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Section A:  Introduction 

1   The Problem 

1.1 Aims and Requirements 

    This thesis is concerned with the construction of a high 

level language system suitable for the implementation of a 

general purpose operating system for a computer.  There are three 

aspects to this task: firstly, a suitable high level language 

must be chosen or designed; secondly, a suitable implementation 

of this language must be manufactured; thirdly, the operating 

system itself must be written. These three aspects inevitably 

overlap in time - experience in implementing the language may 

cause one to review decisions taken in the design of the 

language, and experience in constructing the operating system 

will bring to light inadequacies, inconveniences and inelegancies 

in both the implementation and the language. 

    Most previous work in this field has been concerned with the 

first of these aspects, and has adopted the approach of designing 

special-purpose languages, categorized as 'System Programming 

Languages' (SPL's) or 'Machine Oriented Languages' (MOL's). 

Various such languages have been developed, some of which are 

discussed below.  Few such languages have achieved the elegance 

or generality of ordinary general-purpose languages such as 

Pascal or Algol68.  Little or no investigation has previously 
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been made into the second of these aspects, the implementation of 

the language.  The implementation, as distinct from the language, 

can have a very considerable effect on the practicability of 

using the resulting language system for manufacturing an 

operating system.  Certainly, there are languages which, however 

brilliant the implementation, would inevitably be disastrous for 

writing an operating system; but the implementation, however 

suitable the language, makes the difference between the language 

system being an aid or an impediment to the system programmer. It 

is with aspects of the implementation that this thesis is mainly 

concerned. 

    It should be emphasised that we are considering the real 

construction of an operating system on physical hardware without 

sophisticated external support.  The 'language system' must not 

amount to a simulation package, nor include facilities which 

would normally be considered part of the operating system (such 

as in Simula or Concurrent Pascal), unless those facilities are 

themselves implemented using a high level language (they could 

then be considered to be part of the operating system). It is a 

principle of the design that the language system should not 

contain imbedded design decisions which would be more properly 

considered as part of the design of the operating system - it 

should be a tool, not an integral part of the operating system. 

Also, since we are providing a general purpose operating system, 

user programs can be written in any language - we are not 

assuming a single-language operating system. 
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    When embarking on the production of a suitable language 

system, we must at an early stage make a fundamental decision: 

whether to base the work on an existing high level language which 

can be modified as necessary, or whether to construct a new 

language from scratch.  If we adopt the latter alternative, we 

will inevitably design a special-purpose language and follow in 

the footsteps of BLISS et al. In fact, I have adopted the former 

alternative.  This leads to new ground: we must decide to what 

extent modifications to the language are needed, and this should 

enable us to decide which factors in the design of a suitable 

language arise peculiarly from writing an operating system, and 

which arise from the normal requirements of a non-numerical 

program.  Also, when following this path we can investigate the 

extent to which suitable implementation techniques can aid us in 

achieving our aims with minimal special purpose modifications to 

the language. 

    The language system produced was intended to be used (and is 

used) for an operating system for the Cambridge CAP computer. 

This computer, and its operating system, have many unusual fea-

tures, but the techniques and facilities developed for the 

language system are not especially CAP-oriented - they have 

applicability to many other machines and environments. 
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1.2 Use of Normal High Level Language Facilities 

    The advantages of using a high-level language instead of 

machine-code are numerous and well known; they amount to saying 

that, when writing in a high-level language, it is easier to 

write programs, more difficult to write faulty ones, and when you 

have written a faulty program you discover the fault sooner.  We 

are not much concerned here with faulty programs (although much 

of the distinction between a 'good' and a 'bad' implementation of 

a language lies in what it will do with a faulty program), but it 

must always be borne in mind when considering any topic in 

language design or implementation that a programmer must be told 

as early as possible of any mistake.  As far as possible, all 

error checking should be performed at compile time, and we must 

always try to have sufficient redundancy in constructs for a 

simple mistake to be detectable.  Error detection is one of the 

major gains in using a high level language, but first we must be 

able to express our problem conveniently. 

    Much system programming is amenable to writing in a normal 

high level language with no particular trouble.  Such operations 

as converting a textual file title into a disc address are merely 

mathematical mappings (albeit somewhat complicated ones), and can 

be implemented using techniques remarkably similar to those used 

in any non-numerical computing.  A programmer implementing such 

algorithms is involved in the task of taking a single, 

complicated operation and breaking it into several simpler ones. 
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When writing in machine code, he is forced to resolve the problem 

into particular bit or word manipulations allowed by his 

particular hardware and operating environment; when writing in a 

high level language, such drastic measures are not forced upon 

him, since he has available to him operations which are less 

basic.  A high level language makes available to the programmer 

sets of abstract objects, which he can consider not in terms of 

his hardware and operating system, but purely in terms of the 

objects, their relationships to each other, and the operations he 

can perform upon them.  For almost all of almost every system 

program, it is sufficient to express the algorithm in such 

abstract terms - it is extremely rare for the programmer to 

require to manipulate non-abstract (hardware or system oriented) 

objects or operations. Expressing algorithms in such abstract 

terms clearly has many advantages.  If the abstract objects and 

operations are suitable, it will be much easier to convert an 

algorithm into them than into the machine objects, purely because 

they involve 'higher level' concepts more closely related to the 

original algorithm.  For example, indexing an array is more 

closely related to table look-up than is adding a fixed point 

integer, multiplied by the amount of store-per-element, to the 

base address of a sequence of elements; indeed, the programmer 

can use the abstract facility without knowing how it is 

implemented today. Thus, a suitable set of abstractions will be 

ones which would be encountered while converting the abstract 

algorithm into machine code - using the abstractions saves a step 
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in the conversion.  If the algorithm can be expressed purely in 

terms of the abstractions, then it has no dependency on the 

hardware or operating environment.  This has several beneficial 

consequences:  firstly, it implies that the programmer has not 

made a mistake in mapping his objects onto the hardware (all such 

mistakes are centralised in the compiler!); secondly, the 

hardware can change without affecting his program (for a system 

program, the gain here is that the program can be developed on a 

different computer, or before the hardware of the target computer 

has stabilised); thirdly, the operating system interfaces can 

change (this is quite likely to happen during the development of 

a system, and having consequently to rewrite all the programs, 

rather than just recompile them, would be unfortunate).  Also, 

abstract objects and operations are likely to have (and, indeed, 

are usually designed to have) consistency constraints which can 

be checked at compile time; this can produce very powerful error 

checking, and is a feature of most good high level languages. 

    Even programs which are not concerned exclusively with 

abstract objects or operations (for example, a program handling 

file directories or disc addresses) are likely to be concerned 

mainly with abstract operations (such as sorting the entries in 

the directory or yielding the disc addresses from a table look-

up).  There are very few programs concerned with objects or 

operations which are exclusively hardware or system oriented.  

Consequently, most of most of our programs can be written in a 

general purpose language, and only occasionally will we require 
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facilities peculiar to system programs.  It is with the provision 

of such general purpose facilities in a suitable manner that sec-

tion 'B' is concerned. 

    The language chosen as basis for the project was Algol68 [1]. 

The particular language chosen is not vitally important; most 

general purpose high level languages such as Algol 60, PL/1, or 

PASCAL would be equally suitable.  Any language having a 

reasonably clean definition, powerful data structuring 

facilities, and good structures for ordering flow of control 

would be acceptable.  Some of the languages embodying more recent 

ideas in language design, such as Alphard [2] or CLU [3] might 

suggest themselves as a better base language, but this would be a 

comment on the languages in general, not on their particular 

suitability for our present purposes.  Since we are considering 

the minimal modifications necessary to provide a language system 

suitable for writing an operating system, and since work on a 

portable Algol68 compiler was already under way in Cambridge, 

this compiler was a suitable starting point.  The Cambridge 

Algol68 compiler has developed in parallel with the CAP operating 

system, and since I was closely involved in both projects I have 

been able to take appropriate steps in the design and implementa-

tion of the compiler. 

 



- 8 - 

1.3 SPL Requirements 

    There are many features and facilities which are often 

described as being characteristic of SPL's, and before embarking 

on the remainder of this thesis it will be worthwhile to outline 

these.  I do not necessarily agree that these actually are 

requirements, and this will be apparent as the description of the 

system actually produced develops.  An assessment of which 

facilities are required has been given by Goos [4], although I 

disagree with him on several points. 

    It is clearly a necessary requirement that it should be 

possible to write every machine operation within the language. 

This should preferably take the form of in-line code, rather than 

separately compiled (or assembled) routines. 

    There must be facilities for the user to control storage 

allocation and management, but the system must provide suitable 

defaults.  Similar remarks apply to the I/O models, and indeed to 

all code that is traditionally considered as 'runtime system'.  

In general, the system should provide a model which the 

programmer is free not to use. 

    It must be possible to write the whole of the operating 

system within the language.  This necessarily includes writing 

the runtime system of the language, since otherwise we are merely 

indulging in a buck-passing exercise. 

    It is often recommended that facilities for packed structures 
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be provided (as in PASCAL, MARY et al), but I am not convinced. 

One of the aims of this request is to describe hardware-defined 

objects, and I believe this to be a fundamentally misguided 

approach to that problem [C2.2].  The other aim is efficiency, 

which is laudable, but not fundamental since, in principle, the 

compiler is free to decide whether or not to use packed 

representations. 

    Some facility for parallel processing or synchronization is 

often requested.  I believe it will become apparent later that 

this is not appropriate for the style of language system 

envisaged here.  In the same vein, some mechanism for the 

handling of interrupts and other asynchronous events is certainly 

required, but I believe the library facilities for these 

described below [C1.1] to be sufficient. 

    Since an operating system is necessarily a large and 

complicated software package, some form of separate (and 

preferably modular) compilation will be required; this is 

discussed extensively below. With sufficient support in this 

direction, a language system can become a very powerful 

implementation tool. 
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1.4 The Approach Adopted 

    As noted above, the decision was made at an early stage to 

base the present work on an existing language, namely Algol68, 

rather than design a completely new one.  It was expected that 

the bulk of the work would be in designing language changes to 

make Algol68 suitable as a system programming language, 

particularly for an architecture as unusual as the CAP.  In 

practice, very few language changes have been made, although a 

complete operating system has now been written. Instead, the 

emphasis in the work has been in the careful design of the 

implementation to facilitate its use in writing the operating 

system, and it is with aspects of the implementation that the 

bulk of this thesis is concerned.  Detailed consideration is 

given to separate compilation and library mechanisms, to the 

portability of the compiler, to the storage management techniques 

used for object programs, and especially to the provision of a 

runtime system for object programs. 

    Although the language unaltered is sufficient for almost all 

aspects of the operating system, there are situations where 

changes are needed.  Some such changes which have been made are 

described, but also some changes which seem desirable but have 

not been made - some of these are in the form of problems, to 

which the solution is not yet apparent. 

