
System Programming in a High Level Language

Andrew D Birrell

Dissertation submitted for the degree of Doctor of
Philosophy in the University of Cambridge, December
1977.

Except where otherwise stated in the text, this
dissertation is the result of my own work, and is not
the outcome of work done in collaboration.

Copyright © A.D.Birrell, 1977

Acknowledgements

 The work described in this dissertation has been supported by

the Science Research Council. It would not have been possible

without the support and encouragement of Brenda, and of my

supervisor Roger Needham, and of my head of department, Professor

M.V.Wilkes. In particular, Brenda showed particular diligence in

typing this document, and perseverance in encouraging me to write

it.

 The paper reproduced as Appendix Y was first published as an

invited paper at the 1977 conference on Algol68 at the University

of Strathclyde [40].

Contents

Section A: Introduction

1. The Problem
 1.1 Aims and Requirements
 1.2 High Level Language Requirements
 1.3 System Programming Language Requirements
 1.4 The Present Approach

2. Background
 2.1 The Algol68C Project
 2.2 The CAP Project

Section B: High Level Language Implementation

1. Today's Algol68C System

2. Separate Compilation Mechanisms
 2.1 Requirements
 2.2 Separate Compilation in Algol68C
 2.3 Separate Compilation in Other Systems
 2.4 A Complete Separate Compilation Scheme

3. Compiler Portability
 3.1 Other Intermediate Codes
 3.2 Portability in Algol68C
 3.3 Summary and Conclusions

Section C: System Programming Facilities

1. Runtime System
 1.1 The CAP Algol68C Runtime System

2. Hardware Objects and Operations
 2.1 Storage Allocation
 2.2 New Data-types
 2.3 Conclusions

3. The 'Program'
 3.1 Program Structure
 3.2 Program Environment

Section D: Summary and Conclusions

Appendix X: CAP Algol68C Documentation

Appendix Y: Storage Management for Algol68

Appendix Z: Cap Project Notes

- 1 -

Section A: Introduction

1 The Problem

1.1 Aims and Requirements

 This thesis is concerned with the construction of a high

level language system suitable for the implementation of a

general purpose operating system for a computer. There are three

aspects to this task: firstly, a suitable high level language

must be chosen or designed; secondly, a suitable implementation

of this language must be manufactured; thirdly, the operating

system itself must be written. These three aspects inevitably

overlap in time - experience in implementing the language may

cause one to review decisions taken in the design of the

language, and experience in constructing the operating system

will bring to light inadequacies, inconveniences and inelegancies

in both the implementation and the language.

 Most previous work in this field has been concerned with the

first of these aspects, and has adopted the approach of designing

special-purpose languages, categorized as 'System Programming

Languages' (SPL's) or 'Machine Oriented Languages' (MOL's).

Various such languages have been developed, some of which are

discussed below. Few such languages have achieved the elegance

or generality of ordinary general-purpose languages such as

Pascal or Algol68. Little or no investigation has previously

- 2 -

been made into the second of these aspects, the implementation of

the language. The implementation, as distinct from the language,

can have a very considerable effect on the practicability of

using the resulting language system for manufacturing an

operating system. Certainly, there are languages which, however

brilliant the implementation, would inevitably be disastrous for

writing an operating system; but the implementation, however

suitable the language, makes the difference between the language

system being an aid or an impediment to the system programmer. It

is with aspects of the implementation that this thesis is mainly

concerned.

 It should be emphasised that we are considering the real

construction of an operating system on physical hardware without

sophisticated external support. The 'language system' must not

amount to a simulation package, nor include facilities which

would normally be considered part of the operating system (such

as in Simula or Concurrent Pascal), unless those facilities are

themselves implemented using a high level language (they could

then be considered to be part of the operating system). It is a

principle of the design that the language system should not

contain imbedded design decisions which would be more properly

considered as part of the design of the operating system - it

should be a tool, not an integral part of the operating system.

Also, since we are providing a general purpose operating system,

user programs can be written in any language - we are not

assuming a single-language operating system.

- 3 -

 When embarking on the production of a suitable language

system, we must at an early stage make a fundamental decision:

whether to base the work on an existing high level language which

can be modified as necessary, or whether to construct a new

language from scratch. If we adopt the latter alternative, we

will inevitably design a special-purpose language and follow in

the footsteps of BLISS et al. In fact, I have adopted the former

alternative. This leads to new ground: we must decide to what

extent modifications to the language are needed, and this should

enable us to decide which factors in the design of a suitable

language arise peculiarly from writing an operating system, and

which arise from the normal requirements of a non-numerical

program. Also, when following this path we can investigate the

extent to which suitable implementation techniques can aid us in

achieving our aims with minimal special purpose modifications to

the language.

 The language system produced was intended to be used (and is

used) for an operating system for the Cambridge CAP computer.

This computer, and its operating system, have many unusual fea-

tures, but the techniques and facilities developed for the

language system are not especially CAP-oriented - they have

applicability to many other machines and environments.

- 4 -

1.2 Use of Normal High Level Language Facilities

 The advantages of using a high-level language instead of

machine-code are numerous and well known; they amount to saying

that, when writing in a high-level language, it is easier to

write programs, more difficult to write faulty ones, and when you

have written a faulty program you discover the fault sooner. We

are not much concerned here with faulty programs (although much

of the distinction between a 'good' and a 'bad' implementation of

a language lies in what it will do with a faulty program), but it

must always be borne in mind when considering any topic in

language design or implementation that a programmer must be told

as early as possible of any mistake. As far as possible, all

error checking should be performed at compile time, and we must

always try to have sufficient redundancy in constructs for a

simple mistake to be detectable. Error detection is one of the

major gains in using a high level language, but first we must be

able to express our problem conveniently.

 Much system programming is amenable to writing in a normal

high level language with no particular trouble. Such operations

as converting a textual file title into a disc address are merely

mathematical mappings (albeit somewhat complicated ones), and can

be implemented using techniques remarkably similar to those used

in any non-numerical computing. A programmer implementing such

algorithms is involved in the task of taking a single,

complicated operation and breaking it into several simpler ones.

- 5 -

When writing in machine code, he is forced to resolve the problem

into particular bit or word manipulations allowed by his

particular hardware and operating environment; when writing in a

high level language, such drastic measures are not forced upon

him, since he has available to him operations which are less

basic. A high level language makes available to the programmer

sets of abstract objects, which he can consider not in terms of

his hardware and operating system, but purely in terms of the

objects, their relationships to each other, and the operations he

can perform upon them. For almost all of almost every system

program, it is sufficient to express the algorithm in such

abstract terms - it is extremely rare for the programmer to

require to manipulate non-abstract (hardware or system oriented)

objects or operations. Expressing algorithms in such abstract

terms clearly has many advantages. If the abstract objects and

operations are suitable, it will be much easier to convert an

algorithm into them than into the machine objects, purely because

they involve 'higher level' concepts more closely related to the

original algorithm. For example, indexing an array is more

closely related to table look-up than is adding a fixed point

integer, multiplied by the amount of store-per-element, to the

base address of a sequence of elements; indeed, the programmer

can use the abstract facility without knowing how it is

implemented today. Thus, a suitable set of abstractions will be

ones which would be encountered while converting the abstract

algorithm into machine code - using the abstractions saves a step

- 6 -

in the conversion. If the algorithm can be expressed purely in

terms of the abstractions, then it has no dependency on the

hardware or operating environment. This has several beneficial

consequences: firstly, it implies that the programmer has not

made a mistake in mapping his objects onto the hardware (all such

mistakes are centralised in the compiler!); secondly, the

hardware can change without affecting his program (for a system

program, the gain here is that the program can be developed on a

different computer, or before the hardware of the target computer

has stabilised); thirdly, the operating system interfaces can

change (this is quite likely to happen during the development of

a system, and having consequently to rewrite all the programs,

rather than just recompile them, would be unfortunate). Also,

abstract objects and operations are likely to have (and, indeed,

are usually designed to have) consistency constraints which can

be checked at compile time; this can produce very powerful error

checking, and is a feature of most good high level languages.

 Even programs which are not concerned exclusively with

abstract objects or operations (for example, a program handling

file directories or disc addresses) are likely to be concerned

mainly with abstract operations (such as sorting the entries in

the directory or yielding the disc addresses from a table look-

up). There are very few programs concerned with objects or

operations which are exclusively hardware or system oriented.

Consequently, most of most of our programs can be written in a

general purpose language, and only occasionally will we require

- 7 -

facilities peculiar to system programs. It is with the provision

of such general purpose facilities in a suitable manner that sec-

tion 'B' is concerned.

 The language chosen as basis for the project was Algol68 [1].

The particular language chosen is not vitally important; most

general purpose high level languages such as Algol 60, PL/1, or

PASCAL would be equally suitable. Any language having a

reasonably clean definition, powerful data structuring

facilities, and good structures for ordering flow of control

would be acceptable. Some of the languages embodying more recent

ideas in language design, such as Alphard [2] or CLU [3] might

suggest themselves as a better base language, but this would be a

comment on the languages in general, not on their particular

suitability for our present purposes. Since we are considering

the minimal modifications necessary to provide a language system

suitable for writing an operating system, and since work on a

portable Algol68 compiler was already under way in Cambridge,

this compiler was a suitable starting point. The Cambridge

Algol68 compiler has developed in parallel with the CAP operating

system, and since I was closely involved in both projects I have

been able to take appropriate steps in the design and implementa-

tion of the compiler.

- 8 -

1.3 SPL Requirements

 There are many features and facilities which are often

described as being characteristic of SPL's, and before embarking

on the remainder of this thesis it will be worthwhile to outline

these. I do not necessarily agree that these actually are

requirements, and this will be apparent as the description of the

system actually produced develops. An assessment of which

facilities are required has been given by Goos [4], although I

disagree with him on several points.

 It is clearly a necessary requirement that it should be

possible to write every machine operation within the language.

This should preferably take the form of in-line code, rather than

separately compiled (or assembled) routines.

 There must be facilities for the user to control storage

allocation and management, but the system must provide suitable

defaults. Similar remarks apply to the I/O models, and indeed to

all code that is traditionally considered as 'runtime system'.

In general, the system should provide a model which the

programmer is free not to use.

 It must be possible to write the whole of the operating

system within the language. This necessarily includes writing

the runtime system of the language, since otherwise we are merely

indulging in a buck-passing exercise.

 It is often recommended that facilities for packed structures

- 9 -

be provided (as in PASCAL, MARY et al), but I am not convinced.

One of the aims of this request is to describe hardware-defined

objects, and I believe this to be a fundamentally misguided

approach to that problem [C2.2]. The other aim is efficiency,

which is laudable, but not fundamental since, in principle, the

compiler is free to decide whether or not to use packed

representations.

 Some facility for parallel processing or synchronization is

often requested. I believe it will become apparent later that

this is not appropriate for the style of language system

envisaged here. In the same vein, some mechanism for the

handling of interrupts and other asynchronous events is certainly

required, but I believe the library facilities for these

described below [C1.1] to be sufficient.

 Since an operating system is necessarily a large and

complicated software package, some form of separate (and

preferably modular) compilation will be required; this is

discussed extensively below. With sufficient support in this

direction, a language system can become a very powerful

implementation tool.

- 10 -

1.4 The Approach Adopted

 As noted above, the decision was made at an early stage to

base the present work on an existing language, namely Algol68,

rather than design a completely new one. It was expected that

the bulk of the work would be in designing language changes to

make Algol68 suitable as a system programming language,

particularly for an architecture as unusual as the CAP. In

practice, very few language changes have been made, although a

complete operating system has now been written. Instead, the

emphasis in the work has been in the careful design of the

implementation to facilitate its use in writing the operating

system, and it is with aspects of the implementation that the

bulk of this thesis is concerned. Detailed consideration is

given to separate compilation and library mechanisms, to the

portability of the compiler, to the storage management techniques

used for object programs, and especially to the provision of a

runtime system for object programs.

 Although the language unaltered is sufficient for almost all

aspects of the operating system, there are situations where

changes are needed. Some such changes which have been made are

described, but also some changes which seem desirable but have

not been made - some of these are in the form of problems, to

which the solution is not yet apparent.

 The work being described has at most stages in its develop-

ment been required to provide a usable system, and where

- 11 -

techniques and solutions are described, they have generally been

the subject of much practical exercise. I have tried throughout

to avoid the danger of lapsing into a present or past tense when

the future tense would be more truthful.

- 12 -

2 Background

2.1 The Algol68C Project

 The Algol68C compiling system grew out of a small

experimental system written in 1970 by S.R.Bourne and M.J.T.Guy

in the University of Cambridge. They implemented a language

called 'Z70', which bore some resemblance to the recently

designed language Algol68. Z70 was an expression language (like

Algol68); that is, almost any construct of the language delivered

a value. For example, one could write:

 (a:=b)+c

or even

 a+(INT i=readint; i*i)

As such, its syntax and semantics were similar to Algol68,

although Z70 was a much smaller language. The major difference,

was that Z70 had only two data types ('integer' and 'function'),

whereas Algol68 has an unlimited number, through the use of modes

for describing structured values, for checking argument types in

procedure calls, and for 'united' modes (used for values whose

type varies dynamically at runtime).

 Z70 was originally implemented on the Titan computer (a

prototype ICL Atlas 2), using a syntax-directed compiler

- 13 -

('PSYCO', based on that produced by Irons [5]). PSYCO is driven

by a set of production rules specifying the syntax of the

language, and containing semantic rules causing output of

compiled code at appropriate moments; output was in the form of

'IIT', a Titan assembly language. This original PSYCO system had

some delightful properties, such as the message:

 '.....' is not a 'PROGRAM'

Program debugging could be achieved by a binary chop technique!

 This system was rapidly improved: some of the functions of

PSYCO were taken over by a program written in Z70, the language

was extended to include more of the features of Algol68, and

PSYCO itself was modified, mainly to produce intelligible

diagnostics and error recovery. By the middle of 1972, the

system was recognisable as a deviant of Algol68 (ie. an 'extended

subset', though this description could also be applied to

FORTRAN). By this stage, the various components of the system

were as follows. PSYCO was used as a syntax-directed parser

producing a parse tree as intermediate output in polish prefix

form; a Z70 program read this in, reconstructed the parse tree,

and generated IIT. Finally, the IIT was concatenated with the

library (written in IIT) and assembled to produce an executable

core image.

 By the middle of 1972, the Z70 language still differed from

Algol68 in several ways. Major omissions were: some of the

- 14 -

intricacies of 'balancing'; multi-dimensional arrays; assigning,

or yielding as value, of non-trivial objects (such as structures

or arrays); user-defined operators; the Algol68 input-output

system and most of the Algol68 library (called the 'standard

prelude' by Algol68 devotees). There were several minor exten-

sions, and a primitive separate compilation mechanism (which will

be described later). 'Z70' was now renamed 'Algol68C', and

released for use on Titan.

 A decision was taken in 1972 to produce a new, portable,

Algol68C compiler; in addition to being portable, the compiler

was required to give good diagnostics, have good error recovery,

and produce locally good code (though there was no intention to

attempt any global optimisation). Its prospective uses were

thought to be: student jobs, general algorithmic work and systems

implementation (such as compiler writing and operating systems).

The over-riding requirement was portability.

 In view of previous experience of having part of the Z70

compiler written in Z70, and because the authors had found

Algol68C a very convenient and easily debuggable language, and,

mainly because of the portability inherent in such a system, it

was decided to write the compiler itself in Algol68, using the

subset available through the existing compiler. The system

envisaged was as follows.

 To implement Algol68 in its entirety, using a multi-pass

compiler with intermediate outputs, requires a minimum of four

- 15 -

passes to produce assembly code [6]. By a minor restriction on

the use of indicants [7], this number is reduced to three; by

keeping a parse tree as an internal data structure, the

intermediate outputs are eliminated; to achieve portability, a

specially designed intermediate language is used as the 'assembly

code'. The compiler thus consists of three 'phases'. The first,

called the 'parser', reads the source program, performs mode-

independent parsing and links applied occurrences of identifiers

to the corresponding definitions. Phase two performs 'mode

equivalencing' (determining which textual representations of

modes correspond to the same data type), 'balancing' (arranging

that constructs whose flow of control has several exits (eg.

conditionals) yield the same data type at each exit), the linking

of applied occurrences of operators to the appropriate operator

definitions, (the language allows user-defined operators), and

the mode-independent parsing and error checking. Phase two was

also intended to perform such storage allocations as could be

determined at compile time, but to date this has been deferred

until phase three. Phase three is straightforward in concept -

it scans the parse tree (as modified by phase two) and outputs

the intermediate code. In practice, phase three is tortuous, and

is not yet working entirely satisfactorily, but this will be

discussed later. All error checking, except for those checks

which inherently must be delayed until runtime (such as some

scope checking and array bound checking), should be performed by

the compiler, and the intermediate code output should not require

- 16 -

any checking, except that some degree of checking is desirable

for system debugging.

 The intermediate code to be used, called 'ZCODE', will be

discussed later. For each machine a 'translator' was to be

written to read in the ZCODE, produce executable code, and handle

linking to the library; a machine dependent library must also be

written for each machine.

 By keeping the source text of the compiler as machine-

independent as possible, portability would be achieved by

conventional bootstrapping techniques [B3.2].

 In September 1972, S.R.Bourne started work on the parser for

this system; M.J.T.Guy was now mainly engaged on other projects,

though he still provided much valuable advice, and was invaluable

for his insight into design problems. In January 1973, I started

work on phase two and the code for the Algol68C separate compila-

tion mechanism. By June 1973, phases one and two were working

well enough to accept the source program of themselves. At this

time, S.R.Bourne departed for three months sabbatical leave. A

group consisting of myself, I.Walker (another research student)

and A.Andrews (a research assistant) started work on phase three

(based on the Z70 code generator) and a Zcode translator for

Titan. In late September 1973, the compiler successfully

compiled itself on Titan; one week later, the Titan computer was

finally closed down.

- 17 -

 It then took three months to produce a working compiler on

the IBM370/165 in Cambridge (although a system which worked by

interpreting ZCODE was produced by I.Walker in November) - the

system was working shortly before the end of December 1973.

 During 1973, the intermediate code, Zcode, had been developed

by the group, with some feedback from I.Wand of York University,

who intended to transfer the system to their ICL4130. The

detailed design of Zcode is defined elsewhere [8], and is likely

to be the subject of other publications [9].

 Further development of the compiler was done in 1974 by

S.R.Bourne, M.J.T.Guy and myself. This included rewriting the

parser error recovery, removing machine dependencies, and

rationalising the mechanisms used to link the libraries (the

consequences of the last two will be discussed in detail later).

At the end of 1974, S.R.Bourne left the project, and the

University of Cambridge Computing Service assumed responsibility

for the IBM370 compiler. During 1975 I developed a Zcode

translator and a library system to use the compiler for the

experimental CAP computer, and bootstrapped the compiler onto

that machine.

 A reference manual [7], defining and describing the language

accepted by the system, was written by S.R.Bourne and myself,

with help from I.Walker. I have written an implementors' guide

[10], which defines the interfaces and auxiliary inputs of the

compiler, and provides the information needed by someone wishing

- 18 -

to transfer the system onto a machine.

2.2 The CAP Project

 The Cambridge CAP computer is part of an on-going research

project investigating protection techniques and their

applications to operating systems. The project has had several

phases. Firstly, a highly protected architecture, based on the

concept of 'capabilities' [11], was designed [12]. Secondly,

this architecture was realised as a processor, the CAP, built in

the Computer Laboratory [13]. Thirdly, an operating system has

been designed and built to run on the CAP [14,15,16], written

almost exclusively in Algol68C.

 The architecture, which is described in more detail elsewhere

[17,18], supports a hierarchical process structure. Within a

process, execution moves among protection domains known as

'protected procedures'. Each protected procedure consists of a

number (one to three) of capability segments (ie. store segments

known to contain only capabilities, which can be manipulated only

by special purpose instructions). The capabilities in these seg-

ments specify the totality of facilities and privileges available

to the protected procedure. No operation, be it executing an

instruction, reading from or writing to store, sending a message

on a software message channel or using a physical peripheral, can

be performed without quoting the appropriate capability from one

- 19 -

of these capability segments. The quotation of a capability is

always implicit, by use of a 'general address'. It is a design

principle of the CAP that there is no form of 'privileged mode'

or 'supervisor state'; protected procedures which one would

regard as privileged are privileged only by virtue of the set of

capabilities to which they have access. It should be immediately

apparent, then, that the programming environment for writing the

innermost parts of the operating system differs from the most

ordinary object program not structurally, but only in the set of

capabilities available, and so programming tools providing the

full freedom of one situation will also be suitable for the

other.

 Apart from the ordinary instructions which one would expect

of any general purpose computer, the CAP has instructions

concerned with capabilities and the protection architecture.

There are:

 MOVECAP to move a capability

 REFINE to yield a more restrictive capability

 SEGINF to enquire about a store capability's size and

 access

 INDINF to ask about the contents of a capability

 ENTER to transfer control to another protection domain,

 which is specified by a given capability. On

- 20 -

 return from that domain, control resumes

 immediately after the ENTER instruction

 RETURN to make control revert to the calling regime

When a protected procedure is entered, control is transferred to

a fixed address in that procedure. If the procedure wishes to

provide multiple entry points or some more complicated entry

arrangement, it must simulate this by software.

 Initially, while the hardware was being built, the CAP was

simulated interpretively using a mini-computer. During this

period, cross-compilation of BCPL and Algol68C were made

available from a local IBM370. A small single-user operating

system (OS6, written in BCPL [19]) was implemented, and various

experimental programs were written. When the hardware became

available, OS6 was transferred to it, and the cross-compilation

facilities suitably updated. In due course, compilation of

Algol68C and BCPL were made available under OS6, compiling

programs to run under OS6. Facilities were also made available

to compile Algol68C programs (under OS6 or on the 370) to run on

the stand-alone CAP. This allowed construction of the operating

system proper.

 The details of the operating system which has been

constructed are described elsewhere and need not concern us here,

but an outline of the structure may aid the reader. The system

consists of two levels of process hierarchy; the top level has

- 21 -

only one protected procedure, which is known as the 'co-

ordinator' and is responsible for process scheduling, dispatching

and synchronisation. The remainder of the system runs as sub-

processes of the co-ordinator. These processes typically have

one protected procedure unique to the process, and several

protected procedures shared between the processes, providing

services for the main protected procedure. There are several

identical copies of some of these processes (such as the teletype

handlers), while others are unique (such as those which implement

the virtual memory system). A number of the processes are known

as 'user processes'; in these the main protected procedure will,

when initiated (for example, by a user at a teletype), identify a

user then enter a nominated protected procedure, typically an

interactive command program which allows the user to execute his

programs as protected procedures entered from the command

program.

 At an early stage in considering the design of the operating

system, the decision was taken that the system should not be a

single program in the language sense. That is, the total system

should be a set of separate programs, communicating together and

co-operating. This decision was taken as part of the operating

system design, irrespective of any similar decision that might be

(and was [C3.1]) taken by designers of language systems. In

terms of the operating system design, it has several advantages.

A principle of the architecture is that each protected procedure

should know nothing about the internal working of another

- 22 -

procedure - this is most readily fulfilled by treating each

procedure as a separate program. The operating system, given

this decision, could readily be written in whatever language

seemed most appropriate for a particular protected procedure.

This decision also forced the use of interfaces specified in a

language independent manner, since the calling and called

procedures do not in general know in which language each other is

written. In practice, all but one protected procedure of the

operating system are written in Algol68 (the one is written in

assembler, on efficiency grounds, so that it does not use any

workspace - a feat no other compiler was capable of achieving);

however, one must remember that in any case the command program,

entered as a protected procedure from the operating system, is

not part of the system and may be an arbitrary program written in

an arbitrary language.

 We should note that the CAP project has thus exhibited many

of the requirements typical of SPL applications. The compiler

itself has been required to run on different machines and various

(and varying) operating systems. Object programs have run in

environments ranging from the empty machine, through protected

procedures in system or user processes, to the command program

and ordinary user object programs. Some exercise enormous

privileges (though only when necessary for their task!), others

have none; some run in a virtual memory environment, others are

confined to resident real store; some perform explicit I/O

orders, others communicate with I/O processes, still others with

- 23 -

in-process I/O protected procedures, while some are unable to use

any I/O facilities at all. Some form of separate compilation

mechanism is necessary to share program code between differing

protected procedures. Interfacing with protected procedures

presumed to be written in other languages can present great

difficulties in the handling of data objects [C2.2]. Note that

neither the co-ordinator, nor many of the system processes can be

allowed the luxury of pausing for a garbage-collection - in a

language as complicated as Algol68, this requires the most

careful arrangements for storage management.

 The present CAP operating system is now running; further

development is still under way, and systems under different

experimental architectures may be developed from it. I believe

those involved in writing the operating system have been pleased

(and pleasantly surprised!) with their experience of using the

Algol68C system [15].

- 24 -

Section B: High Level Language Implementation

1 Today's Algol68C System

 Subsequent chapters of this section describe those features

of the present Algol68C system which I consider in some way

original (either because they have not, to my knowledge, been

done before, or because they have not been viewed in some

particular way before), and which I have designed or to whose

design I have materially contributed. The teamwork involved in

the Algol68C project was such that each of us discussed ideas

with the other, and it is impossible to say absolutely "this is

mine"; any project of which that could be said seems doomed to

failure through lack of co-operation.

