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1 Algebraic formulation

1.1 Introduction

The Yoneda Lemma is ordinarily understood as a fundamental representation
theorem of category theory. As such it can be stated as follows in terms of
an object c of a locally small category C, meaning one having a homfunctor
C(−,−) : Cop × C → Set (i.e. small homsets), and a functor F : C → Set or
presheaf.

Lemma 1 (Yoneda). The function α : Hom(C(c,−), F ) → F (c) defined by
α(τ : C(c,−) → F ) = τc(1c) is is a bijection natural in c.

However it can just as well be considered a fundamental representation theo-
rem of universal algebra, via the connection between the homfunctor of a cate-
gory and free algebras for the theory represented by that category. This connec-
tion is not generally appreciated outside category theoretic circles, which this
section endeavors to correct by presenting the relevant concepts from an alge-
braic perspective. The algebraically motivated notations T , s, A, h, h∗, and a∗

below correspond to the respective notations C, c, F , τ , α(τ), and α−1(a) (for
a ∈ F (c)) above, with the free algebra Ts corresponding to the representable
functor C(c,−) : C → Set, fu = Tuf to C(c, f), and f∗ = Tf to C(f,−).

The remaining sections of the paper apply the Yoneda Lemma to a pro-
posed simplification and generalization of algebra, illustrated with applications.
Algebras and their homomorphisms have in effect been defined as respectively
functors and natural transformations long before category theory came into ex-
istence. That is, we do not see any essential differences between the definitions,
and category theorists are just as entitled to characterize algebra as merely
another language for category theory as algebraists are to the converse claim.

Sections 2 and 3 on respectively dense and didense extensions of categories
exploit the Yoneda Lemma to replace these conventional definitions of alge-
bra/functor and homomorphism/natural transformation with definitions that
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are more abstract, primitive, and general. To the extent that algebras are fun-
damental to mathematics this makes the Yoneda Lemma a potentially insightful
tool for the foundations of mathematics.

1.2 Homogeneous case

Clearly every element x of a set X is representable as the function x∗ : {0} → X
uniquely defined by x∗(0) = x. This is the discrete case of the representation
of an element a of an algebraic structure A as the homomorphism a∗ : T1 → A
uniquely defined by a∗(x) = a where T1 denotes the free algebra on one generator
x. For any homomorphism h : T1 → A write h∗ for the element h(x) of A. We
then have a∗∗ = a and h∗∗ = h, showing that this representation takes the form
of a bijection between the underlying set A of A and the set Hom(T1,A) of
homomorphisms from T1 to A. Its existence is either an easily seen consequence
of the definition of T1 as an algebra of unary terms f(x) whose values are
uniquely determined by the value of their common variable x, or (part of) a
definition in its own right of the notion of free algebra.

This representation is applicable to T -algebras or models of an algebraic
theory T defined by equations between terms formed from variables and oper-
ation symbols. Typical such structures include monoids, groups, vector spaces,
Boolean algebras, lattices, and pointed sets.

For each of these the respective free T -algebra T1 on one generator is, up
to isomorphism, the monoid of natural numbers, the group of integers, the one-
dimensional vector space over a given field, the four-element Boolean algebra
{x,¬x, 0, 1}, the singleton lattice {x}, and the doubleton pointed set {x, c} (set
with one constant c, as a constant unary operation). In all cases T1 can be
understood as the unary abstract terms of the theory, obtainable from those
concrete terms that are expressed with a single variable x, modulo the con-
gruence on terms (with respect to composition) generated by the equations of
T .

This representation of the elements of A extends to the unary operations
fA of A as follows. (This is the algebraic counterpart of naturality in c in
the categorical formulation.) Taking A to be T1 in the first paragraph of this
subsection yields f∗ : T1 → T1 as the homomorphism representing the element
f , or f(x), of T1. This permits the interpretation fA of f in A to be recovered
entirely from how homomorphisms compose as follows.

fA(a) = fA(a∗(x)) (defn. of ∗)
= a∗(f(x)) (a∗ is a homomorphism)
= a∗(f) (f(x) = f ∈ T1)
= a∗(f∗(x)) (defn. of ∗)
= (a∗f∗)(x) (homomorphisms are composable)
= (a∗f∗)∗ (defn. of ∗)

That is, the left action of fA on elements a ∈ A, as the element fA(a) of A, is
represented by homomorphisms as the right action of f∗ on a∗, or substitution
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of the element f(x) of T1 for the argument of a∗, or in pictures the composite

T1
f∗→ T1

a∗→ A.
The beauty of this representation is that f∗ is defined independently of A:

the same f∗ can be used for every algebra A, with the action of f on a ∈ A
determined by the choice of composite a∗f∗ at T1, back at the depot so to speak.

This representation can be organized more crisply as an isomorphism of
(left) modules. A module (M, X, ·) consists of a monoid M = (M, ◦, 1), a set
X, and a scalar multiplication · : M ×X → X satisfying (m ◦n) ·x = m · (n ·x)
and 1 · x = x. The example above of the scalar multiplications of an arbitrary
vector space nicely illustrates the notion of module, but so do the other five
examples. For example any Boolean algebra B determines a module by taking
X to be its underlying set B, M to be the monoid formed by the four unary
Boolean terms under composition, and scalar multiplication to be application
of the interpretation of those terms as the four unary operations of B. Every
T -algebra A = (A, fA, gA, . . .) is an expansion by non-unary operations of the
module (T1, A, ·) where T1 is the monoid of unary terms of T and · is application
of these terms interpreted as operations of A; call this the internal module
of A formed by its unary operations. When all operations of T are unary a
T -algebra is in this way a module.