    The work being described has at most stages in its develop-

ment been required to provide a usable system, and where 
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techniques and solutions are described, they have generally been 

the subject of much practical exercise.  I have tried throughout 

to avoid the danger of lapsing into a present or past tense when 

the future tense would be more truthful. 
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2   Background 

2.1 The Algol68C Project 

    The Algol68C compiling system grew out of a small 

experimental system written in 1970 by S.R.Bourne and M.J.T.Guy 

in the University of Cambridge.  They implemented a language 

called 'Z70', which bore some resemblance to the recently 

designed language Algol68.  Z70 was an expression language (like 

Algol68); that is, almost any construct of the language delivered 

a value.  For example, one could write: 

        (a:=b)+c 

or even 

        a+(INT i=readint; i*i) 

As such, its syntax and semantics were similar to Algol68, 

although Z70 was a much smaller language.  The major difference, 

was that Z70 had only two data types ('integer' and 'function'), 

whereas Algol68 has an unlimited number, through the use of modes 

for describing structured values, for checking argument types in 

procedure calls, and for 'united' modes (used for values whose 

type varies dynamically at runtime). 

    Z70 was originally implemented on the Titan computer (a 

prototype ICL Atlas 2), using a syntax-directed compiler 
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('PSYCO', based on that produced by Irons [5]).  PSYCO is driven 

by a set of production rules specifying the syntax of the 

language, and containing semantic rules causing output of 

compiled code at appropriate moments; output was in the form of 

'IIT', a Titan assembly language.  This original PSYCO system had 

some delightful properties, such as the message: 

        '.....' is not a 'PROGRAM' 

Program debugging could be achieved by a binary chop technique! 

    This system was rapidly improved: some of the functions of 

PSYCO were taken over by a program written in Z70, the language 

was extended to include more of the features of Algol68, and 

PSYCO itself was modified, mainly to produce intelligible 

diagnostics and error recovery.  By the middle of 1972, the 

system was recognisable as a deviant of Algol68 (ie. an 'extended 

subset', though this description could also be applied to 

FORTRAN).  By this stage, the various components of the system 

were as follows.  PSYCO was used as a syntax-directed parser 

producing a parse tree as intermediate output in polish prefix 

form; a Z70 program read this in, reconstructed the parse tree, 

and generated IIT.  Finally, the IIT was concatenated with the 

library (written in IIT) and assembled to produce an executable 

core image. 

    By the middle of 1972, the Z70 language still differed from 

Algol68 in several ways.  Major omissions were: some of the 



- 14 - 

intricacies of 'balancing'; multi-dimensional arrays; assigning, 

or yielding as value, of non-trivial objects (such as structures 

or arrays); user-defined operators; the Algol68 input-output 

system and most of the Algol68 library (called the 'standard 

prelude' by Algol68 devotees).  There were several minor exten-

sions, and a primitive separate compilation mechanism (which will 

be described later).  'Z70' was now renamed 'Algol68C', and 

released for use on Titan. 

    A decision was taken in 1972 to produce a new, portable, 

Algol68C compiler; in addition to being portable, the compiler 

was required to give good diagnostics, have good error recovery, 

and produce locally good code (though there was no intention to 

attempt any global optimisation).  Its prospective uses were 

thought to be: student jobs, general algorithmic work and systems 

implementation (such as compiler writing and operating systems). 

The over-riding requirement was portability. 

    In view of previous experience of having part of the Z70 

compiler written in Z70, and because the authors had found 

Algol68C a very convenient and easily debuggable language, and, 

mainly because of the portability inherent in such a system, it 

was decided to write the compiler itself in Algol68, using the 

subset available through the existing compiler.  The system 

envisaged was as follows. 

    To implement Algol68 in its entirety, using a multi-pass 

compiler with intermediate outputs, requires a minimum of four 
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passes to produce assembly code [6].  By a minor restriction on 

the use of indicants [7], this number is reduced to three; by 

keeping a parse tree as an internal data structure, the 

intermediate outputs are eliminated; to achieve portability, a 

specially designed intermediate language is used as the 'assembly 

code'.  The compiler thus consists of three 'phases'. The first, 

called the 'parser', reads the source program, performs mode-

independent parsing and links applied occurrences of identifiers 

to the corresponding definitions.  Phase two performs 'mode 

equivalencing' (determining which textual representations of 

modes correspond to the same data type), 'balancing' (arranging 

that constructs whose flow of control has several exits (eg. 

conditionals) yield the same data type at each exit), the linking 

of applied occurrences of operators to the appropriate operator 

definitions, (the language allows user-defined operators), and 

the mode-independent parsing and error checking.  Phase two was 

also intended to perform such storage allocations as could be 

determined at compile time, but to date this has been deferred 

until phase three.  Phase three is straightforward in concept - 

it scans the parse tree (as modified by phase two) and outputs 

the intermediate code.  In practice, phase three is tortuous, and 

is not yet working entirely satisfactorily, but this will be 

discussed later.  All error checking, except for those checks 

which inherently must be delayed until runtime (such as some 

scope checking and array bound checking), should be performed by 

the compiler, and the intermediate code output should not require 



- 16 - 

any checking, except that some degree of checking is desirable 

for system debugging. 

    The intermediate code to be used, called 'ZCODE', will be 

discussed later.  For each machine a 'translator' was to be 

written to read in the ZCODE, produce executable code, and handle 

linking to the library; a machine dependent library must also be 

written for each machine. 

    By keeping the source text of the compiler as machine- 

independent as possible, portability would be achieved by 

conventional bootstrapping techniques [B3.2]. 

    In September 1972, S.R.Bourne started work on the parser for 

this system; M.J.T.Guy was now mainly engaged on other projects, 

though he still provided much valuable advice, and was invaluable 

for his insight into design problems.  In January 1973, I started 

work on phase two and the code for the Algol68C separate compila-

tion mechanism.  By June 1973, phases one and two were working 

well enough to accept the source program of themselves.  At this 

time, S.R.Bourne departed for three months sabbatical leave.  A 

group consisting of myself, I.Walker (another research student) 

and A.Andrews (a research assistant) started work on phase three 

(based on the Z70 code generator) and a Zcode translator for 

Titan.  In late September 1973, the compiler successfully 

compiled itself on Titan; one week later, the Titan computer was 

finally closed down. 
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    It then took three months to produce a working compiler on 

the IBM370/165 in Cambridge (although a system which worked by 

interpreting ZCODE was produced by I.Walker in November) - the 

system was working shortly before the end of December 1973. 

    During 1973, the intermediate code, Zcode, had been developed 

by the group, with some feedback from I.Wand of York University, 

who intended to transfer the system to their ICL4130.  The 

detailed design of Zcode is defined elsewhere [8], and is likely 

to be the subject of other publications [9]. 

    Further development of the compiler was done in 1974 by 

S.R.Bourne, M.J.T.Guy and myself.  This included rewriting the 

parser error recovery, removing machine dependencies, and 

rationalising the mechanisms used to link the libraries (the 

consequences of the last two will be discussed in detail later). 

At the end of 1974, S.R.Bourne left the project, and the 

University of Cambridge Computing Service assumed responsibility 

for the IBM370 compiler.   During 1975 I developed a Zcode 

translator and a library system to use the compiler for the 

experimental CAP computer, and bootstrapped the compiler onto 

that machine. 

    A reference manual [7], defining and describing the language 

accepted by the system, was written by S.R.Bourne and myself, 

with help from I.Walker.  I have written an implementors' guide 

[10], which defines the interfaces and auxiliary inputs of the 

compiler, and provides the information needed by someone wishing 
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to transfer the system onto a machine. 

 

2.2 The CAP Project 

    The Cambridge CAP computer is part of an on-going research 

project investigating protection techniques and their 

applications to operating systems.  The project has had several 

phases.  Firstly, a highly protected architecture, based on the 

concept of 'capabilities' [11], was designed [12].   Secondly, 

this architecture was realised as a processor, the CAP, built in 

the Computer Laboratory [13].  Thirdly, an operating system has 

been designed and built to run on the CAP [14,15,16], written 

almost exclusively in Algol68C. 

    The architecture, which is described in more detail elsewhere 

[17,18], supports a hierarchical process structure.  Within a 

process, execution moves among protection domains known as 

'protected procedures'.  Each protected procedure consists of a 

number (one to three) of capability segments (ie. store segments 

known to contain only capabilities, which can be manipulated only 

by special purpose instructions).  The capabilities in these seg-

ments specify the totality of facilities and privileges available 

to the protected procedure.  No operation, be it executing an 

instruction, reading from or writing to store, sending a message 

on a software message channel or using a physical peripheral, can 

be performed without quoting the appropriate capability from one 
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of these capability segments. The quotation of a capability is 

always implicit, by use of a 'general address'.  It is a design 

principle of the CAP that there is no form of 'privileged mode' 

or 'supervisor state'; protected procedures which one would 

regard as privileged are privileged only by virtue of the set of 

capabilities to which they have access.  It should be immediately 

apparent, then, that the programming environment for writing the 

innermost parts of the operating system differs from the most 

ordinary object program not structurally, but only in the set of 

capabilities available, and so programming tools providing the 

full freedom of one situation will also be suitable for the 

other. 

    Apart from the ordinary instructions which one would expect 

of any general purpose computer, the CAP has instructions 

concerned with capabilities and the protection architecture. 

There are: 

    MOVECAP    to move a capability 

    REFINE     to yield a more restrictive capability 

    SEGINF     to enquire about a store capability's size and 

               access 

    INDINF     to ask about the contents of a capability 

    ENTER      to transfer control to another protection domain,  

               which is specified by a given capability.  On 
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               return from that domain, control resumes 

               immediately after the ENTER instruction 

    RETURN     to make control revert to the calling regime 

When a protected procedure is entered, control is transferred to 

a fixed address in that procedure.  If the procedure wishes to 

provide multiple entry points or some more complicated entry 

arrangement, it must simulate this by software. 

    Initially, while the hardware was being built, the CAP was 

simulated interpretively using a mini-computer.  During this 

period, cross-compilation of BCPL and Algol68C were made 

available from a local IBM370.  A small single-user operating 

system (OS6, written in BCPL [19]) was implemented, and various 

experimental programs were written. When the hardware became 

available, OS6 was transferred to it, and the cross-compilation 

facilities suitably updated.  In due course, compilation of 

Algol68C and BCPL were made available under OS6, compiling 

programs to run under OS6.  Facilities were also made available 

to compile Algol68C programs (under OS6 or on the 370) to run on 

the stand-alone CAP.  This allowed construction of the operating 

system proper. 