 In order that the individual topics to be discussed may be

viewed in relation to the complete system, I will give here an

overview of the Algol68C system. The central core of the system

is the compiler. This is a large Algol68C program (about 18000

lines), and represents the major programming effort. It accepts

the source form of a 'program segment' (the item of separate

compilation), and produces Zcode. Zcode is in fact a family of

intermediate codes, differing in such things as the number and

properties of the registers and the size and layout of stored

objects; these differences are specified by the 'initialisation

file' read in at the start of each compilation. Linking between

- 25 -

separately compiled program-segments is determined at compile

time by reading or writing 'environment files', and is expressed

in the Zcode by program labels and access to common store. The

library and runtime system is linked to in precisely the same

manner, as if it were an Algol68C program-segment. The

translator is a separate, machine dependent program which reads

in Zcode and manufactures executable code.

 The system, compiling on some machine 'A' for some machine

'B' (which may be the same as 'A') with operating system 'C', may

be pictured as follows.

 init file Zcode of other
 for 'B' program-segments

 source compiler on Zcode translator executable
 program- 'A' of 'X' for 'B' program
 segment
 'X'

 environment files for environment files to be
 other program-segments read by sub-segments of
 and the standard 'X'
 prelude for 'C'

 This document does not describe the detailed technicalities

of any of the algorithms or interfaces: these are described

elsewhere [10,20].

- 26 -

2 Separate Compilation Mechanisms

2.1 Requirements

 Separate compilation mechanisms can be found in many

programming languages. Even the earliest language having any

claim to be at all 'high level', FORTRAN, is usually implemented

with a very versatile independent compilation mechanism, even in

unsophisticated implementations, albeit with no error checking.

 The most general description of separate compilation is as

follows: take a piece of source text, 'A'; process it in some

way (eg. by a compiler!) into a partially compiled form, 'X'.

Some time later, some source text 'B' is presented to the

compiler, such that A+B forms the source of a complete program.

'B' is processed by the compiler, and the result is in some way

combined with 'X' to form complete executable code of the program

A+B. There are several reasons for wanting to undertake such an

operation.

 If, because of some bug or the whim of the programmer, we

subsequently want to alter the 'B' part of the program, only 'B'

need be recompiled, then recombined with 'X'. This is an argu-

ment of efficiency, and can to some extent be blamed on compiler

writers: if we wrote faster, cheaper compilers then the

programmer would be less tempted to adopt such strategies. (This

argument has been put forward by Hoare [21].) If computers were

- 27 -

infinitely large (or infinitely fast) ...

 Separate compilation allows the source program to be

segmented. This is an argument of data management: with 50,000

line programs (and such programs, unfortunately, exist),

maintenance and debugging of a single source file is a major

problem. Also, if several people are working on the program then

treating it as an indivisible monolith will lead to disasters

(like simultaneous editing). Having a segmented source reduces

such problems. Further, if the source is segmented along

boundaries having well-defined interfaces, some amount of

independent debugging may be possible (and well-defining the

interfaces is likely to improve program 'correctness' and make

modification simpler). This approach can be taken further, to

allow two programmers to work independently on 'A' and 'B', both

working to the same interface, possibly with compiler assistance

to ensure that the interface is met.

 In terms of 'A', 'B' and 'X' as above, we can envisage some

other piece of source text 'C', such that A+C is also a program.

In such a case, we need only compile 'C' and combine it with 'X'

(the partially compiled form of 'A') to produce an executable

program. This, of course, makes 'X' the pre-compiled form of a

library, 'A'. Libraries can exist without separate compilation -

the programs A+B and A+C could merely share the source text 'A' -

separate compilation has just allowed this sharing to occur at

some lower level (eg. assembly code). At first sight, then, this

- 28 -

would appear to be another instance of overcoming the expense and

inefficiency of badly written compilers. It has, however, more

fundamental consequences: with care on the part of the

implementer, and assuming suitable loaders, hardware, etc., it is

possible to share libraries such as 'A' at the level of binary in

the computer. That is, it may be possible (particularly in

segmented machines, but also in simpler ones) to physically share

'X' when the programs A+B and A+C are running. When such sharing

facilities are available, they can produce large savings in

valuable resources (such as store, load time, swapping), and are

thus highly desirable. I can see no way, in high level language

terms, of achieving such sharing without a powerful separate

compilation mechanism. We will see later how this aspect of

separate compilation is used in implementing the Algol68C runtime

system for CAP.

 Care must be taken to distinguish between 'separate' and

'independent' compilation. Mechanisms which achieve separate,

but not independent, compilation occur when some of the output of

an earlier compilation ('A' above) is used as input to a

subsequent compilation ('B' or 'C' above). A degenerate form of

this would be to pass on the source text of 'A', but most

mechanisms do better, or claim to, by passing only information

from 'A' that can affect the compilation of 'B' or 'C'. It is

entirely possible to do without such information passing, and

several systems do so. Perhaps one of the reasons for the

perseverence of FORTRAN is that it is usually implemented with

- 29 -

completely independent compilation of subprograms, allowing much

pre-compilation of libraries. Unfortunately such simplicity and

versatility does not come without its disadvantages; lacking, at

compile time, information about 'A', the implementer faces a

choice when compiling those parts of 'B' which depend on 'A'. He

can assume either that information collected in 'B' about its

interface with 'A' is correct (for example, the number and data

types of arguments of procedure calls, or special statements

included in 'B' making assertions about 'A'), or he must devise

some means of checking this information later, when 'X' is

available - this requires, usually, load time or run time

checking. I consider the approach of not checking such informa-

tion to be totally unacceptable - it is the source of many

obscure bugs. Checking as late as load time at least avoids the

bugs, but it can be expensive, may require a special loader, and

produces worse diagnostics. Checking at run time is even worse -

an operating system written using such an implementation which

suddenly said 'INT cannot be coerced to REAL' on its operator

console would not be welcome. Further, having the information

passed at compile time avoids the programmer having to give the

compiler so many extra statements (such as FORTRAN COMMON

statements), although the extra statements, which increase the

redundancy in the source, can be used to improve the error

checking. We will see below that separate compilation, even

though not independent, can be arranged to have few drawbacks.

- 30 -

2.2 Separate Compilation in Algol68C

 Different Algol68 implementations have different separate

compilation mechanisms, and their implementers will each defend

their own mechanism with vigour. In this section I will describe

and defend, but also criticise, the Algol68C mechanism. To

arrive at the Algol68C mechanism, we need only consider dividing

a block structured program into several pieces. Consider:

 BEGIN#a#
 .
 .
 INT i:=3;
 .
 .
 BEGIN#b#
 .
 .
 i:=7;
 .
 .
 END;
 .
 .
 PROC INT f = BEGIN#d#
 .
 .
 END;
 .
 .
 END#a#

We can represent the (syntactic) structure of this program as a

tree:

 #a#

 #b# #d#

- 31 -

Each of these boxes can form a separately compiled program-seg-

ment in Algol68C. In general, given a program, any 'unit' (the

basic syntactic construct of Algol68) may be separately compiled,

even if it delivers a value. Taking the above example, the first

program-segment presented to the compiler (call this segment 'A')

would be:

 BEGIN#a#
 .
 .
 INT i = 3;
 .
 .
 ENVIRON B;
 .
 .
 PROC INT f = ENVIRON D;
 .
 .
 END#a#

The remainder of the program would subsequently be presented as

segments 'B' and 'D':

 USING B FROM "file title"
 BEGIN#b#
 .
 .
 i:= 7;
 .
 .
 END
 and: USING D FROM "file title"
 BEGIN#d#
 .
 .
 END

Each program-segment may define several 'ENVIRON's, and this,

like block structure, may be nested arbitrarily. The semantics

of the segmented program are identical to those of the original

- 32 -

program - when the flow of control reaches an 'ENVIRON', control

is transferred to the appropriate separately compiled segment; at

the end of that segment, control reverts to the segment that

contained the 'ENVIRON'. Each separately compiled segment is

written by the programmer precisely as if it occured textually in

place of the corresponding 'ENVIRON': the flow of control is the

same, and the meaning of identifiers and indicants is the same.

The only special statement is the 'USING' directive, which

specifies which 'ENVIRON' is associated with the program-segment.

 This mechanism is implemented by passing information between

compilations in 'environment files'. When a program-segment

containing 'ENVIRON's is compiled, in addition to the Zcode

output, an environment file is produced. When subsequently a

program-segment associated with one of these 'ENVIRON's is

compiled, the environment file is read. These files contain all

the information necessary to continue the compilation of the

'ENVIRON', in particular such things as declarations, storage

allocations, label allocations. Thus in the above example, the

compilations would be as follows:

 1) compile segment 'A', producing Zcode 'X' and environment

 file 'E'

 2) compile 'B', reading environment file 'E', producing Zcode

 'Y'

 3) compile 'D', reading environment file 'E', producing Zcode

- 33 -

 'Z'

Note that steps (2) and (3) could be in either order, or even

simultaneous. The Zcode files Y and Z may each contain

references to labels in 'X', and 'X' will contain references to

the entry labels of Y and Z. Either the Zcode translator, or

some subsequent processor such as a linking loader must resolve

these label references. Some details of the implementation of

environment files can be found elsewhere [10].

 The Zcode translator for CAP takes as input the Zcode for a

separately compiled Algol68C segment, and assembles the directly

executable binary for a single machine segment. In order to

allow resolution of references from subsequently compiled seg-

ments to this one, the translator outputs a 'linking file' if the

current segment contains any 'ENVIRON's, and this is

automatically read when translating those segments which use the

ENVIRON's. The only references from this segment to the

subsequent ones are jumps to the entry points, which are resolved

by the translator allocating the machine segment numbers at which

the subsequent segments will be placed. This thus allows pre-

assembly of physically sharable segments, a very powerful

facility which is used for the runtime system and for code shared

between programs. This segmentation, in the virtual memory

environment provided by the CAP operating system, corresponds to

an overlay mechanism.

 This implementation of separate compilation relies on the

- 34 -

sufficiency of a one way flow of information at compile time

between separately compiled segments; that is, it relies on the

compilation of 'A' not depending on the content of 'B' or 'D'. In

other words, it relies on the compilation of a construct

containing a 'unit' not depending on the content of that unit.

This condition, desirable though it may be (from a 'structured'

point of view, apart from separate compilation), is not satisfied

by Algol68. Firstly, compilation often depends on the data type

delivered by a unit; for example, the operator '+' is defined

between integers (as you would expect) and between strings (for

concatenation) so that, for example,

 (ENVIRON A) + (ENVIRON B)

would leave the implementer not knowing which '+' was meant.

(Other examples where the meaning depends on the mode delivered

by a unit include the destination of an assignment and the

primary of a procedure call.) To avoid this problem, we allow

'ENVIRON' only in a context where we know which mode must be

delivered ('strong' contexts, in Algol68 terminology), such as

the source of an assignment; the subsequent compilation using the

'ENVIRON' will check that this mode is in fact delivered. The

other instance of dependence on the content of a unit occurs when

the unit is inside a routine; here, applied occurrences of

identifiers inside the unit may affect the 'scope' of the

routine, by affecting which stack frames may be accessed by the

non-local applied occurrences in the routine. That is, they may

- 35 -

affect the environment necessary for the routine. (In an

implementation using a classical chained stack, where a routine

is represented by its entry address and an environment pointer,

passing a routine outside its scope makes its environment pointer

refer to a stack frame that no longer exists.) This difficulty

was overcome by specifying that a routine containing an 'ENVIRON'

has minimal scope. The situation would be more satisfactory if

constructs were less affected by the detailed content of their

sub-constructs.

 The major advantage of the Algol68C separate compilation

mechanism is its simplicity. Because we treat separate

compilation as a process of taking a program and subdividing it,

the programmer has no extra concepts to learn - he can think of

his source as a single program which has merely been textually

divided. The error checking on a separately compiled segment is

as thorough as it would be without separate compilation, since

all the information is still available at compile time and we do

not rely on extra assertions made by the programmer. No extra

work need be imposed on the subsequent processors - the labels

used for inter-segment references need present no more severe

problems than in-segment references. This separate compilation

mechanism is also used for linking to the run-time system, but

this will be described later [C1.1].

 Thus the Algol68C mechanism is highly satisfactory in

achieving our primary aim of splitting a large program into

- 36 -

separately compiled segments - the division can be made at any

'unit', with no serious constraints. If we consider our

secondary aim, of providing pre-compiled libraries, it is less

satisfactory. If (as in the CAP Algol68C system) we treat the

standard prelude as an ordinary program segment, then it is the

prime example of a pre-compiled segment shared between programs.

Thus:

 standard prelude

 program A program B

For this, the Algol68C mechanism is still satisfactory. However,

if we now desire also to have two libraries P and Q, which do not

refer to each other, there is no satisfactory way to use the

Algol68C mechanism to compile them separately; there are only two

arrangements that would allow pre-compilation of P and Q while

allowing a program to access them both. We can either compile Q

as an inner block of P, or vice versa. Thus:

 standard standard
 prelude prelude

 P Q

 or

 Q P

 user user

- 37 -

Either is unsatisfactory since, in the first version say, when Q

is compiled inside P we have two undesirable effects: firstly,

applied occurrences in Q can identify definitions in P when

definitions in the standard prelude were intended (ie. P shields

the standard prelude from Q); secondly, if Q defines some item of

the same name as one in P then the user program may identify the

wrong one without being informed that this shielding has

occurred. Note that these effects are precisely what would occur

if we compiled the corresponding single program with the above

block structure. The general case, where we wish to provide a

large selection of libraries P, Q, R, ... has precisely analogous

problems. To try to avoid these effects in a single program we

could place P and Q as parts of a single serial clause; then

neither would legally shield definitions in the other, but the

first one could still shield standard prelude definitions

required by the second. Thus the facilities we desire for

independence of the libraries P and Q can in no way be provided

by a mechanism that follows the identification rules of

conventional block structure. The structure we would like to

have can be represented as:

 standard prelude

 P Q

 user

- 38 -

This differs fundamentally from block structure, but is an

essential practical requirement for a system wishing to offer

pre-compiled libraries. We will show later how to provide this

facility by a simple extension to the language [B2.4].

 The present implementation of the Algol68C separate

compilation mechanism suffers from a severe drawback - there is a

constraint on the order in which the segments can be compiled.

Briefly, an outer block must be compiled before an inner block.

For example, if the structure is:

 A

 B C

then we must compile A first, then B and C (in either order, or

even simultaneously). This constraint comes from quite

reasonable origins, since to compile B or C we need to know quite

a lot about the definitions occurring in A. The most extreme

examples of this are mode definitions and operator definitions.

For example, if the segments are:

- 39 -

 BEGIN #A#
 INT max = readint;
 MODE V = [l : max] INT;
 OP + = (INT i, j) INT:.....;
 BEGIN
 INT max = 7;
 ENVIRON b ; ENVIRON c
 END
 END

 BEGIN #B# BEGIN #C#
 print (max + 3) V w;
 END FOR i TO UPB w
 DO w[i] := readint OD;
 print (w)
 END

Here we would have grave difficulty in compiling B or C before A.

In segment B we would not know which version of the polymorphic

operator '+' to use, while in C we would know nothing about the

mode 'V'. If we require complete freedom in the order of

compilation, the only reasonable solution is then to require that

a segment be prefaced by a list of those definitions which the

segment requires from other segments, or that a separate

'interface file' be provided. This, some implementors are

attempting [22]. Note that this approach should only be adopted

if the implementer is willing to check, either when compiling A

or at load-time, that the assertions made in B and C about A are

in fact correct. Producing reasonable diagnostics in the case

where the assertions are wrong would appear to be difficult.

Since Algol68C allows separate compilation of any unit, we find

that allowing such freedom in the order of compilation will

entail serious run-time penalties on many systems. If we assume

- 40 -

only a linking loader as provided on conventional operating

systems, rather than a specialized Algol68 loader, then when

compiling code in B or C for applied occurrences of definitions

in A we must make unreasonable assumptions - such as assuming

which display level is to be used to access the definition. The

details are too complex to be worth investigating here, but the

only general solution is to have an indirection vector for

accessing definitions of A. This is a serious degradation in

run-time efficiency (in both store and time).

 It is thus in some ways undesirable to allow complete freedom

in the order of compilation in Algol68C; I do not believe that

freedom to this extent is really necessary, either. Experience

with the Algol68C system so far has indicated that programmers do

not object to compiling their segments in the prescribed order.

What they object to is, when A is recompiled, being required to

recompile B and C even though the texts of B and C, and their

'meaning', have not changed. What I believe to be highly

desirable is to minimise this re-compilation; this can be more

readily achieved than complete freedom. There are several

techniques which can help here - only the first has so far been

used in Algol68C.

 The first, and most obvious way of reducing the amount of

re-compilation needed is to arrange that if the changes made to A

are such that they do not affect the 'meaning' of B and C, then

the interface (as specified by the environment file produced when

- 41 -

compiling A) does not change. It is difficult to achieve

perfection here. Some changes to A, such as changes inside the

bodies of routines, should clearly not affect B or C . Adding or

removing, or changing the mode of, a definition accessible to B

or C clearly does change the environment; changing the value

ascribed to an identifier of mode INT may or may not change the

environment, depending on whether the compiler feels able to

calculate the value at compile time. In order to make this a

reliable system, we would need a facility for reading the old

environment file and saying whether it differs (significantly)

from the new one - a message could then be printed saying whether

re-compilation is necessary. No such facility exists at present

in Algol68C.

 If the compiler reads the old environment file when compiling

'A', then with only a little additional complexity we could do

much better. Since it would then know the stack and label

allocations used in the previous compilation, the compiler could

endeavour to use the same allocations in this compilation - if a

definition is added, for example, it could be placed on the stack

after the original ones, rather than shuffling them. It is

possible, using this approach, to maintain a considerable degree

of compatibility with an old environment, although there would

still be occasions when we fail.

 Re-compilation can be further reduced if we add to the

language a facility to hide definitions. For example:

- 42 -

 INT a,b,c;
 HIDE (b,c) ENVIRON B;

Here only 'a' could be identified from inside the 'ENVIRON', so

changes to the definitions of 'b' and 'c' should not entail

re-compilation of sub-segments.

 It is thus possible to considerably reduce, but not

completely eliminate, re-compilation without including in the

sub-segments assertions about the earlier segments. Note that

the approach of including assertions is less satisfactory, also,

when we wish to share the outer block between programs (as with

the standard prelude) - here the techniques given above seem much

more satisfactory.

 We will see later that re-compilation is a less difficult

problem in the library mechanism proposed below.

 Thus the present Algol68C separate compilation mechanism is

highly satisfactory for dividing up large programs (no alterna-

tive mechanism of comparable flexibility has yet been proposed);

it could readily be implemented such that re-compilation is not a

serious problem; it is a disaster for implementing pre-compiled

libraries, but so is block structure itself.

- 43 -

2.3 Separate Compilation in Other Systems

 We now consider what some other implementers have done about

this desirable but elusive property, versatile separate compila-

tion. We are looking for three gains, as described above [B2.1],

namely: segmentation of source text, ease of recompilation of

modified segments, and 'libraries' (ie. sharing of pre-compiled

segments).

 Undoubtedly the most versatile and successful separate

compilation system is usually found in FORTRAN implementations.

Here it is generally possible to compile any sub-program (ie. any

FUNCTION, SUBROUTINE or BLOCKDATA) completely independently. The

only communication the language allows between sub-programs is by

calls and by common statements. There is enough information in

each sub-program for the compiler to determine all it needs to

know about any other sub-program referenced from this one. In

principle, this system is ideal (if the language were not

FORTRAN, but that is a separate argument); it satisfies all three

of our aims, and large computer systems make successful extensive

use of pre-compiled FORTRAN libraries. All that the implementer

need do to make such a system ideal in practice is to check that

information gathered from a subprogram about some other

subprogram (eg. number and type of arguments) agrees with the

definitions in that other subprogram. There is nothing to pre-

vent this checking being performed at load time, but very few

implementations perform it at all, even at run time. (The Titan

- 44 -

FORTRAN system was one of the few to check that calls of an

independently compiled subprogram had the correct number of argu-

ments; I know of no-one who does the complete checking, and no-

one who checks at load time or earlier.) Such checking is not at

all difficult to implement (the general approach is obvious), but

no-one seems to bother, and standard system loaders, which are

usually designed specifically for FORTRAN, seldom provide such

facilities.

 The FORTRAN separate compilation mechanism is, in some ways,

similar in design to Algol68C. One first decides what a complete

program looks like, then subdivides the program into separately

compiled segments at some natural boundary ('sub-programs' in

FORTRAN, 'units' in Algol68C). Where FORTRAN gains is that its

language is sufficiently modular for the segments to be compiled

independently - the meaning of a sub-program is not affected by

any other sub-program, whereas Algol68 units depend very much on

external information for their meaning. (It is interesting, in

these days when language designers are producing constructs to

promote 'modular programming', that FORTRAN is one of the most

highly 'modular' languages around.)

 A mechanism which more closely resembles that of Algol68C is

the Algol68R mechanism of 'albums' [23]. Here, information is

passed between compilations, as in Algol68C, but the overall

structure provided is different. In Algol68C the segments form a

tree whose root is the standard prelude; in Algol68R they form an

- 45 -

acyclic directed graph having a single origin, the standard

prelude. For example:

 seg 1 | seg 2
 BEGIN | BEGIN
 PROC f = (INT i)INT:i*i: | PROC g = (INT j)INT:-j;
 SKIP | SKIP
 END | END
 KEEP f | KEEP g
 FINISH | FINISH

 seg 3 WITH seg 1, seg 2 FROM filename
 BEGIN print (f(g(7))) END
 FINISH

Here the segment structure is:

 standard prelude

 seg 1 seg 2

 seg 3

 The restrictions imposed by this mechanism are similar to

Algol68C: each segment must be compiled after any segment

specified in its 'WITH' statement, and the only sharing permitted

is of a subgraph starting at the root. As far as I can tell from

their documentation, the recompilation rules for Algol68R are

similar to those for Algol68C. However, since their segment

structure does not correspond to a block structured program, it

is possible for a segment (such as 'seg 3' above) to access

definitions from several independently compiled shared segments

- 46 -

(such as 'seg 1' and 'seg 2' above); this is thus a much more

powerful library system than Algol68C allows, and is the major

advantage of the Algol68R system. Since, as mentioned above, the

set of segments in an Algol68R program does not correspond

directly to a single piece of Algol68 source text (we showed

above [B2.2] that such correspondence forbids simultaneous access

to independently compiled library segments), Algol68R has to

describe separately the flow of control between segments. The

designers of this Algol68R scheme have thus allowed the structure

which we found lacking in the present Algol68C system. In

practice, to date Algol68R only exists on the ICL1900 series,

where a dedicated specially designed linking loader is used for

Algol68R segments. Their requirement for a specialized loader

appears to come more from their use of a single pass compiler

than from the separate compilation mechanism, but it does give

them more freedom.

 A system with similar overall structure to Algol68R, but with no

constraints on the order of compilation, has been proposed, and

is being implemented, by a team in Berlin [22]. The freedom in

the order of compilation is there achieved by prefacing each seg-

ment with a list of the definitions which that segment requires

from other segments. Inevitably, a specialized linking loader is

required to perform the final parts of type-checking. Again, the

overall flow of control between segments is described separately.

 Although Algol68R and Berlin provide a facility sorely

lacking in Algol68C, I find their systems unsatisfactory in two

- 47 -

ways. Firstly, the set of textual fragments which forms the

complete source of a program does not correspond to any single

piece of source program; the meaning of the set of fragments is

determined by a set of ad hoc (and in practice, ill-defined)

extra-lingual semantic rules. Secondly, there are facilities

available in the Algol68C system which are not available in the

others; that is, there are desirable ways of splitting up large

programs which Algol68C allows and the others do not. This can

be illustrated by two examples (taken, in fact, from the source

of the Algol68C compiler). Consider a program of the form:

 BEGIN.
 .
 .
 CASE i
 IN .
 . # very large number of cases #
 .
 # 37 # (.....),
 # 38 # (.....),
 .
 .
 ESAC
 .
 .
 END

In a situation where the CASE clause is too large to compile it

conveniently as a single piece of text, only a scheme like the

Algol68C one will suffice. Under other schemes, we would have to

make those units of the CASE which we wished to compile

separately into routines, then call them from inside the CASE.

Although this would achieve the desired effect, it would disturb

the desired structure of the program. An example more difficult

to resolve by any scheme other than the Algol68C one occurs as

- 48 -

follows:

 BEGIN.
 .
 .
 PROC a = (ARG g) RES:
 BEGIN
 PROC b = (ARG h) RES:
 BEGIN.
 .
 ...p:= g;....;
 .
 CASE i
 IN...., b(x),.......a(y),....
 ESAC
 .
 .
 END;
 .
 .
 END;
 a(z)
 END

A little explanation is required, although the structure of the

program is really quite simple. The routine 'b' is nested inside

'a' in a non-trivial manner - not only does 'b' call both 'a' and

'b' recursively, but also 'b' contains applied occurrences of

definitions local to an activation of 'a'. No scheme yet

proposed in the style of Algol68R or Berlin will allow me to

compile separately the body of 'b' (which is, in fact, a large

piece of text). In Algol68C this separate compilation is

straightforward, as for any other unit.

 The examples which the Algol68C scheme allows, and no other

scheme allows, are those where the position of the piece of text

we wish to compile separately has implications for the flow of

control or for the identification of non-local, but non-global

- 49 -

definitions.

2.4 A Complete Separate Compilation Scheme

 We have seen above how distinct approaches to separate

compilation in Algol68 have arisen, each with its advantages and

its disadvantages. I wish to show here how the disadvantages can

be eliminated, and a single scheme be produced having the

advantages of both. The following scheme, and many variants of

it, are the subject of continuing investigation by a

sub-committee of IFIP WG2.1; the scheme depends heavily on

previous and current ones produced by members of that

sub-committee and by others. The members of the sub-committee

are myself, H.Boom, C.H.Linsey and R.Dewar. The view presented

here of the work is my personal one, and might be disputed by

others.