But every T -algebraA determines a second module (End(T1)op,Hom(T1,A), ; )
where ; is converse composition (so h; k = k ◦h = kh), End(T1)op is the monoid
of endomorphisms of T1 under converse composition, and Hom(T1,A) = {h :
T1 → A} as before. Call this the external module of A formed by its repre-
senting homomorphisms.

Lemma 2 (Yoneda, algebraic form). The internal and external modules of an
algebraic structure are isomorphic.

An alternative and convenient formulation that we shall sometimes use de-
fines the external module as a right module (End(T1),Hom(T1,A), ◦) in terms of
composition instead of its converse, distinguished from ordinary or left modules
by writing the scalar multiplication conversely, as with a∗ ◦ f∗ or a∗f∗, so that
the monoid now acts on the set from the right. The lemma then states that the
external right module of A is dual to its internal left module.

In the case A = T1 of the Yoneda Lemma, each element f(x) of T1 is rep-
resented as the homomorphism f∗ : T1 → T1, a substitution mapping each
element g(x) ∈ T1 to f∗(g(x)) = g(f(x)). That is, the monoid End(T1) of endo-
morphisms of T1 is isomorphic to T1

op as the opposite of the monoid of unary
operations of T .

If T is a commutative theory such as that of vector spaces, meaning that T1
op

is isomorphic to T1 via g(f(x)) = f(g(x)), nothing much changes in the passage
from inside to outside. More striking is the case of a noncommutative theory
such as that of Boolean algebras. For example the constant unary operation
0 ∧ x, as the element 0 of the free Boolean algebra T1 on x, is represented by
the endomorphism 0∗ given by 0∗(f(x)) = f(0), which can be seen to be the
retraction of T1 to its subboolean algebra {0, 1} sending x to 0 and ¬x to 1.

This case of the Yoneda Lemma constitutes the Yoneda Embedding (thus far
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in the single-sorted case) because it embeds the monoid T1
op as a full one-object

subcategory of the concrete category of T -algebras and their homomorphisms.

1.3 Heterogeneous case

One generalization of this representation of the internal module of A by its
external one would be to extend the notion of internal module to the n-ary
operations of A for all n. The requisite bijection for doing so is that between the
set An of n-tuples of elements of A and the set Hom(Tn,A) of homomorphisms
to A from the free algebra Tn on n generators x1, . . . ,xn. (The categorical
counterpart of such algebras takes the form of functors that preserve products.)

The Yoneda Lemma treats a related generalization, namely to multisorted
or heterogeneous unary algebras, or presheaves. These are the models A of a
theory T having sorts s, t, . . ., terms f : s → t, and equations between terms
of the same type s → t serving as axioms, in other words a category T . The
elements of A of sort s form a set As and each term f : s → t is interpreted in
A as a function fA : As → At satisfying the equations of the theory, in other
words a functor A : T → Set.

As explained in subsection 1.5, the models of an algebraic theory form a full
subcategory of its presheaf models, the latter being those for which Asn is not
required to be An

s . In this sense the latter generalization subsumes the former,
with the caveat that structural properties of the latter such as forming a topos
[6] need not be preserved by subcategories. We can therefore assume henceforth,
without loss of generality for algebraic theories (for our purposes), that we are
working with the whole of T . The single-sorted case was more constrained,
obliging us to consider only the unary part T1 of a possibly larger theory T .
That we could reliably illustrate presheaves with Boolean algebras etc. is a
consequence of the category of Boolean algebras forming a full subcategory
of the category of all presheaves on the theory of Boolean algebras, with the
Boolean homomorphisms T1 → A in particular being the same thing as the
presheaf homomorphisms.

In place of a single formal variable x serving as the generator of T1 we now
need a separate variable xs for each sort s. Each such variable generates its own
free algebra Ts consisting of all abstract terms or polynomials of the form f(xs),
that is, all terms generated by xs. Following the notation At, Tst denotes the
set of elements of Ts of sort t, namely the terms f : s → t.

In the single-sorted case, terms lead a double life as the elements and the
operations of T1. In the multisorted case, each term f : s → t exists as an
element f(xs) ∈ Ts in only one free algebra, but it is interpreted as an operation
in every free algebra Tu, namely as the function fu : Tus → Tut mapping each
term g(xu) of sort s in Tu to the term f(g(xu)) of sort t. This “one-every”
distinction did not arise in the single-sorted case.

Every element a ∈ As is representable as the homomorphism a∗ : Ts → A
uniquely defined by a∗(xs) = a, by essentially the same reasoning as for the
single-sorted case: evaluate the terms in Ts. Applying this representation as
for the single-sorted case, every element f : s → t in Ts is representable as the
homomorphism f∗ : Tt → Ts by taking A = Ts and noting that f is of sort t.
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We can understand f∗ as the substitution of f(xs) for xt in each term g(xt)
of Tt, producing g(f(xs)), a term of Ts. The main difference from the single-
sorted case is that this substitution acts as a homomorphism between possibly
distinct free algebras. We can then represent fA(a) almost exactly as for the

single-sorted case, namely as Tt
f∗→ Ts

a∗→ A.
The Yoneda Lemma as we restated it algebraically in terms of modules was

only for the single-sorted case. However we did not say so there because it can
serve the multisorted case without changing its statement provided only that we
broaden the definition of module to accommodate multisorted monoids. These
are most efficiently organized as abstract categories (for which algebra offers no
better organization) while continuing to call functors and natural transforma-
tions respectively (unary) algebras and homomorphisms.