    The details of the operating system which has been 

constructed are described elsewhere and need not concern us here, 

but an outline of the structure may aid the reader.  The system 

consists of two levels of process hierarchy; the top level has 
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only one protected procedure, which is known as the 'co-

ordinator' and is responsible for process scheduling, dispatching 

and synchronisation.  The remainder of the system runs as sub-

processes of the co-ordinator.  These processes typically have 

one protected procedure unique to the process, and several 

protected procedures shared between the processes, providing 

services for the main protected procedure.  There are several 

identical copies of some of these processes (such as the teletype 

handlers), while others are unique (such as those which implement 

the virtual memory system).  A number of the processes are known 

as 'user processes'; in these the main protected procedure will, 

when initiated (for example, by a user at a teletype), identify a 

user then enter a nominated protected procedure, typically an 

interactive command program which allows the user to execute his 

programs as protected procedures entered from the command 

program. 

    At an early stage in considering the design of the operating 

system, the decision was taken that the system should not be a 

single program in the language sense.  That is, the total system 

should be a set of separate programs, communicating together and 

co-operating. This decision was taken as part of the operating 

system design, irrespective of any similar decision that might be 

(and was [C3.1]) taken by designers of language systems.  In 

terms of the operating system design, it has several advantages. 

A principle of the architecture is that each protected procedure 

should know nothing about the internal working of another 
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procedure - this is most readily fulfilled by treating each 

procedure as a separate program.  The operating system, given 

this decision, could readily be written in whatever language 

seemed most appropriate for a particular protected procedure. 

This decision also forced the use of interfaces specified in a 

language independent manner, since the calling and called 

procedures do not in general know in which language each other is 

written.  In practice, all but one protected procedure of the 

operating system are written in Algol68 (the one is written in 

assembler, on efficiency grounds, so that it does not use any 

workspace - a feat no other compiler was capable of achieving); 

however, one must remember that in any case the command program, 

entered as a protected procedure from the operating system, is 

not part of the system and may be an arbitrary program written in 

an arbitrary language. 

    We should note that the CAP project has thus exhibited many 

of the requirements typical of SPL applications.  The compiler 

itself has been required to run on different machines and various 

(and varying) operating systems.  Object programs have run in 

environments ranging from the empty machine, through protected 

procedures in system or user processes, to the command program 

and ordinary user object programs. Some exercise enormous 

privileges (though only when necessary for their task!), others 

have none; some run in a virtual memory environment, others are 

confined to resident real store; some perform explicit I/O 

orders, others communicate with I/O processes, still others with 
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in-process I/O protected procedures, while some are unable to use 

any I/O facilities at all.  Some form of separate compilation 

mechanism is necessary to share program code between differing 

protected procedures. Interfacing with protected procedures 

presumed to be written in other languages can present great 

difficulties in the handling of data objects [C2.2].  Note that 

neither the co-ordinator, nor many of the system processes can be 

allowed the luxury of pausing for a garbage-collection - in a 

language as complicated as Algol68, this requires the most 

careful arrangements for storage management. 

    The present CAP operating system is now running; further 

development is still under way, and systems under different 

experimental architectures may be developed from it.  I believe 

those involved in writing the operating system have been pleased 

(and pleasantly surprised!) with their experience of using the 

Algol68C system [15]. 
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Section B:  High Level Language Implementation 

1   Today's Algol68C System 

    Subsequent chapters of this section describe those features 

of the present Algol68C system which I consider in some way 

original (either because they have not, to my knowledge, been 

done before, or because they have not been viewed in some 

particular way before), and which I have designed or to whose 

design I have materially contributed.  The teamwork involved in 

the Algol68C project was such that each of us discussed ideas 

with the other, and it is impossible to say absolutely "this is 

mine"; any project of which that could be said seems doomed to 

failure through lack of co-operation. 

    In order that the individual topics to be discussed may be 

viewed in relation to the complete system, I will give here an 

overview of the Algol68C system.  The central core of the system 

is the compiler.  This is a large Algol68C program (about 18000 

lines), and represents the major programming effort.  It accepts 

the source form of a 'program segment' (the item of separate 

compilation), and produces Zcode.  Zcode is in fact a family of 

intermediate codes, differing in such things as the number and 

properties of the registers and the size and layout of stored 

objects; these differences are specified by the 'initialisation 

file' read in at the start of each compilation.  Linking between 
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separately compiled program-segments is determined at compile 

time by reading or writing 'environment files', and is expressed 

in the Zcode by program labels and access to common store.  The 

library and runtime system is linked to in precisely the same 

manner, as if it were an Algol68C program-segment.  The 

translator is a separate, machine dependent program which reads 

in Zcode and manufactures executable code. 

    The system, compiling on some machine 'A' for some machine 

'B' (which may be the same as 'A') with operating system 'C', may 

be pictured as follows. 

              init file               Zcode of other 
                for 'B'              program-segments 
 
 
 
    source    compiler on    Zcode   translator  executable 
    program-    'A'         of 'X'     for 'B'    program 
    segment 
      'X' 
 
 
 
          environment files for      environment files to be 
          other program-segments     read by sub-segments of 
          and the standard                      'X' 
          prelude for 'C' 

    This document does not describe the detailed technicalities 

of any of the algorithms or interfaces: these are described 

elsewhere [10,20]. 
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2   Separate Compilation Mechanisms 

2.1 Requirements 

    Separate compilation mechanisms can be found in many 

programming languages.  Even the earliest language having any 

claim to be at all 'high level', FORTRAN, is usually implemented 

with a very versatile independent compilation mechanism, even in 

unsophisticated implementations, albeit with no error checking. 

    The most general description of separate compilation is as 

follows:  take a piece of source text, 'A'; process it in some 

way (eg. by a compiler!) into a partially compiled form, 'X'. 

Some time later, some source text 'B' is presented to the 

compiler, such that A+B forms the source of a complete program. 

'B' is processed by the compiler, and the result is in some way 

combined with 'X' to form complete executable code of the program 

A+B. There are several reasons for wanting to undertake such an 

operation. 

    If, because of some bug or the whim of the programmer, we 

subsequently want to alter the 'B' part of the program, only 'B' 

need be recompiled, then recombined with 'X'.  This is an argu-

ment of efficiency, and can to some extent be blamed on compiler 

writers: if we wrote faster, cheaper compilers then the 

programmer would be less tempted to adopt such strategies.  (This 

argument has been put forward by Hoare [21].)  If computers were 
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infinitely large (or infinitely fast) ... 

    Separate compilation allows the source program to be 

segmented. This is an argument of data management: with 50,000 

line programs (and such programs, unfortunately, exist), 

maintenance and debugging of a single source file is a major 

problem.  Also, if several people are working on the program then 

treating it as an indivisible monolith will lead to disasters 

(like simultaneous editing).  Having a segmented source reduces 

such problems.  Further, if the source is segmented along 

boundaries having well-defined interfaces, some amount of 

independent debugging may be possible (and well-defining the 

interfaces is likely to improve program 'correctness' and make 

modification simpler). This approach can be taken further, to 

allow two programmers to work independently on 'A' and 'B', both 

working to the same interface, possibly with compiler assistance 

to ensure that the interface is met. 

    In terms of 'A', 'B' and 'X' as above, we can envisage some 

other piece of source text 'C', such that A+C is also a program. 

In such a case, we need only compile 'C' and combine it with 'X' 

(the partially compiled form of 'A') to produce an executable 

program.  This, of course, makes 'X' the pre-compiled form of a 

library, 'A'.  Libraries can exist without separate compilation - 

the programs A+B and A+C could merely share the source text 'A' - 

separate compilation has just allowed this sharing to occur at 

some lower level (eg. assembly code). At first sight, then, this 
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would appear to be another instance of overcoming the expense and 

inefficiency of badly written compilers.  It has, however, more 

fundamental consequences: with care on the part of the 

implementer, and assuming suitable loaders, hardware, etc., it is 

possible to share libraries such as 'A' at the level of binary in 

the computer.  That is, it may be possible (particularly in 

segmented machines, but also in simpler ones) to physically share 

'X' when the programs A+B and A+C are running.  When such sharing 

facilities are available, they can produce large savings in 

valuable resources (such as store, load time, swapping), and are 

thus highly desirable.  I can see no way, in high level language 

terms, of achieving such sharing without a powerful separate 

compilation mechanism. We will see later how this aspect of 

separate compilation is used in implementing the Algol68C runtime 

system for CAP. 

    Care must be taken to distinguish between 'separate' and 

'independent' compilation.  Mechanisms which achieve separate, 

but not independent, compilation occur when some of the output of 

an earlier compilation ('A' above) is used as input to a 

subsequent compilation ('B' or 'C' above).  A degenerate form of 

this would be to pass on the source text of 'A', but most 

mechanisms do better, or claim to, by passing only information 

from 'A' that can affect the compilation of 'B' or 'C'.  It is 

entirely possible to do without such information passing, and 

several systems do so.  Perhaps one of the reasons for the 

perseverence of FORTRAN is that it is usually implemented with 
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completely independent compilation of subprograms, allowing much 

pre-compilation of libraries.  Unfortunately such simplicity and 

versatility does not come without its disadvantages; lacking, at 

compile time, information about 'A', the implementer faces a 

choice when compiling those parts of 'B' which depend on 'A'.  He 

can assume either that information collected in 'B' about its 

interface with 'A' is correct (for example, the number and data 

types of arguments of procedure calls, or special statements 

included in 'B' making assertions about 'A'), or he must devise 

some means of checking this information later, when 'X' is 

available - this requires, usually, load time or run time 

checking.  I consider the approach of not checking such informa-

tion to be totally unacceptable - it is the source of many 

obscure bugs.  Checking as late as load time at least avoids the 

bugs, but it can be expensive, may require a special loader, and 

produces worse diagnostics.  Checking at run time is even worse - 

an operating system written using such an implementation which 

suddenly said 'INT cannot be coerced to REAL' on its operator 

console would not be welcome.  Further, having the information 

passed at compile time avoids the programmer having to give the 

compiler so many extra statements (such as FORTRAN COMMON 

statements), although the extra statements, which increase the 

redundancy in the source, can be used to improve the error 

checking. We will see below that separate compilation, even 

though not independent, can be arranged to have few drawbacks. 
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2.2 Separate Compilation in Algol68C 

    Different Algol68 implementations have different separate 

compilation mechanisms, and their implementers will each defend 

their own mechanism with vigour.  In this section I will describe 

and defend, but also criticise, the Algol68C mechanism.  To 

arrive at the Algol68C mechanism, we need only consider dividing 

a block structured program into several pieces. Consider: 

               BEGIN#a# 
                   . 
                   . 
                  INT i:=3; 
                   . 
                   . 
                  BEGIN#b# 
                     . 
                     . 
                     i:=7; 
                     . 
                     . 
                  END; 
                  . 
                  . 
                  PROC INT f = BEGIN#d# 
                                . 
                                . 
                               END; 
                   . 
                   . 
               END#a# 

We can represent the (syntactic) structure of this program as a 

tree: 

                                 #a# 
 
 
 
 
                         #b#            #d# 
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Each of these boxes can form a separately compiled program-seg-

ment in Algol68C.  In general, given a program, any 'unit' (the 

basic syntactic construct of Algol68) may be separately compiled, 

even if it delivers a value.  Taking the above example, the first 

program-segment presented to the compiler (call this segment 'A') 

would be: 

             BEGIN#a# 
                 . 
                 . 
                INT i = 3; 
                 . 
                 . 
                ENVIRON B; 
                 . 
                 . 
                PROC INT f = ENVIRON D; 
                 . 
                 . 
             END#a# 

The remainder of the program would subsequently be presented as 

segments 'B' and 'D': 

             USING B FROM "file title" 
             BEGIN#b# 
                . 
                . 
                i:= 7; 
                . 
                . 
             END 
    and:     USING D FROM "file title" 
             BEGIN#d# 
                . 
                . 
             END 

Each program-segment may define several 'ENVIRON's, and this, 

like block structure, may be nested arbitrarily.  The semantics 

of the segmented program are identical to those of the original 
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program - when the flow of control reaches an 'ENVIRON', control 

is transferred to the appropriate separately compiled segment; at 

the end of that segment, control reverts to the segment that 

contained the 'ENVIRON'.  Each separately compiled segment is 

written by the programmer precisely as if it occured textually in 

place of the corresponding 'ENVIRON': the flow of control is the 

same, and the meaning of identifiers and indicants is the same. 

