC−in +

n∑
1

θV−in +

n∑
1

θlora

(6)

where θ represents the inbound traffic power consumption 467

of a specific sensor. 468

PSDNmain =
∑

λclust1 +
∑

λclust2 +
∑

λclust3

+..+
∑

λclustn +
∑

λlora +
∑

λinit
(7)

V. HARDWARE IMPLEMENTATION AND DEPLOYMENT 469

In this section, we present the proposed sensor hardware 470

that can be implemented in a residential transformer zone. 471

The system is built using an IoT off-the-shelf hardware 472

that is programmed with SDN implementation principle. The 473

hardware unit of the sensor consists of an Arduino board 474

that is programmed as a microcontroller board with SDN 475

functionality. The proposed hardware consists of five main 476

sensors that are temperature sensor, oil level sensor, humming 477

noise sensor, AC-in sensor, and V-in sensor. The sensor 478

nodes based on OpenFLow platform communicate with sink 479

SDN node using a long-range communication network by 480

implementing LoRa network due to the heterogeneity of the 481

communication in such environment. The main gateway or 482

SDN main responsible for managing the communication with 483

all sink nodes and to collect all sensor data to be forwarded 484

for aggregation to the data center. After data is processed and 485

stored, they will be fed to the prediction system so that a fault 486

prediction can be produced based on real-time sensor data. The 487

prediction can help in identifying any future faults that could 488

occur in the D-Transformer and to re-route power and isolate 489

faulty D-transformer for a maintenance procedure. Fig 6 shows 490

the proposed SDN IoT hardware prototype with components 491

labeled, whereas, Fig 8 virtualized data center implementa- 492

tion that runs on a Linux server. The server represents the 493

core network that uses network function virtualization (NFV) 494

for efficient power consumption management. The prediction 495

system runs on the servers under python library. In our IoT 496

testbed, we have used Arduino Uno [30] and programmed 497

it as a customized SDN sink controller that operates with 498

a LoRa module LX1278 with a custom-tailored antenna for 499
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Fig. 5: Grid Management Network (GMN) proposed architecture platform