A (heterogeneous) module (C,X , ·) consists of a category C, a family X
of sets Xc indexed by objects c of C, and a family of scalar multiplications
·cd : C(c, d) × Xc → Xd doubly indexed by objects of C, such that for each
morphism f : c → d of C and x ∈ Xc, f ·x ∈ Xd and satisfies (gf) ·x = g · (f ·x)
and 1c · x = x. The internal module of a T -algebra A is then (T , |A|, ·), where
|A| denotes the family of underlying sets of A and f · a is interpreted as f(a)
constituting the rest of A.

The Yoneda Lemma makes the internal module of A dual to the right module
(J , |Ĵ (F (−),A)|, ◦) of homomorphisms where J ∼= T op denotes the category
of free T -algebras Ts or representable functors T (s,−) along with their homo-
morphisms/natural transformations. Here F : J → Ĵ fully embeds J in the
category Ĵ of all T -algebras and their morphisms, which for the time being we
can identify with [T ,Set], and |Ĵ (F (−),A)| denotes the family Aj of sets of
homomorphisms from F (j) to A as j ranges over the objects of J . J can be
viewed as a category of prototypical T -algebras and Ĵ as its completion to all
T -algebras, a concept developed in more detail in the next section.

Our earlier definition of module can then be understood as the case when C
has one object. Our algebraic version of the Yoneda Lemma in terms of modules
applies equally to this general notion of module allowing multiple sorts.

In relating all this back to the categorical perspective sketched in the first
section, one additional correspondence is that modules (C,X , ·) as multisorted
unary algebras are equivalent to functors F : C → Set, with F (c) = Xc and
F (f)(x) = f · x for x ∈ Xc.

1.4 Directed reflexive multigraphs

This representation is nicely illustrated by the example of a directed reflexive
multigraph (V,E, σ, τ, ι), defined to consist of sets V and E of respectively
vertices and edges, operations σ, τ : E → V giving respectively the source σ(e)
and target τ(e) of each edge e ∈ E, and an operation ι : V → E for which ι(v) is
the distinguished self-loop at vertex v satisfying σι(v) = τι(v) = v for all v ∈ V .
(This follows the usual practice of taking the signature of a T -algebra to be
only a sufficient basis from which to generate the remaining terms by identities
and composition.) Without these two equations there would be infinitely many
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terms such as e, ισ, ισισ, etc. With them there are just seven terms, organized
as TV V = {v}, TV E = {ι}, TEE = {e, ισ, ιτ}, and TEV = {σ, τ} where the
generators v and e constitute the identity operations at respectively V and E.

We then have two free graphs on respective generators v and e, namely
TV = ({v}, {ι}, σV , τV , ιV ) and TE = ({σ, τ}, {e, ισ, ιτ}, σE , τE , ιE). The graph
TV consists of one vertex v and one edge, the self-loop ι at v. The operations
of TV satisfy σV (ι) = τV (ι) = v and ιV (v) = ι.

The graph TE consists of two vertices σ and ι and three edges: e from σ to
τ , and self-loops ισ and ιτ at respectively σ and τ . The operations of TE satisfy
σE(e) = σE(ισ) = σ, τE(e) = τE(ιτ) = τ , ιE(σ) = ισ, and ιE(τ) = ιτ .

The Yoneda Lemma puts the seven terms of the theory in bijection with
the seven homomorphisms of a category J of reflexive graphs whose objects
are TV and TE . A graph can then be represented simply as an object G with
morphisms to G from V and E representing respectively the vertices and edges
of G. The source and target vertices of each edge e are given by the respective
composites e∗σ∗, e∗τ∗ : TV → G. The self-loop at each vertex v is given by the
composite v∗ι∗ : TE → G.

This correspondence between operations and homomorphisms can give ad-
ditional insight into a theory. For example the reflexivity provided by the op-
eration ι is reflected in the retractibility of TE to either vertex (as a self-loop).
If we form T ′ from T by omitting ι, ισ and ιτ (graphs), T ′

E is then no longer
retractible because it contains no self-loop to receive e. T ′ then has only four
morphisms, whence so does its opposite J ′

Category theory offers yet more insight. Composing any reflexive graph G
as a functor G : T → Set with the evident inclusion K : T ′ → T yields the
underlying graph U(G) = GK : T ′ → Set of G, having the same vertices and
edges but with the distinguished self-loops of G no longer differentiated from
the other self-loops. For each homomorphism h : G → G′ of Ĵ , U(h) = h,
making U : Ĵ → Ĵ ′ a faithful (but not full) functor, i.e. Ĵ is a subcategory of
Ĵ ′. The new graphs in Ĵ ′, those not in the image of U , are those containing
a vertex with no self-loop. Graph homomorphisms preserve self-loops whence
there are no homomorphisms from G to H in Ĵ ′ when there exist self-loops
in G but not H; in contrast Ĵ has no empty homsets. Ontology recapitulates
phylogeny in the respective bases: the same sentence is true with the bases J
and J ′ in place of Ĵ and Ĵ ′.

1.5 Applicability to algebras and coalgebras

Homogeneous algebras with non-unary operations such as f : s2 → s, as well
as coalgebras with operations such as f : s → s + s, can be understood as
presheaves A : T → Set that preserve specified products and sums, e.g. As2 =
A2

s, As+s = As + As, etc. These form a full subcategory of the category Ĵ of
all presheaves on J , argued as follows.

If T contains a product sort s2 then it also contains projections p, q : s2 → s.
Hence any interpretation of s and s2 as respective sets As, As2 interprets p and q
as functions pA, qA : As2 → As. This allows As2 to be understood as a multiset
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of pairs (a, a′) for a, a′ ∈ As, with each such pair having κ occurrences for some
cardinal κ ≥ 0.