The only special statement is the 'USING' directive, which 

specifies which 'ENVIRON' is associated with the program-segment. 

    This mechanism is implemented by passing information between 

compilations in 'environment files'.  When a program-segment 

containing 'ENVIRON's is compiled, in addition to the Zcode 

output, an environment file is produced.   When subsequently a 

program-segment associated with one of these 'ENVIRON's is 

compiled, the environment file is read. These files contain all 

the information necessary to continue the compilation of the 

'ENVIRON', in particular such things as declarations, storage 

allocations, label allocations.  Thus in the above example, the 

compilations would be as follows: 

    1) compile segment 'A', producing Zcode 'X' and environment 

       file 'E' 

    2) compile 'B', reading environment file 'E', producing Zcode 

       'Y' 

    3) compile 'D', reading environment file 'E', producing Zcode 
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       'Z' 

Note that steps (2) and (3) could be in either order, or even 

simultaneous.  The Zcode files Y and Z may each contain 

references to labels in 'X', and 'X' will contain references to 

the entry labels of Y and Z.  Either the Zcode translator, or 

some subsequent processor such as a linking loader must resolve 

these label references.  Some details of the implementation of 

environment files can be found elsewhere [10]. 

    The Zcode translator for CAP takes as input the Zcode for a 

separately compiled Algol68C segment, and assembles the directly 

executable binary for a single machine segment.  In order to 

allow resolution of references from subsequently compiled seg-

ments to this one, the translator outputs a 'linking file' if the 

current segment contains any 'ENVIRON's, and this is 

automatically read when translating those segments which use the 

ENVIRON's.  The only references from this segment to the 

subsequent ones are jumps to the entry points, which are resolved 

by the translator allocating the machine segment numbers at which 

the subsequent segments will be placed.  This thus allows pre-

assembly of physically sharable segments, a very powerful 

facility which is used for the runtime system and for code shared 

between programs.  This segmentation, in the virtual memory 

environment provided by the CAP operating system, corresponds to 

an overlay mechanism. 

    This implementation of separate compilation relies on the 
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sufficiency of a one way flow of information at compile time 

between separately compiled segments; that is, it relies on the 

compilation of 'A' not depending on the content of 'B' or 'D'. In 

other words, it relies on the compilation of a construct 

containing a 'unit' not depending on the content of that unit. 

This condition, desirable though it may be (from a 'structured' 

point of view, apart from separate compilation), is not satisfied 

by Algol68.  Firstly, compilation often depends on the data type 

delivered by a unit; for example, the operator '+' is defined 

between integers (as you would expect) and between strings (for 

concatenation) so that, for example, 

              (ENVIRON A) + (ENVIRON B) 

would leave the implementer not knowing which '+' was meant. 

(Other examples where the meaning depends on the mode delivered 

by a unit include the destination of an assignment and the 

primary of a procedure call.)  To avoid this problem, we allow 

'ENVIRON' only in a context where we know which mode must be 

delivered ('strong' contexts, in Algol68 terminology), such as 

the source of an assignment; the subsequent compilation using the 

'ENVIRON' will check that this mode is in fact delivered.  The 

other instance of dependence on the content of a unit occurs when 

the unit is inside a routine; here, applied occurrences of 

identifiers inside the unit may affect the 'scope' of the 

routine, by affecting which stack frames may be accessed by the 

non-local applied occurrences in the routine. That is, they may 
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affect the environment necessary for the routine. (In an 

implementation using a classical chained stack, where a routine 

is represented by its entry address and an environment pointer, 

passing a routine outside its scope makes its environment pointer 

refer to a stack frame that no longer exists.)  This difficulty 

was overcome by specifying that a routine containing an 'ENVIRON' 

has minimal scope.  The situation would be more satisfactory if 

constructs were less affected by the detailed content of their 

sub-constructs. 

    The major advantage of the Algol68C separate compilation 

mechanism is its simplicity.  Because we treat separate 

compilation as a process of taking a program and subdividing it, 

the programmer has no extra concepts to learn - he can think of 

his source as a single program which has merely been textually 

divided.  The error checking on a separately compiled segment is 

as thorough as it would be without separate compilation, since 

all the information is still available at compile time and we do 

not rely on extra assertions made by the programmer.  No extra 

work need be imposed on the subsequent processors - the labels 

used for inter-segment references need present no more severe 

problems than in-segment references.  This separate compilation 

mechanism is also used for linking to the run-time system, but 

this will be described later [C1.1]. 

    Thus the Algol68C mechanism is highly satisfactory in 

achieving our primary aim of splitting a large program into 
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separately compiled segments - the division can be made at any 

'unit', with no serious constraints.  If we consider our 

secondary aim, of providing pre-compiled libraries, it is less 

satisfactory.  If (as in the CAP Algol68C system) we treat the 

standard prelude as an ordinary program segment, then it is the 

prime example of a pre-compiled segment shared between programs.  

Thus: 

                           standard prelude 
 
 
 
 
                    program A            program B 

For this, the Algol68C mechanism is still satisfactory. However, 

if we now desire also to have two libraries P and Q, which do not 

refer to each other, there is no satisfactory way to use the 

Algol68C mechanism to compile them separately; there are only two 

arrangements that would allow pre-compilation of P and Q while 

allowing a program to access them both.  We can either compile Q 

as an inner block of P, or vice versa.  Thus: 

                  standard              standard 
                  prelude               prelude 
 
 
 
                     P                     Q 
 
                               or 
 
                     Q                     P 
 
 
 
                   user                  user 
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Either is unsatisfactory since, in the first version say, when Q 

is compiled inside P we have two undesirable effects: firstly, 

applied occurrences in Q can identify definitions in P when 

definitions in the standard prelude were intended (ie. P shields 

the standard prelude from Q); secondly, if Q defines some item of 

the same name as one in P then the user program may identify the 

wrong one without being informed that this shielding has 

occurred.  Note that these effects are precisely what would occur 

if we compiled the corresponding single program with the above 

block structure. The general case, where we wish to provide a 

large selection of libraries P, Q, R, ... has precisely analogous 

problems. To try to avoid these effects in a single program we 

could place P and Q as parts of a single serial clause; then 

neither would legally shield definitions in the other, but the 

first one could still shield standard prelude definitions 

required by the second.  Thus the facilities we desire for 

independence of the libraries P and Q can in no way be provided 

by a mechanism that follows the identification rules of 

conventional block structure.  The structure we would like to 

have can be represented as: 

                           standard prelude 
 
 
 
                       P                      Q 
 
 
 
                                 user 
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This differs fundamentally from block structure, but is an 

essential practical requirement for a system wishing to offer 

pre-compiled libraries.  We will show later how to provide this 

facility by a simple extension to the language [B2.4]. 

    The present implementation of the Algol68C separate 

compilation mechanism suffers from a severe drawback - there is a 

constraint on the order in which the segments can be compiled.  

Briefly, an outer block must be compiled before an inner block.  

For example, if the structure is: 

                                  A 
 
 
 
                         B                C 

then we must compile A first, then B and C (in either order, or 

even simultaneously).  This constraint comes from quite 

reasonable origins, since to compile B or C we need to know quite 

a lot about the definitions occurring in A.  The most extreme 

examples of this are mode definitions and operator definitions.  

For example, if the segments are: 
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                   BEGIN #A# 
                         INT max = readint; 
                         MODE V = [l : max] INT; 
                         OP + = (INT i, j) INT:.....; 
                         BEGIN 
                              INT max = 7; 
                              ENVIRON b ; ENVIRON c 
                         END 
                   END 
 
      ------------------------------------------- 
 
      BEGIN #B#                 BEGIN #C# 
        print (max + 3)               V w; 
      END                             FOR i TO UPB w 
                                       DO w[i] := readint OD; 
                                      print (w) 
                                END 

Here we would have grave difficulty in compiling B or C before A. 

In segment B we would not know which version of the polymorphic 

operator '+' to use, while in C we would know nothing about the 

mode 'V'.  If we require complete freedom in the order of 

compilation, the only reasonable solution is then to require that 

a segment be prefaced by a list of those definitions which the 

segment requires from other segments, or that a separate 

'interface file' be provided.  This, some implementors are 

attempting [22].  Note that this approach should only be adopted 

if the implementer is willing to check, either when compiling A 

or at load-time, that the assertions made in B and C about A are 

in fact correct.  Producing reasonable diagnostics in the case 

where the assertions are wrong would appear to be difficult. 

Since Algol68C allows separate compilation of any unit, we find 

that allowing such freedom in the order of compilation will 

entail serious run-time penalties on many systems.  If we assume 
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only a linking loader as provided on conventional operating 

systems, rather than a specialized Algol68 loader, then when 

compiling code in B or C for applied occurrences of definitions 

in A we must make unreasonable assumptions - such as assuming 

which display level is to be used to access the definition.  The 

details are too complex to be worth investigating here, but the 

only general solution is to have an indirection vector for 

accessing definitions of A.  This is a serious degradation in 

run-time efficiency (in both store and time). 

    It is thus in some ways undesirable to allow complete freedom 

in the order of compilation in Algol68C; I do not believe that 

freedom to this extent is really necessary, either.  Experience 

with the Algol68C system so far has indicated that programmers do 

not object to compiling their segments in the prescribed order. 

What they object to is, when A is recompiled, being required to 

recompile B and C even though the texts of B and C, and their 

'meaning', have not changed.  What I believe to be highly 

desirable is to minimise this re-compilation; this can be more 

readily achieved than complete freedom.  There are several 

techniques which can help here - only the first has so far been 

used in Algol68C. 