 The objection to the Algol68C scheme is that there are

necessary facilities which it does not provide. These we can

provide by adjoining a scheme like Algol68R or Berlin, but those

have the objection that the meaning of the complete program

becomes ill-defined, since they do not correspond to existing

language features. This objection we can resolve by defining a

language feature providing the appropriate facilities. Such a

feature can be based on 'definition modules' - first proposed by

S.Schumann [24]. Definition modules are similar, in the

- 50 -

facilities provided, to Simula 'classes' [25] or to CLU

'clusters' [26]. For example:

 MODULE STACK = DEF [1:100]INT v; INT ptr := 0;
 PUBLIC PROC push = (INT i)VOID:
 v[ptr+:=1] := i;
 PUBLIC PROC pop = INT:
 v[ptr-:=:=1];
 GAP;
 print("Stack finished")
 FED;

This declares a module known as 'STACK', which has a 'prelude'

declaring two private local definitions and two public ones, has

a 'GAP', and has a 'postlude' which prints a message. This

module could subsequently be invoked by a statement of the form:

 INSIDE STACK (FOR i TO 10 DO push(readint) OD;
 FOR i TO 10 DO print(pop) OD
);

 The invocation has the following effects: the prelude of

STACK is executed (executing its definitions and initialisation),

then the unit written at the invocation is executed instead of

the GAP, then the postlude of STACK is executed. Non-local

applied occurrences inside the module identify definitions

according to the normal textual rules, except that the public

definitions of the module are available as a layer immediately

outside the unit of the invocation. An invocation can readily be

implemented on a stack system that uses one display level per

routine without increasing the number of display levels - the

static frame for the module is adjacent to, and at the same

display level as, that existing before the invocation. In the

unit of the invocation, we know the static offsets for the

- 51 -

definitions made available by the module. The environment

pointer for routines of the module point to an extra stack frame

header at the start of the static frame for the module; this

header contains the appropriate static chain pointer. Thus:

 static static
 chain chain

 header for outer block header module static frame static
 current static for v ptr push pop frame for
 routine frame module invocation

 current display
 pointer

 Assuming the existence of such a language feature, we can

achieve a separate compilation facility allowing libraries by

allowing separate compilation of definition modules. For

example:

 1) BEGIN #standard prelude#
 .
 .
 MODULE P = SEP '.libs.p';
 MODULE Q = SEP '.libs.q';
 ENVIRON '.libs.std'
 END

 2) DEFINE '.libs.p' DEF#p#.....FED

 3) DEFINE '.libs.q' DEF #q#....FED

 4) USING '.libs.std'
 INSIDE p,q BEGIN
 .
 .
 END

This would correspond to our desired structure for allowing

libraries:

- 52 -

 std

 p q

 user

 Compilation of these segments is not difficult. Segment (1)

produces files describing the environment for compiling (2) and

(3); these produce files used when compiling (4). The meaning of

the complete program is well-defined, using our new language

feature. This achieves independent compilation of the two

libraries, but there are still problems. The first of the

problems is that we still require an order of compilation; the

possible solutions to this are the same as described earlier

[B2.2]. The second is that in (1) we have had to specify the

name and number of separately compiled modules. This would mean

that if we wished to add another library (or if a user wished to

make publicly available a private library), we would have to

alter and recompile (1). This is unsatisfactory, and difficult

to resolve tidily. The best proposal to date is to omit the

module definitions from (1), and to specify the name of the

ENVIRON in (2) and (3). Thus:

- 53 -

 1) BEGIN.
 .
 ENVIRON '.libs.std'
 END

 2) DEFINE '.libs.p' USING '.libs.std' DEF.......FED

 3) DEFINE '.libs.q' USING '.libs.std' DEF.......FED

 4) USING '.libs.std'
 INSIDE '.libs.p', '.libs.q' BEGIN.
 .
 .
 END

This would allow pre-compilation of an arbitrary number of

libraries.

 One question remaining about definition modules is, if, in a

program, there is more than one invocation of the same module,

then under what circumstances are the invocations shared? That

is, when do we allocate a new stack frame for the module? For

example, with the STACK example, when do we allocate a new stack?

There appear to be three reasonable answers - two extremes and a

compromise. The first extreme would be to always allocate a new

stack - this we term 'unshared'; this is similar to the arrange-

ments for SIMULA classes. The second extreme would be to always

share - this we term 'dynamic sharing', since we can determine

whether sharing occurs only at run-time; this corresponds to

FORTRAN COMMON storage - the storage for a module can be

allocated statically, once and for all. The compromise is termed

static sharing - we share if an invocation occurs in a textually

enclosing block (or invocation); this can be determined at

compile-time. The objection to dynamic sharing is that it seems

- 54 -

un-structured - whether we get a new invocation depends on

unrelated parts of the program. No sharing is tidy, but likely

to be wasteful, except in the rare cases where it is essential to

the correct functioning of the program. The most satisfactory

choice appears to be static sharing, probably with a facility to

request an un-shared invocation.

- 55 -

3 Compiler Portability

 The major purpose of any high level language is to allow the

programmer to express his algorithm in terms of objects and

operations which are closer to his problem than is the hardware

of a particular machine. If his problem is an abstract one (such

as inverting a matrix)), then in a suitable language (such as

Algol68, PASCAL, PL/1, FORTRAN) he can program the algorithm

without any knowledge of the machine on which he is running.

However, even a problem that is inherently dependent on some

computer hardware (such as converting a source program into

machine code for a particular computer) may be programmed without

knowledge of the computer on which the program is running. In

the case of a compiler, the problem is inherently dependent on

the machine on which the program will run (the 'target' machine),

but the transformations required are, in general, independent of

the machine on which the compiler is running (the 'source'

machine).

 Any necessary dependence on the source machine is concerned with

how the compiler reads the source program; the most common such

dependence is the character code, but it may also be encountered

in other aspects, such as system dependent file titles. The

compiling techniques used, or the language in which the compiler

is written, may introduce other dependencies, but these are not

necessary (although such considerations as the size or speed of

the compiler may make the introduction of such dependencies

- 56 -

desirable).

 Now consider a programmer wishing to write an operating

system for some machine 'A', in a high level language (Algol68!).

Before an operating system is available for 'A', program develop-

ment must be done on some other machine, 'B' say (at least to the

extent of compiling on 'B' and transferring compiled programs to

'A'). So, initially, the compiler must run on 'B' (but as

discussed above, the compiler need only be dependent on 'A').

Subsequently, when some sort of system is available on 'A', the

programmer will want to dispense with 'B' and run the compiler on

'A'. To avoid rewriting the compiler, it is natural to write it

in its own language (Algol68), compile it once on 'B' to produce

code for 'A' then run it on 'A', where it can quite happily

compile itself. However, to run the compiler initially, on 'B',

we must also have an Algol68 compiler capable of producing code

for 'B'. We are thus led to the conclusion that, to write an

operating system for 'A' we want a compiler capable of running on

'A' or 'B', written in its own language, and capable of producing

code for both 'A' and 'B'.

 This is a conventional 'bootstrapping' situation, and several

systems have used this approach. To enable the compiler to

produce code for more than one machine, the compiler can be

arranged in two parts. (In what follows I will use 'machine

dependent' to mean dependent on the machine for which code is

being produced; dependencies on the machine on which the compiler

- 57 -

is running are of little importance.) The first part of the

compiler is machine independent; it reads the source of the

program (or program-segment), performs some work on it, and

outputs some form of intermediate code. The second part of the

compiler is machine dependent; it reads in the intermediate code

and produces machine code for the appropriate machine. To

produce machine code for some new machine, only the second part

of the compiler need be changed. The Algol68C compiler is

similar to such a mechanism, but before considering Algol68C, we

will look at how other bootstrapping compilers approach the

problems.

3.1 Other Intermediate Codes

 There are several systems whereby the machine independent

part of the compiler is written in its own language, producing

some intermediate code, notably BCPL [27] and PASCAL [28]. The

major distinguishing feature of such systems is their

intermediate code, and it is upon the choice of this code that

the portability and efficiency of the compiler depend. The

'choice' of code, in practice, means designing a code

specifically for this compiler.

 Some attempts have been made at designing a code which could

be used by several compilers (such a code is JANUS [29]), but the

attempts have met with little success. Using a common

- 58 -

intermediate code has the outstanding advantage that, to move the

compilers for several languages on to a computer, it would only

be necessary to write a single translator from that intermediate

code into the particular machine code. Unfortunately, despite

this advantage, common codes have won little acceptance,

apparently for two reasons. Firstly, however general an

intermediate code is, it is not adequate for some particular

language (or so the particular implementer will think). That is,

even if the designer of the intermediate code allows for all

constructs occurring in existing languages, someone someday will

come along with a new construct for which the code is highly

unsuited. (This problem is similar to that found with

compiler-compilers or syntax-directed compilers - one that was

designed with ALGOL60 in mind is likely to be hopeless for

Algol68.) Even if the language can be compiled into the code,

the implementer will usually want extra facilities for which the

code does not allow, such as program segmentation in some

peculiar manner (cf CLU, above), or optional loading, or fancy

debugging aids or storage maps. The second (and, perhaps,

overriding) reason is what appears to be an inborn hostility in

implementers (including myself) to using something designed by

someone else. Whatever other arguments there may be, we can

always convince ourselves that our code is in some way better or

more suitable (see below!); in some cases this may be true,

particularly if we only wish to compile for a restricted number

of computers, since then the code would be tailored to allow for

- 59 -

those features which their architectures had in common.

 In designing an intermediate code, one must bear in mind

precisely what it will be used for. If the code is for only one

language, then it will be useful to have one code operation for

each 'primitive' operation occurring in the language (though what

'primitive' means requires further discussion). Breaking a

language operation into several operations in the intermediate

code makes less information available when translating for a

particular target machine - this would be unfortunate if the

target machine had available an operation corresponding to the

original language operation. An example of this occurred in a

preliminary version of the Algol68C intermediate code, Zcode. In

Algol68C, it is possible to assign any object; the code produced

for this is, in general, a store-to-store copy. In preliminary

Zcode versions, there was no general store-to-store copy instruc-

tion, so, for example, to copy an object of mode STRUCT(INT

a,b,c,d,e) we would generate five 'load register; store register'

pairs of instructions. Since many machines (such as IBM360) allow

store-to-store copy ('MVC' instruction), we were preventing the

Zcode translator from recognising that 'MVC' was appropriate (un-

less the translator were to build our ten instructions back

together into the original single operation). This is a

particular example of the choice of how 'low-level' or 'high-

level' the code should be, that is, how close to the computer

hardware the operations should be. The effect of producing code

at too low a level is liable to be that information is not

- 60 -

available in the intermediate code which could be available to

the translator, and this could force the translator to produce

inferior machine code. Alternatively, producing a high level

intermediate code will result in a very complicated translator,

which would be a pity since we require one translator for each

target machine. We will discuss below how Algol68C approaches

this dilemma.

3.2 Portability in Algol68C

 Like other systems, Algol68C uses an intermediate code to

achieve portability. The intermediate code, 'Zcode' is defined

elsewhere [8], and some discussion about it has been presented

before [9]. The code is deliberately very low level. It takes

the form of a sequence of instructions and loading directives;

the instructions operate on values in registers and in store.

Apart from constants, values in the store are in one of three

areas: the 'static stack', the 'dynamic stack' and the 'heap'.

The last two of these are controlled explicitly by the compiler;

the 'static stack' is allocated within a procedure by the

compiler, but a procedure call instruction is assumed to allocate

a new stack frame. The current stack frame is assumed in Zcode

to be directly addressable, as is the global stack frame; other

stack frames are accessed by a 'static chain' mechanism [app.Y].

The program, which is 'pure' (ie. execute-only), is assumed

directly addressable. For computers having restricted

- 61 -

addressability (eg. IBM360), the translator must take steps to

ensure appropriate addressability. The Zcode of a program

consists of segments (corresponding to the separately compiled

program-segments), which may contain routines. The routines and

the procedure-call instruction form a full recursive calling

mechanism.

 Whereas Algol68C has an infinity of data types, Zcode has

only a small number (such as integer, real, character, address,

union flag), corresponding fairly closely to the types commonly

found in computer hardware; several Zcode types may map on to a

single hardware type (for example, integer and character may not

be distinguished on many computers). When producing Zcode, the

compiler maps Algol68C types on to Zcode ones, so the translator

is only concerned with fairly simple objects. For example,

STRUCT(REAL re,im) produces Zcode handling a pair of 'real'

objects; REF[]INT, whose representation is a 'descriptor' is

manipulated in Zcode as a quadruple consisting of an address and

three integers ('stride', lower bound, upper bound).

 In producing the Zcode from its internal parse tree, phase

three of the compiler has three tasks to perform: register

allocation, storage allocation, and expressing Algol68C objects

and operations (such as loop-clauses) in terms of Zcode objects

and operations. It is the intention of the Algol68C system that

the Zcode translator should be as simple as possible; to achieve

this, Zcode is low level, that is it should correspond as closely

- 62 -

as possible to the hardware of the target computer. The

distinctive feature of the Algol68C system is that to achieve

this intention, Zcode is, in fact, a family of intermediate

codes, each differing in the number of registers, their

properties, the sizes and alignments of objects in store, and the

operations available. Instead of producing a machine independent

intermediate code, Algol68C produces a machine dependent code

which is as close as possible to the real hardware of the target

machine.

 This is best illustrated by considering what happens if we

want to compile code for two computers, 'A' and 'B'. A

conventional system produces its fixed intermediate code, and has

two translators:

 source machine machine translator code for
 independent independent 'A' 'A'
 section code

 source machine machine translator code for
 independent independent 'B' 'B'
 section code

In the Algol68C system, the machine independent part of the

compiler reads data (the 'initialisation file') describing the

particular, machine dependent, Zcode to be produced:

- 63 -

 source machine Zcode for translator code for
 independent machine 'A' 'A' 'A'
 section

 initialisation
 file 'A'

 source machine Zcode for translator code for
 independent 'B' 'B' 'B'

 initialisation
 file 'B'

 By using this technique, we are attempting to avoid the

problem that having a low level intermediate code would otherwise

induce, namely making decisions when generating the code which

are inappropriate for the real hardware (such as having too many,

or too few, registers). Another way of looking at the Algol68C

system is as follows. In the conventional approach, for the code

to be successful, no decisions can be made which might not match

the hardware; consequently, in translators for 'similar'

hardwares identical or 'similar' algorithms will appear (for

example, register allocation). What Algol68C has attempted is to

move such algorithms into the machine independent part by

parameterising the algorithms and placing the machine dependent

parameters in the initialisation file. In this way, we simplify

the translators, making the operation of producing code for a new

machine much easier, whilst retaining the machine independence of

the rest of the compiler.

 Ideally, we would take this approach to its logical conclu-

sion, that the translator would be little more than an assembler

- 64 -

and the Zcode would correspond to a subset of the machine code of

the target machine. Unfortunately, we are not very close to this

ideal; in Zcode, we make some assumptions about the basic

architecture of the target machine, the most fundamental one

being that it is a register machine. Even assuming a register

machine, it is not possible to allow for all the baroque sets of

registers with which hardware designers endow computers; we can

provide reasonable flexibility, but at some point we are bound to

fail. (This is similar to the problems faced by a designer of a

general purpose intermediate code - however versatile the design,

someone will produce requirements that it cannot meet.) Another

problem in this approach, which we have not yet had to face, is

that as the parameterisation becomes more sophisticated, the

machine dependent initialisation data will become more

complicated and manufacturing one could present more of a problem

than writing the translator; the initialisation data would

become, in effect, a special purpose language.

 In subsequent sub-sections I will discuss how, and to what

extent, this parameterisation has been achieved.

3.2.1 Storage

 Storage in Zcode is either program or data. Program storage

presents few problems; Zcode assumes uniform addressability (that

is, any program address can be written, as a label, directly in

an instruction), so the translator must handle any problems which

- 65 -

do arise (such as limited offsets, eg. 4096 bytes on IBM360).

Hardware segmentation of program can conveniently be mapped onto

groups of Algol68C program-segments. Other sophistications (such

as interleaving various types of instructions) are so machine

dependent that they seem incapable of parameterisation. To ease

machine dependent transformations by the translator, Zcode

contains directives specifying 'basic' blocks (as in the FORTRAN

specification), which are groups of instructions having a single

entry and a single exit.

 Data storage is much more complicated. Algol68 requires two

distinct areas, a stack (for storage required only during the

current block) and a 'heap' (for storage of longer lifetime).

Each area can be logically subdivided, and, as described below

[app.Y], the Algol68C system assumes that the stack is divided

into 'dynamic stack' (for array elements, and storage whose size

cannot be determined at compile time) and 'static stack' (for

other values: the activation record for each frame, store

associated with declarations and for temporary results). A third

data area is for constants; Zcode allows this to be interleaved

with program, but since it is syntactically distinguished the

translator can separate it into, say, a separate hardware

segment. All data areas are considered to consist of a sequence

of storage 'units'. The size of a storage unit is chosen when

writing a translator for a computer, subject to the constraint

that incrementing an address by 1 produces the next storage unit

(in contiguous areas of data). Storage on the dynamic stack and

- 66 -

heap are allocated by the compiler generating a procedure call to

one of two routines in the runtime system (the routines are

specified in an environment file [B2.2]), with an argument

specifying how many storage units are required. Static stack is

allocated at compile time; data is accessed from, or written to,

there by specifying an offset from a base. The base will be one

of: another, previously calculated, static stack address in a

register; the base of the current stack frame; the base of some

previous stack frame, held in a register; the base of the global

stack frame. A new stack frame is allocated by the procedure

call instruction, which specifies at which offset on the current

stack frame the new frame should start. The following areas of

storage are each assumed to consist of contiguous storage units:

the entire static stack; any area allocated by a single call of

the dynamic stack or heap allocation routine; constant multiple

values. (The assumption takes the form of adding offsets to the

base of any such area). Note that this prevents interleaving the

dynamic stack between frames of the static stack; this was a

deliberate decision and is contrary to the decision made by most

other implementers [30] - it is justified elsewhere [app.Y].

 In the above description, an 'offset' is a number of storage

units, and this number, like the argument to the dynamic stack

and heap allocation routines, is calculated at compile time from

the machine dependent initialisation data. As mentioned above,

Zcode contains a small number of data types (in the current ver-

sion, precisely: address, integer, real, character, union flag).

- 67 -

The compiler decides on a representation of each Algol68 object

in terms of these data types. (The representations are mainly

obvious, the only non-obvious ones being REF-to-rowof, which is

represented by the descriptor of the rowof rather than its

address, and a routine, which is represented by its entry address

and a pointer to the stack frame which is its environment.) The

compiler can then calculate an 'offset' or a 'number of storage

units' by considering, for each of the constituent Zcode objects

in an Algol68 object, two integers - the 'size' (the number of

storage units occupied by the Zcode object) and the 'alignment'

(which allows for such constraints as reals having to be on

doubleword boundaries). These integer pairs are given, for each

Zcode type, in the initialisation data. They are also given for

the 'activation record' at the head of each stack frame (which

contains at least the return link, static chain and dynamic

chain, but may also contain such things as debugging or trace

data, dumps of registers used for program addressability, etc.).

Further details of how this data is presented are given elsewhere

[10].

 This storage scheme appears to be very satisfactory. The

only desirable facilities that it does not allow for are such

things as aligning an object at a given offset from a multiple

(eg. at one byte beyond a multiple of four bytes, which would be

the alignment required for addresses considered as 3-byte objects

on some computers) or using spare bits inside a value. In

general, it seems sufficiently acceptable not to require any

- 68 -

improvement.

3.2.2 Registers

 Zcode represents a register machine, in that some

instructions operate on 'registers'. Registers differ from

ordinary storage in that they are directly addressed, occupying a

special position in some instructions, and may only be used for

certain types of value (ordinary store is homogenous - any value

can be placed in any of it, subject to size and alignment

constraints). They are intended to map directly into the

registers of the hardware of the target machine, although the

implementer is at liberty to translate them into store locations

if this seems more convenient. Zcode 'registers' can be

considered to be merely a notational mechanism, but they are

intended as actual registers - the implementation dependent data

should be able to specify the register properties sufficiently

for them to closely resemble (some of) the target machine

registers.

 There are two classes of Zcode registers: system registers

and work registers. The system registers are not parameterised;

they are:

 0 - constant integer 0

 1 - constant integer 1

 4 - 'dynamic stack management register' (DSMR)

 5 - base of current stack frame

- 69 -

 6 - base of global stack frame

 7 - immediately before a procedure call, this is set to

 the value to be used for the new static chain; it has

 no other use.

Of these, only R4 is explicitly written to by the compiler; the

implementer is unlikely to map all of these into actual hardware

registers.

 The Zcode work registers are where most operations take

place, and where results are left (eg. on exit from a call, or

from each branch of a conditional). Their number and properties

are specified by the initialisation data. The data given is:

the number of work registers;

for each register, which Zcode types can be placed in that

register.

To help the translator further with registers, Zcode contains 'R'

directives (which specify, at the start of each 'basic block',

which registers are in use and which Zcode type each contains)

and 'K' directives (which say when the value in a register is no

longer required).

 The machine independent part of the compiler is responsible

for register allocation; in particular, it will attempt to avoid

copying registers to store unless strictly necessary, but will

write them to store if, for example, a sequence of operations

produces more temporary results than there are registers. The

- 70 -

compiler treats registers as a form of cache for the main store -

whenever there is a value in a register, a corresponding store

address is available, although the value may never in fact be

written to store. In practice, the present compiler is not very

clever in its register handling, but it is not my purpose to

discuss register allocation algorithms here. What I am claiming

as an advance is that to produce better register allocation

algorithms for every machine for which Algol68C is available, we

need only rewrite a single piece of program (phase three of the

machine independent part of the compiler), rather than rewriting

each translator. This should be contrasted with the situation

for the other, higher level intermediate code systems. The fact

that phase three of the compiler is at present somewhat badly

written does not affect the gains which our approach could

produce.

 This register parameterisation is clearly not adequate. It

is doubtful whether any such system could ever be sufficiently

powerful for all hardware, but there are several common features

which could be allowed for and which would greatly ease the

problems of translating Zcode. Such features include the

following. On several machines, using one register requires that

some other register be not in use (eg. even-odd pairs of

registers on IBM360 series during multiply and divide operations)

- this could easily be specified by a bit matrix specifying the

inter-relationships of the registers. Another fairly common

mechanism in hardware is to allow certain operations only in

- 71 -

particular registers (eg. IBM360 multiply (again!), or many

operations on CTL modular 1); it is difficult to allow for this,

and the most convenient solution at present is for the translator

to dynamically map a Zcode register onto varying hardware

registers (the Zcode 'R' and 'K' directives make this reasonably

straightforward). A more satisfactory solution would be to allow

the initialisation data to specify, for each operation, which

Zcode registers can be used; this can be done by grouping the

operations suitably, and, instead of specifying Zcode types for

the registers, to specify operation groups (each group of opera-

tions would only place a single Zcode type in a register, so the

present information would still be implicitly available). When

this technique is used in conjunction with specification of

inter-relationships between registers (which allows several Zcode

registers to map into a single hardware register), we could then

allow quite well for most existing register-oriented hardwares.

 The major problem to be surmounted in our register

parameterisation, however, is the existence of computer hardware

having no registers, that is 'stack machines'. For such

computers, all our efforts at register allocation are of no avail

- such computers are built so that the hardware perfoms the

'slaving' functions at run-time much better than our attempts at

slaving in registers. True, our registers can be mapped into

ordinary storage on the computer, and the number of Zcode work

registers can be made small (we require a minimum of two for some

operations), but this is only a process of minimizing the harm

- 72 -

done by our register allocation - we really need stack-machine

operations (such as are used in most other intermediate codes,

and certainly in all the high level codes). Although we could

persuade the Zcode-generator to produce such instructions, they

would not be Zcode. We have to admit that Zcode is not suitable

for stack machines, and be content with the gains it gives us for

the many register machines.

3.2.3 Operations

 One of the problems inherent in generating a low level

intermediate code is that by producing several hardware oriented

operations for a single language operation, we are removing

information, which the translator must painfully reconstruct if

its hardware is such that our low level operations are not

suitable. It is basic to the design of Zcode that its operations

are upon only the basic Zcode data types, so that if the target

computer has, for example, hardware to manipulate array

descriptors, a translator would find it extremely difficult to

take advantage of such hardware. This constraint is as

fundamental to the design of Zcode as are its registers. The

choice of which data types to recognize in Zcode is, of course, a

design decision - we could have included, and often considered

including, descriptors as a Zcode type - but as we include more

complicated types, while simplifying translators taking advantage

of such hardware facilities as descriptors, we complicate all

other translators. There is a trade-off between avoiding loss of

- 73 -

information (by including more complicated types) and our basic

approach of producing simple, low level code. In view of the

rarity of hardware support for the more complicated types we feel

justified in our present choice of Zcode types. (But we must

bear in mind the growing influence of machines with descriptor

hardware, such as MU5 and with vector hardware, such as Texas

ASC.)