A homomorphism h : A → B associates to sorts s and s2 respective functions
hs : As → Bs and hs2 : As2 → Bs2 satisfying hs(pA(a, a′)) = pB(hs2(a, a′))
and hs(qA(a, a′)) = qB(hs2(a, a′)), or just h(a, a′) = (h(a), h(a′)) without the
subscripts. This holds independently of how many copies of (a, a′) appear in
As2 . Hence for any term f of T , h(f(a, a′)) = f(h(a, a′)) = f(h(a), h(a′)),
thereby meeting the usual requirement for homomorphisms as a consequence of
including the projections in T .

The intended models of a theory T with product sorts are those that respect
products, namely those such that the product sorts are interpreted as sets of
tuples containing κ = 1 copy of each tuple. These therefore form a subclass of
all the presheaves for T , along with all their homomorphisms by the preceding
argument, that is, a full subcategory thereof.

In the homogeneous case we can write the free T -algebra on n generators as
just Tn. The Yoneda Lemma then represents the n-tuples t of any T -algebra
A as homomorphisms t∗ : Tn → A and n-ary operations fA : An → A as
homomorphisms f∗ : T1 → Tn acting on the representations t∗ of n-tuples
t on the right, namely as t∗f∗. This representation of n-tuples is sound for
all presheaves A, what is special about those A that preserve the designated
powers sn is that each n-tuple is represented by exactly one homomorphism;
with arbitrary presheaves each n-tuple could be represented by any number of
homomorphisms including none.

An analogous situation holds for coalgebraic theories with coproduct or sum
types such as s + t, as might appear with an operation f : s → s + s (more
generally f : s → t + u etc. for heterogeneous coalgebras). In this case we
have inclusions i, j : s → s + s whose respective interpretations iA, jA in any
presheaf A for that theory associate each element a of As+s to those elements
mapped by either iA or jA to a. A presheaf is a coalgebra just when coproducts
are interpreted as such, namely when every such a is associated to exactly one
element of As, either via iA or jA, and the dual reasoning shows that these
coalgebras form a full subcategory of the presheaf category.

While some properties of presheaf categories need not hold of their full sub-
categories, such as forming a topos, the notion of density treated in the next
section does, being as applicable to algebra and coalgebra as it is to presheaves:
every algebra or coalgebra on J arises as an object of some full dense extension
of J , including the category of all T -algebras, or of all T -coalgebras, whether or
not T ∼= J op has non-unary operations other than projections and inclusions.

2 Density

2.1 Homomorphisms

The Yoneda Lemma as stated has nothing to say about the homomorphisms
between T -algebras, or natural transformations between the presheaves, other
than those from objects of J ∼= T op. A minor complication here that does not
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arise with the Yoneda Lemma as stated is that there may be too many homo-
morphisms between two algebras to form a (small) set (in category-theoretic
language, the functor category SetT or [T ,Set] may not be locally small) be-
cause the algebras themselves have too many sorts to form a set, even though
each As, as the homset [T ,Set](Ts,A), is a set. This is easily addressed how-
ever with the further requirement, assumed henceforth, that J be essentially
small, meaning equivalent to a small category (for example the subcategory of
Set consisting of the finite sets is equivalent to a category whose objects are
the natural numbers, even if Set has been constituted to have a proper class of
singletons).

A more substantial reason is that there is no need to extend the represen-
tation of algebras by homomorphisms to the representation of homomorphisms
between algebras because they already represent themselves.

However the Yoneda Lemma can be rephrased as a representation theorem
for a more abstract notion of presheaf and morphisms thereof suggested by
its original phrasing. Starting from J as an abstract category of prototypical
structures and all their morphisms, define a presheaf as simply any object A of
any full extension C of J .

The representation theorem then takes the form that any functor F : J → C
induces a representation of each object A of C as a J op-algebra, namely the
functor C(F (−), A) : J op → Set. And since the homfunctor is functorial in
both arguments this extends to the representation of each morphism h : A →
B of C as a homomorphism, namely the natural transformation C(F (−), h) :
C(F (−), A) → C(F (−), B). That is, F determines a functor F̃ (A) = C(F (−), A)
of type F̃ : C → [J op,Set], following the notation of [7][(3.38)].

Now a representation of (the objects and morphisms of) a category C by a
category D is by definition a full and faithful functor from C to D [11]. This
together with our understanding of J as itself a category of presheaves on J
suggests the following notions and definitions.

A functor F : J → C is dense just when F̃ is full and faithful, and is
moreover complete when F̃ is an equivalence. A category of presheaves
on J is any dense full extension C of J , where “full extension” means that J
embeds fully in C. A presheaf category on J is any complete full extension
of J .

All presheaf categories on J are equivalent, with the functor category [J op,Set]
among them, which for definiteness we continue to take as the definition of Ĵ .
Every category of presheaves on J is a full subcategory of Ĵ , and (when defined
as above) includes J as a full subcategory.

Dense functors originated with Isbell [5] who called them left adequate, and
their opposite F op : J op → Cop right adequate. The modern terminology,
respectively dense and codense, is due to Gabriel and Ulmer [4] by analogy with
density of the rationals in any extension thereof up to the reals as the completion
of the rationals.

The above definition of dense functor, which we will call semantic density
when so defined, makes the F̃ representation of presheaf morphisms more an
axiom than a theorem, having the character of defining a Boolean algebra to be
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any algebra isomorphic to a Boolean algebra of subsets of some set. One can
then ask whether there exist natural characterizations of categories of presheaves
for which it is a honest theorem that F̃ is a representation.