    The first, and most obvious way of reducing the amount of 

re-compilation needed is to arrange that if the changes made to A 

are such that they do not affect the 'meaning' of B and C, then 

the interface (as specified by the environment file produced when 
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compiling A) does not change.  It is difficult to achieve 

perfection here.  Some changes to A, such as changes inside the 

bodies of routines, should clearly not affect B or C .  Adding or 

removing, or changing the mode of, a definition accessible to B 

or C clearly does change the environment; changing the value 

ascribed to an identifier of mode INT may or may not change the 

environment, depending on whether the compiler feels able to 

calculate the value at compile time.  In order to make this a 

reliable system, we would need a facility for reading the old 

environment file and saying whether it differs (significantly) 

from the new one - a message could then be printed saying whether 

re-compilation is necessary.  No such facility exists at present 

in Algol68C. 

    If the compiler reads the old environment file when compiling 

'A', then with only a little additional complexity we could do 

much better. Since it would then know the stack and label 

allocations used in the previous compilation, the compiler could 

endeavour to use the same allocations in this compilation - if a 

definition is added, for example, it could be placed on the stack 

after the original ones, rather than shuffling them.  It is 

possible, using this approach, to maintain a considerable degree 

of compatibility with an old environment, although there would 

still be occasions when we fail. 

    Re-compilation can be further reduced if we add to the 

language a facility to hide definitions.  For example: 
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                      INT a,b,c; 
                      HIDE (b,c) ENVIRON B; 

Here only 'a' could be identified from inside the 'ENVIRON', so 

changes to the definitions of 'b' and 'c' should not entail 

re-compilation of sub-segments. 

    It is thus possible to considerably reduce, but not 

completely eliminate, re-compilation without including in the 

sub-segments assertions about the earlier segments.  Note that 

the approach of including assertions is less satisfactory, also, 

when we wish to share the outer block between programs (as with 

the standard prelude) - here the techniques given above seem much 

more satisfactory. 

    We will see later that re-compilation is a less difficult 

problem in the library mechanism proposed below. 

    Thus the present Algol68C separate compilation mechanism is 

highly satisfactory for dividing up large programs (no alterna-

tive mechanism of comparable flexibility has yet been proposed); 

it could readily be implemented such that re-compilation is not a 

serious problem; it is a disaster for implementing pre-compiled 

libraries, but so is block structure itself. 
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2.3 Separate Compilation in Other Systems 

    We now consider what some other implementers have done about 

this desirable but elusive property, versatile separate compila-

tion.  We are looking for three gains, as described above [B2.1], 

namely: segmentation of source text, ease of recompilation of 

modified segments, and 'libraries' (ie. sharing of pre-compiled 

segments). 

    Undoubtedly the most versatile and successful separate 

compilation system is usually found in FORTRAN implementations. 

Here it is generally possible to compile any sub-program (ie. any 

FUNCTION, SUBROUTINE or BLOCKDATA) completely independently.  The 

only communication the language allows between sub-programs is by 

calls and by common statements.  There is enough information in 

each sub-program for the compiler to determine all it needs to 

know about any other sub-program referenced from this one.  In 

principle, this system is ideal (if the language were not 

FORTRAN, but that is a separate argument); it satisfies all three 

of our aims, and large computer systems make successful extensive 

use of pre-compiled FORTRAN libraries.  All that the implementer 

need do to make such a system ideal in practice is to check that 

information gathered from a subprogram about some other 

subprogram (eg. number and type of arguments) agrees with the 

definitions in that other subprogram.  There is nothing to pre-

vent this checking being performed at load time, but very few 

implementations perform it at all, even at run time.  (The Titan 
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FORTRAN system was one of the few to check that calls of an 

independently compiled subprogram had the correct number of argu-

ments; I know of no-one who does the complete checking, and no-

one who checks at load time or earlier.)  Such checking is not at 

all difficult to implement (the general approach is obvious), but 

no-one seems to bother, and standard system loaders, which are 

usually designed specifically for FORTRAN, seldom provide such 

facilities. 

    The FORTRAN separate compilation mechanism is, in some ways, 

similar in design to Algol68C.  One first decides what a complete 

program looks like, then subdivides the program into separately 

compiled segments at some natural boundary ('sub-programs' in 

FORTRAN, 'units' in Algol68C).  Where FORTRAN gains is that its 

language is sufficiently modular for the segments to be compiled 

independently - the meaning of a sub-program is not affected by 

any other sub-program, whereas Algol68 units depend very much on 

external information for their meaning.  (It is interesting, in 

these days when language designers are producing constructs to 

promote 'modular programming', that FORTRAN is one of the most 

highly 'modular' languages around.) 

    A mechanism which more closely resembles that of Algol68C is 

the Algol68R mechanism of 'albums' [23].  Here, information is 

passed between compilations, as in Algol68C, but the overall 

structure provided is different.  In Algol68C the segments form a 

tree whose root is the standard prelude; in Algol68R they form an 
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acyclic directed graph having a single origin, the standard 

prelude.  For example: 

    seg 1                       |    seg 2 
    BEGIN                       |    BEGIN 
      PROC f = (INT i)INT:i*i:  |      PROC g = (INT j)INT:-j; 
      SKIP                      |      SKIP 
    END                         |    END 
    KEEP f                      |    KEEP g 
    FINISH                      |    FINISH 
 
        ------------------ 
 
    seg 3 WITH seg 1, seg 2 FROM filename 
    BEGIN print (f(g(7))) END 
    FINISH 

Here the segment structure is: 

                    standard prelude 
 
 
 
               seg 1                seg 2 
 
 
 
                         seg 3 

    The restrictions imposed by this mechanism are similar to 

Algol68C: each segment must be compiled after any segment 

specified in its 'WITH' statement, and the only sharing permitted 

is of a subgraph starting at the root.  As far as I can tell from 

their documentation, the recompilation rules for Algol68R are 

similar to those for Algol68C. However, since their segment 

structure does not correspond to a block structured program, it 

is possible for a segment (such as 'seg 3' above) to access 

definitions from several independently compiled shared segments 
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(such as 'seg 1' and 'seg 2' above); this is thus a much more 

powerful library system than Algol68C allows, and is the major 

advantage of the Algol68R system.  Since, as mentioned above, the 

set of segments in an Algol68R program does not correspond 

directly to a single piece of Algol68 source text (we showed 

above [B2.2] that such correspondence forbids simultaneous access 

to independently compiled library segments), Algol68R has to 

describe separately the flow of control between segments.  The 

designers of this Algol68R scheme have thus allowed the structure 

which we found lacking in the present Algol68C system.  In 

practice, to date Algol68R only exists on the ICL1900 series, 

where a dedicated specially designed linking loader is used for 

Algol68R segments. Their requirement for a specialized loader 

appears to come more from their use of a single pass compiler 

than from the separate compilation mechanism, but it does give 

them more freedom. 

 A system with similar overall structure to Algol68R, but with no 

constraints on the order of compilation, has been proposed, and 

is being implemented, by a team in Berlin [22].  The freedom in 

the order of compilation is there achieved by prefacing each seg-

ment with a list of the definitions which that segment requires 

from other segments. Inevitably, a specialized linking loader is 

required to perform the final parts of type-checking. Again, the 

overall flow of control between segments is described separately. 

    Although Algol68R and Berlin provide a facility sorely 

lacking in Algol68C, I find their systems unsatisfactory in two 
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ways.  Firstly, the set of textual fragments which forms the 

complete source of a program does not correspond to any single 

piece of source program; the meaning of the set of fragments is 

determined by a set of ad hoc (and in practice, ill-defined) 

extra-lingual semantic rules.  Secondly, there are facilities 

available in the Algol68C system which are not available in the 

others; that is, there are desirable ways of splitting up large 

programs which Algol68C allows and the others do not.  This can 

be illustrated by two examples (taken, in fact, from the source 

of the Algol68C compiler).  Consider a program of the form: 

    BEGIN. 
         . 
         . 
         CASE i 
         IN . 
            . # very large number of cases # 
            . 
            # 37 # (.....), 
            # 38 # (.....), 
            . 
            . 
         ESAC 
         . 
         . 
    END 

In a situation where the CASE clause is too large to compile it 

conveniently as a single piece of text, only a scheme like the 

Algol68C one will suffice.  Under other schemes, we would have to 

make those units of the CASE which we wished to compile 

separately into routines, then call them from inside the CASE. 

Although this would achieve the desired effect, it would disturb 

the desired structure of the program. An example more difficult 

to resolve by any scheme other than the Algol68C one occurs as 



- 48 - 

follows: 

    BEGIN. 
         . 
         . 
         PROC a = (ARG g) RES: 
              BEGIN 
                  PROC b = (ARG h) RES: 
                       BEGIN. 
                            . 
                            ...p:= g;....; 
                            . 
                            CASE i 
                            IN...., b(x),.......a(y),.... 
                            ESAC 
                            . 
                            . 
                       END; 
                 . 
                 . 
              END; 
         a(z) 
    END 

A little explanation is required, although the structure of the 

program is really quite simple.  The routine 'b' is nested inside 

'a' in a non-trivial manner - not only does 'b' call both 'a' and 

'b' recursively, but also 'b' contains applied occurrences of 

definitions local to an activation of 'a'.  No scheme yet 

proposed in the style of Algol68R or Berlin will allow me to 

compile separately the body of 'b' (which is, in fact, a large 

piece of text).  In Algol68C this separate compilation is 

straightforward, as for any other unit. 

    The examples which the Algol68C scheme allows, and no other 

scheme allows, are those where the position of the piece of text 

we wish to compile separately has implications for the flow of 

control or for the identification of non-local, but non-global 
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definitions. 

 

2.4 A Complete Separate Compilation Scheme 

    We have seen above how distinct approaches to separate 

compilation in Algol68 have arisen, each with its advantages and 

its disadvantages.  I wish to show here how the disadvantages can 

be eliminated, and a single scheme be produced having the 

advantages of both.  The following scheme, and many variants of 

it, are the subject of continuing investigation by a 

sub-committee of IFIP WG2.1; the scheme depends heavily on 

previous and current ones produced by members of that 

sub-committee and by others.  The members of the sub-committee 

are myself, H.Boom, C.H.Linsey and R.Dewar.  The view presented 

here of the work is my personal one, and might be disputed by 

others. 