 Given some decision as to the data types on which the

intermediate code operates, we should clearly have one

intermediate code operation available for each language operation

on these types. That is, when code generating a language opera-

tion, we should only break it into simpler operations to the ex-

tent that is required to express it in terms of the intermediate

code's data types. Breaking it into simpler operations than this

is unnecessary, and may cause unnecessary trouble to the

translator. For example, Algol68C allows an expression of the

form 'a/:=b' meaning 'a:=a/b'. Code generated for this would be

of the form:

 LOAD r b #register:=b#
 SDIV r a #store:=store/register#

although equivalent code would be:

 LOAD r a
 DIV r b #register:=register/b#
 STOR r a

Clearly, for a machine having a divide-to-store instruction, the

former code sequence is preferable, but it is equally clear that

- 74 -

for a machine not having such an instruction, the latter sequence

is preferable (in order to simplify the translator). If we

generate a single operation where the hardware requires several,

the translator can do the conversion, but this has two

disadvantages: many translators will contain the same algorithm

for the conversion (though the conversions in question are so

straightforward that this is a minor consideration), and, if the

alternative sequence requires registers or storage, then we are

reducing the effectiveness of having the machine independent part

of the compiler perform register and storage allocation.

 The approach which can be adopted to overcome such problems

is to include data in the initialisation file (and in practice

also in the machine environment) specifying which of alternative

code sequences to generate. In particular, for each Zcode

operator we specify whether 'op:=' and 'op:=:=' can be generated

as a single Zcode operation or whether the alternative sequences

should be produced. There are other similar choices (such as the

'CASE' instruction, and the store-to-store copy instruction),

although the alternative sequences are not yet implemented.

 Thus the Zcode generator takes language operations and

expresses them as operations on Zcode types; it will optionally

express them as particularly simple operations on Zcode types.

This allows adjustment of Zcode to hardwares with restricted

operation sets. However, we currently have no way of producing

suitable code for hardware supporting higher level types (such as

- 75 -

descriptors). One approach to this would be to use similar

techniques - include higher level types in Zcode, but allow the

machine dependent data to specify that these types should be

broken into simpler types. Taking this approach to its logical

conclusion, we would be willing to produce code at any level from

Algol68 types down to primitive hardware types. This would give

us a great deal of flexibility, allowing us to model very closely

most register machines. However, the present code-generator does

not exploit these techniques very much: the main reason is that,

since it does not yet support the complete language, little

effort has been expended in allowing selection of code

sequences. Nevertheless, I believe (and my belief is supported

by the architecture of those register machines which we have

examined) that such techniques present little difficulty in the

Zcode generator, and greatly ease the problem of producing good

target code.

3.3 Summary and Conclusions

 It is highly desirable that the compiler we use should be

portable. The way this is achieved is by use of an intermediate

code, and we can choose either a high level code or a low level

one. High level codes merely produce a textual representation of

the parse tree (and perhaps of some auxiliary data); low level

codes attempt to resemble the architecture of the target

computer. High level codes make few assumptions about the target

- 76 -

computer, and require complicated translators; low level codes

can use much simpler translators at the expense of making machine

dependent assumptions. Algol68C generates a very low level code,

but attempts to parameterise the machine dependent assumptions so

that the intermediate code can resemble the target hardware.

This, ideally, would give us the portability of high level codes

with the ease of translation of low level codes. This

parameterisation occurs in three aspects: registers, storage, and

operations.

 The major drawback to the Algol68C system is its assumption

that the target computer is a register machine, and that in

practice the parameterisation techniques have not been developed

as fully as we would like. It is possible that a code using

stack operations (like OCODE or PCODE) instead of register opera-

tions would be more suitable, but there are so many register

machines, and good register allocation is so complicated, and to

such a large extent machine independent, that the gains of

centralizing the register allocation algorithm in the machine

independent part of the compiler seem to outweigh the

disadvantages. With a little more work, we could parameterise it

sufficiently to map onto most register machines with little

effort - the difficulties we encounter at present are in areas

where the necessary distinctions were not sufficiently clear to

us when we were writing the Zcode generator. Work at present in

progress on phase three of the compiler should help alleviate

these problems.

- 77 -

 The key to parameterisation of storage and operations is the

way in which Algol68 types are broken down into Zcode types. The

choice of Zcode types determines, to a large extent, how 'low

level' the intermediate code is. Our aim is that Zcode types

should closely resemble target hardware types (we will se later

how this can help in some of the problems peculiar to system

programming [C2.2]). None of the implementers who have

transferred the system to the various target machines has had any

complaints about the parameterisation of storage allocation, and

none has wanted lower level Zcode types; there are a few

computers (MU5, Texas ASC) for which higher level types would be

a convenience (in that they would allow production of better

machine code), but it seems likely that the lower level types

would still be used for initial bootstrapping on to such

computers, the higher level types being introduced as a

subsequent optimisation.

 The compiler has shown itself in practice to be highly

portable. On a convenient machine, I can produce a working system

in under three months; a more normal figure, to reach a 'produc-

tion' system would be six man-months. To date, the compiler has

been transferred to IBM360 and 370 series, to PDP11/45, to

ICL4130 and CAP; it is in the process of being transferred to

PDP10, Texas ASC; a cross-compiler also exists for a DEC GT40.

The system thus appears to be sufficiently portable for our

purposes. Note that 'system' includes any library and run-time

system, but these topics are discussed elsewhere [C1]. The work

- 78 -

required to port the Algol68C compiler compares quite well with

BCPL using OCODE (BCPL, having only one type, has fewer problems)

and PASCAL using PCODE.

 More detailed discussion of Zcode and intermediate codes is

available elsewhere [9,31], though I do not necessarily agree

with their conclusions. I remain convinced that the approach of

producing a low level machine dependent code gives us a system

very convenient for our purposes, although more work is required

to provide a sufficient degree of parameterisation.

- 79 -

Section C: System Programming Facilities

 We have seen in previous sections how mechanisms were

arranged, and facilities added, which would be of use in

achieving our aim of writing a large operating system completely

in the language. Features such as separate compilation and

compiler portability are extremely useful, if not essential, to

achieving our aim. However, there still remain several severe

problems which must be overcome before we can claim success. As

pointed out earlier, most algorithms in an operating system can

be expressed in abstract terms, and using the concepts and

facilities of any reasonably versatile general purpose high level

language, but we must now address ourselves to the difficulties

which arise, peculiar to the task of writing an operating system.

 The first class of problems arises from the fact that not all

parts of the system are concerned purely with abstract operations

on abstract objects. We will occasionally have to write programs

performing physical operations on physical objects. These opera-

tions and objects will be defined by the hardware of the target

machine, as distinct from abstract operations and objects, which

are defined by the compiler writer or by the programmer. Note

that although there is a hardware representation for abstract

objects, the program using such an object is unaware of the na-

ture of the representation. There are hardware-defined objects

(eg. the physical layout of capabilities) and operations (eg.

- 80 -

initiating an I/O transfer) which our language must allow

programs to express. Further, in many circumstances we will have

to accept or provide arguments specified in an extra-lingual

manner.

 A second class of problems exists which tends not to have

been generally recognised by writers of other systems. One easy

way out of many of the problems of writing the system in a high

level language is by use of some form of 'run-time system'. That

is, the code produced by the compiler is not capable of running

on the bare machine, but only in the environment produced by the

run-time system. The run-time system is thus a form of kernel

producing an environment in which the compiled code executes.

There is no objection to a run-time system as such, but if it is

not itself written in the language then we will have failed in

our aim of writing the operating system in the language. We will

see below the consequences of insisting on writing entirely in

the high level language.

 A third problem is not strictly part of our original aim of

writing the system entirely in a high level language, but is

sufficiently closely related to be worthy of attention. We may

wish a program to interface with programs in other languages

using interfaces defined by those other languages. An alterna-

tive expression of this is that we may require the ability to

specify to the compiler the environment in which the program will

run. Note that if we could solve this problem entirely, we would

- 81 -

have a system capable of producing code for imbedding in machine

code programs - we could take an existing system and replace

parts of it by code produced from program written in a high level

language.

 A language system which solved all three of the above

problems would clearly be an extremely useful tool. Not only

could it be used for writing an entire operating system without

recourse to machine code, but it could also produce code to run

in harmony with code written in other languages and it could be

used to modify existing machine code systems. I am not aware of

any existing system which has solved all these problems, but we

will see below that the solutions do not appear to be impossible.

- 82 -

1. Run-time System

 An implementation of a general purpose high level language

normally includes a run-time system. This system will typically

be concerned with storage management, input-output and run-time

debugging facilities. It may also include such facilities as

overlay mechanisms and dynamic program loading, and will probably

cater for interrupts provoked by user errors. Such run-time

systems can become extremely large (consider FORTRAN I/O packages

or co-ordination and storage management in SIMULA or CPASCAL),

and can require a considerable programming effort. They are

almost inevitably written in machine code, and linking of

programs to routines in the run-time system is achieved by

mechanisms which are distinct from those used for linking to

other parts of the program. The run-time system is treated spe-

cially by the compiler - normally the names of entry points, or

label numbers, or even entry addresses are built into the

compiler. All code produced by such a compiler assumes the

availability of the run-time system.

 Such an arrangement is not acceptable for our aim of writing

the operating system entirely in a high level language - we must

insist on being able to write the run-time system in the

language, for otherwise we have only postponed the problem;

writing the machine code run-time system has all the pitfalls we

are trying to avoid by use of a high level language. Note that

even the excuse that there is only one run-time system and

- 83 -

several programs has little force, since we are likely to want

only one operating system for each machine. In any case, the

run-time system is likely to be subject to considerable modifica-

tion as the operating system develops. Additionally, on the CAP,

different run-time systems are appropriate for different programs

(eg. the co-ordinator and the command program). In particular,

for several parts of the operating system it would be most

inappropriate to attempt to implement the sophisticated I/O and

storage management required for other parts. A second difficulty

of a compiler relying on a run-time system is the danger that the

code produced by such a system cannot execute without it and so

we would have difficulty in producing code for imbedding in other

environments (such as when called from another language, or

imbedded in existing machine code). Thus we must retain the

ability to compile code to run in very simple environments.

 It will be useful, then, to investigate the reasons for

implementers wishing to have a run-time system. Although I will

describe places in Algol68 where one is tempted to resort to such

a privileged run-time system, the comments are also applicable to

almost every other language, in greater or lesser degree.

 One of the most drastic examples of a facility which would

normally use a run-time system is the Algol68 construct called a

'parallel clause'. This is a facility allowing a programmer to

specify a set of actions to be performed asynchronously, with a

'semaphore' facility for synchronisation purposes. The units of

- 84 -

a parallel clause correspond fairly closely to 'asynchronous

processes'; the overall effect is similar in its end result to

monitors in concurrent PASCAL [28], and to some features of

SIMULA [25], although the Algol68 facility matches neither of the

others in their elegance. For our present purposes, however, any

such facility is a drawback, rather than an advantage, if it is

considered as a primitive construct in the language. This is

because its implementation requires, in effect, a process co-

ordinator to be available and to be called implicitly by the

compiled code. That is, the process co-ordinator would be part

of the run-time system. The objection to the facility would be

removed if parallel clauses were not primitive, ie. if they were

defined in terms of simpler constructs. Such a definition would

include a co-ordinator, but it would then be being called as sub-

program by the normal language facilities; it would merely be a

library routine and it, and parallel clauses, would no longer be

part of the syntax and semantics of the language. The objection

to parallel clauses, thus, is not to the facility (which might

possibly be useful), but to the fact that they have to be treated

specially, as part of the language - they should be something

which the programmer is at liberty to define, not something that

the language implementer must provide. As a word of warning,

although such high level facilities have a place in some

languages, their provision in a general purpose language (and

particularly in a language for writing operating systems

including process co-ordinators) seems dangerously far down the

- 85 -

road which leads to the program being:

 UNTIL finished DO work

and the run-time system being correspondingly complicated.

Parallel clauses are not available in Algol68C, nor in most other

implementations of Algol68.

 A common cause of code in the run-time system is input and

output ('transput', to use one of the more successful parts of

Algol68 jargon). A lot of the transput code is not in fact 'run-

time system' in our sense, since it is merely a set of

subroutines called in the normal way; there are however some

situations where the compiler has to react specially. Although

most of our system programs will be unlikely (and probably

unable!) to indulge in transput, it will be instructive to look

at some parts of it. The most strikingly complicated part of

transput is 'formats'. Analogous constructs exist in many other

languages (FORTRAN, BCPL, PL/1, COBOL), although they reach a

peak of complexity in Algol68. Formats virtually constitute a

mini-language imbedded in Algol68 to describe certain transput

operations. Although their complexity has perturbed many

implementers, our objection to them here is the fact that they

implicitly call various routines. This implicitness indicates

that the routines are in some way treated specially by the

compiler, and are not ordinary programs written by ordinary

programmers.

- 86 -

 Thus, once we start considering the run-time system as

ordinary program compiled in the normal way, we can begin to see

features such as formats as indicating situations where the

language designer has found the normal interface mechanisms (ie.

procedure calls etc.) to be inadequate. However, the designers

response was not to make the interface mechanisms more powerful,

but to bridge the gap by adding ad hoc syntax for his special

purposes. This is strikingly illustrated by the section of the

Algol68 report defining transput. This section is written very

largely in the form of a program (only 'form of', since it is

written in such a style that one would not consider executing it

in a practical system), but at several critical points it lapses

into ordinary English. These points are places where the

interface mechanisms were inadequate. Examples are formats, and

'straightening' [1]; a less obvious example is 'print', whose

argument is a vector of objects, each of which can take any of an

infinite number of data types - here the interface is defined in

the language, except that the data type of the argument could not

be defined in the language. It would seem that if the designer

found the interfaces inadequate, then a programmer would be

justified in bemoaning their inadequacies.

 The ideal solution to these problems would be to redesign

those parts of the language, and to add extra interfacing

mechanisms, so that they need no longer be treated specially by

the compiler. We could then write those routines, and link to

them in the normal ways. Such redesign is clearly not difficult

- 87 -

once we have recognised the need for it. However, the solution I

adopted for Algol68C is rather less than ideal: since

incompatible changes to the language accepted by the main

Algol68C compiler were considered undesirable, a method was

required which would allow such parts of the run-time system to

be written in Algol68C, while not changing the constructs (such

as 'print') which use them. The general technique was to make

certain identifiers known to the compiler (by placing them in the

initialisation file), then when code generating the special

constructs, the code generates normal procedure calls to those

identifiers. To avoid those identifiers being 'reserved', the

compiler only considers definitions of them in separately

compiled segments marked as being part of the 'prelude'. The

mechanism (for 'print' only) is defined more precisely in the

Algol68C reference manual [7]. This mechanism is not entirely

satisfactory, since it treats the constructs specially, but it

does allow us to compile the routines of the run-time system in

the normal way; the compiler has built into it only the names of

the routines. Although the mechanism has at present only been

used for 'print', it can clearly also be used for calling such

things as the storage allocation routines (and thence, for

example, the garbage collector, if we had one).

 There are parts of the run-time system which present

difficulties when we try to write them in our high level

language, for reasons other than interface problems. Examples of

such parts are initialisation and termination code, and areas

- 88 -

which require access to data generated by the compiler (such as

storage maps for the garbage collector, and routine names for

postmortem facilities). All such difficulties appear to come into

the classes of problems mentioned earlier, namely writing code to

access externally defined objects, and allowing for the environ-

ment in which the code is to execute. The same remarks apply to

parts of the run-time system concerned with hardware defined

operations. Such problems are discussed in a later section

[C2.2].

 Apart from register initialisation and handling of entry and

exit points from the program, the compiler, by using the

techniques outlined above, need have no knowledge of, or

dependence on, a run-time system. A complete source program, in

this view, consists of the user's source plus the source of the

run-time system. The run-time system is typically pre-compiled

and shared, but this is a facility available equally to parts of

the user's program [B2.2]. There will be certain constructs

which, when used, imply a call to a routine with a certain

identifier, but this routine is defined in the normal way - it is

in no way special, and in principle could even use, in a recur-

sive manner, the facility it makes available.

 This gives us considerable freedom in providing a run-time

system. We can readily provide run-time systems for differing

machines or environments without having to inform the compiler;

programs can be written to rely on as much or as little run-time

- 89 -

system as desired. Indeed, the run-time system does not need to

be considered as part of the language system; a standard one (or

a selection of them) would be provided as default by the language

implementor, but the user (particularly if he is a system

programmer) would be under no compulsion to use the default. As

part of the Algol68C separate compilation mechanism, the source

text of a segment nominates, in its heading, what ENVIRON it is

to be compiled in; this, in the first segment of the user's text

indicates what run-time system is desired - if omitted, the

default one providing the standard Algol68 system is assumed.

Thus the code generated by the compiler for a piece of source

text makes no assumptions about the environment in which this

text is to execute, other than the information specified in the

appropriate environment file. The initial environment file

specifies the minimal (ideally empty [C3.2]) environment.

1.1 The CAP Run-time System

 In developing the CAP operating system, there has been need

for run-time systems of differing complexity for the different

constituent programs of the system, and it was considered essen-

tial that machine code should be avoided if at all possible.

These requirements have been met in the Algol68C system by taking

advantage of the compiler's independence from the run-time

system. I have been able to produce run-time systems for the

various situations, pre-compiled and shared between programs.

- 90 -

Many parts of the run-time system are machine independent, and

can be made to run on another machine - this has been done for a

PDP11 by I.Walker. The run-time system is treated in no way spe-

cially by the compiler, and is compiled in exactly the same way

as segments of a normal user program (but less often). The run-

time system has considerably developed and altered as the

operating system developed, and at one time was available under

two operating systems - none of this has caused any serious

difficulty.

 The run-time system consists of five Algol68C segments, known

as MC, MIN, SER, SYS, USE. (A sixth segment, MATH, providing

various mathematical functions has recently been added but need

not concern us here.) Each of these five segments uses the

environment provided by the preceding one, except MC which uses

an empty environment. The programs of the operating system use

the environment provided by (MC + MIN) or by (MC + MIN + SER) or

by all five. The default environment, providing the full

facilities of Algol68, uses all five (now six).

 The segment MC performs those actions which are necessary

before code generated by the compiler can be executed. It is the

residue of traditional run-time system whose existence is assumed

by the compiler, and is necessarily written in a mixture of Zcode

and machine code, rather than in Algol68. Ideally, MC would not

be necessary, but at present the best we can do is try to

minimise it. Future possibilities for this are considered later

- 91 -

[C3.2]. MC can be considered as converting the bare machine into

a virtual machine on which compiled code can execute. The

actions performed are few and simple. At each entry point (there

are three - one defined by hardware, two by software) the

following registers are loaded or restored from a previous dump:

 Register 1 - a constant 1, assumed by the translator

 Register 11 - the 'dsma' [app.Y]

 Register 12 - the global stack base

 Register 14 - the current stack frame base

From the main entry point (word 0 of segment P0), control is then

transferred either to the start of the compiled code, or as if

exiting from the 'return' co-routine (described later [C3.1]). A

second entry point is word 1, to which control is transferred by

software if a trap (program error) has occurred - from here a

variable subroutine, 'run-time error' is called; this subroutine

is compiled code, by default in MIN, SER or USE but optionally

provided by the user program. The third entry point is used by

software to interrupt a program to indicate the occurrence of a

'quit' signal; depending on a user-settable flag this causes

either immediate resumption of the interrupted program, or a call

of a variable routine 'attention routine' which can be in USE or

provided by the user. There are two possible exits - either the

end of the compiled code is reached, in which case MC executes a

'return' instruction [A2.2], or the 'return' co-routine is

called, in which case MC preserves enough information (ie.

- 92 -

registers 11 and 14) to allow resumption on next entry.

 Additionally, at present MC contains the routines for

allocation of heap and dynamic stack storage. It would be

preferable if these were compiled code in MIN, but unfortunately

the present compiler links to them using a label number nominated

in the environment files rather than using the identifier

technique described above. This undesirable situation could

clearly easily be resolved by using this technique, but this has

not yet been done.

 The total size of MC is about 220 orders. The remainder of

the run-time system is compiled as normal Algol68C segments,

treated in no way specially. Where these segments are concerned

with operations or objects not available in Algol68, 'CODE'

sections are used to imbed explicit Zcode; where the objects or

operations cannot be expressed in Zcode, explicit machine orders

are imbedded.

 The segment known as MIN is compiled using an environment

file, 'MCENV', which corresponds to the segment MC. This

environment contains only the program entry and exit label

numbers, the label numbers for the storage allocation routines,

and data required by the compiler for the in-line operators; it

was originally manufactured by hand, but could readily be used

for other systems or other machines. MIN is concerned mainly with

operations which require no interaction with the operating

system. These include such items as string concatenation, selec-

- 93 -

tion and comparisons, and facilities such as the fast MOVE order

for bulk data transfers. In MIN we meet also the major example

on the CAP of a data object defined by the hardware with which

programmers will be concerned. This is, of course, the

capability. In the absence of advanced techniques for defining

types and operations such as discussed later, and of language and

compiler changes such as have been proposed for handling

capabilities [app.Z.1], the following facilities have been

provided.

 A new Algol68 mode, called SLOT has been defined. This is

represented in Zcode and machine code as the address of a

capability. Note that SLOT cannot be of the form REF CAP, since

de-referencing would have to cause a capability to be brought

into ordinary store, which the hardware does not allow. SLOT

objects, being merely addresses, can be stored, copied and so on,

in ordinary storage with no special care. However, various

routines are provided in MIN to perform special operations on

them. For example, 'MOVECAP', 'INDINF', 'SEGINF', and 'ENTER'

perform the corresponding machine instructions [A2.2]; note that

'ENTER' takes special care to preserve and restore such items as

the stack pointer. Also, routines are available to allocate

store in a workspace capability segment (yielding the

corresponding SLOT value) and to explicitly relinquish such

workspace. A problem arises when the programmer knows that some

SLOT value corresponds to a segment containing data in a certain

format (yielded by calling some protected procedure, or given as

- 94 -

argument to his protected procedure, or linked in when his

protected procedure was created). Then we must provide him with

some means of accessing the data from Algol68. This, again, is a

question of accessing an externally defined object, and is the

subject of discussion later [C2.2]; the solution at present is a

routine taking a SLOT and yielding a REF[]INT referring to the

corresponding segment. This, albeit imperfect, solution has

proved sufficient for all requirements in the operating system.

Clearly, a more general solution is desirable, but it is neither

necessary nor urgent.

 The run-time system used by the co-ordinator consists of MC +

MIN. The next segment, SER, defines subroutines for exercising

each possible entry to the co-ordinator. These entries are

almost all constrained by the co-ordinator such that they must be

made via a protected procedure (available in each sub-process)

known as ECPROC, so SER routines mainly use the 'enter' routine

provided by MIN to enter ECPROC. The run-time system formed by

MC + MIN + SER is that used by the vast majority of the protected

procedures of the operating system. The SER segment is based on

routines originally written by C.J.Slinn [32].

 The fourth segment, SYS, is concerned with the various public

interfaces made available by the operating system. It contains

numerous routines, typically one for each service provided by the

operating system; these routines are mainly implemented by calls

on the 'enter' subroutine - their purpose is to arrange the

- 95 -

names, arguments and results in a convenient and mnemonic form.

With the facilities thus provided, ordinary user programs rarely

contain explicit calls on 'enter', using instead the appropriate

service subroutines - the user does not need to know the

complexities of any of the system interfaces.

 The segment known as USE is mainly concerned with providing

the definitions to implement the Algol68C transput system [7].

This is implemented by various pieces of relatively

straightforward code; these implement the routines required by

the Algol68C transput by calls on the service routines provided

by SYS. These routines in USE are machine and system independ-

ent, requiring only a small number of primitive service routines,

and they have been used as a basis for implementing the Algol68C

transput elsewhere. Other facilities implemented in USE are

placed in that segment because they use the transput. The most

important of these are for handling faults (traps), and

attentions (such as 'quit' signal from a console). As mentioned

above, MC causes a procedure call on a variable routine ('run-

time error' or 'attention routine' respectively) when these

events happen. The MIN and SER segments assign to 'run-time

error' a routine which terminates the program (by 'GOTO stop'),

as this is the most appropriate default for users of those

segments, and sets a flag causing MC to resume the program if an

attention occurs (since almost all system protected procedures

wish, by default, to ignore attentions). In USE, these defaults

are replaced by new ones by further assignment to these

- 96 -

variables. The effect of the new default is that on all faults

(except one special one) a message appropriate to the fault is

printed (this message is generated on request by a protected

procedure of the operating system), and then a 'backtrace'

listing the routines active on the stack is printed. Producing

this backtrace involves another example of the use of an extra-

lingual data object, namely one which gives access to information

in the activation records of the recursive stack frames.

Fortunately (but deliberately), this object can be described by

an Algol68 mode:

 MODE FRAME = REF STRUCT (FRAME dynchain, INT link,
 FRAME statchain, REF STRING name)

Thus the 'backtrace' routine uses a CODE section only to obtain

an initial FRAME object referring to the current frame and is

written thereafter in ordinary Algol68.

 The segment MATH has recently been added to the run-time

system to provide a package of floating point mathematical

routines. The package was written by P. Kemp and was intended to

be transportable [33]; I transported it from an IBM370 (with 57-

bit sign-and-modulus mantissa, 7-bit base-16 exponent and

truncation of excess bits) to the CAP (with 24-bit

two's-complement mantissa, 8-bit base-2 exponent and unbiased

rounding) in less than one day with no difficulty.