2.2 Presheaves as colimits

One natural notion of category of presheaves on J is as a category C fully
embedding J such that every object of C arises as a colimit of a functor to
C that factors through F . As a degenerate case in point, consider how one
might build the category Set as 1̂ by starting just from the base of Set, namely
the category 1 whose one object is to be understood as the singleton 1. It is
natural to express the set with 3 elements up to isomorphism as the sum or
coproduct 1 + 1 + 1, as an object of a suitable extension C of 1, the extension
being formulated as a functor G : 1 → C. We can formalize this as the colimit
of a (necessarily constant) functor 3 F→ 1 G→ C, where 3 denotes the 3-object
discrete category.

This approach yields not only the set 3 itself but also the morphisms from 3 to
any other object X of C, via the adjunction [3, C](GF, ∆(X)) ∼= C(Colim(GF ), X)
defining the notion of colimit, thinking of the left side of the adjunction as the
definiens of colimit and the right side as the definiendum. Thus if X = 5 (the
5-element set) then ∆(X) = (5, 5, 5), GF = (1, 1, 1), and the functor category
[3, C] therefore has 53 = 125 natural transformations from GF to ∆(X), which
the adjunction then obliges its right side to have as well. In this way 1̂ acquires
not only all the objects but all the morphisms of Set.

The natural generalization to any Ĵ is obtained along these lines as the
completion of J under colimits, with the comma category (F ↓ c) in place of 3
when defining c as a colimit, as per equation (1) of [10][§X.6]. For J as the basis
for graphs as in subsection 1.4, a graph can be understood as a sum of copies
of v and e with some identifications made between source and target vertices
specified by the comma category.

The category Ĵ of “all” presheaves on J can then be taken to be some
completion under colimits of J , meaning a category C every extension of which
by colimits of functors that factor through J is equivalent to C.

2.3 Syntactic density

Defining presheaves as colimits makes the proposition that F̃ is a representa-
tion an honest representation theorem instead of a mere definition. However
abstraction promises both generality and simplicity. Whether or not the colimit
approach can be considered a general characterization of presheaves and their
morphisms, one would have to be thoroughly wedded to the categorical point
of view to call it a simple one.

The following approach to density is developed in terms solely of categories
and their extensions, with the latter understood as a more elementary notion
than functor. The approach can be understood as simply a translation into
more elementary language of the semantic definition of density.
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Call category D an extension of category C just when C is a subcategory
of D. This is usually understood in category theory to mean that there exists
a faithful functor F : C → D. However if we impose the stronger condition
that F (c) = c for all objects and morphisms c in C, call this set-theoretic
extension , the kind normally understood in algebra, we can define the notion
of extension of a category C before that of functor, namely as a category formed
by adjoining new objects and morphisms to C and specifying how they compose,
with no modification to the old objects and morphisms of C. In particular func-
toriality F (gf) = F (g)F (f) and F (1) = 1 is automatic for functors constituted
as set-theoretic extensions.

A full extension of C is an extension that leaves all existing homsets of C
unchanged, in the sense that it adds no new morphisms to them. More generally,
for a specified class H of homsets of C an extension is called full on H when
it leaves the homsets in H unchanged. An extension of C that adjoins only
morphisms (no new objects) is called an extension of C by morphisms. An
extension D of C is called C-extensional (an unfortunate clash of terminology)
when for all morphisms f, g : d → e in D, if for all objects c in C and all
morphisms a : c → d in D we have fa = ga, then f = g. Lastly an extension
of an extension D of C is called C-full when it is full (as an extension of D)
on all homsets of D from C. (The parameter C in “C-full” and “C-extensional”
permits these notions to be applied unambiguously to extensions of extensions
of C.)

Call a full extension C of J dense when
(i) C is J -extensional, and
(ii) every J -full J -extensional extension of C by morphisms is full. That is,

C cannot be further extended without either extending some homset from J , or
violating J -extensionality, or adjoining new objects.

By syntactic density we shall mean density defined in this way.
More operationally, a dense extension of J is one that can be constructed

in two stages. At stage one, take any full extension of J such that the homsets
from the new objects are empty. This creates all the algebras of the extension,
along with just those homomorphisms required by the Yoneda Lemma. This
extension is automatically J -extensional because if a, b : j → A (the only new
morphisms) are distinct then a1j = a 6= b = b1j , that is, a and b map the
element 1j of j to distinct elements of A.

At stage two, further extend the result by morphisms, by saturating the
hitherto empty homsets from the new objects (those not in J ). That is, adjoin as
many morphisms to those homsets as possible while preserving J -extensionality
to obtain the remaining homomorphisms. The homsets from J introduced at
the first stage determine the objects of the extension and therefore must not be
touched during the second stage, which adjoins only those morphisms between
objects that don’t participate in the Yoneda representation of the objects.

Theorem 3. A full extension C of J is syntactically dense if and only if it is
semantically dense.

Proof. (If) Semantic density implies that C is a full subcategory of [J op,Set],
which along with having J as a full subcategory is then easily seen to satisfy
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the conditions of syntactic density.
(Only if) Any full extension of J is interpreted via F̃ as having presheaves

on J as objects, with every morphism interpreted as some homomorphism.
It therefore remains to verify that each homomorphism is represented exactly
once. Condition (i) of the definition of semantic density supplies the upper
bound, condition (ii) the lower.

For our purposes therefore the semantic-syntactic distinction for density can
henceforth be dropped. In this way we obtain the notion of a category of
presheaves without the notions of functor or natural transformation.

One might argue that surely algebras and homomorphisms accomplished
this long ago, having been invented well before category theory. But properly
understood these are merely synonyms for functors and natural transformations.
Syntactic density involves only abstract categories and their extensions, without
bringing in the usual notions of algebra and homomorphism thereof, however
named. Defining these notions in terms of syntactic density is therefore more
abstract and primitive than the more conventional approaches.

Without functors there is no F̃ and hence no representation theorem. As
soon as the homfunctor is introduced however we obtain both F̃ and the repre-
sentation of presheaves and their morphisms as J op-algebras and their homo-
morphisms.