    The objection to the Algol68C scheme is that there are 

necessary facilities which it does not provide.  These we can 

provide by adjoining a scheme like Algol68R or Berlin, but those 

have the objection that the meaning of the complete program 

becomes ill-defined, since they do not correspond to existing 

language features.  This objection we can resolve by defining a 

language feature providing the appropriate facilities.  Such a 

feature can be based on 'definition modules' - first proposed by 

S.Schumann [24].  Definition modules are similar, in the 
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facilities provided, to Simula 'classes' [25] or to CLU 

'clusters' [26].  For example: 

    MODULE STACK = DEF [1:100]INT v; INT ptr := 0; 
                       PUBLIC PROC push = (INT i)VOID: 
                                 v[ptr+:=1] := i; 
                       PUBLIC PROC pop = INT: 
                                 v[ptr-:=:=1]; 
                       GAP; 
                       print("Stack finished") 
                   FED; 

This declares a module known as 'STACK', which has a 'prelude' 

declaring two private local definitions and two public ones, has 

a 'GAP', and has a 'postlude' which prints a message.  This 

module could subsequently be invoked by a statement of the form: 

    INSIDE STACK ( FOR i TO 10 DO push(readint) OD; 
                   FOR i TO 10 DO print(pop) OD 
                 ); 

    The invocation has the following effects: the prelude of 

STACK is executed (executing its definitions and initialisation), 

then the unit written at the invocation is executed instead of 

the GAP, then the postlude of STACK is executed.  Non-local 

applied occurrences inside the module identify definitions 

according to the normal textual rules, except that the public 

definitions of the module are available as a layer immediately 

outside the unit of the invocation.  An invocation can readily be 

implemented on a stack system that uses one display level per 

routine without increasing the number of display levels - the 

static frame for the module is adjacent to, and at the same 

display level as, that existing before the invocation.  In the 

unit of the invocation, we know the static offsets for the 
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definitions made available by the module.  The environment 

pointer for routines of the module point to an extra stack frame 

header at the start of the static frame for the module; this 

header contains the appropriate static chain pointer.  Thus: 

  static                   static 
  chain                    chain 
 
 
  header for  outer block  header  module static frame  static 
   current      static     for      v  ptr  push  pop   frame for 
   routine      frame      module                      invocation 
 
 
 
  current display 
      pointer 

    Assuming the existence of such a language feature, we can 

achieve a separate compilation facility allowing libraries by 

allowing separate compilation of definition modules.  For 

example: 

  1)  BEGIN #standard prelude# 
          . 
          . 
          MODULE P = SEP '.libs.p'; 
          MODULE Q = SEP '.libs.q'; 
          ENVIRON '.libs.std' 
      END 
 
  2)  DEFINE '.libs.p' DEF#p#.....FED 
 
  3)  DEFINE '.libs.q' DEF #q#....FED 
 
  4)  USING '.libs.std' 
      INSIDE p,q BEGIN 
                     . 
                     . 
                 END 

This would correspond to our desired structure for allowing 

libraries: 
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                          std 
 
 
 
                      p         q 
 
 
 
                          user 

    Compilation of these segments is not difficult.  Segment (1) 

produces files describing the environment for compiling (2) and 

(3); these produce files used when compiling (4).  The meaning of 

the complete program is well-defined, using our new language 

feature.  This achieves independent compilation of the two 

libraries, but there are still problems.  The first of the 

problems is that we still require an order of compilation; the 

possible solutions to this are the same as described earlier 

[B2.2].  The second is that in (1) we have had to specify the 

name and number of separately compiled modules.  This would mean 

that if we wished to add another library (or if a user wished to 

make publicly available a private library), we would have to 

alter and recompile (1).  This is unsatisfactory, and difficult 

to resolve tidily.  The best proposal to date is to omit the 

module definitions from (1), and to specify the name of the 

ENVIRON in (2) and (3).  Thus: 
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  1)  BEGIN. 
           . 
           ENVIRON '.libs.std' 
      END 
 
  2)  DEFINE '.libs.p' USING '.libs.std' DEF.......FED 
 
  3)  DEFINE '.libs.q' USING '.libs.std' DEF.......FED 
 
  4)  USING '.libs.std' 
      INSIDE '.libs.p', '.libs.q' BEGIN. 
                                       . 
                                       . 
                                  END 

This would allow pre-compilation of an arbitrary number of 

libraries. 

    One question remaining about definition modules is, if, in a 

program, there is more than one invocation of the same module, 

then under what circumstances are the invocations shared?  That 

is, when do we allocate a new stack frame for the module?  For 

example, with the STACK example, when do we allocate a new stack? 

There appear to be three reasonable answers - two extremes and a 

compromise.  The first extreme would be to always allocate a new 

stack - this we term 'unshared'; this is similar to the arrange-

ments for SIMULA classes. The second extreme would be to always 

share - this we term 'dynamic sharing', since we can determine 

whether sharing occurs only at run-time; this corresponds to 

FORTRAN COMMON storage - the storage for a module can be 

allocated statically, once and for all. The compromise is termed 

static sharing - we share if an invocation occurs in a textually 

enclosing block (or invocation); this can be determined at 

compile-time.  The objection to dynamic sharing is that it seems 
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un-structured - whether we get a new invocation depends on 

unrelated parts of the program.  No sharing is tidy, but likely 

to be wasteful, except in the rare cases where it is essential to 

the correct functioning of the program.  The most satisfactory 

choice appears to be static sharing, probably with a facility to 

request an un-shared invocation. 
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3   Compiler Portability 

    The major purpose of any high level language is to allow the 

programmer to express his algorithm in terms of objects and 

operations which are closer to his problem than is the hardware 

of a particular machine.  If his problem is an abstract one (such 

as inverting a matrix)), then in a suitable language (such as 

Algol68, PASCAL, PL/1, FORTRAN) he can program the algorithm 

without any knowledge of the machine on which he is running. 

However, even a problem that is inherently dependent on some 

computer hardware (such as converting a source program into 

machine code for a particular computer) may be programmed without 

knowledge of the computer on which the program is running.  In 

the case of a compiler, the problem is inherently dependent on 

the machine on which the program will run (the 'target' machine), 

but the transformations required are, in general, independent of 

the machine on which the compiler is running (the 'source' 

machine). 

 Any necessary dependence on the source machine is concerned with 

how the compiler reads the source program; the most common such 

dependence is the character code, but it may also be encountered 

in other aspects, such as system dependent file titles.  The 

compiling techniques used, or the language in which the compiler 

is written, may introduce other dependencies, but these are not 

necessary (although such considerations as the size or speed of 

the compiler may make the introduction of such dependencies 
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desirable). 

    Now consider a programmer wishing to write an operating 

system for some machine 'A', in a high level language (Algol68!). 

Before an operating system is available for 'A', program develop-

ment must be done on some other machine, 'B' say (at least to the 

extent of compiling on 'B' and transferring compiled programs to 

'A').  So, initially, the compiler must run on 'B' (but as 

discussed above, the compiler need only be dependent on 'A'). 

Subsequently, when some sort of system is available on 'A', the 

programmer will want to dispense with 'B' and run the compiler on 

'A'.  To avoid rewriting the compiler, it is natural to write it 

in its own language (Algol68), compile it once on 'B' to produce 

code for 'A' then run it on 'A', where it can quite happily 

compile itself.  However, to run the compiler initially, on 'B', 

we must also have an Algol68 compiler capable of producing code 

for 'B'. We are thus led to the conclusion that, to write an 

operating system for 'A' we want a compiler capable of running on 

'A' or 'B', written in its own language, and capable of producing 

code for both 'A' and 'B'. 

    This is a conventional 'bootstrapping' situation, and several 

systems have used this approach.  To enable the compiler to 

produce code for more than one machine, the compiler can be 

arranged in two parts.  (In what follows I will use 'machine 

dependent' to mean dependent on the machine for which code is 

being produced; dependencies on the machine on which the compiler 
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is running are of little importance.)  The first part of the 

compiler is machine independent; it reads the source of the 

program (or program-segment), performs some work on it, and 

outputs some form of intermediate code. The second part of the 

compiler is machine dependent; it reads in the intermediate code 

and produces machine code for the appropriate machine.  To 

produce machine code for some new machine, only the second part 

of the compiler need be changed.  The Algol68C compiler is 

similar to such a mechanism, but before considering Algol68C, we 

will look at how other bootstrapping compilers approach the 

problems. 

3.1 Other Intermediate Codes 

    There are several systems whereby the machine independent 

part of the compiler is written in its own language, producing 

some intermediate code, notably BCPL [27] and PASCAL [28].  The 

major distinguishing feature of such systems is their 

intermediate code, and it is upon the choice of this code that 

the portability and efficiency of the compiler depend.  The 

'choice' of code, in practice, means designing a code 

specifically for this compiler. 

    Some attempts have been made at designing a code which could 

be used by several compilers (such a code is JANUS [29]), but the 

attempts have met with little success.  Using a common 
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intermediate code has the outstanding advantage that, to move the 

compilers for several languages on to a computer, it would only 

be necessary to write a single translator from that intermediate 

code into the particular machine code.  Unfortunately, despite 

this advantage, common codes have won little acceptance, 

apparently for two reasons.  Firstly, however general an 

intermediate code is, it is not adequate for some particular 

language (or so the particular implementer will think).  That is, 

even if the designer of the intermediate code allows for all 

constructs occurring in existing languages, someone someday will 

come along with a new construct for which the code is highly 

unsuited.  (This problem is similar to that found with 

compiler-compilers or syntax-directed compilers - one that was 

designed with ALGOL60 in mind is likely to be hopeless for 

Algol68.)  Even if the language can be compiled into the code, 

the implementer will usually want extra facilities for which the 

code does not allow, such as program segmentation in some 

peculiar manner (cf CLU, above), or optional loading, or fancy 

debugging aids or storage maps.  The second (and, perhaps, 

overriding) reason is what appears to be an inborn hostility in 

implementers (including myself) to using something designed by 

someone else.  Whatever other arguments there may be, we can 

always convince ourselves that our code is in some way better or 

more suitable (see below!); in some cases this may be true, 

particularly if we only wish to compile for a restricted number 

of computers, since then the code would be tailored to allow for 
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those features which their architectures had in common. 

    In designing an intermediate code, one must bear in mind 

precisely what it will be used for.  If the code is for only one 

language, then it will be useful to have one code operation for 

each 'primitive' operation occurring in the language (though what 

'primitive' means requires further discussion).  Breaking a 

language operation into several operations in the intermediate 

code makes less information available when translating for a 

particular target machine - this would be unfortunate if the 

target machine had available an operation corresponding to the 

original language operation.  An example of this occurred in a 

preliminary version of the Algol68C intermediate code, Zcode.  In 

Algol68C, it is possible to assign any object; the code produced 

for this is, in general, a store-to-store copy.  In preliminary 

Zcode versions, there was no general store-to-store copy instruc-

tion, so, for example, to copy an object of mode STRUCT(INT 

a,b,c,d,e) we would generate five 'load register; store register' 

pairs of instructions. Since many machines (such as IBM360) allow 

store-to-store copy ('MVC' instruction), we were preventing the 

Zcode translator from recognising that 'MVC' was appropriate (un-

less the translator were to build our ten instructions back 

together into the original single operation).  This is a 

particular example of the choice of how 'low-level' or 'high-

level' the code should be, that is, how close to the computer 

hardware the operations should be.  The effect of producing code 

at too low a level is liable to be that information is not 
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available in the intermediate code which could be available to 

the translator, and this could force the translator to produce 

inferior machine code. Alternatively, producing a high level 

intermediate code will result in a very complicated translator, 

which would be a pity since we require one translator for each 

target machine.  We will discuss below how Algol68C approaches 

this dilemma. 