 The run-time system at present contains no provision for a

garbage collector. This is a reflection of the absence of

- 97 -

garbage collection facilities in the compiler. However, it would

appear to be fairly straightforward to add these facilities. The

garbage collection code would be part of the heap storage alloca-

tion routine (which should be in MIN rather than MC). To

operate, the garbage collector needs access to a storage map and

mode templates generated by the compiler; with care, there is no

reason why these should not be valid Algol68 data objects (as has

been done at present with stack frames). The garbage collector

also needs marker bits, which on the CAP would probably have to

be a bit map, and needs a subroutine which, given an address,

would indicate the corresponding bit. Having determined which

parts of the heap are accessible, the remainder is free for

allocation. The situation is complicated slightly by the

presence of objects allocated not by the language system, but by

other protected procedures. These objects all occur in segments

other than the stack and heap. We must either manufacture (in

some way) templates for them, or take advantage of the assertion

(which could not be verified) that for the correct operation of

the current protected procedure, objects obtained from other

protected procedures must not contain inter-segment references.

This assertion must be satisfied, because external protected

procedures cannot validly know the arrangement of the address

space of this protected procedure, and to ensure correct opera-

tion the object program must not contain arguments containing

addresses without checking their validity. This effectively means

that the architecture is such that data objects passed as argu-

- 98 -

ment must not contain addresses, so the garbage collector problem

caused is not serious.

 Implementing the run-time system as far as possible in

Algol68, with minimal CODE sections, has proved very satisfactory

during the development of the system and has allowed a large

number of facilities to be made available with little difficulty

and few errors. The fact that the compiler makes no assumptions

about the run-time system has provided great flexibility,

including provision of differing systems, and ease of modifica-

tion - sometimes by those writing the operating system, with no

knowledge of the compiler. The run-time system contains only 26

explicit machine instructions, and provides sufficient

subroutines for handling hardware and externally defined objects

that very few parts of the operating system (mainly the

peripheral handlers) have found need to use CODE sections. The

run-time system now amounts to 5887 compiled orders and provides

325 definitions.

- 99 -

2. Hardware Objects and Operations

 We have been assuming until now that the language being used

for our system is an ordinary, general purpose high level

language, typically Algol68, but we must now consider those

situations where the ordinary facilities prove inadequate. None

of these situations is unique to operating system programs; they

can occur on the CAP in totally unprivileged user programs.

 The first such problem could be termed 'storage allocation':

a program is liable to find that the storage management regimes

provided by the standard language (in Algol68, a stack and a

garbage-collected area of global storage), are inadequate for its

purposes. On the CAP, a programmer might appeal to the operating

system for some extra storage for various reasons: allocating

storage in separate segments might produce a better pattern of

virtual memory traffic for his program, or he might be taking

advantage of facilities allowing him to change the sizes of the

segments independently from each other. In a typeless language,

such as BCPL, this is no problem: the programmer accesses each

segment as a vector of the basic data object ('words' in BCPL).

However, in any strongly typed language, such as Algol68, we have

a serious problem: the program must be able to reference parts of

its storage as a particular data type. This implies some form of

type transfer from the unallocated store to a specified data

type. This has been picturesquely termed the 'white store'

problem.

- 100 -

 The second problem we will have to consider is the most

difficult. Our language includes a set of abstract data types

(such as 'integer' and 'boolean') operations on them, and

presumably mechanisms for specifying and defining operations on

new abstract data types built up from the old ones (such as

Algol68 'mode definitions', 'structured values', etc.). However,

our hardware and other programs will inevitably have available,

and hence some programmer will inevitably want to use, data types

which cannot be represented in terms of the types already built

into the language and the available constructions. For such

'hardware types' we will need to investigate more powerful type

construction techniques than are presently available in the

language; as will be seen later, examples exist which defy most

existing techniques.

 A third problem arises when we consider the set of operations

available in our standard high level language. The contents of

this set will depend on the generosity of the language designer,

but it will certainly not be sufficient for all purposes. For

example, it will not allow the author of the teletype-driving

program to write his 'read character' subroutine. It must be

borne in mind here that we are considering a system written

entirely in the language - there is no let-out by putting the

subroutine into some 'run-time system'. Other examples will

occur even in user programs - all I/O actions, for example, will

reduce to some operation not expressible in the language.

- 101 -

 Care must be taken not to over-rate the importance of

hardware-defined types and operations. The situations in which

they occur can be kept to a minimum, and they can be handled by

sordid techniques applied in centralized, carefully written and

thoroughly debugged libraries. Good solutions to the above

problems are desirable and the problems are worth investigating,

but the system can survive without the good solutions. Indeed,

at the present time, the system available on the CAP contains no

elegant solutions to these problems, although an implementation

of a solution to the 'white store' problem is becoming urgent;

the CAP nevertheless contains a complete working operating system

written in Algol68C.

2.1 Storage Allocation

 In Algol68, the programmer can explicitly allocate storage

(variables) in two ways: 'local generators' and 'heap

generators'. The former is stack-like - the storage is

considered free at the end of the block in which it was

allocated, and there are language restrictions preventing

attempts to access the store after this. The latter allocates

'global' storage, which is not freed while there are references

to it, with no restrictions as to how these references are passed

around. In practice, the only way in which this global storage

can be found to be free is by a garbage collector. Other storage

is allocated implicitly from time to time, for such purposes as

storing subroutine links and temporary anonymous results; all

- 102 -

such implicitly allocated storage can be freed in a stack-like

manner. Situations arise in which the facilities offered by

these regimes are inadequate; I have already mentioned the case

of a programmer wanting to segment his storage (for a number of

reasons), and other difficulties can be envisaged such as wanting

to use user-supplied allocation routines, wanting to allow

explicit relinquishment of storage or storage control by use

counts. (Invokation of a garbage-collector, apart from being

expensive, can be embarassing in real-time situations such as a

peripheral driving process.)

 It is not difficult to propose mechanisms which allow such

extra facilities, but they tend to also introduce pitfalls for

the programmer. The following mechanism was proposed for

Algol68C [34], but has not yet been implemented, because of

doubts about its suitability. A new mode, 'ADDR' is introduced,

intended to correspond to the address of basic units of storage

of the computer, and a mode 'AREA' intended to be a block of

storage (typically on the CAP, a segment). A dyadic operator '!'

is defined, of mode PROC(AREA,INT)ADDR which yields the ADDR for

a given cell in a given area. A new form of generator is

allowed, with syntax:

 heap-symbol, primary, actual-declarer.

where the required mode of the primary is

 STRUCT(PROC(AREA,INT,INT)ADDR x, AREA y)

- 103 -

The programmer might then proceed as follows:

 AREA seg = getseg(1000) #ask for new segment#;
 INT ptr := 0;
 PROC get = (AREA a, INT size, align)ADDR:
 BEGIN
 INT n = ptr align * align + size;
 ptr := n;
 a ! n
 END;

 REF[]INT v = HEAP(get, seg)[0:100]INT

 The heap-generator would cause 'get' to be called with argu-

ments: 'seg', alignment for []INT, number of cells needed for

the object. The user's routine determines which cells to

allocate, yielding a suitable ADDR, and this is yielded in the

REF[]INT value of the generator. It should be noted that the

operation of punning the 'white store' into the appropriate data

type is performed as part of the generator; it is not directly

available to the programmer. This is deliberate, since a

'punning' mechanism is a dangerous tool in the wrong hands; it is

a necessary tool for storage allocation, but we should restrain

it as much as possible. However, we have no way of preventing

the user writing his allocation routine in such a way as to

allocate the same store twice. Since such over-allocation, apart

from being unreasonable programming practice, would also poten-

tially confuse any garbage-collector it must be forbidden (which

is easy to implement - for example by keeping a bit-map of the

AREA). Similar schemes, differing in detail, have been proposed

elsewhere [35].

 Arrangements for relinquishment of storage are less simple,

- 104 -

because of the diversity of techniques: garbage-collection,

explicit-relinquish, use-counts. Garbage-collection presents no

difficulties, provided we have prevented the user over-

allocation, for example by allowing the user to explicitly invoke

it giving an AREA and a routine of mode PROC(INT,INT)VOID to be

called with the size and offset of blocks found to be free.

Explicit relinquish is similarly simple. Use-count schemes can

be achieved by calling a user routine whenever a reference into

the AREA is replicated or destroyed, but the expense is likely to

be prohibitive.

 As can be seen, then, a solution to the 'white store'

problem, albeit an inelegant one, is not difficult to produce.

It is likely that I will shortly implement some variant of the

above scheme for the CAP, since the present facility (which

treats all segments as REF[]INT) is becoming increasingly

inadequate.

2.2 New Data-types

 What we wish to achieve is to allow the programmer to express

in our system programming language, operations on objects which

are not included in those provided by the original high level

language, in order to be able to manipulate objects defined by

the hardware or by other programs (possibly written in other

languages). Many languages already provide type extension

mechanisms allowing the construction of 'new' data types - for

- 105 -

example the constructors STRUCT(...), UNION(...), REF..., [,,]...

in Algol68. However, all these are ways of constructing new

types by composition of existing types. There is no way in such

languages to augment the set of basic data types. Since there

may exist hardware types not definable in terms of the given

basic types, it is useful to investigate more fundamental ways of

defining data types. It should be noted that identical arguments

apply to the set of type-constructors - in the most general solu-

tion to our problem, we should also be able to define new

constructors.

 Topics such as this bring to mind the various extensible

languages, but in practice these always construct new data types

from existing ones, since this is entirely sufficient for

purposes other than ours. However, a mechanism has been outlined

by P.Jorrand [36] which aims precisely at allowing the creation

of new basic types. I will give below an outline mechanism which

is a transformation of his techniques arrived at by considering

them in the context of a system such as the CAP Algol68C; the

reader is strongly recommended to read also Jorrand's papers.

When considering type extension, it would be inappropriate to

omit the recent developments in languages oriented to type

abstraction, a typical example of which is Liskov and Jones CLU

[26]. However, we should be able to achieve sufficiently power-

ful mechanisms without the radical re-design of the high level

language that introduction of CLU techniques would entail.

- 106 -

 Let us first consider Jorrand's scheme. Having pointed out

that other systems do not allow the definition of basic types, he

considers what a data type entails. A type is a set of objects,

together with internal and possibly external representations of

the objects, and a set of operations that can be performed on the

objects. For example, in Algol68, the type INT specifies a set

of objects, with external representations such as the character

sequence '100' and internal representations such as the bit

patterns for fixed point numbers in some particular hardware. A

set of operations is available, such as addition, subtraction,

copying. To define new types, then, requires defining sets of

objects, defining the representations of particular objects, and

defining operations on the objects - more precisely, operations

on the internal representations of the objects. To enable the

user to make such definitions, Jorrand first postulates a 'base

language'. The base language is assumed to have a primitive

binding mechanism (such as in lambda calculus), and is assumed to

be capable of specifying any possible operation on any internal

representation. The user can then, for example, define 'C' to be

a set of objects (with, as yet, unspecified membership); he can

define an object 'A' with internal representation given by some

expression of the base language 'exp' to be a member of C; he can

define operations on members of C by specifying in the base

language the corresponding operations on their representations.

Thus, in Jorrand's notation:

- 107 -

 DEF(C,CLASS)
 DEF(A,AS(C,exp))
 DEF(P, PROC(C,D,lambda-expression))
 APPLY(P,A)

Jorrand also describes definitions of set relations between types

(such as inclusion, cartesian product, complement), and implicit

type conversions (coercions, in Algol68 terminology) but,

although these would be useful in an extensible language, they

need not concern us here.

 Let us now consider Jorrand's scheme in relation to the

Algol68C system. The critical question is what to use as the

base language. We need a language that allows us to express any

operation or representation that can occur in our hardware; this

is a severe demand, to which ultimately there can be only one

answer - machine code. However, with care we can present this in

a palatable form. Algol68 is a language defined in terms of

abstract objects and operations on them; it is the task of the

compiler to convert these into operations on their internal

representations. Zcode, the intermediate code produced by the

Algol68C system, is thus a language for expressing operations on

internal representations of objects. It is the task of the Zcode

translator to convert operations on Zcode objects into operations

on hardware objects - the design of Zcode is intended to be such

that this transformation is straightforward, with simple 1-1

mappings from Zcode objects into hardware ones. We can thus see

three levels of language - Algol68, Zcode, machine code - each of

which has its primitive types. If the programmer is to introduce

- 108 -

a new primitive Algol68 type he will have to specify the Zcode

for its objects and operations, just as he would give the base

language expressions in Jorrand's scheme. Similarly,

circumstances may arise where the Zcode types and operations are

inadequate, and he will have to give machine code specifications

of them. Thus, the infamous 'code section' appears as a

necessary tool for introducing new primitive types. However, if

we bear in mind Jorrand's scheme, we should be able to include

code sections in a controlled and well-structured manner.

 Several modern languages have been based upon mechanisms for

defining abstract types. The constructs used generally resemble

the Simula 'class' mechanism [25], but are more specifically

oriented to specifying all the properties of a type, rather than

just grouping and invoking sets of variables and operations.

Constructs have been proposed for adding such grouping mechanisms

to Algol68 [B2.4], but they fall far short of complete type

definitions. The language CLU, designed by Liskov at MIT is

based on the ideas of abstract types, and contains powerful type

definition mechanisms. Consideration of the CLU mechanisms will

be useful for designing a primitive type definition mechanism.

CLU is based not on conventional block structure, but on a

sequence of independently compiled definitions; these definitions

are either of procedures or of 'clusters'. CLU procedures are

straightforward, taking items of specified data types as argu-

ment, and performing manipulations on the arguments using

whatever operations or procedures may be available. A cluster

- 109 -

defines a type, and operations on the type; in particular, it

defines the representation of objects in that type. An instance

of the type specified by a cluster can be created by invoking the

cluster with arguments as required by the cluster. A cluster

makes available to users of the cluster a set of operations, many

of which will take an item of the type defined by the cluster as

argument. For example, if we have defined a cluster called

'stack' with operations called 'push' and 'pop', and if we

defined an item called 'a' as an instance of a stack, we could

invoke push or pop as:

 stack.push(a,item);
 itemvar:=stack.pop(a)

 The crucial difference between operations defined inside a

cluster and procedures defined outside it is that the operations

have available to them the components of the representation of

the type. No information about the representation is available

externally. When an operation takes an object of the type as

argument, it can specify that inside the operation the object is

to be available as its representation. For example, if our stack

is represented as an array and a pointer, then inside the opera-

tion 'push', the array and pointer of the particular stack object

given as argument will be available. Thus the cluster might be

defined as follows. (The syntax should be self-explanatory, and

is similar to PASCAL.)

- 110 -

 stack: CLUSTER (size:INT)
 IS push, pop #externally available operations#;
 REP(sz:INT) = (tp:INT;
 stk:ARRAY[1..sz] OF val
);

 CREATE #called by system when creating a 'stack'#
 s: REP(size)
 s.tp := 0;
 RETURN s;
 END;

 push: OPERATION(s:REP, v:val);
 s.tp := s.tp + 1;
 s.stk[s.tp] := v;
 RETURN;
 END;

 pop: OPERATION(s:REP)
 s.tp := s.tp - 1;
 RETURN s.stk[s.tp+1];
 END;

 END #stack#;

 For the general handling of abstract types, I find schemes

based more closely on SIMULA (where the representation is the set

of variables defined in the body of the class) more elegant, but

for our present purposes, the explicit REP of CLU is more

suitable. We could clearly use the formalism of clusters for the

definition of new primitive types, by having expressions of the

base language for the bodies of the representation function and

of the operations.

2.3 Conclusions

 It is clear that there is a need for some language extensions

along the lines outlined above to enable the programmer to handle

such situations. One must bear in mind in proposing any such

- 111 -

extensions the bewildering variety of data objects and operations

with which hardware designers and implementers of other language

systems can present us. A few examples should emphasise this

point. A well-known example is the difficulty of passing Algol68

multiple values (which can be scattered around the storage in a

sparse manner) to FORTRAN without copying. This is a serious

difficulty in providing inter-language library calls. An example

occurring on the CAP is the handling of capabilities. Although

these objects can be manipulated by the programmer, they cannot

reside in ordinary storage and can only be manipulated by special

instructions - we must always use a long spoon when handling

capabilities. A simpler example is in the execution of input or

output instructions - here there is no possible alternative to

having explicit machine code instructions. Even within a single

language program we have encountered situations where we must

handle extra-lingual objects, such as mode templates and storage

maps.

 For each example produced, tidy ad hoc solutions can be found

[C2.1],app.Z.1, each requiring its own language changes. It

would be much preferable to have a general mechanism for the

description of such objects and operations, along the lines

outlined above. The 'base language' could conveniently be

developed from the Algol68C facilities for imbedding Zcode in a

program (and CAP Algol68C facilities for imbedding machine code

in Zcode), since Zcode (and the imbedded machine code) is

concerned with operations on the primitive objects from which all

- 112 -

objects must be constructed. In the present CAP Algol68C system,

imbedded Zcode has proved to be a sufficient, but sometimes

inconvenient, tool for all such situations. A more general

mechanism would make it much more convenient, and much safer, to

use.

- 113 -

3 The 'Program'

3.1 Program Structure

 At an early stage in the design of the language system, a

decision has to be taken as to how the Algol68 concept of

'program' maps on to the CAP architecture. There are various

possibilities: the complete operating system, or a single

process, or a number (possibly one) of protected procedures, or a

single program segment of a protected procedure. Having the

complete system as a single program was rapidly discarded, for a

number of reasons. It would require language or implementation

mechanisms for describing process hierarchy, process structure

and protection structure. It would considerably blur the

distinction between operating system and language, and would

almost inevitably hide the causes and effects of operating system

design choices. It would prevent the facility, thought to be

desirable, of allowing the system to be written in more than one

language. On the CAP, where there is no form of supervisor state

or privileged mode (other than that caused by the relationship of

a coordinator to its junior processes), there is no precise

distinction between 'operating system' and 'ordinary' programs;

as far as possible, system functions are hived off into protected

procedures having minimum privilege, which run as ordinary user

programs. Accordingly, it is difficult even to conceive of the

operating system as a single program. Precisely the same argu-

ments apply against a process being a single program.

- 114 -

 We thus always consider, in any language on CAP, a 'program'

to be a set of one or more protected procedures. Note that we

have therefore reduced the possible pitfall of imbedding the

operating system in the language implementation to a very shallow

one. Use of several protected procedures for a single program

could be convenient for several languages (e.g. CLU), but not for

Algol68. Having a conventional block structure, with the ability

to access non-local identifiers, does not correspond to protected

procedures with their water-tight encapsulation and narrow,

explicit interfaces. Further, the notion of protected procedure

was designed to facilitate enforced checking of aspects of

program executiion, whereas Algol68 is designed in such a way

that very few runtime checks are needed, and those which are

needed are more amenable to the checks provided by segmentation.

The expense of protected procedure entry and exit cannot be

justified for intra-program calls in Algol68, only for inter-

program calls. It follows from this remark that the idea of

allowing multiple Algol68 programs inside a protected procedure

was discarded.

 An Algol68 'program', then, is to be considered as a complete

single CAP protected procedure. Segmentation in the hardware

sense is mapped onto the Algol68C separate compilation mechanism:

sets of separately compiled segments may be placed in separate

hardware segments, to facilitate sharing (and control of virtual

memory traffic where this occurs) - the complete operating system

contains only one copy of each segment of the Algol68C runtime

- 115 -

system.

 A choice was available as to how to provide the stack

workspace used by a program. An early scheme was that when a

protected procedure is called, the calling program should pass as

one argument a sub-segment corresponding to the unused portion of

its stack (or other workspace). The alternative was that each

protected procedure should contain its own private workspace.

The former approach seemed desirable on grounds of store

efficiency, but undesirable on protection and structural

grounds. If the former were used, programs would have to be

exceedingly careful to prevent a caller, accidentally or

maliciously, providing a segment in some way unusable (too small,

for example, or a non-resident segment for a resident, or a

segment subject to some external interlock); conversely, the

called procedure could keep a capability for the workspace and so

obtain later access to some of the caller's data. It thus seemed

preferable, though more expensive, for each stack to be local to

a protected procedure. The same stack could of course be shared

between different instances of a program within a process (this

is done for directory managers, for example).

 When an Algol68 protected procedure is entered, this

corresponds to initiating execution of the program at the 'BEGIN'

in the runtime system; when execution reaches the corresponding

'END', a RETURN instruction is executed. In other words, each

time a protected procedure is entered the effect is a complete

- 116 -

run of the corresponding program (although data can be passed as

the argument to a particular run). Division of the operating

system in this way into separate programs gives a very suitable

degree of modularisation.

 However, it was soon found that this structure was not

adequate, because the underlying subroutine-like nature of

protected procedure calls was inadequate. Treating each entry as

a separate run of the program did not correspond to the desired

operation of several of the system programs. For example, the

program implementing interactive stream wished to perform some

initialisation (such as acquiring message channels) on its first

entry, then accept numerous entries requesting input or output on

the stream, then after a final 'close' entry it would terminate

its activity and return an error to any subsequent entry. This

could have been achieved by using variables outside of the normal

Algol68 storage (remember that even the heap is initialised at

the start of the runtime system), but this would involve writing

the program in a most unnatural style, and one much less

convenient than the one made possible by the solution I produced.

 To arrive at the solution, we consider each protected

procedure at any time to be either 'active' or 'inactive'. The

state of this flag is maintained by the runtime system, and is

retained between entries to the protected procedure. Initially

(when the protected procedure is created), its state is 'inac-

tive'. When the procedure is entered, if its state is 'inactive'

- 117 -

control starts at the beginning of the program. If control

reaches the end of the program, its state is set to 'inactive'

and a RETURN instruction is executed. A routine named 'return'

is provided by the runtime system which, when called, sets the

state to 'active', preserves the stack pointers and executes a

RETURN instruction. When the protected procedure is next entered

it is found to be in the 'active' state, so the stack pointers

are restored by the runtime system, and control is transferred as

if by subroutine exit from the call of 'return'. The interactive

stream protected procedure could now be written in the following

form:

 BEGIN
 .
 . #initialisation#
 .
 UNTIL entry reason = close
 DO CASE entry reason
 IN .
 . #work#
 .
 ESAC;
 return(result)
 OD;
 .
 . #tidy up#
 .
 return(0);
 DO return fault(illegal entry) OD
 END

The relationship between the 'enter' routine in the calling

protected procedure and the 'return' routine in the called

protected procedure is very similar to that between co-routines.

 This mechanism has proved very satisfactory in practice, and

is used by most of the programs of the operating system. Even

- 118 -

for programs which do not wish to preserve data or flow of

control information between calls, use of the form

 DO CASE entry reason
 IN .
 .
 .
 ESAC;
 return(result)
 OD

is convenient in avoiding the overhead of runtime system

initialisation code. Returning from a call of 'return' takes

only 10 instructions.

 It was subsequently noted that the form of program obtained

by use of 'return' is remarkably similar to that of programs

which service requests received as messages from some other

process. For example:

 BEGIN
 .
 . #initialise#
 .
 DO receive message;
 CASE request
 IN .
 . #work#
 .
 ESAC;
 return message(result)
 OD
 END

Work has been done to develop an architecture to take advantage

of this similarity, where the form of a call is the same to

another process as to another protected procedure in this process

[37]. The similarity with monitors should also be noted.

- 119 -

 A minor improvement which could be made to the enter/return

mechanism would be to alter the way in which arguments are

presented and received, so as to bring out more clearly the

symmetry between 'enter' and 'return'.

3.2 Program Environment

 The Algol68C compiler makes no assumption about the target

computer, on which the program it compiles will run. The

initialisation file for the compiler, together with the

translator, specify all that needs to be known about the

architecture of the target computer. The environment file

corresponding to the MC segment of the runtime system specifies

the state in which the target computer will be on entry to the

program. It is this state which I wish to discuss here. Apart

from the information in the environment file for MC, Zcode

assumes that the three stack pointer registers (4,5,6) are

properly loaded - it is the responsibility of MC and the

translator to ensure that this is so. We can consider MC as

converting the environment which we are given into an environment

in which compiled code can execute, and the environment file for

MC then contains details of this environment. Thus, by changing

MC and by changing the environment file, we could arrange to run

(MC+program) in some different environment. Further, we can run

without MC, provided that the environment with which we are

provided conforms to the constraints on the stack pointers and

- 120 -

can be described by an environment file. The compiler would be

willing to compile code to run in any such environment. This

holds out a prospect of a departure from the normal approach to

using a high level language. It has previously been assumed that

a compiler will compile a complete 'program' which will run in

the precisely constrained environment provided by the language

runtime system. In the CAP version of Algol68C, we have seen how

all of the runtime, except MC, is treated as ordinary program

compiled in the normal way. We can thus consider there to be no

runtime system other than MC; the other segments, MIN, SER, SYS

and USE, are merely a particularly useful and commonly used

library. If we now were able to take the step of allowing users

to specify different environment files in place of that

corresponding to MC, then users would be able to compile their

code to run in any suitable environment.

 The severely limiting factor in applying this technique at

present is the 'suitability' of an environment. The compiler

applies several constraints to the environment. At present the

compiler requires the existence of the heap storage allocation

routine, but we have seen above how this requirement could be

removed. The major difficulty then would be the stack. Ideally,

we would wish to be able to run without a stack, but there is

little prospect of this in the present compiler. A considerable

improvement would be obtained if the required environment was

just a description of the base and limit of the workspace, with

sufficient freedom in where and how this description was to be

- 121 -

found.

 Given an easing of the suitability constraint, and given a

convenient way of manufacturing environment files (at present an

ill-defined and error-prone task), the compiled code could run in

many different environments. The environment file would, of

course, contain descriptions of where arguments are to be found -

these would be in the same form as, in an environment file used

by a separately compiled segment, the descriptions of non-local

identifiers are presented in the current system.