One benefit of this more elementary definition of density is that it generalizes
quite easily to the notion of didensity defined in the next section. In contrast
the corresponding generalization of F̃ will be seen to be somewhat awkward.

3 Communes

3.1 Didensity

Thus far we have encountered morphisms in only one of the two argument
positions of the homfunctor. In general, for any pair of morphisms f : c′ → c
and h : d → d′ of a category C, the homfunctor maps them to the function
C(f, h) : C(c, d) → C(c′, d′), which in turn maps each morphism g : c → d to
hgf : c′ → d′. In this section we exploit the full generality of the homfunctor in
a notion of commune (the suggested name in algebraic contexts) or disheaf (as
its categorical counterpart making the connection with presheaf), as a common
generalization of the notions of presheaf and Chu space [1, 2] (a construct that
subsumes point set topology) that is particularly easy to define in terms of a
notion of didense extension.

In place of a single small category J as the base we take two small categories
J and L. Elements of an object D (for disheaf) are represented as morphisms a :
j → D as before, but now we also allow dual elements or states of D, represented
as morphisms x : D → ` for objects ` of L. And since this necessitates a
composite xa : j → `, we fix homsets Kj` supplying the values permitted for
each such xa, along with their composites with morphisms of J at one end and
L at the other.

11



This structure K, including J and L but excluding D, is called variously
a bimodule, profunctor, or distributor. It can be understood as a functor K :
J op × L → Set, also notated K : L 9 J when referred to as a profunctor. It
can be understood equivalently as a category K formed from the category J +L
by adjoining the elements of K(j, `) as morphisms from j to ` for objects j of J
and ` of L, with composites involving each element k ∈ K(j, `) defined for each
f : i → j in J as kf = K(f, `)(k) (via the typing K(f, `) : K(j, `) → K(i, `))
and for each g : ` → m in L as gk = K(j, g)(k) (via the typing K(j, g) :
K(j, `) → K(j, m)). The homsets from L to J are left empty.

Let C be a set-theoretic extension of the category K. The notions of full,
and full on certain homsets, for extensions are as before. Call the extension
K-extensional when for all morphisms f, g : c → d in C, if for all objects j
of J and ` of L and for all morphisms a : j → c and x : d → ` in C we have
xfa = xga, then f = g. Call it K-full when it is full on homsets from J and
homsets to L.

Let C be any K-full extension of K, that is, full on all homsets of K save
those from L to J . Call C didense when

(i) C is K-extensional, and
(ii) every K-full K-extensional extension of C by morphisms is full.
A category of communes on K is any K-full didense extension of K.

The terminology “on K” is taken as implying that K is included as a K-full
subcategory.

As with presheaves, merely belonging to the same category C as K is enough
to qualify an object for interpretation as a commune, whose elements are the
morphisms to it from J and whose states are the morphisms from it to L,
with the remaining structure given by the composites of elements and states
with each other and with the morphisms of J and L. From this perspective
communes are as simple and natural a notion as presheaves.

One might expect such a generalization to have a straightforward conven-
tional formulation generalizing the notion of module (C,X , ·), or presheaf A :
C → Set. Following that approach naively for communes requires attention to
ten components, namely the doubly-indexed family Kj` of sets, the category J ,
the composites of K with J , the category L, the composites of L with K, the
sets of elements of presheaves on J , their composites with J , the sets of states
of dual presheaves on L, the composites of L with states, and the composites of
states with elements.

With further organization all this can be packaged more neatly to define a
commune on the profunctor K : L 9 J as a triple (A,X, ρ) where A : 1 9 J
and X : L 9 1 are profunctors and ρ : AX → K is a natural transformation
from the composite AX : L 9 J to K. Without going into detail about
composition of profunctors in general it suffices to say that the composite AX
in this special case is a functor J op×L → Set satisfying AX(j, `) = A(j)×X(`)
and AX(f, h)(a, x) = (A(f)(a), X(h)(x)). Following the tradition in algebra of
identifying algebras with their representation as functors (construed sufficiently
broadly as to allow the tradition to predate the invention of category theory
per se), we can identify communes with their representation as triples (A,X, ρ)
while continuing to regard abstract didense K-full extensions of a bimodule K
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as categories of communes understood more abstractly.
This organization brings out the relationship between communes on a bi-

module K and Chu spaces (A,X, r) on a set K defined as sets A and X and a
function r : A×X → K. One might call communes the categorification of Chu
spaces, with the caveat that although Chu spaces form a self-dual category,
communes do not unless K is self-dual. Chu spaces arise as the special case
J = L = 1, making the domain of K : J op ×L → Set a singleton and hence K
merely a set, namely the set of morphisms from the object of J to that of L.

We write K̂ for the category of communes on K by analogy with Ĵ for the
category of presheaves on J .

For presheaves we called the functor F : J → C semantically dense when the
functor F̃ : C → Ĵ defined by F̃ (A)(j) = C(F (j), A) is full and faithful. Taking
didensity as defined above to be syntactic didensity, for communes we call the
functor F : K → C semantically didense when the functor F̃ : C → K̂ defined
by F̃ (D)(j, `) = µF (j)AF (`) : C(A,F (`))×C(F (j), A) → C(F (j), F (`)) is full and
faithful, where µcde : C(d, e)× C(c, d) → C(c, e) is composition in C. When F is
K-full and faithful, the equivalence of syntactic and semantic didensity can be
argued similarly to the proof of Theorem 3.