3.2 Portability in Algol68C 

    Like other systems, Algol68C uses an intermediate code to 

achieve portability.  The intermediate code, 'Zcode' is defined 

elsewhere [8], and some discussion about it has been presented 

before [9].  The code is deliberately very low level.  It takes 

the form of a sequence of instructions and loading directives; 

the instructions operate on values in registers and in store. 

Apart from constants, values in the store are in one of three 

areas: the 'static stack', the 'dynamic stack' and the 'heap'. 

The last two of these are controlled explicitly by the compiler; 

the 'static stack' is allocated within a procedure by the 

compiler, but a procedure call instruction is assumed to allocate 

a new stack frame.  The current stack frame is assumed in Zcode 

to be directly addressable, as is the global stack frame; other 

stack frames are accessed by a 'static chain' mechanism [app.Y].  

The program, which is 'pure' (ie. execute-only), is assumed 

directly addressable.  For computers having restricted 



- 61 - 

addressability (eg. IBM360), the translator must take steps to 

ensure appropriate addressability.  The Zcode of a program 

consists of segments (corresponding to the separately compiled 

program-segments), which may contain routines.  The routines and 

the procedure-call instruction form a full recursive calling 

mechanism. 

    Whereas Algol68C has an infinity of data types, Zcode has 

only a small number (such as integer, real, character, address, 

union flag), corresponding fairly closely to the types commonly 

found in computer hardware; several Zcode types may map on to a 

single hardware type (for example, integer and character may not 

be distinguished on many computers).  When producing Zcode, the 

compiler maps Algol68C types on to Zcode ones, so the translator 

is only concerned with fairly simple objects.  For example, 

STRUCT(REAL re,im) produces Zcode handling a pair of 'real' 

objects; REF[]INT, whose representation is a 'descriptor' is 

manipulated in Zcode as a quadruple consisting of an address and 

three integers ('stride', lower bound, upper bound). 

    In producing the Zcode from its internal parse tree, phase 

three of the compiler has three tasks to perform: register 

allocation, storage allocation, and expressing Algol68C objects 

and operations (such as loop-clauses) in terms of Zcode objects 

and operations.  It is the intention of the Algol68C system that 

the Zcode translator should be as simple as possible; to achieve 

this, Zcode is low level, that is it should correspond as closely 
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as possible to the hardware of the target computer.  The 

distinctive feature of the Algol68C system is that to achieve 

this intention, Zcode is, in fact, a family of intermediate 

codes, each differing in the number of registers, their 

properties, the sizes and alignments of objects in store, and the 

operations available.  Instead of producing a machine independent 

intermediate code, Algol68C produces a machine dependent code 

which is as close as possible to the real hardware of the target 

machine. 

    This is best illustrated by considering what happens if we 

want to compile code for two computers, 'A' and 'B'.  A 

conventional system produces its fixed intermediate code, and has 

two translators: 

  source  machine         machine     translator  code for 
          independent   independent      'A'        'A' 
          section         code 
 
 
  source  machine       machine       translator  code for 
          independent   independent      'B'        'B' 
          section         code 

In the Algol68C system, the machine independent part of the 

compiler reads data (the 'initialisation file') describing the 

particular, machine dependent, Zcode to be produced: 
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  source  machine         Zcode for    translator  code for 
          independent   machine 'A'        'A'       'A' 
            section 
 
         initialisation 
            file 'A' 
 
 
  source  machine         Zcode for    translator  code for 
          independent       'B'            'B'       'B' 
 
         initialisation 
            file 'B' 

    By using this technique, we are attempting to avoid the 

problem that having a low level intermediate code would otherwise 

induce, namely making decisions when generating the code which 

are inappropriate for the real hardware (such as having too many, 

or too few, registers).  Another way of looking at the Algol68C 

system is as follows.  In the conventional approach, for the code 

to be successful, no decisions can be made which might not match 

the hardware; consequently, in translators for 'similar' 

hardwares identical or 'similar' algorithms will appear (for 

example, register allocation). What Algol68C has attempted is to 

move such algorithms into the machine independent part by 

parameterising the algorithms and placing the machine dependent 

parameters in the initialisation file.  In this way, we simplify 

the translators, making the operation of producing code for a new 

machine much easier, whilst retaining the machine independence of 

the rest of the compiler. 

    Ideally, we would take this approach to its logical conclu-

sion, that the translator would be little more than an assembler 
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and the Zcode would correspond to a subset of the machine code of 

the target machine.  Unfortunately, we are not very close to this 

ideal; in Zcode, we make some assumptions about the basic 

architecture of the target machine, the most fundamental one 

being that it is a register machine. Even assuming a register 

machine, it is not possible to allow for all the baroque sets of 

registers with which hardware designers endow computers; we can 

provide reasonable flexibility, but at some point we are bound to 

fail.  (This is similar to the problems faced by a designer of a 

general purpose intermediate code - however versatile the design, 

someone will produce requirements that it cannot meet.) Another 

problem in this approach, which we have not yet had to face, is 

that as the parameterisation becomes more sophisticated, the 

machine dependent initialisation data will become more 

complicated and manufacturing one could present more of a problem 

than writing the translator; the initialisation data would 

become, in effect, a special purpose language. 

    In subsequent sub-sections I will discuss how, and to what 

extent, this parameterisation has been achieved. 

3.2.1 Storage 

    Storage in Zcode is either program or data.  Program storage 

presents few problems; Zcode assumes uniform addressability (that 

is, any program address can be written, as a label, directly in 

an instruction), so the translator must handle any problems which 
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do arise (such as limited offsets, eg. 4096 bytes on IBM360). 

Hardware segmentation of program can conveniently be mapped onto 

groups of Algol68C program-segments.  Other sophistications (such 

as interleaving various types of instructions) are so machine 

dependent that they seem incapable of parameterisation.  To ease 

machine dependent transformations by the translator, Zcode 

contains directives specifying 'basic' blocks (as in the FORTRAN 

specification), which are groups of instructions having a single 

entry and a single exit. 

    Data storage is much more complicated.  Algol68 requires two 

distinct areas, a stack (for storage required only during the 

current block) and a 'heap' (for storage of longer lifetime). 

Each area can be logically subdivided, and, as described below 

[app.Y], the Algol68C system assumes that the stack is divided 

into 'dynamic stack' (for array elements, and storage whose size 

cannot be determined at compile time) and 'static stack' (for 

other values: the activation record for each frame, store 

associated with declarations and for temporary results).  A third 

data area is for constants; Zcode allows this to be interleaved 

with program, but since it is syntactically distinguished the 

translator can separate it into, say, a separate hardware 

segment. All data areas are considered to consist of a sequence 

of storage 'units'.  The size of a storage unit is chosen when 

writing a translator for a computer, subject to the constraint 

that incrementing an address by 1 produces the next storage unit 

(in contiguous areas of data).   Storage on the dynamic stack and 
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heap are allocated by the compiler generating a procedure call to 

one of two routines in the runtime system (the routines are 

specified in an environment file [B2.2]), with an argument 

specifying how many storage units are required.  Static stack is 

allocated at compile time; data is accessed from, or written to, 

there by specifying an offset from a base.  The base will be one 

of: another, previously calculated, static stack address in a 

register; the base of the current stack frame; the base of some 

previous stack frame, held in a register; the base of the global 

stack frame.  A new stack frame is allocated by the procedure 

call instruction, which specifies at which offset on the current 

stack frame the new frame should start.  The following areas of 

storage are each assumed to consist of contiguous storage units: 

the entire static stack; any area allocated by a single call of 

the dynamic stack or heap allocation routine; constant multiple 

values.  (The assumption takes the form of adding offsets to the 

base of any such area).  Note that this prevents interleaving the 

dynamic stack between frames of the static stack; this was a 

deliberate decision and is contrary to the decision made by most 

other implementers [30] - it is justified elsewhere [app.Y]. 

    In the above description, an 'offset' is a number of storage 

units, and this number, like the argument to the dynamic stack 

and heap allocation routines, is calculated at compile time from 

the machine dependent initialisation data.  As mentioned above, 

Zcode contains a small number of data types (in the current ver-

sion, precisely: address, integer, real, character, union flag). 
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The compiler decides on a representation of each Algol68 object 

in terms of these data types. (The representations are mainly 

obvious, the only non-obvious ones being REF-to-rowof, which is 

represented by the descriptor of the rowof rather than its 

address, and a routine, which is represented by its entry address 

and a pointer to the stack frame which is its environment.)  The 

compiler can then calculate an 'offset' or a 'number of storage 

units' by considering, for each of the constituent Zcode objects 

in an Algol68 object, two integers - the 'size' (the number of 

storage units occupied by the Zcode object) and the 'alignment' 

(which allows for such constraints as reals having to be on 

doubleword boundaries).  These integer pairs are given, for each 

Zcode type, in the initialisation data.  They are also given for 

the 'activation record' at the head of each stack frame (which 

contains at least the return link, static chain and dynamic 

chain, but may also contain such things as debugging or trace 

data, dumps of registers used for program addressability, etc.). 

Further details of how this data is presented are given elsewhere 

[10]. 

    This storage scheme appears to be very satisfactory.  The 

only desirable facilities that it does not allow for are such 

things as aligning an object at a given offset from a multiple 

(eg. at one byte beyond a multiple of four bytes, which would be 

the alignment required for addresses considered as 3-byte objects 

on some computers) or using spare bits inside a value.  In 

general, it seems sufficiently acceptable not to require any 
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improvement. 

3.2.2 Registers 

    Zcode represents a register machine, in that some 

instructions operate on 'registers'.  Registers differ from 

ordinary storage in that they are directly addressed, occupying a 

special position in some instructions, and may only be used for 

certain types of value (ordinary store is homogenous - any value 

can be placed in any of it, subject to size and alignment 

constraints).  They are intended to map directly into the 

registers of the hardware of the target machine, although the 

implementer is at liberty to translate them into store locations 

if this seems more convenient.  Zcode 'registers' can be 

considered to be merely a notational mechanism, but they are 

intended as actual registers - the implementation dependent data 

should be able to specify the register properties sufficiently 

for them to closely resemble (some of) the target machine 

registers. 

    There are two classes of Zcode registers: system registers 

and work registers.  The system registers are not parameterised; 

they are: 

    0 - constant integer 0 

    1 - constant integer 1 

    4 - 'dynamic stack management register' (DSMR) 

    5 - base of current stack frame 



- 69 - 

    6 - base of global stack frame 

    7 - immediately before a procedure call, this is set to 

        the value to be used for the new static chain; it has 

        no other use. 

Of these, only R4 is explicitly written to by the compiler; the 

implementer is unlikely to map all of these into actual hardware 

registers. 

    The Zcode work registers are where most operations take 

place, and where results are left (eg. on exit from a call, or 

from each branch of a conditional).  Their number and properties 

are specified by the initialisation data.  The data given is: 

the number of work registers; 

for each register, which Zcode types can be placed in that 

register. 