 Such a programming system would greatly increase the utility

of a language system; as well as being able to compile programs

in the traditional manner, one could compile code to imbed in

existing machine code environments, or in environments provided

by other languages. There are many major operating systems and

pieces of software written in assembler or low-level languages,

and the ability to include high-level language sections could

greatly ease the problems of their repair and extension.

 No work has been done on further investigation in this line.

The two aspects requiring most work would be the description of

the environment, and resolving the problems of handling

externally defined objects [C2]. Such a system would derive

quite readily from the approach adopted throughout the develop-

ment of the CAP Algol68C system.

- 122 -

Section D: Summary and Conclusions

 It was the intention, when the work described in this thesis

was initially embarked upon, that most of the research would be

concerned with the invention of new language features. However,

the system finally produced and now existing has no such language

features (other than 'CODE' sections). Indeed, not only does the

language system produced have no features which are peculiarly

'system programming language' features, but equally it has no

features peculiarly oriented towards the architecture of the

target computer, the CAP. It is not obvious, then, why such a

language system should have had the success that it undoubtedly

has had in being favoured by those writing system programs for

the CAP.

 Admittedly, there have been circumstances, external to the

design of the language system, working in its favour. The

programmer supporting and developing the Algol68C system for CAP

(me), was at all times closely in contact with those writing the

system programs, and so was able to respond to requirements as

they arose. Also, the machine independent compiler was written

and maintained in Cambridge. However, these remarks are equally

applicable to the alternative high level language system

available, BCPL. We must also bear in mind that A68, despite the

obscurity and inaccessibility of its definition, and despite the

fact that one can readily write very bad A68 programs, is

- 123 -

actually a very convenient language to write in once you have

tried it. All other things being equal, I would much prefer to

write in Algol68 than in BCPL, and I believe this view to be

shared by most programmers with experience of Algol68.

 What, then, has made the CAP Algol68C system convenient for

system programming?

 The first feature is compiler portability: with regard to

which machines and operating systems we could compile on, and

with regard to which machines and operating systems we could

compile for. This has been achieved by maximising the machine

independence and system independence of the compiler

(particularly by use of a low-level intermediate code) and of the

runtime system (by writing as much of it as possible in a high-

level language). This has given us freedom, as the CAP operating

system developed, to cross-compile firstly from a different

machine, then from a different operating system running on the

CAP. In effect, the compiler has followed wherever the

programmers wished to lead it.

 Enforcing strict separation between the compiling system and

the runtime system has been very beneficial. This separation has

been made to the extent that neither the compiler nor the

translator contain any built-in assumptions about the runtime

system. This has made it a straightforward matter to change the

runtime system as and when the operating system facilities used

changed. Because the runtime system does not entail changes to

- 124 -

the compiler or translator, no specialist knowledge or expertise

are required - those writing the operating system can, if

desired, change the runtime system without reference to a

language expert. Equally, the same compiling software can be

used with more than one runtime system. At one stage, three were

provided - for running under the temporary operating system , for

running on an empty machine, and for sub-processes of the

coordinator. (There is currently only one runtime system.)

 A consequence of this separation and of the manner in which

the runtime system is provided has been that there are no pre-

requisite mechanisms. If a program segment does not use certain

facilities normally provided by the runtime system, then they

need not be provided. This feature is an essential requirement if

we are to be able to write the more intimate parts of the

operating system, such as the coordinator or the process driving

the swapping disc. Achieving this effect comes naturally, given

the separation, if we write the runtime system in the language

itself, compiled in an unprivileged manner; then we can compile

another source text, such as the coordinator, instead of all or

part of the runtime system - there is no possibility of this not

being acceptable to the compiling system. At the other extreme,

a large and elaborate runtime system is available to those

programs which require it.

 In achieving the above effects, the separate compilation

mechanism has been useful. Not only does it allow pre-compila-

- 125 -

tion of the runtime system, and segmentation to optimise virtual

memory traffic, but it allows the executable code of the runtime

system to be shared on a system-wide basis. As described above,

several extensions to the separate compilation mechanism are

desirable.

 The technique of considering the operating system, not as a

single program, but as a set of co-operating programs, is

generally felt to have been a success. This is partly due to the

CAP having a conveniently modular architecture, and partly due to

the lack of a good modular construct in Algol68, but it also has

merits in its own right. Primarily, it avoids having operating

system design decisions imbedded in, or even pre-empted by,

language system design decisions. Also, it is attractive to have

language independent interfaces to operating system modules; this

is, in any case, essential for the publicly accessible modules.

I believe that multi-processing and inter-process communication

facilities, although desirable in a language when experimenting

with such mechanisms, are not desirable in an implementation

system.

 There remain, of course, unresolved problems. Foremost

amongst these is the handling of extra-lingual objects - objects

defined outside the language system, in terms of another

language, or of the hardware. The Algol68C 'CODE' section,

although strictly sufficient to handle these objects, is not a

satisfactory solution. It is good enough for imbedding extra-

- 126 -

lingual operations, such as input-output orders, and has allowed

the definition of a satisfactory set of routines for the handling

of capabilities, but a better solution is highly desirable for

the general problem. This, hopefully, would arise as the outcome

of further research along the lines suggested in our discussion

on such objects earlier. The impact of this problem has been

very much reduced on the CAP by a general strategy, in building

the operating system, of restricting each data structure so that

only one program is responsible for operations upon it. This is

highly desirable to promote integrity and security in the

operating system, but has also had the effect that complicated

objects are never passed between programs. Calling interfaces

are mainly a set of (up to 4) integers, with occasionally a

single integer array or other capability. Thus, although the

problem should not be ignored, other design criteria counteract

its effect. Note, however, that any language system of

sufficient power for writing an operating system such as

envisaged here must contain facilities for executing specific

machine code orders (for I/O), and facilities for allowing the

bit-level specification of data objects. This can be seen even

in specially designed 'System Programming Languages' [38,39].

 Another area where more research could profitably be made is,

as discussed above, to attempt to maximise the flexibility

available in specifying the environment available to compiled

code.

- 127 -

 Finally, two conclusions emerge from this work. Firstly, it

is important to separate the design of the operating system from

the design of the language system being used to write it.

Secondly, by judicious design of the implementation of the

language system, system programming language features become less

important.

Bibliography

1. 'Revised Report on the Algorithmic Language Algol68', A.van

 Wijngaarden et al; Acta Informatica vol.5, 1-3 (1975).

2. 'Abstraction and Verification in Alphard: Introduction to

 Language and Methodology', Wm.A.Wulf et al, Carnegie-Mellon

 University technical report (1976).

3. 'Programming with Abstract Data Types', B.Liskov et al,

 SIGPLAN Notices vol.9, 4 (Apr 1974).

4. 'On System Programming Languages', G.Goos, working document

 for WG2.1 meeting in Fontainbleau (1972).

5. 'A Syntax-directed Compiler for Algol60', E.T.Irons et al,

 CACM vol.4, 15 (1969).

6. 'On the Implementation of Algol68', B.J.Mailloux,

 Mathematical Centre, Amsterdam (1969).

7. 'Algol68C Reference Manual', S.R.Bourne et al, Computer

 Laboratory Cambridge (1975).

8. 'Zcode, a Simple Machine', S.R.Bourne, Computer Laboratory

 Cambridge (1975).

9. I.Walker, forthcoming Ph.D. dissertation, Computer Laboratory

 Cambridge.

10. 'Algol68C Implementors' Guide', A.D.Birrell, Computer

 Laboratory Cambridge (1975).

11. 'Protection of Computer Information', J.Saltzer and

 M.Schroeder, Proc.IEEE, vol.63, 9 (1975).

12. 'The Structure of a Well-protected Computer', R.D.H.Walker,

 Ph.D. dissertation, Computer Laboratory Cambridge (1973).

13. 'CAP Hardware Manual', Computer Laboratory Cambridge (1976).

14. 'CAP Operating System Manual', Computer Laboratory Cambridge.

 (1976).

15. 'The CAP Project, an Interim Evaluation', R.M.Needham, in

 Proceedings of SOSP6, Operating Systems Review vol.11, 5

 (1977).

16. 'The CAP Filing System', A.D.Birrell, in Proceedings of SOSP6.

 (1977).

17. 'CAP System Programmers Manual', Computer Laboratory

 Cambridge (1976).

18. 'The Cambridge CAP Computer and its Protection System',

 R.D.H.Walker and R.M.Needham, in Proceedings of SOSP6 (1977).

19. 'The Text of OS-Pub', C.J.Strachey, University of Oxford.

20. 'Algol68C Compiler Technical Description', S.R.Bourne et al,

 Computer Laboratory Cambridge (in preparation).

22. 'The Berlin Algol68 Implementation', W.Koch et al, SIGPLAN

 Notices vol.12, 6 (June 1977).

23. 'Algol68R Users Guide', I.Currie et al, H.M.S.O (1973).

24. 'Definition Modules', S.Schumann, working document for WG2.1

 meeting at Fontainbleau (1972); also in Algol Bulletin.

25. 'The Simula 67 Common Base Language', Dahl et al, report S-22

 Norwegian Computing Centre, Oslo (1970).

26. as [3].

27. 'BCPL Reference Manual', M.Richards, Computer Laboratory

 Cambridge.

28. 'The Programming Language PASCAL', N.Wirth et al, Acta

 Informatica 1 (1971).

29. 'JANUS', W.M.Waite, University of Colorado.

30. 'An Optimised Translation Process and its Application to

 Algol68', P.Branquart et al, Report R204, MBLE Brussels

 (1974).

31. 'Intermediate Languages for Compilers', E.F.Elsworth, Ph.D.

 dissertation, Computer Laboratory Cambridge (1976).

32. 'Aspects of a Capability Based Operating System', C.J.Slinn,

 Ph.D. dissertation, Computer Laboratory Cambridge (1976).

33. 'Writing the Elementary Function Procedures for the Algol68C

 Compiler', P.Kemp, NSF/ERDA Workshop on Portability of

 Numerical Software (June 1976).

34. Thesis Proposal, A.D.Birrell, Computer Laboratory Cambridge

 (1974).

35. 'MARY - a Portable Machine Oriented Programming Language',

 M.Rain et al, MOLB 3 (Oct 1973).

36. 'Data Types and Extensible Languages', P.Jorrand in

 Proceedings of International Symposium on Extensible

 Languages, Report FF2.0143 IBM Grenoble (Sep 1971)

37. Forthcoming Ph.D. dissertation, D.J.Watson, Computer

 Laboratory Cambridge.

38. 'Early Experience with MESA', C.M.Geschke et al, Xerox Palo

 Alto Research Center (Oct 1976).

39. 'S3' International Computers Limited.

40. 'Storage Management for Algol68', A.D.Birrell, SIGPLAN

 Notices vol.12, 6 (June 1977).

Appendix X

CAP Algol68C Documentation

- 1 -

 Algol68C on CAP

 Andrew D. Birrell

1. The A68C Command

 This command invokes the Cambridge Algol68C compiler. The compiler
will accept the source of a single Algol68C program segment, and the
command can be used to produce the intermediate code for the segment, or
to produce executable binary for the segment, or to update a PCB, or to
create (and possibly execute) a new PCB. It thus allows a range of uses,
from compile-and-go for a simple program, to maintenance of a large multi-
segment program. The choice between these uses is controlled by the
presence and content of the 'ZCODE' and 'NAME' heading items, and the
keywords 'ZCODE' and 'PCB' on the command line, as described below and in
the description of the ZCAP command.

 The keyword parameter HEAP should be set to an integer value if you
wish to alter the amount of store used for compiler workspace. The
default value is sufficient for quite large program segments, and can
profitably be reduced (to, say, 10K) for compiling small programs. The
maximum useful value is at present 32K.

 Strings specifying input or output for the compiler may each be as
described below for strings presented to 'sysopen'.

 The compiler's main input stream, on which it expects the source of
the program segment, is specified by the string given as the first
positional parameter on the command line.

 The keyword parameter 'SYSPRINT' may be used to re-direct the
compiler's diagnostic output stream. The default is '/M'.

 The program heading is presented in up to two portions; the compiler
looks first at the string, if any, given as the value of the OPT keyword
parameter, then accepts heading items from the start of the main input.

 The compiler will accept the following heading items:

USING {handle} FROM {string}

This is described in the Algol68C Reference Manual. The string specifies
the environment file to be read. Note that the string need not be the
same string as was used when producing the environment in an earlier

- 2 -

compilation. Note that environment files read when compiling the parent
of this segment are also read when compiling this segment. If no USING
directive is found, a default is assumed which gives access to libraries
providing the full facilities described in Chapter 8 of the Manual - see
below.

TITLE {tag}

The tag is verified on the compiler's diagnostic output stream.

ENVOUT {string}

If the segment contains any ENVIRON statements then this string is used to
open the output stream for the environment file. By default the string
'ENVOUT' is used, and a suitable keyword parameter may be supplied on the
command line when invoking the compiler.

XREF

Requests that the compiler produce cross-reference data regarding this
segment, for subsequent processing by the A68XREF program. See also the
'XREFOUT' heading item.

XREFOUT {string}

If the heading item XREF is present, then this string is used to open the
output stream for the cross-reference data. By default the string 'XREF'
is used, and a suitable keyword parameter may be supplied on the command
line when invoking the compiler.

ZCODE {string}

This string is used to open the output stream for the intermediate code
produced by the compiler. By default the string 'ZCODE' is used. If the
string 'ZCODE' is used, and the keyword ZCODE was not supplied on the
command line when invoking the compiler, then the Zcode is sent to an
anonymous stream, and after the compilation the Zcode translator ('ZCAP')
is automatically invoked. In this case, the translator uses this
anonymous stream as its only input, and has available to it the command
line used to invoke the compiler. See below for description of the action
of the translator.

NAME {string}

This string is passed to the Zcode translator - see below.

TRACE {bits-denotation}

A facility for compiler debugging

KEY {bits-denotation}

- 3 -

Ignored at present

CASESTROP

Selects as 'stropping' convention from this point onwards the convention
that tags are written in lower case letters, with digits allowed, and
indicants are written in upper case letters. This is the default stropping
convention.

QUOTESTROP

Selects as 'stropping' convention from this point onwards the convention
that tags are written in letters of either case, with digits allowed, and
indicants are written in letters of either case, and each indicant must be
preceded by the apostrophe character. Upper and lower case letters are
treated as equivalent.

UPPER

Selects as 'stropping' convention from this point onwards the convention
that tags are written in lower case letters, with digits allowed, and
indicants are written in upper case letters, with digits allowed, and each
indicant may optionally be preceded by a dot.

POINT

Selects as 'stropping' convention from this point onwards the convention
that tags are written in letters of either case, with digits allowed, and
indicants are written in letters of either case, with digits allowed, and
each indicant must be preceded by a dot. Upper and lower case letters are
treated as equivalent.

- 4 -

2. The ZCAP Command

 This command invokes the CAP translator for Zcode (the intermediate
language used by Algol68C). The translator is usually invoked by the A68C
command, but may be invoked directly. When invoked by the A68C command,
the input stream for the translator consists of the Zcode produced by the
compiler. When invoked directly, the input consists of the concatenation
of the streams specified by the serial parameters on the command line, in
numerical order from 1.

 The input stream should contain Zcode for one or more Algol68C program
segments. The program segments must form a single sub-tree of the tree of
Algol68C segments which form the complete program, and they must be
presented in a top-down order. The Zcode is assembled into a single CAP
machine segment. The address which this segment must have in the
resulting protected procedure is allocated by the translator and verified
on the main output.

 The translator can dispose of the segment containing the assembled
binary in a number of ways. If it can determine a file title for
preserving the binary then it will do so and stop (otherwise the binary
will be placed in a PCB, as described below). If the command line
contained the keyword 'BIN', then the string given as its value is used to
preserve the segment. Otherwise, if when the segment was compiled the
heading had a NAME directive containing

"S=filetitle"

then this file title is used to preserve the segment. In all other cases,
the translator will place the binary in a PCB. If the translator needs to
create the PCB, it is initialised with a suitable sized stack and heap.
If the translator knows the file titles for the superior segments of this
one, then it will update the PCB to contain these. If the command line
contains the keyword 'PCB' then the string given as its value nominates
the PCB, which is created if it does not already exist. Otherwise, if the
heading had a NAME directive containing

"P=filetitle"

then this file title nominates the PCB, which is created if it does not
already exist. Otherwise a PCB is created, initialised, updated, and
entered to execute the compiled program.

 If one or more of the Algol68C program segments presented in this run
of the translator contains an ENVIRON statement for which the
corresponding Algol68C program segment is not presented in this run of the
translator, then each such program segment presented in this run must have
had in its heading a NAME directive containing

"L=filetitle"

- 5 -

Further, all these file titles must be identical. This file title is then
used during the present run of the translator for the output of linking
information, and the same file title is opened for input when assembling
the program segments corresponding to such ENVIRON statements.

 In addition to standard Zcode, the translator will accept the
directive:

M op ba bm N insert machine code instruction (given in

octal), eg. M123 10 11 +123

Some other extensions exist, but they are not useful to the ordinary
user. Registers in M directives are octal CAP machine register numbers.
The translation from Zcode registers is as follows:

 Zcode (octal) = CAP (octal) = CAP (decimal) Use

 0 0 0 constant 0
 1 1 1 constant 1
 4 13 11 {system}
 5 16 14 local stack
 6 14 12 global stack
 7 15 13 {system}
 10 2 2 work, result
 11 3 3 work
 12 4 4 work
 13 5 5 work
 14 6 6 work
 15 7 7 work
 16 10 8 work
 17 11 9 work
 20 accumulator

 Offset parts in M directives are as for Zcode instructions; they are
treated as if the architecture allowed 32 bits. This is achieved by, as
necessary, converting n-type orders into s-type ones, or inserting MOD
orders.

 All ZCODE values except floating point are manipulated in CAP
registers 0 to 14. Floating point values are manipulated in the
accumulator, and exist in main storage as standardised 24+8 numbers only.

 Strings between CODE and EDOC in programs are passed to the
translator, as described in the Algol68C Reference Manual. If a CODE
section contains an applied occurrence of an identifier, then the Zcode
produced by the compiler will contains in its place a corresponding Zcode
register number and offset. Note that it is not sensible to have applied
occurrences inside 'M' directives.

- 6 -

3. The CAP Algol68C Libraries

 The libraries provided for Algol68C on CAP provide numerous facilities
beyond those specified in the Algol68C Reference Manual. The authoritative
definition for the facilities described in the manual is the manual; an
outline of those facilities and of the extensions is given here. Other
definitions than those listed here are available to the user program, but
this is due only to the inadequacies of block structure and such
definitions should not normally be used, and certainly not without
consulting the author.

 The library is arranged in four machine segments:

 MIN is P0
 SER is P1
 USE is P2
 MATH is P3

The default USING directive gives access to MATH, USE, SER and MIN with
the user program starting in P4. This default may be over-ridden by
providing a USING directive as follows:

 USING USER FROM ".**.A68.ENV.MIN"
 gives MIN, with user program from P1

 USING SERVICES FROM ".**.A68.ENV.SER"
 gives MIN and SER, with user program from P2

 USING USER FROM ".**.A68.ENV.USE"
 gives MIN, SER and USE, with user program from P3

 USING USER FROM ".**.A68.ENV.MATH"
 gives all four segments, with user program from P4.

 The protected procedure manufactured (by linking a PCB, by calling
'MAKEENTER', or by a SYSGEN) must contain the appropriate library
segments, the user program segment(s) in the slots nominated by the CAP
Zcode translator, a workspace segment for the stack in I0 and a workspace
segment for the heap in I1. The file titles which can be used to retrieve
the library segments are of the form .*.A68.BIN.<level><serial>, for
example .*.A68.BIN.MIN84, and all have the same value of 'serial'. In
most cases, the translator will ensure that a nominated PCB contains the
appropriate segments, as described above. The access permitted for the
protected procedure to the library and user program segments must be at
least read-execute (RE), and to the stack and heap must be at least read-
write (RW). The size of the stack segment required for a particular
program is difficult to assess, but a minimum of 300 words is
recommended. The heap is not required by library levels MIN and SER
unless provoked by the user program, but USE will require at least 300
words for buffer space (more if a default input stream is provided).

- 7 -

 In addition to the definitions described below, and initialising
variables defined below, each segment of the library performs various
actions. The MIN level, in addition to initialising 'runtime error' and
the 'ignore attention' flag, calls 'reserve slot' to mark that the
segments used for the stack and heap are not to be allocated. The MIN
level also executes 'ENVIRON USER', but only if no attention has been
notified to the program during the initialisation. On exit from the
program, a RETURN order is executed, with in B2 the last argument that was
presented to 'set return code' (or 0 if there has been no such call). The
SER level calls 'makeind(3)' (as does the 'return' subroutine on re-
entry), and assigns to 'runtime error' the routine

 (STRING s, INT i)VOID:
 (return fault(i); set return code(i); GOTO stop)

If no attention has been notified to the program during the
initialisation, the SER level executes 'ENVIRON SERVICES'. If the program
has been entered under the 'command' interface, and if the keyword
parameter 'HEAP' is present, the USE level reads its value. If this is
not an integer then 'runtime error' is called, otherwise the heap segment
is adjusted to this size (in words). The USE level assigns 'a68c error'
to 'runtime error' and 'a68c attention' to 'attention routine', and calls
'allow attention'. If no attention has been notified to the program, the
USE level executes 'PRELUDE USER'. On exit from the program, the USE
level closes all files that have not been otherwise closed. The MATH
level executes 'PRELUDE USER'.

 Note that all REAL arithmetic is performed using 24-bit mantissa and
8-bit base-2 exponent. This gives about 6.9 decimal digits of accuracy.
The rounding algorithm provided by the hardware is close to being
unbiased. The mathematical functions (except REAL**REAL) are believed to
be very accurate (close to 6.9 digits).

 Operators specified in the manual are not included in the description
below. All such operators are available at any level, except that ** for
REAL operands and all operators for COMPL are available only when using
the MATH level.

- 8 -

3.1 Definitions provided by MIN

MIN includes subroutines for allocation of space on heap and stack.