Communes are a generalization of a notion due to Isbell and called by Law-
vere the Isbell envelope E(C) of a category C. E(C) is the special case of a cat-
egory of communes where the base has the form of a homfunctor Cop×C → Set,
equivalently the identity profunctor 1C : C 9 C. An object D of the Isbell
envelope can be understood as a commune whose elements are morphisms from
objects of C to D and whose states are morphisms from D to objects of C.
Conversely the commune category K̂ can be obtained from E(Ǩ) as the full
subcategory of E(K) consisting of those objects having no elements from L and
no states to J .

Call a commune D extensional when as a one-object full extension of K
(i.e. K together with the elements and states of D) it forms a J-extensional
extension of J . That is, for all objects ` of L and all x, y : D → `, if for all
objects j of J and all elements a : j → D we have xa = ya, then x = y.
(This agrees with the terminology for an extensional Chu space [2].) Call D
consistent when for every ` in L there exists a state x : D → `. Call D
discrete when it is maximally extensional, meaning that it is extensional and
no new state can be adjoined without violating extensionality.

3.2 Categories of graphs

Subsection 1.4 illustrated presheaves with two bases J and J ′ for respectively
reflexive and general graphs. Here we give some extensions of the latter to pro-
functors K : L 9 J ′ for various choices of L each understood itself as a category
of graphs playing the role of the Sierpinski space in this generalization of point
set topology. The benefit of J ′ over J in these examples is that the absence of
self-loops (more generally idempotents) enhances combinatorial expressivity, in
contrast to the Sierpinski space which has little to offer combinatorics. In the
terminology of Grothendieck, combinatorics is better conducted in a gros topos
than a petit one.
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These bimodules can be presented as dense full extensions of either J ′ or L.
That is, the extensions produce respectively the objects of either L or J ′. We
take the latter as being more convenient for these graph examples.

Call a graph uniform when for any pair u, v of vertices all paths from u
to v have the same length. For example the Hasse diagram of any finite mod-
ular lattice is uniform. We represent uniform graphs as consistent extensional
communes on the following bimodule K.

Take L to be the monoid Z = (Z,+, 0) of integers. Form the Z-module
(Z, Z,+) extending Z. Form J ′ by taking V and E to be two such extensions
of Z, with σ∗ : V → E acting as the identity on the integers and τ∗ : V → E as
predecessor. This defines Ǩ to consist of J ′ having two objects V and E and
two morphisms σ∗, τ∗ : V → E, L with one object Z for which End(Z) is Z as
a monoid, and K(V,Z) = K(E,Z) = Z supplying respectively the vertices and
edges of the graph. Just as each of V and E forms a right Z-module in K, so
does Z form a left J ′-module in Ǩ, namely a graph with the property that for
every integer i, edge i runs from vertex i to vertex i + 1.

A consistent extensional commune on this bimodule K then consists of a
graph G and a nonempty set X of states expressible as distinct graph homo-
morphisms x : G → Z, which we can understand as a painting of G with
integers such that every path in G is painted with consecutive integers. Since X
is nonempty (the consistency requirement) this forces G to be a uniform graph.
The presence in L of all translations of Z forces G to be discrete.

Thinking of L here as the graph of the successor function on Z, replacing
it by the graph of the binary relation i < j yields communes that are acyclic
graphs. In place of translations we take the corresponding morphisms of L
to be strict monotone functions on Z, those satisfying f(i) < f(j) when i <
j. For finite communes we obtain all acyclic graphs, namely as the discrete
consistent communes on this bimodule. (Discreteness is needed here because
the morphisms of L must be dilations; if we start with some painting x : G →
Z which interprets edges as very large steps through the integers, applying
dilations to these does not force more conservative paintings, the omission of
which would impute unintended structure to the model, whence the discreteness
requirement.)

For larger communes some acyclic graphs are not so representable, for exam-
ple the graph of the less-than relation on the rationals, which contains infinitely
many vertices between any two distinct vertices, which cannot be labeled with
integers from any finite interval of integers. This can be dealt with for graphs
of size up to any given cardinal by taking L to be a suitable large linear order.

This raises the question, does there exist a category of discrete consistent
communes equivalent to the category of all acyclic graphs? Allowing L to be
some partial order seems not to help.

3.3 Ontology of properties and qualia

Three long-standing problems of philosophy are, in decreasing order of seniority,
Cartesian dualism, the nature of properties or attributes, and the existence of
qualia.

14



The problem of Cartesian dualism concerns the coexistence of mind and
body and in particular the nature of their interaction. Descartes proposed in
1647 that the universe consists of three components, God, mind, and body,
with the latter two independent except in man where they interact by some as
yet unknown mechanism, possibly the recently discovered pituitary gland for
which no role had yet been found. (The recent house arrest of Galileo may
have had something to do with the inclusion of God in this analysis.) Such
sharply defined Theories of Everything being something of a novelty in those
days, philosophers struggled with the question of how mind and body could
interact for a century before giving up and rejecting one of them as illusory,
with the more scientifically inclined preferring to dismiss mind as not existing
in the universe the way body does.

The notion of type such as cat or dog is readily understood in terms of its
extension in any given universe, namely the set of all entities of that type. The
notion of property has proved harder to pin down. C. Swoyer’s comprehensive
(28,000-word) Stanford Encyclopedia of Philosophy article on the subject of
properties [12] lists a number of possible answers to the primary question, what
is a property, all of which raise to one degree or another secondary questions
about the number of properties, their identity, their modal status, and their
epistemic status. The Wikipedia article “Property (philosophy)” on the other
hand merely states baldly that properties differ from classes by lacking any
concept of extensionality. This has both the succinctness and falsifiability of a
scientific hypothesis.