better signal gain and propagation. The rest of the sensors are500

AC sensor ACS712 with AC voltage sensor ZMP101B. For501

the temperature sensor, we have used thermo-couple sensor502

MAX6675 with an ultrasonic sensor to measure the humming503

noise HCSR04. The sink node is powered with 9v power504

supply. Fig 7 shows the final enclosure box for the proposed505

testbed. This box is designed for a single phase only for this506

current research project. The three main cables are for AC-V,507

AC-C and CB for switching and transformer protection.508

Fig 9 shows faulty transformers images that were collected509

from different grid sites in Iraq that were effect by many510

factors such as shorted winding, high temperature fault, high511

incoming voltage and oil leaks. Additionally, damages could512

be caused due pivot pole fall which causes total damage to513

the D-transformer outer case.514

In Fig 10 above, we present a deployment case scenario515

of our proposed sdn sink sensor over residential transformers.516

The sink node communicates to the SDN master node using517

LoRa RF communication then to the cloud network for sensor518

data processing. The IoT-based sensor node is based on sens-519

ing and action implementation based on the level of incoming520

data from each sensor. Many sensors have been implemented521

in our testbed such as oil level sensor, temperature sensor, AC522

voltage sensor, and AC current sensor. Based on these data, an 523

action will be made to cut off the circuit breaker in case of a 524

high alert. Additionally, these data will be fed to the prediction 525

system for statistical analysis based on real-time data and 526

historical environmental data. A decision will be generated 527

from the prediction system to regulate the transformer behavior 528

and to reduce any future fails. The testbed prototype that 529

we have implemented only suits for single case transformer 530

scenario. However, it operates as a testbed that can operate 531

with three phase system. The testing was implemented on a 532

small miniature scale transformer due to limited resources. Fig 533

11 shows sensor readings for a single-phase transformer that 534

depicts the health index of each part as shown. 535

In order to build our proposed prediction system, we have 536

used historical data set for the outages and faults based on 537

records that were logged by the grid transformer maintenance 538

workshop in Iraq. The dataset includes data such as fault 539

time, fault date, fault type and fault no. of occurrences. These 540

attributes were taken as input to the neural network with an 541

additional sensor data that can increase the accuracy in a form 542

of double stage input. The hidden layer as we see in Fig 12 543

consist of 10 layers with the sigmoid as the objective function. 544

The weights were initialized randomly at first stage then 545
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Fig. 6: proposed OpenFlow IoT sensor Platform

used backpropagation to tune the weights for better prediction546

accuracy. However, for final stage prediction, we have used547

Decision Tree classification algorithm for accurate prediction.548

We have implemented a combination of feed-forward for549

sensors and historical dataset and decision tree algorithm550

for finding the best average prediction of historical and real551

combined sensor data output. We can notice that a better552

accuracy has been achieved by using our proposed work553

of feed forwarding and decision tree averaging algorithm554

while minimizing the error rate between each Y prediction555

value. Furthermore, The sensor data were fed to our proposed556

prediction platform and we were able to get a low error rate557

after 1000 rounds of training as depicted in Fig 13. The558

optimization of the error rate can be reduced more by using559

more critical relational parameters that can be estimated for560

each transformer.561

Fig 14 represents the data set parameters that were used562

to train our proposed model. The main input data are the563

line trip, frequency, line load, and voltage. In Fig 15 shows564

the prediction of the type of fault and phase line overload565

with 96.1% accuracy. The accuracy can be optimized more by566

using more operational parameters. Moreover, Fig 16 shows567

the gradient decent process parameters that are used to tune568

Fig. 7: finalized proposed sensor platform while in active mode

Fig. 8: proposed virtualized core topology implemented on a
Linux server for sensor traffic management and fault prediction
using python classification libraries.

the weights to minimize the cost function. 569

VI. CONCLUSION 570

The current electrical grid system in Iraq need to be 571

updated with new engineering implementation to overcome 572

demand and outage challenges and adapt itself to new grid 573

requirements to reduce maintenance cost. Therefore, this paper 574

proposed a novel SDN IoT sensor platform to monitor the 575

electrical parameters in distribution transformers to provide 576

solutions for the electrical grid in Iraq. Current electrical grid 577

weaknesses have been discussed and the effectiveness of our 578

proposed system was highlighted along with the proposed 579

prediction system. Experimental testing has been implemented 580
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Fig. 9: Faulty DT samples from Baghdad electrical grid maintenance site as follows: pivot damage, oil leaks, and shorted
winding.

Fig. 10: proposed SDN sensor deployment scenario in a residential zone per DT platform
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Fig. 11: sensor data collected for one phase from an operational miniature DT using our proposed testbed

Fig. 12: proposed combined Feed-Forward and Decision Tree fault classification system structure

Fig. 13: objective function error rate Fig. 14: data set used for training the network
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Fig. 15: prediction phases

Fig. 16: gradient and validation checks

on an application case to validate the proposed prototype.581

The hardware was built using IoT hardware sensors and582

controllers. The controller was programmed as a customized583

SDN controller with the ability to operate as a sink and regular584

node. The testbed can also be connected to a circuit breaker585

to smartly manage any high alert threshold that cloud occur586

such as overload, high voltage, etc. The SDN-sense protocol587

was proposed to manage the communication of N nodes588

efficiently. Moreover, we have implemented the data center on589

a virtual Linux server with multiple paths for redundancy. The590

prediction platform was implemented using a python library 591

and Matlab simulation. Experimental results showed predic- 592

tion results with 96.1% accuracy. In summary, the proposed 593

system is considered to be low-cost implementation with real- 594

time management that can provide a total overview of the DT 595

status and to eliminate any future fails and outages that may 596

occur in the distribution lines. 597
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