3.1.1 Arguments from caller

enterarg1 INT the value B1 had on entry or re-entry.
enterarg2 INT the value B2 had on entry or re-entry.
enterarg3 INT the value B3 had on entry or re-entry.
enterarg4 INT the value B4 had on entry or re-entry.
enterarg5 INT the value B5 had on entry or re-entry.

enter access INT the access bits obtained from the ENTER
 capability used to enter the program.

real arg REAL the value in the accumulator on entry
 or re-entry

3.1.2 Environment enquiries

int lengths INT see manual; 1
real lengths INT see manual; 1
bits lengths INT see manual; 1
bytes lengths INT see manual; 1

int shorths INT see manual; 1
real shorths INT see manual; 1
bits shorths INT see manual; 1
bytes shorths INT see manual; 1

int size INT see manual; 1
real size INT see manual; 1
bits size INT see manual; 1
bool size INT see manual; 1
char size INT see manual; 1
bytes size INT see manual; 1

int align INT see manual; 0
real align INT see manual; 0
bits align INT see manual; 0
bool align INT see manual; 0
char align INT see manual; 0
bytes align INT see manual; 0

maxint INT see manual; 2**31 - 1
bitswidth INT see manual; 32
byteswidth INT see manual; 4

max abs char INT see manual; 255
blank CHAR see manual; "*S"
error char CHAR see manual; "**"
null character CHAR see manual; REPR 0

- 9 -

flip CHAR see manual; "T"
flop CHAR see manual; "F"

int width INT see manual; 10
real width INT see manual; 8
exp width INT see manual; 2

3.1.3 Fault numbers

error number mask INT ABS16rf0ff00ff
error data mask INT ABS16r0000ff00
error count mask INT ABS16r0f000000

previous error INT fault number issued after giving
 suitable message for an error;
 = ABS16r80000000

stack full error INT Fault number issued when the stack is
 full
heap full error INT Fault number issued when the heap is
 full
i indy full error INT Fault number issued when the I
 capability segment is full
bad open idf error INT Fault number issued if an illegal
 string is presented to 'lookup idf',
 'sysopen', or 'open'
file closed error INT Fault number issued when using a file
 which has been closed
non digit error INT Fault number issued when a character
 other than a digit was the first
 character encountered when reading an
 integer or exponent-part
heap size error INT Fault number issued if a non-integer
 was was given as the value of the
 'HEAP' keyword parameter
mathlib error INT Fault number issued if an illegal
 argument was given to one of the
 mathematical routines
not segment error INT Return code issued if 'lookupidf' or
 'sysopen' is asked to open for input
 a file title indicating a PCB or
 directory
sysread error INT Return code issued if the string ""
 could not be opened on 'standin
 channel' due to an error in the
 'SYSREAD' keyword parameter
file ended error INT Fault number issued on attempting
 to read beyond the end of a book
charpos error INT Fault number issued on attempting to
 position outside the bounds of the
 current line
backspace error INT Fault number issued on attempting to

- 10 -

 backspace before the start of the line
not open error INT Fault number issued on attempting to
 perform transput on a FILE for which
 'open' failed
reserve error INT Fault number issued on attempting to
 reserve a SLOT in the 'I' capability
 segment, the SLOT being already in use
no digit error INT Fault number issued if no character
 could be read when reading an integer
 or exponent-part
int overflow error INT Fault number issued if the digits of
 an integer or exponent-part being read
 would exceed maxint
readbool error INT Fault number issued if neither flip nor
 flop is encountered when reading a BOOL
real overflow error INT Fault number issued when reading a REAL
 if the magnitude of the value would
 exceed maxreal
plus i times error INT Fault number issued if 'I' or 'i' are
 not encountered at the appropriate
 point when reading a COMPL value
fix float error INT Fault number issued if the arguments
 to one of the REAL or COMPL output or
 conversion routines are inconsistent
normal error INT Fault number issued if the standard
 deviation for 'normal random' is not
 acceptable

return correct INT see manual; 0
return warn INT see manual; 1
return soft INT see manual; 2
return hard INT see manual; 3
return fatal INT see manual; 4

3.1.4 BITS, BYTES, CHAR and STRING

bitspack =([]BOOL a)BITS: see manual

bytespack =(STRING a)BYTES: see manual

packbytes =(REF[]CHAR a)BYTES: see manual

punstring =(REF[]INT v)STRING:
 a punning operation yielding the
 string assumed to be in 'v', whose
 stride must be 1

packstring =(REF[]INT v)INT: see manual

unpackstring =(STRING s, REF[]INT v)VOID:
 copies the characters of 's' into 'v'
 (whose LWB must be 0) in a format

- 11 -

 suitable for 'packstring'

copystring =(REF[]INT v)STRING:
 allocates heap storage and copies the
 packed string from 'v' into it

putbyte =(CHAR c,REF[]INT v,INT i)VOID:
 places ABS c in the i'th byte of 'v',
 whose stride must be 1. Bytes are
 numbered as for the PUTBYTE instruction

char in string =(CHAR c,REF INT i,STRING s)BOOL:
 see manual

=* operator defined for all combinations of CHAR
 and STRING. Meaning as for '=', except
 that upper and lower case letters are
 treated as equivalent

~* operator the negation of '=*'

3.1.5 Operations on SLOT's

SLOT mode used to represent the address of a
 capability

+ =(SLOT s,INT i)SLOT:
 the address of offset 'i' from 's'

G =(INT i)SLOT the i'th capability in the G
 capability segment
A =(INT i)SLOT the i'th capability in the A
 capability segment
N =(INT i)SLOT the i'th capability in the N
 capability segment
P =(INT i)SLOT the i'th capability in the P
 capability segment
I =(INT i)SLOT the i'th capability in the I
 capability segment
R =(INT i)SLOT the i'th capability in the R
 capability segment

seg addr =(INT i,j)SLOT: the j'th capability in the i'th
 capability segment

n0 SLOT N0
n1 SLOT N1
n2 SLOT N2
null capability SLOT G3

maparray =(SLOT s)REF[]INT:
 yields an array with LWB=0 and

- 12 -

 UPB=65534 corresponding to the segment
 whose capability is or will be at 's';
 the capability is not touched in any
 way

mapsegment =(SLOT s)REF[]INT:
 yields an array with LWB=0 and correct
 upper bound for the segment currently
 described by 's'

mapstring =(SLOT s)STRING: yields the STRING currently existing
 in the segment described by 's'

indinf =(SLOT s)INT the result of an INDINF order
seginf =(SLOT s)INT the result of a SEGINF order
segsize =(SLOT s)INT: the number of words in 's'
cseginf =(SLOT s)INT the result of a CSEGINF order

movecap =(SLOT s,t)VOID performs a MOVECAP order from 's' to
 't'
movecapa =(SLOT s,t)VOID performs a MOVECAPA order from 's' to
 't'
refine =(SLOT s,INT i,SLOT t)VOID:
 performs a REFINE order with base 's'
 and size and access 'i' to 't'

makeind =(INT i)VOID performs a MAKEIND order with argument
 'i'

3.1.6 Fault and attention handling

runtime error REF PROC(STRING,INT)VOID:
 the routine referred to by this
 variable is called whenever the library
 detects an error, or when an error is
 indicated to the program by the system
 The STRING argument in such calls is ""
 and the INT argument is the fault
 number. This variable is initialised
 by MIN to cause exit from the program.

ignore attention PROC VOID sets the 'ignore attention' flag to
 inhibit calling of 'attention
 routine' (see below)

allow attention PROC VOID unsets the 'ignore attention' flag,
 and if 'attention happened' would
 yield TRUE then calls 'attention
 routine'

attention routine REF PROC VOID the routine referred to by this
 variable is called whenever an

- 13 -

 'attention' is notified to the program,
 unless at that time the 'ignore
 attention' flag is set. Exitting from
 this call will cause a fault. This
 variable is not initialised in MIN.

attention happened PROC BOOL yields TRUE if an attention has been
 notified to the program (regardless of
 'ignore attention'), unless 'clear
 attention' (in SER) has been called
 subsequently.

3.1.7 Enter and return

enter =(SLOT s, INT i,j,k,l,m)INT:
 enters the cpabaility 's' with 'i' to
 'm' in B1 to B5; yields the value B2
 has when control returns to this
 program

enter2 =(SLOT s, INT i,j,k,l,m, REF INT p,q,r,s)VOID:
 as 'enter' but the values found in B2
 to B5 on return are assigned to the
 variables 'p' to 's'

set return code =(INT i)VOID: see manual; left in B2 on exit from the
 program

return =(INT i)VOID: executes a RETURN order with 'i' in B2,
 but when this program is next entered
 control will resume as if by exit from
 the call of 'return'. 'enterarg1' to
 'enterarg5' and 'enter access' will
 have been updated to the values found
 in B1 to B5 and B14 on re-entry. This
 facility can be used in a manner
 resembling co-routines.

return2 =(INT i,j,k,l)VOID:
 as 'return', but 'i' to 'l' are placed
 in B2 to B5 before executing the RETURN
 order.

stop label after the 'ENVIRON USER' statement

3.1.8 Move, moverow, movestring

move =(REF[]INT v,w, INT i)VOID:
 copies the contents of the first 'i'
 elements of 'v' into those of 'w'.
 Both LWB's must be 0 and the UPB's must
 both be at least 'i'

- 14 -

movestring =(STRING s, SLOT t)VOID:
 places in 't' a capability for 's'

moverow =(REF[]INT v, INT i, SLOT s)VOID:
 places in 's' a capability for 'v',
 whose LWB must be 0 and UPB must be 'i'

3.1.9 Allocation routines for SLOT's

i indy size INT the number of capabilities in the I
 indirectory

getslot PROC SLOT allocates a capability in the I
 indirectory; will not allocate a
 capability which has been marked by
 'reserve slot', and will not re-use a
 capability until it has been freed by
 'freeslot'. 'getslot' will call
 'runtime error' if it cannot allocate a
 slot.

reserve slot =(INT i)SLOT: indicates that the i'th capability of
 capability segment 'I' is to be
 assumed to be in use. Yields the
 corresponding SLOT value.

free slot =(SLOT s)VOID: if 's' is in the I indirectory,
 indicates that it is free for
 re-allocation. The capability at 's' is
 over-written with a null capability.

3.1.10 Store management

heap slot SLOT the capability used for the heap
 segment (I1)

stack available PROC REAL see manual; the stack is separate from
 the heap
heap available PROC REAL see manual
store available PROC REAL see manual
store used PROC REAL see manual

3.1.11 Layout of capabilities

cap mctype INT d31=1, d30=1; the field used by the
 microprogram to distinguish types of
 capability
cap type INT d29,28,27,26=1; the field used by
 software to distinguish types of
 capability
cap access INT d21,20,19,18,17,16=1; the field used

- 15 -

 for access bits in a store capability
cap length INT d15 to d0 = 1; the field used for
 'length' in a store capability
hardware bit INT d31=1, d30=0; indicates 'store-type'
 capability to the microprogram
enter bit INT d31=0, d30=1; indicates 'enter-type' to
 the microprogram
store capability INT d29=1, d28=0, d27=1, d26=1; indicates a
 normal store-type capability to the
 system software

exec access INT d16=1; access right in store capability
read access INT d17=1; access right in store capability
write access INT d18=1; access right in store capability
rcap access INT d20=1; access right 'RC' in store
 capability
wcap access INT d21=1; access right 'WC' in store
 capability

send capability INT d29=0, d28=1, d27=0, d26=0; for
 messages
receive capability INT d29=0, d28=1, d27=0, d26=1; for
 messages
reply capability INT d29=0, d28=1, d27=1, d26=0; for
 messages

null message INT d23=0, d22=0; message type
data message INT d23=0, d22=1; message type
segment message INT d23=1, d22=0; message type
full message INT d23=1, d22=1; message type
reply message INT d24=1; message type
data reply message INT data message ! reply message
seg reply message INT segment message ! reply message
full reply message INT full message ! reply message

channel access INT d29=1, d28=1, d27=0, d26=0; for SETUP
permission capability INT d29=0, d28=1, d27=1, d26=1; for ECPROC

process create permission INT
signal attention permission INT
capability permission INT
store permission INT
peripheral permission INT
info permission INT
system crash permission INT
channel permission INT

clear attention capability INT d29=1, d28=1, d27=0, d26=1; for ECPROC

3.1.12 Layout of words

rhword INT ABS16r0000ffff

- 16 -

lhword INT ABS16rffff0000

byte0 INT ABS16r000000ff
byte1 INT ABS16r0000ff00
byte2 INT ABS16r00ff0000
byte3 INT ABS16rff000000

bit0 INT ABS16r00000001
 .
 .
 .
bit31 INT ABS16r80000000

- 17 -

3.2 Definitions provided by SER

ecproc SLOT G1
setup SLOT G2

3.2.1 Sending messages

send null message =(SLOT s)VOID: send null message down 's'

send data message =(SLOT s, INT a,b,c,d)VOID:
 sends (a,b,c,d)

send segment message =(SLOT s, t)VOID:
 sends 't'

send full message =(SLOT s, INT a,b,c,d, SLOT t)VOID:
 sends (a,b,c,d,t)

send null message wait event =(SLOT s)VOID:
 send down channel 's' then wait

send data message wait event =(SLOT s, INT a,b,c,d)VOID:
 as above

send segment message wait event =(SLOT s, t)VOID:
 as above

send full message wait event =(SLOT s, INT a,b,c,d, SLOT t)VOID:
 as above

receive null message =(SLOT s)VOID:
 receive from 's'

receive data message =(SLOT s, REF INT w,x,y,z)VOID:
 assign into (w,x,y,z)

receive segment message =(SLOT s, t)VOID:
 movecap into 't'

receive full message =(SLOT s, t, REF INT w,x,y,z)VOID:

receive reply data message =(SLOT s, r, REF INT w,x,y,z)VOID:
 receive from 's', assign into
 (w,x,y,z), reply capability 'r'

receive reply segment message =(SLOT s, r)VOID:

receive reply full message =(SLOT s, r, INT w,x,y,z)VOID:

return message =(SLOT r)VOID: null reply to message

return data message =(SLOT r, INT a,b,c,d)VOID:

- 18 -

 reply (a,b,c,d) down 'r'

return message wait event =(SLOT r)VOID:
 reply then wait

return data message wait event =(SLOT r, INT a,b,c,d)VOID:

messages =(SLOT s)INT: the number of messages waiting to be
 received by receive capability 's'

3.2.2 Miscellaneous Coordinator facilities

wait event PROC VOID coordinator entry

reserve for reading =(SLOT s)VOID:
 reserve segment or wait

reserve for writing =(SLOT s)VOID:
 reserve for unique access or wait

release reservation PROC VOID what it says!

clear fault PROC VOID ensure program no longer in 'fault
 state'

cause fault =(INT i)VOID: notify a fault 'i' immediately

return fault =(INT i)VOID: place in fault state 'i', but don't
 cause any transfer of control in this
 protected procedure; safe even if
 already in fault state

signal attention =(SLOT p, INT i,j)VOID:
 notify process number 'i' of an
 attention at level 'j'; permission 'p'

clear attention =(SLOT p)VOID: clear attention state; 'p' is
 permission or null capability. Also
 clears 'attention happened'.

create process =(SLOT p, s)VOID:
 commence running a process whose PRL is
 's'; permission 'p'

create prl capability =(SLOT p, s, INT i,j)INT:
 create a capability (i,j) in the PRL of
 this process, and yield a capability
 for it in 's'; permission 'p'

create capability =(SLOT p, s, INT i,j)VOID:
 create an indirectory-level capability
 (i,j) and yield it in 's'; permission

- 19 -

 'p'

update prl capability =(SLOT p, INT i,j,k)VOID:
 update the PRL capability at offset 'i'
 to contain (j,k); permission 'p'

read prl capability =(SLOT p, s, REF INT w,x)INT:
 assign into (w,x) the words of the PRL
 capability referred to by 's';
 permission 'p'

read capability =(SLOT p, s, REF INT w,x)VOID:
 read the indirectory-level capability
 's', permission 'p'

prlgarb PROC VOID call the PRL garbage collector

claim device =(SLOT p, INT i, SLOT s)VOID:
 direct future interrupts from device
 'i' to this process; yield pstore
 capability for device in 's';
 permission 'p'

release device =(SLOT p, s)VOID:
 device with pstore 's' no longer needed
 by this process; permission 'p'

system crash =(SLOT p, INT i)VOID:
 request the coordinator to stop the
 system immediately with reason 'i',
 permission 'p'

3.2.3 Channel set-up

setup receive =(SLOT s, REF SLOT t, INT i)VOID:
 set up a 'receive' capability according
 to channel 's' and message type 'i';
 result allocated by 'getslot' and
 assigned to 't'

setup send =(SLOT s, REF SLOT t, INT i)VOID:
 'send' capability

setup send with reply
 =(SLOT s, REF SLOT t, INT i, REF SLOT u, INT j)VOID:
 setup send capability for channel 's',
 message type 'i', assigned to 't', with
 reply type 'j', capability for
 receiving replies assinged to 'u'

setup reply =(REF SLOT s, INT i)VOID:
 set up reply capability for sending

- 20 -

 replies of type 'i' assigned to 's'

setup reply with store =(REF SLOT s, INT i, SLOT t)VOID:
 setup reply capability for replying to
 segment-type messages whose segment
 will be placed in 't'

3.2.4 Timer facilities

timer info =(REF INT rtc, time, data, day)VOID:
 assign the current clock values

clock PROC REAL see manual

- 21 -

3.3 Definitions provided by USE

storeman SLOT G4
make enter SLOT G5
ioc SLOT G6
fault SLOT G7

3.3.1 Interface from outside world

user idf STRING name of user provided in G8

job number REF INT the number of this job, provided in G8

command line STRING provided if called by 'command'
 interface, in A0

command dir SLOT directory provided by 'commmand'; A1

command parms SLOT 'parms' provided by 'command'; A2

current dir REF SLOT directory used by routines provided to
 interface to DIRMAN; initialised to
 'command dir'

parms REF SLOT program called by routines provided to
 interface to PARMS; initialised to
 'command parms'

machine PROC BOOL whether called by 'command' interface

command =(SLOT prog, parms, STRING line)INT:
 enters 'prog' as if called under the
 'command' interface, with 'parms' as
 parameter decoder, and command line
 'line'

3.3.2 Interface with DIRMAN

delete access INT 'D' right in access matrix element, at
 d16
update access INT 'U' right in access matrix element, at
 d16
alter access INT 'A' right in access matrix element, at
 d16
max access INT indicates maximum obtainable access
 when given as argument to 'retrieve'

create access INT 'C' access to directory, at d16
vmode access INT 'V' access to directory, at d16
xmode access INT 'X' access to directory, at d16
ymode access INT 'Y' access to directory, at d16
zmode access INT 'Z' access to directory, at d16

- 22 -

modify access INT 'M' access to PCB, at d16
inspect access INT 'I' access to PCB, at d16
link access INT 'L' access to PCB, at d16

swc access INT 'S' access to software capability, at
 d16

all seg INT access /RWE, at d16
all dir INT access /CVXYZ, at d16
all pcb INT access /MIL, at d16
all swc INT access /s, at d16

default seg am INT matrix /ADURW/ARW/RW/R
exec seg am INT matrix /ADURE/ARE/RE/RE
default dir am INT matrix /ADCV/ACX/CY/Z
default pcb am INT matrix /ADMIL/AMIL/IL/L
default swc am INT matrix /ADUS/AS/S/

unknown INT VMO type 0
segtype INT VMO type 1
dirtype INT VMO type 2
pcbtype INT VMO type 3
swctype INT VMO type 4

retrieve =(SLOT s, STRING t, INT i)INT:
 retrieve capability with title 't' from
 'current dir', with requested access
 'i' into 's'; yields DIRMAN return code

remove =(STRING s)INT: remove entry 's' from 'current dir';
 yields DIRMAN return code

preserve =(SLOT s, STRING t, INT i)INT:
 preserve capability 's' in 'current
 dir' as entry 't' with access matrix
 'i'; yields DIRMAN return code

alter =(STRING s,INT remove,add)INT:
 alter access matrix for 's' in 'current
 dir' by removing bits 'remove' and
 including bits 'add'

examine INT DIRMAN entry reason
file details INT DIRMAN entry reason
file examine INT DIRMAN entry reason

3.3.3 Interface with STOREMAN

ensure =(SLOT s)VOID: update VMO 's' on disc; yields 0

outform =(SLOT s)VOID: recommendation to RSM about VMO 's'

- 23 -

change size =(SLOT s, INT i)VOID:
 change size of VMO 's' by amount 'i',
 which may be positive or negative.

newseg =(SLOT s, INT i,j)VOID:
 allocate segment-type VMO of size 'i'
 with access 'j'; result to 's'.

capinf =(SLOT s)INT: yields information about capability
 's'; result is negative if 's' is not
 for a complete VMO, nor a software
 capability. Otherwise result is
 type,access,SIN (see STOREMAN
 documentation).

get size access =(SLOT s)INT: yields size in d23 to d0, access in d31
 to d24 (n.b.)

open window =(SLOT s, INT b,a)SLOT:
 yields a SLOT windowing 's' from base
 'b' with size and access 'a'

move window =(SLOT s, INT b,a)VOID:
 moves window 's' to base 'b' with size
 and access 'a'

close window =(SLOT s)VOID: close, and write up if needed, 's'

details =(SLOT s, REF INT size, acc, type)VOID:
 assigns details about 's'

new instance =(SLOT s)VOID: updates 's' to be a new version of 's'

3.3.4 Calls to i/o system

input INT stream direction
output INT stream direction

ttr standard INT stream state: reflect, escapes, ignore
 parity
ttr no reflect INT stream state
stdout state INT stream state: c.r. l.f. after records
overprint state INT stream state: c.r. after records
sameline state INT stream state: force out after records
newpage state INT stream state: form feed after records
tr standard INT stream state: ASCII, no escapes, parity
tr binary INT stream state
tp binary INT stream state
close option INT state at end of input stream

wrrecord =(SLOT s, REF[]CHAR v)VOID:

- 24 -

 send buffer 'v' to stream 's'

rdrecord =(SLOT s, REF[]CHAR v)INT:
 read record from 's' into 'v'; yields
 number of characters, or -1 if a stream
 state change was found.

close stream =(SLOT s)VOID: If 's' is in capability segment 'I',
 then enter 's' to close it; if the
 stream was created by 'stream from seg'
 or by "/A" to 'sysopen' then the
 segment is left in N0.

read state =(SLOT s)INT: yields the current stream state of 's'

set state =(SLOT s, INT i)VOID:
 set the stream state of 's' to 'i'

extract doc =(SLOT s, d, INT t)INT:
 extract from stream 's' a document with
 terminator 't' into slot 'd'.

insert doc =(SLOT s, d)INT:
 insert document 'd' into stream 's'

stream from seg =(REF SLOT s, INT d)VOID:
 Creates a stream, with direction 'd'
 (which should be 'input' or 'output'),
 to/from the segment 's'; freeslot(s) is
 called, and the stream is placed in a
 newly allocated slot assigned to 's'.

lookup idf =(STRING s, BOOL b, REF SLOT t)INT:
 Obtains a capability as specified by
 's' and assigns it to 't'. 's' can be
 any string as accepted by 'sysopen'.
 The stream is for input if 'b' is TRUE.
 Capability produced is a segment if
 this is reasonable, otherwise a stream.
 Yields results as for 'sysopen'.

3.3.5 Low-level transput

CHANNEL MODE see manual; is of the form REF X

SYSFILE MODE see manual; is of the form REF Y

sysfile from slot =(REF SYSFILE sf, SLOT s, CHANNEL c)VOID:
 analogous to 'sysopen' but takes a SLOT
 and has no yield (faults in error
 cases). The channel must be 'standin
 channel' or 'standout channel'. If the

- 25 -

 slot is a segment, 'stream from seg' is
 called to produce the stream; the
 segment will be available in N0 after
 calling 'close' or 'sysclose'.

sysopen =(REF SYSFILE sf, STRING s, CHANNEL c)INT:
 see manual. The meaning of the string
 is as follows. If the channel is
 'parameter channel', then the book
 produced contains a single line which
 is the string value given as the value
 of the keyword parameter 's', or if s =
 "", then the keyword parameter 'OPT';
 but a negative return code will be
 given if the program was not called
 under the 'command' interface or if the
 keyword parameter was not set or was in
 some way wrong. If the channel is
 'string channel' then the book produced
 has a single line which contains the
 characters of the string 's'. If the
 channel is 'standin channel' or
 'standout channel' then the following
 possibilities exist except that only
 those which are sensible for input are
 available on 'standin channel', and
 only those for output on 'standout
 channel'. If the string is "" then an
 attempt is made to open using the
 string 'SYSREAD' (for input) or
 'SYSPRINT' (for output); if this fails,
 then (for output only) the string '/M'
 is used. If the string begins with '.'
 it is assumed to be a file title and is
 retrieved with read access, or created
 and retained, from/in the directory
 'current dir'. If the string is '/M'
 then the book corresponds to the main
 output (G9) or input (G10) of the
 process. If the string is '/A' on
 'standout channel' an anonymous segment
 is created for output; this segment
 will be available in N0 after calling
 'close' or 'sysclose'. If otherwise
 the string begins with '/' then it
 should specify a route name known to
 IOC, such as /LP or /TP or /TR1 or /TT2
 and a stream to/from the corresponding
 route is obtained. If the string
 commences with a decimal digit, then
 under the 'command' interface the
 string given as value of the

- 26 -

 corresponding serial parameter is used,
 otherwise the corresponding capability
 in the A capability segment. If the
 string begins with a letter then it is
 treated (if under the 'command'
 interface) as the name of a keyword
 parameter, and the corresponding string
 value is used.
 Any other string will cause 'bad
 open idf error' to be yielded.
 The value yielded is 0, or a return
 code from PARMS, or a standard negative
 fault number, and can be presented to
 'error message'. A suitable value is
 always assigned to 'sf'.

sysclose =(SYSFILE sf)BOOL:
 see manual. Any partially written line
 is output. Any argument (even 'SKIP')
 is acceptable.

sysendline =(SYSFILE sf)BOOL:
 see manual. For input, the next line
 is not physically read from the stream
 until the next call of 'sysfileended',
 'sysendline', or any routine actually
 requiring the line.

sysfileopen =(SYSFILE sf)BOOL:
 whether 'sf' is currently open (i.e.
 the call of 'sysopen' yielded 0 and
 'sysclose' has not been called for
 'sf')

sysfileended =(SYSFILE sf)BOOL:
 see manual

syslineended =(SYSFILE sf)BOOL:
 see manual

sysreadmood =(SYSFILE sf)BOOL:
 see manual

sysmaxpos =(SYSFILE sf)INT:
 see manual

syscharpos =(SYSFILE sf)INT:
 see manual

syssetpos =(SYSFILE sf, INT i)BOOL:
 see manual

- 27 -

sysmovepos =(SYSFILE sf, INT i)BOOL:
 see manual

syscharsleft =(SYSFILE sf)INT:
 see manual

syslinepos =(SYSFILE sf)INT:
 see manual

syswritechar =(SYSFILE sf, CHAR c)BOOL:
 see manual

force upper case REF BOOL When TRUE, causes 'sysreadchar' to
 convert all alphabetic characters into
 upper case. Initialised by 'USE' to
 FALSE.

sysreadchar =(SYSFILE sf, REF CHAR c)BOOL:
 see manual, 'sysendline' and 'force
 upper case'.