In 1929 C.I.Lewis, an early contributor to modal logic, wrote Mind and the
World Order: Outline of a Theory of Knowledge [9] in which he summarized his
thinking about qualia as entities bridging the physically observable (as measured
by scientific instruments) and the psychologically observable (as the sensations
reported by human observers). Philosophers have since divided themselves into
qualiaphiles such as Edmond Wright, editor of The Case for Qualia [13], a
just-published score of qualia-friendly essays, and qualiaphobes such as Daniel
Dennett [3] who maintain that the concept is incoherent.

Communes are a new mathematical construct that provide a common so-
lution to all three problems by giving a way of thinking about them. Since
communes are well-defined, this allows the questions to be formulated more
sharply as, how faithfully do communes capture the notions of mind, property,
and quale? Communes also suggests novel ways of defining and organizing those
notions so as to make them more consistent both individually and in combina-
tion with each other.

It should be clear how to interpret morphisms a : j → D as individuals of
type j in universe D. In particular the homset K̂(j, D) represents the extension
of type j in universe D as a set, while morphisms f∗ : j → i contravariantly
represent operations f : i → j acting on individuals.

We propose to interpret objects ` of L as properties, states x : D → ` as local
states specific to an abstract or idealized observer of property `, and morphisms
d : ` → m as dependencies between properties, for example hue and saturation
may depend on color but not brightness. The set K̂(D, `) consists of the possible
states of abstract observer `. At any one time that observer will be in the state
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resulting from observing all the individuals of D.
The meaning of xa : j → ` is the value of property ` of individual a of type j

in `-specific state x. This value is drawn from the set K(j, `) of possible values
of property ` for individuals of type j, for example the height of a building, the
color of a cat, etc.

The global state of a universe D is a state vector indexed by properties. In
relational databases a row of a relation, or unit record, would correspond to the
values of some such state vector as applied to a particular individual a. Updates
to the database, say of attribute `, are understand as replacement of the current
state x : D → ` with x′ : D → `, entailing possible changes to values of other
attributes as required by the dependencies.

We identify individuals as the inhabitants of the physical world, its bodies,
and states as the alternatives of the mental world, its minds. To be of two minds
about something is to be torn between two alternative states. Qualia as the
elements of K(j, `) arise at the boundary of these physical and mental entities,
which would seem to come about as close to capturing the schizophrenic mind-
body nature of Lewis’s qualia as any simple mathematical theory is likely to
get. Philosophers may well have a somewhat different notion in mind, say with
a stronger psychological element than a naive mathematical model can convey.
However communes at least provide a coherent notion of qualia as mediating the
covariant and contravariant notions of respectively individual and state, thereby
overcoming the basic objection that qualia are incoherent in the sense that there
is no consistent plausible notion of them.

3.4 Implications for modal logic

Global states of a universe as state vectors of a commune indexed by properties
give a notion of possible world similar to that of a Kripke structure. One dif-
ference from Kripke structures is the concurrent nature of the local states. The
abstract observers of the properties can be understood as observing concurrently,
and independently to the extent permitted by the dependencies. In the absence
of dependencies the observers behave independently and asynchronously: one
observer might make few observations in the time that another makes many.
Dependencies create (more or less) synchronous correlations between proper-
ties.

In modal logic, the Barcan formula ♦∃xΦ(x) → ∃x♦Φ(x) asserts that if it is
possible for a certain entity (namely one satisfying an arbitrary formula Φ(x),
for example “x is Santa Claus,”) to exist, then there exists an entity which
can acquire that property. In other words, the notion of “possible” permits
changes to existing entities but not the creation of new ones. The converse
Barcan formula ∃x♦Φ(x) → ♦∃xΦ(x) asserts the persistence of entities: it is
not possible for entities to vanish from the universe.

Within a commune individuals persist independently of choice of state: the
properties of an individual may change but not the individual itself, providing
an interpretation of Kripke’s notion of rigid designator [8]. Hence possibility
within a universe of alternative states does not allow for creation or annihilation
of individuals, nor even for their identification (as with the realization that the
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morning and evening star are both Venus) or resolution into multiple individuals
(as with the realization that someone who seemed to get around very quickly is
actually a pair of identical twins). For the fixed-universe notion of possibility
both Barcan formulas hold, and can even be strengthened suitably to reflect the
impossibility of identification or resolution.

If however possibility admits the transformation of universes by homomor-
phisms, then although individuals cannot be annihilated or resolved, they can
be created and identified. The Barcan formula then fails, although its converse
still holds. With yet more general notions of possibility, for example via opposite
homomorphisms, one can refute both formulas. Communes therefore provide a
framework in which one can eat one’s cake and have it too as far as the Barcan
formulas are concerned.

3.5 Implications for evolution

We certainly perceive our universe in terms of types and properties. But why?
The naive answer is because that’s how our universe, and surely every universe,
happens to be organized.

A more objective answer might be that brains evolved those notions because
they were simpler than the alternatives. If evolution is a billion-year experiment
to determine what features of self-reproducing organisms work best in any given
environment, it is going to stumble over simple mechanisms long before it invents
complicated ones.

We certainly think in terms of types and properties. At the other extreme it
seems unlikely that single-cell organisms do so. Somewhere in between, animal
brains made that distinction. If there is a simple way of structuring the distinc-
tion, for example along the lines of communes, its simplicity lends plausibility
to the theory that our ancestors at some point stumbled on the concept and
found it very useful.

To the extent that density is a simpler notion than either functor or natural
transformation, it stands a better chance of being stumbled on first by evolving
brains. And since presheaves and communes are even simpler, being merely
objects in the same category as respectively some J and some K, these objects
may well have been found much more easily than the morphisms.

Any competing theory of thought needs a comparably simple structure if it
is to be a plausible candidate for chance discovery in the limited time available
for the evolution of modern thought processes.
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