3.3.6 User-level transput

standin channel CHANNEL see manual and 'sysopen'
standout channel CHANNEL see manual and 'sysopen'
parameter channel CHANNEL see manual and 'sysopen'
string channel CHANNEL see 'sysopen'

print TRANSOUT see manual
read TRANSIN see manual

FILE mode see manual

chan =(REF FILE f)CHANNEL:
 see manual

make term =(REF FILE f, STRING s)VOID:
 see manual

on logical file end =(REF FILE f, PROC(REF FILE)BOOL p)VOID:
 see manual

on physical file end =(REF FILE f, PROC(REF FILE)BOOL p)VOID:
 see manual

on line end =(REF FILE f, PROC(REF FILE)BOOL p)VOID:
 see manual

on value error =(REF FILE f, PROC(REF FILE)BOOL p)VOID:
 see manual

on char error =(REF FILE f, PROC(REF FILE, REF CHAR)BOOL p)VOID:

- 28 -

 see manual

char number =(REF FILE f)INT:
 see manual

line number =(REF FILE f)INT:
 see manual

file open =(REF FILE f)BOOL:
 calls 'sysfileopen(b OF f)'

set char number =(REF FILE f, INT i)BOOL:
 see manual

open =(REF FILE f, STRING s, CHANNEL c)INT:
 see manual and 'sysopen'

file from slot =(REF FILE f, SLOT s, CHANNEL c)VOID:
 analogous to 'open' and 'sysfile from
 slot'

close =(REF FILE f)VOID:
 see manual and 'sysclose'; must be
 given a FILE which was created by
 'open' or 'file from slot'.

scratch =(REF FILE f)VOID:
 as 'close', but does its best to
 prevent any output reaching its
 destination.

newline =(REF FILE f)VOID:
 see manual and 'sysendline'

set file state =(REF FILE f, INT i)VOID:
 set the stream state of the
 corresponding stream. Will fault if
 the file was opened on 'string channel'
 or 'parameter channel'

endrec =(REF FILE f)VOID:
 as 'newline', but with the stream state
 set temporarily to 'sameline state'
 Note that this can be called from
 'print'

overprint =(REF FILE f)VOID:
 as 'endrec' but with 'overprint state'

newpage =(REF FILE f)VOID:
 as 'endrec' but with 'newpage state'

- 29 -

space =(REF FILE f)VOID:
 see manual

backspace =(REF FILE f)VOID:
 see manual

readchar PROC CHAR see manual, 'sysendline' and 'force
 upper case'

readint PROC INT see manual

readbool PROC BOOL see manual, 'flip' and 'flop'

readbits PROC BITS see manual

readbytes PROC BYTES see manual

readstring PROC STRING see manual

printchar =(CHAR c)VOID: see manual

printint =(INT i)VOID: see manual

printbool =(BOOL b)VOID: see manual

bitsradix REF INT see 'printbits'; initialised to 0

printbits =(BITS b)VOID: If 'bits radix' is 0, see manual.
 Otherwise prints 'b' as a sequence of
 digits to base 2 (for bitsradix=2), or
 4 (bitsradix=4) or 8 (bitsradix=8) or
 16 (otherwise). Leading zeroes are
 suppressed.

hexdigit []CHAR When subscripted with 0 to 15, yields
 the corresponding digit ('0' to '9' or
 'A' to 'F')

printhex =(BITS b)VOID: prints 'b' as an 8-digit hex number.

printbytes =(BYTES b)VOID: see manual

printstring =(STRING s)VOID: see manual

standout REF FILE see manual. The library attempts to
 open 'standout' on 'standout channel'
 using "".

standin REF FILE see manual. The library attempts to
 open 'standin' on 'standin channel'
 using "".

- 30 -

3.3.7 Fault and attention handling

errout FILE The value referred to by 'standout'
 after it has been presented to a call
 of 'open' by the library

error message (INT i)VOID: prints, on standout, the string
 corresponding to fault number 'i', as
 provided by the FAULT program (G7).

a68c error =(STRING s, INT i)VOID:
 The USE level of the library assigns
 this routine to 'runtime error'. Calls
 'return fault(i)', assigns 'errout' to
 'standout', prints a message for the
 fault number (or 's' if this is not
 ""), calls 'return fault
 (ABS16r80000000)', calls 'backtrace',
 sets return code to 'i', and jumps to
 'stop'.

backtrace PROC VOID prints on 'standout' a list of the
 currently active routines.

a68c attention PROC VOID The USE level of the library assigns
 this routine to 'attention routine'. It
 calls 'return fault(previous error)',
 assigns 'errout' to 'standout'. If the
 attention can be cleared with a null
 capability (i.e. the attention was
 level 'I') it does so and calls
 'backtrace', otherwise it calls
 'scratch(standout)'. In either case it
 then jumps to 'stop'

stop label set after 'PRELUDE USER'

- 31 -

3.4 Definitions provided by MATH

maxreal REAL see manual; exponent 127, mantissa
 16r7fffff; about 1e39.

smallreal REAL see manual; exponent -22, mantissa
 16r400001; about 1.19e-7

pi REAL see manual

3.4.1 Input and output for REAL and COMPL

readreal PROC REAL see manual; exponent characters can be
 'E' or 'e' or '≤'.

readcompl PROC COMPL see manual; plus-i-times characters can
 be 'I' or 'i'.

NUMBER mode UNION(INT,REAL)

printfixed =(NUMBER n, INT w,a)BOOL:
 see manual

printfloat =(NUMBER n, INT w,a,e)VOID:
 see manual

printwhole =(NUMBER n, INT w)BOOL:
 see manual

printreal =(REAL r)VOID: see manual

printcompl =(COMPL z)VOID: see manual

fixed =(NUMBER n, INT w,a)STRING:
 see manual

float =(NUMBER n, INT w,a,e)STRING:
 see manual

whole =(NUMBER n, INT w)STRING:
 see manual

3.4.2 Mathematical subroutines

sqrt =(REAL x)REAL: see manual; calls 'runtime error' for
 negative arguments

exp =(REAL x)REAL: see manual; calls 'runtime error' if
 result would cause overflow

ln =(REAL x)REAL: see manual; calls 'runtime error' for
 negative arguments

- 32 -

sin =(REAL x)REAL: see manual

cos =(REAL x)REAL: see manual

tan =(REAL x)REAL: see manual; calls 'runtime error' for
 arguments near singularities of tan

arcsin =(REAL x)REAL: see manual; calls 'runtime error' if
 x>1 or x<-1

arccos =(REAL x)REAL: see manual; calls 'runtime error' if
 x>1 or x<-1

arctan =(REAL x)REAL: see manual

3.4.3 Random number generators

SYSRANDOM mode see manual
RANDOMDATA mode see manual

get random =(INT i)RANDOMDATA:
 see manual

save random PROC RANDOMDATA see manual

change random =(RANDOMDATA r)VOID:
 see manual

random PROC REAL see manual

normal random =(REAL m,s)REAL:
 see manual

Appendix Y

'Storage Management for Algol68'

- 1 -

 Storage Management for ALGOL68

 A. D. Birrell

Abstract This paper describes some of the
 techniques which can be used for managing the
 run time storage required for an ALGOL68
 program. The emphasis is on stack storage,
 since garbage collection techniques would
 require another paper. The problems caused by
 some ALGOL68 constructs are described; the
 solutions given are mainly those adopted in
 the Cambridge ALGOL68C system.

1 Representation of objects.

 ALGOL68 is a language concerned with internal objects and
operations upon them. In designing the storage management for
ALGOL68 one of the first questions to be faced is how to
represent these objects. In other words, when a value of some
mode (data type) is assigned, or yielded, what bit patterns are
physically moved around the store of the machine.

 For some modes, the choice of representation is
straightforward:

 int => appropriate (machine-dependent) bit pattern -
 typically a single word.

 char => single byte (if possible).

 real => floating point number.

 Other modes can be built out of simpler parts:

 struct(...) => concatenation of the fields, possibly
 with gaps for boundary alignment.

 union(...) => (marker, value)

 routine => (entry address, environment pointer)

 Note that although the ALGOL68 report does not talk of values
of mode union(...), a value which has been united is universally
represented as the value with a small marker indicating its mode.
The 'environment pointer' in a routine is used in addressing
items in blocks outside the routine - this is considered later.

 It should be pointed out here that it is possible to achieve
considerable simplification of many of our problems by an
indirection. By representing values of the more complicated
modes by a pointer to data in a global storage area, the whole
stack organization is simplified; this substitutes the problems

- 2 -

of managing the global storage area for the problems described
below. I believe such a technique has been adopted in the
Carnegie-Mellon implementation of ALGOL68S.

 The representation of multiple values is a cause of many
problems. There are several causes. Firstly, we must always
know the bounds of an array (multiple value), so that we can
generate code to copy the array, and for array bound checking.
Often, situations arise such that we cannot know these bounds at
compile time and so must store them as part of the run time
representation. Secondly, the facility of trimming a multiple
value allows the program to manipulate sub-arrays. Unless we
copy the elements of an array when we trim (which seems
needlessly expensive), we must store separately from the elements
a block containing the bounds of, and a pointer to, the elements.
Thirdly, when subscripting an array we require a uniform distance
between the addresses of the elements. When the elements are
themselves arrays, we must carefully consider how to achieve
this.

 For example:

 [][]int v= ([]int x=(1,2)
 y=(1,2,3),
 z=(1,2,3,4);
 (x,y,z)
);

 We require that (address for v[1]) - (address for v[2])
 = (address for v[2]) - (address for v[3])

All these requirements can be satisfied by using a descriptor
containing bounds and a pointer to the elements. Thus:

 z ---> 1 4

 1 2 3 4

 v ---> 1 3

 1 2 1 3 1 4

 1 2 3 4

 1 2 3

 1 2

 Additionally, the descriptor contains a stride for each
dimension, to indicate the spacing between elements. For
example, if we have

 [,,]int w = (......);
 [,]int p = w[,1,];

- 3 -

then the representations of 'w' and 'p' are:

 w = 1 10 100 1 10 10 1 10 1

 strides

0 1 10 11 100 101
w[1,1,1] w[1,1,2] w[1,2,1] w[1,2,2] w[2,1,1] w[2,1,2]
p[1,1] p[1,2] p[2,1] p[2,2]

 p = 1 10 100 1 10 1

 strides

 A final step in the representation of such objects is usually
that the pointer, instead of being the address of the first
physical element, is the address which would be that of the
element whose subscript is 0 in each dimension, even if this is
not physically part of the array (or even a legal address). This
simplifies subscripting, since the computation no longer involves
the bounds (unless for checking purposes).

 Thus in general objects involving array elements can be
complicated tree structures. When such an object is assigned, or
storage for it is generated, we must generate code to manage such
tree structures. Innocuous looking declarations or assignments
can generate considerable tracts of code, and the presence of
such objects is the major reason for complexity in our stack
management. In future we will term the first level of such an
object the static part of the object (its size is known at
compile time); the remainder of the object is the dynamic part
(its size may not be known until run time).

 The representation of names, that is objects whose mode is of
the form ref amode, is mainly straightforward - the address of an
amode object. However, a complication arises if amode is of the
form [...]bmode. This complication is caused by trimming; the
scope of the name yielded by trimming is the same as that of the
name being trimmed. Thus the descriptor produced can

be required to exist longer than the block in which the trimming
occurs, and so cannot be allocated on the present stack frame.
For example

 [1:10] ref[] int v;
 [1:20] int w;
 for i to 10 do int j; ... ; v[i]:=w[i:i+10 at i] od;

 Here, the descriptors for the arrays referred to by the
elements of 'w' are created when trimming 'w' inside the loop,
but their storage cannot be allocated at this point. For this
reason, when allocating store for an object whose mode is of the

- 4 -

form ref[....]bmode, we also allocate store for a descriptor.
For example the declaration of 'v' allocates store for 10 extra
descriptors. An immediate optimisation is to represent such
names as the descriptor, rather than its address. For example,

 v = 1 10 4

 1 10 2 11 3 12 elements of 'v'

 elements of 'w'

 w = 1 10

 Note that this causes the implementor some tedium, since
ref[...]bmode must always be handled as a special case. It also
causes minor complications in handling identity relations for
objects of such modes.

2 The stack

 The stack organisation we will develop is based on the
conventional ALGOL60 stack, which is summarised here.

 The stack consists of a number of frames, one for each block
which has been entered but has not yet terminated.

 At any time there is a current display. A display consists
of a number of display registers (or levels), each containing the
address of some frame. The current display consists of registers
addressing the current and each textually enclosing block.

 To access a word of the stack, we use an address of the form

 [display register] + offset

where the display register (but not its contents) and the offset
are known at compile time.

 Due to recursion, there may be more than one frame for each
block.

 On entry to a block, a new frame is started and an extra
display register added to the display in order to address the
frame.

 On entry to a procedure, the complete display is reset to
correspond to the block in which the procedure (not the call)
occurred. To allow this operation, the representation of a

- 5 -

routine value contains an environment pointer indicating the
values to load as the new display. This routine value is known
as a closure; due to recursion, there may be different closures
for a single routine text.

 On exit from a block or procedure, the display is restored to
its previous value.

 In ALGOL68, there are several categories of data we wish to
store on the stack.

a) A heading containing the address of the previous frame,
 subroutine link, information for setting up the display, etc.

b) values for definitions: for 'int i' the value referred to,
 for 'real x = random' the value itself.

c) anonymous results created during elaboration of the block.

d) array elements

e) storage for explicit loc generators.

 Of these (a), (b) and (c) are straightforward, but (d) and
(e) are difficult since the amount of storage required may be
large and may not be known at compile time.

 It is common practice to store (a), (b), (c) at the start of
the frame, with (d) and (e) at the end. This has two advantages:
the offsets written in instructions are smaller (many machines
place severe limitations on such offsets), and we always know the
offsets for identifiers at compile time. We can thus consider
each frame as being divided into a static frame containing (a),
(b), (c), and a dynamic frame (possibly empty) containing (d) and
(e). Further, it is convenient to treat (c) separately as the
SWOST (static working stack) frame, calling the remainder of the
static frame the static idf frame. Similarly, we can sub-divide
the dynamic frame into the DWOST frame containing the dynamic
parts of SWOST objects, and the dynamic idf frame. For example:

 begin
 int p, q, r, [1:3]ref int s;
 for i to 3 do s[i] := loc int od;
 .
 .
 (p,q,r) #row display#
 .
 .
 end

- 6 -

<-------- static frame --------->	<----- dynamic frame ------->		
<- static idf frame ->	<--SWOST->	<---dynamic idf--->	<-DWOST->
	frame	frame	frame

heading 1 3 1 3

 p q r s descriptor elements loc elements
 for (p,q,r) of 's' generators of (p,q,r)

 display register for
 this frame

 Management of the static frames is mainly straightforward.
Storage is allocated on the static idf frame only at definitions.
The structure of the language is such that at a definition, none
of the anonymous results which have been created in the current
block still exist, so the SWOST part of the frame is empty. Thus
the static idf frame is contiguous storage starting at the end of
the heading area. The SWOST, then, is always placed at the end
of the static idf frame. However, situations can arise which
produce holes in the SWOST; these are typically when we are
constrained to produce the result of some action without
overwriting its parameters. An example might be:

 compl w := ..., z := .. ;

 ... w * z

 w z store for
 w * z

 It is always possible to avoid such holes by copying, and
with sufficient care most holes can be avoided without copying.
In ALGOL68C, we decided that the extra expense of allowing the
holes was not great enough to justify the complexity (or expense,
if we copy) of avoiding them. Accordingly, holes are allowed to
occur on SWOST; however since SWOST for a block is always empty
at a semicolon and before a definition, such holes are generally
of short duration. It should be noted that all static frame
offsets are known at compile time. No run time management is
required.

 Before considering the management of dynamic frames, we
should look at an optimisation available to us. Within a single
procedure, we know at compile time all the offsets inside each

- 7 -

static frame. If, then, we place all static frames first,
followed by the dynamic frames, we will be able to address all
the static frames with a single display register, pointing to the
base of the first static frame. This optimisation is often
described as having one frame per procedure, but this is not
really an accurate description. In terms of when store is
allocated and recovered, and in the interleaving of static idf
frames with SWOST, we are still running one frame per block. The
only alteration is to omit some display registers, and move the
dynamic frames. The dynamic frames are still, in every sense,
one per block. This optimisation gives us several gains. The
number of display levels is drastically reduced, being limited to
the textual nesting depth of procedures - in practice, we have
never encountered depths greater than 5, although ALGOL68C allows
for 64. The number of display registers required is in fact less
than the textual nesting depth, since if an enclosing frame is
not referenced from inside a procedure, it can be omitted from
the display. (This is allowed by, and required by, the rules on
the scope of routine values.) It is possible, instead of keeping
the complete display, to keep only a pointer to the static frames
of the current procedure, and store there a pointer to the frames
of the enclosing procedure. Then accessing a frame of an
enclosing procedure is achieved by indirecting down this static
chain. Since the number of levels on the static chain is
typically less than 5, these indirections never go very far. In
ALGOL68C we maintain a pointer to the outermost level, and one to
the current procedure; in this way only about 2% of static frame
accesses require indirection down the static chain (and then,
less than 4 indirections). These indirections can be further
reduced by remembering which registers currently address outer
levels. It should be noted that, using the above techniques, if
a block requires no dynamic frame then no run time cost is
incurred by block entry or exit. This means that the programmer
can freely use begin/end for structuring his program without
worrying about extra code being generated. The environment
pointer of a routine is now a pointer to the frames of the
enclosing routine, and is used for the static chain when the body
of the routine is elaborated.

 The mechanism used by ALGOL68C for run time management of
dynamic frames is unusual. At first sight it appears too
complicated, but by paying a little in in conceptual complexity
we have attempted to minimize run time actions, and as far as
possible to eliminate them completely for blocks or procedures
with no dynamic frame. We define a drange to be any range
(block) which, excluding inner ranges, allocates storage on a
dynamic frame, and a droutine to be any routine containing a
drange. For each dynamic frame we will require a pointer to the
top of that frame - this we call the dsmd (dynamic stack
management data) for the frame. ALGOL68C always keeps the dsmd
stored on the static frame at an address known as the dsma - as
will be seen, this simplifies our run time actions. With the
stack organization as described above, we would perform the
following actions; these will be modified in the light of changes
to be described later.

- 8 -

a) On entry to the outermost drange of a droutine, we allocate a
 dsma and initialise its dsmd to the top of the static frames.

b) On entry to an inner drange, we allocate a new dsma and
 initialise its dsmd to the previous dsmd.

c) To allocate storage on a dynamic frame, we use and update the
 current dsmd (as addressed by the current dsma).

d) On exit from an inner drange, we revert to the outer dsma.
 Note that this is not a run time action, since we know the
 dsma (as a static frame offset) at compile time.

 This mechanism is simpler at run time than the alternative of
keeping a single dsmd and preserving/restoring it; it is the only
tenable mechanism for the stack organization described below.
Under this scheme, jumps present no problem - at the target
label, we revert to the appropriate dsma. It is difficult to
produce an alternative scheme which does not have to preserve the
dsmd at every call in case there is a jump out of a drange in
some inner routine; such preservation has the effect that you pay
for dynamic frames even if you do not use them. An example of
our stack organization would now be:

 begin
 [1:10]int a;
 proc f = int:
 begin
 [1:10]int b;
 int p, q;
 begin
 [1:10]int c;
 .
 .
 .
 end
 end;
 f
 end

The stack after declaring 'c' might be:

 outer block middle inner
 block block

outer a elements heading p q middle b inner c elements elements
dsmd of 'a' for 'f' dsmd dsmd of 'b' of 'c'

 outer display display register current
 register for 'f' dsma

- 9 -

 Considerable difficulty is presented by argument passing,
when the arguments have dynamic parts allocated during their
elaboration. For example:

 (random < 0.5 | f | g)(a, loc[x:y]int, b)

Firstly, consider which display register to use for addressing
the static parts of the arguments while inside the called
routine.

a) Using the display register of the calling routine is not
 possible, since inside the called routine we would not know
 the offsets for the arguments.

b) We could use a separate display register solely for the
 arguments, but this would double the number of display
 levels. (This solution is quite commonly adopted by other
 implementors.)

c) The only other possibility is to address the static parts of
 the arguments using the display register of the called
 routine.

Assuming choice (c), then, we must consider where to place the
dynamic frame allocated for the arguments.

a) We cannot place it before the static parts of the arguments,
 since we do not yet know its size.

b) We can place it after the static parts of the arguments only
 if we place it after the other static frames of the called
 routine, but in ALGOL68C we do not know the size of the
 called routine's static frames while we are elaborating the
 call. Some implementors do arrange to maintain this
 information at run time.

By this stage in the design of the stack we have accumulated
(albeit implicitly) several problems.

1) Where to place the dynamic parts pf arguments.

2) How, at the calling end, to address the static parts of the
 arguments since we do not at that stage have a display
 register for them.

3) Storage is wasted since dynamic frames start at the high
 water mark of the static frames of the routine.

4) The ALGOL68C separate compilation mechanism would require a
 display register for each segment.

5) Any proposed solution of (1) to (4) with this form of stack
 organisation appears to be much too complicated.

- 10 -

 In ALGOL68C, to solve these problems we made a drastic
re-arrangement. Instead of continuing attempts to organize a
single stack, we split the storage into two independent stacks.
The static stack contains all static frames, and is addressed by
display registers and offsets; the dynamic stack contains all
dynamic frames, and is referred to from the static stack.

 We can now have a simple solution to the argument passing
problem. The static frame for the arguments is addressed at the
calling end using the display register of the calling routine -
since there are no intervening dynamic frames we know all the
offsets at compile time. Inside the called routine, the
arguments form the first static frame. The dynamic frame (if
any) for the aguments is treated as any other dynamic frame, with
no additional problems; if there is such a dynamic frame, the
arguments will constitute a drange. Thus:

 static calling store for static called routine
 stack static frames heading argument frame static frames

 dynamic calling argument called routine
 stack dynamic frames dynamic frame dynamic frames

 The wasted static frame storage is eliminated, and we do not
need a separate display register for separately compiled
segments.

 With this revised organisation, we must revise the actions to
be performed for managing the dynamic frames. Since we no longer
know at compile time the base for the first dynamic frame of a
droutine, this information must be passed with the call. Since
we do not know at the call whether the called routine is, or will
call, a droutine, the information must be passed with every call.
To avoid this causing a run time action on every call, we always
have the current dsma available at run time (in a particular
register, say, or in a fixed store location). The actions to be
performed are then:

a) On entry to any drange, allocate a new dsma, initialise its
 dsmd to the previous dsmd, and reset the run time dsma.

b) On exit from any drange, restore the run time dsma to its
 previous value.

c) To permit (b) in the outer drange of a droutine, preserve the
 dsma on entry to a droutine.

To allow for labels and jumps, we include as a droutine any
routine containing a label; at a label we reset the dsma to the
appropriate value. Note that these arrangements still satisfy
the dictum that if you don't use the dynamic stack then you

- 11 -

shouldn't pay for it (except at labels). Our example might now
be as follows:

 begin
 [1:10]int a;
 proc f = (int i)int:
 begin
 [1:10]int b;
 begin
 [1:10]int c;
 (i <= 1 | 1 | i * f(i-1))
 end
 end;
 print(f(1))
 end

The stacks after declaring 'c' would be:

 outer block middle block inner block

 static a outer heading i preserved b middle c inner
 stack dsmd for 'f' dsma dsmd dsmd

 current dsma

 dynamic elements elements elements
 stack of 'a' of 'b' of 'c'

 One serious problem remains in our description of the stacks
- this is the yielding of a result from a block or a procedure.
The difficulty is that the result is constructed on stack frames,
inside the block or procedure, which are about to be
relinquished. For example:

 begin
 [1:1000]int a;
 .
 .
 .
 (1,2,3,4)
 end

 static previous a descriptor current
 stack dsmd for (1,2,3,4) dsmd

 dynamic previous elements 1 2 3 4
 stack frames of 'a'

- 12 -

There are basically two possibilities: either copy the value onto
the outer SWOST and DWOST, or delay relinquishing the frames.
However, copying can be very expensive (and sometimes very
difficult), while delaying relinquishment can waste vast amounts
of storage. An extensive analysis of this problem has been given
by Branquart, and an algorithm which assists in copying has been
given by Meertens. It is certainly best to delay the decision as
to whether to copy or to avoid relinquishing, until as late as
possible. At present ALGOL68C does not recover the storage in
this situation - this is hardly satisfactory. With sufficient
care, it is possible to achieve satisfactory results even in
extreme examples such as:

 op * = ([]int x,y)[]int: ... ,
 + = ([]int p,q)[]int: ... ;
 [1:100]int a,b,c;

 l: a * b + (... | c | goto l);

In particular, the compiler can treat some constructs as if they
were dranges (though not actually ranges) to aid the recovery of
dynamic stack.

3 Summary

 The power and flexibility of the constructs available in
ALGOL68 lead to considerable complexity in the objects being
manipulated and in the management of the storage for them. By
dividing the stack into two independent stacks we greatly
simplify these problems, although on an unsegmented machine the
need for three storage areas (the stacks and the heap) presents
extra difficulties. An alternative solution, often adopted, is
to place dynamic parts on the heap in times of difficulty - this
we still must do when assigning objects of modes such as
union([]int,[]real) - but this approach was discarded, because it
is expensive and because it uses the heap behind the programmer's
back. A full discussion of the problems of result passing would
be outwith the scope of this paper, as are the techniques
available for flex.

4 Acknowledgements

 The ALGOL68C compiler was developed in Cambridge by a team
led, until January 1975, by S.R.Bourne. Since then it has been
maintained and further developed by C.J.Cheney for the University
of Cambridge Computing Service. Throughout the development of the
compiler much advice and much work has been given by M.J.T.Guy,
I.Walker, and myself. Much of the work has been funded by the
Science Research Council, and the maintenance is now supported by
the Computer Board. Help has been given by our various users and
by I.Wand of York University Much of our terminology, and some of
the ideas, are based on those of P.Branquart.

- 13 -

5 References

[1] A. van Wijngaarden, et al, "Revised Report on the Algorithmic
 Language ALGOL 68", Acta Informatica, Vol. 5, pts 1,2,3,
 (1975).

[2] S.R.Bourne, A.D.Birrell, I.Walker. "ALGOL68C Reference
 Manual", Cambridge University Computer Laboratory, (1975).

[3] P.Branquart, et al, "An Optimized Translation Process and its
 Application to ALGOL 68", Report R204, M.B.L.E., Brussels,
 (1974).

[4] P.Knueven, "The Foundation of a Flexible Run-time System for
 ALGOL 68S", in "Experience with ALGOL 68", Proceedings of the
 Liverpool University Conference, April 1975, Ed. C.C.Charlton
 and P.H.Lang.

[5] L.G.L.T.Meertens, "A Space-saving Technique for Assigning
 ALGOL 68 Multiple Values", Mathematisch Centrum, Amsterdam,
 (1976).

Appendix Z

Cap Project Notes

1 A68C and CAP protected procedures

Introduces the coroutine mechanism for invoking CAP protected

procedures.

2 Program Sharing

Explains the details of the CAP Algol68C separate compilation

mechanism.

3 CAPABILITIES in ALGOL68C

Describes facilities for manipulating CAP capabilities fro within

CAP Algol68C.