To help the translator further with registers, Zcode contains 'R' 

directives (which specify, at the start of each 'basic block', 

which registers are in use and which Zcode type each contains) 

and 'K' directives (which say when the value in a register is no 

longer required). 

    The machine independent part of the compiler is responsible 

for register allocation; in particular, it will attempt to avoid 

copying registers to store unless strictly necessary, but will 

write them to store if, for example, a sequence of operations 

produces more temporary results than there are registers.  The 



- 70 - 

compiler treats registers as a form of cache for the main store - 

whenever there is a value in a register, a corresponding store 

address is available, although the value may never in fact be 

written to store.  In practice, the present compiler is not very 

clever in its register handling, but it is not my purpose to 

discuss register allocation algorithms here.  What I am claiming 

as an advance is that to produce better register allocation 

algorithms for every machine for which Algol68C is available, we 

need only rewrite a single piece of program (phase three of the 

machine independent part of the compiler), rather than rewriting 

each translator.  This should be contrasted with the situation 

for the other, higher level intermediate code systems.  The fact 

that phase three of the compiler is at present somewhat badly 

written does not affect the gains which our approach could 

produce. 

    This register parameterisation is clearly not adequate.  It 

is doubtful whether any such system could ever be sufficiently 

powerful for all hardware, but there are several common features 

which could be allowed for and which would greatly ease the 

problems of translating Zcode.  Such features include the 

following.  On several machines, using one register requires that 

some other register be not in use (eg. even-odd pairs of 

registers on IBM360 series during multiply and divide operations) 

- this could easily be specified by a bit matrix specifying the 

inter-relationships of the registers.  Another fairly common 

mechanism in hardware is to allow certain operations only in 
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particular registers (eg. IBM360 multiply (again!), or many 

operations on CTL modular 1); it is difficult to allow for this, 

and the most convenient solution at present is for the translator 

to dynamically map a Zcode register onto varying hardware 

registers (the Zcode 'R' and 'K' directives make this reasonably 

straightforward).  A more satisfactory solution would be to allow 

the initialisation data to specify, for each operation, which 

Zcode registers can be used; this can be done by grouping the 

operations suitably, and, instead of specifying Zcode types for 

the registers, to specify operation groups (each group of opera-

tions would only place a single Zcode type in a register, so the 

present information would still be implicitly available). When 

this technique is used in conjunction with specification of 

inter-relationships between registers (which allows several Zcode 

registers to map into a single hardware register), we could then 

allow quite well for most existing register-oriented hardwares. 

    The major problem to be surmounted in our register 

parameterisation, however, is the existence of computer hardware 

having no registers, that is 'stack machines'.  For such 

computers, all our efforts at register allocation are of no avail 

- such computers are built so that the hardware perfoms the 

'slaving' functions at run-time much better than our attempts at 

slaving in registers.  True, our registers can be mapped into 

ordinary storage on the computer, and the number of Zcode work 

registers can be made small (we require a minimum of two for some 

operations), but this is only a process of minimizing the harm 
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done by our register allocation - we really need stack-machine 

operations (such as are used in most other intermediate codes, 

and certainly in all the high level codes).  Although we could 

persuade the Zcode-generator to produce such instructions, they 

would not be Zcode. We have to admit that Zcode is not suitable 

for stack machines, and be content with the gains it gives us for 

the many register machines. 

3.2.3 Operations 

    One of the problems inherent in generating a low level 

intermediate code is that by producing several hardware oriented 

operations for a single language operation, we are removing 

information, which the translator must painfully reconstruct if 

its hardware is such that our low level operations are not 

suitable.  It is basic to the design of Zcode that its operations 

are upon only the basic Zcode data types, so that if the target 

computer has, for example, hardware to manipulate array 

descriptors, a translator would find it extremely difficult to 

take advantage of such hardware. This constraint is as 

fundamental to the design of Zcode as are its registers.  The 

choice of which data types to recognize in Zcode is, of course, a 

design decision - we could have included, and often considered 

including, descriptors as a Zcode type - but as we include more 

complicated types, while simplifying translators taking advantage 

of such hardware facilities as descriptors, we complicate all 

other translators.  There is a trade-off between avoiding loss of 
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information (by including more complicated types) and our basic 

approach of producing simple, low level code.  In view of the 

rarity of hardware support for the more complicated types we feel 

justified in our present choice of Zcode types.  (But we must 

bear in mind the growing influence of machines with descriptor 

hardware, such as MU5 and with vector hardware, such as Texas 

ASC.) 

    Given some decision as to the data types on which the 

intermediate code operates, we should clearly have one 

intermediate code operation available for each language operation 

on these types.  That is, when code generating a language opera-

tion, we should only break it into simpler operations to the ex-

tent that is required to express it in terms of the intermediate 

code's data types.  Breaking it into simpler operations than this 

is unnecessary, and may cause unnecessary trouble to the 

translator.  For example, Algol68C allows an expression of the 

form 'a/:=b' meaning 'a:=a/b'.  Code generated for this would be 

of the form: 

                   LOAD  r  b    #register:=b# 
                   SDIV  r  a    #store:=store/register# 

although equivalent code would be: 

                   LOAD  r  a 
                   DIV   r  b    #register:=register/b# 
                   STOR  r  a 

Clearly, for a machine having a divide-to-store instruction, the 

former code sequence is preferable, but it is equally clear that 
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for a machine not having such an instruction, the latter sequence 

is preferable (in order to simplify the translator).  If we 

generate a single operation where the hardware requires several, 

the translator can do the conversion, but this has two 

disadvantages: many translators will contain the same algorithm 

for the conversion (though the conversions in question are so 

straightforward that this is a minor consideration), and, if the 

alternative sequence requires registers or storage, then we are 

reducing the effectiveness of having the machine independent part 

of the compiler perform register and storage allocation. 

    The approach which can be adopted to overcome such problems 

is to include data in the initialisation file (and in practice 

also in the machine environment) specifying which of alternative 

code sequences to generate.  In particular, for each Zcode 

operator we specify whether 'op:=' and 'op:=:=' can be generated 

as a single Zcode operation or whether the alternative sequences 

should be produced.  There are other similar choices (such as the 

'CASE' instruction, and the store-to-store copy instruction), 

although the alternative sequences are not yet implemented. 

    Thus the Zcode generator takes language operations and 

expresses them as operations on Zcode types; it will optionally 

express them as particularly simple operations on Zcode types.  

This allows adjustment of Zcode to hardwares with restricted 

operation sets.  However, we currently have no way of producing 

suitable code for hardware supporting higher level types (such as 
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descriptors).  One approach to this would be to use similar 

techniques - include higher level types in Zcode, but allow the 

machine dependent data to specify that these types should be 

broken into simpler types.  Taking this approach to its logical 

conclusion, we would be willing to produce code at any level from 

Algol68 types down to primitive hardware types.  This would give 

us a great deal of flexibility, allowing us to model very closely 

most register machines.  However, the present code-generator does 

not exploit these techniques very much: the main reason is that, 

since it does not yet support the complete language, little 

effort has been expended in allowing selection of code 

sequences.  Nevertheless, I believe (and my belief is supported 

by the architecture of those register machines which we have 

examined) that such techniques present little difficulty in the 

Zcode generator, and greatly ease the problem of producing good 

target code. 

3.3 Summary and Conclusions 

    It is highly desirable that the compiler we use should be 

portable. The way this is achieved is by use of an intermediate 

code, and we can choose either a high level code or a low level 

one.  High level codes merely produce a textual representation of 

the parse tree (and perhaps of some auxiliary data); low level 

codes attempt to resemble the architecture of the target 

computer.  High level codes make few assumptions about the target 
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computer, and require complicated translators; low level codes 

can use much simpler translators at the expense of making machine 

dependent assumptions.  Algol68C generates a very low level code, 

but attempts to parameterise the machine dependent assumptions so 

that the intermediate code can resemble the target hardware. 

This, ideally, would give us the portability of high level codes 

with the ease of translation of low level codes.  This 

parameterisation occurs in three aspects: registers, storage, and 

operations. 

    The major drawback to the Algol68C system is its assumption 

that the target computer is a register machine, and that in 

practice the parameterisation techniques have not been developed 

as fully as we would like.  It is possible that a code using 

stack operations (like OCODE or PCODE) instead of register opera-

tions would be more suitable, but there are so many register 

machines, and good register allocation is so complicated, and to 

such a large extent machine independent, that the gains of 

centralizing the register allocation algorithm in the machine 

independent part of the compiler seem to outweigh the 

disadvantages.  With a little more work, we could parameterise it 

sufficiently to map onto most register machines with little 

effort - the difficulties we encounter at present are in areas 

where the necessary distinctions were not sufficiently clear to 

us when we were writing the Zcode generator.  Work at present in 

progress on phase three of the compiler should help alleviate 

these problems. 
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    The key to parameterisation of storage and operations is the 

way in which Algol68 types are broken down into Zcode types.  The 

choice of Zcode types determines, to a large extent, how 'low 

level' the intermediate code is.  Our aim is that Zcode types 

should closely resemble target hardware types (we will se later 

how this can help in some of the problems peculiar to system 

programming [C2.2]).  None of the implementers who have 

transferred the system to the various target machines has had any 

complaints about the parameterisation of storage allocation, and 

none has wanted lower level Zcode types; there are a few 

computers (MU5, Texas ASC) for which higher level types would be 

a convenience (in that they would allow production of better 

machine code), but it seems likely that the lower level types 

would still be used for initial bootstrapping on to such 

computers, the higher level types being introduced as a 

subsequent optimisation. 

    The compiler has shown itself in practice to be highly 

portable. On a convenient machine, I can produce a working system 

in under three months; a more normal figure, to reach a 'produc-

tion' system would be six man-months.  To date, the compiler has 

been transferred to IBM360 and 370 series, to PDP11/45, to 

ICL4130 and CAP; it is in the process of being transferred to 

PDP10, Texas ASC; a cross-compiler also exists for a DEC GT40. 

The system thus appears to be sufficiently portable for our 

purposes.  Note that 'system' includes any library and run-time 

system, but these topics are discussed elsewhere [C1].  The work 
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required to port the Algol68C compiler compares quite well with 

BCPL using OCODE (BCPL, having only one type, has fewer problems) 

and PASCAL using PCODE. 

    More detailed discussion of Zcode and intermediate codes is 

available elsewhere [9,31], though I do not necessarily agree 

with their conclusions.  I remain convinced that the approach of 

producing a low level machine dependent code gives us a system 

very convenient for our purposes, although more work is required 

to provide a sufficient degree of parameterisation. 
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Section C:  System Programming Facilities 

    We have seen in previous sections how mechanisms were 

arranged, and facilities added, which would be of use in 

achieving our aim of writing a large operating system completely 

in the language.  Features such as separate compilation and 

compiler portability are extremely useful, if not essential, to 

achieving our aim.  However, there still remain several severe 

problems which must be overcome before we can claim success.  As 

pointed out earlier, most algorithms in an operating system can 

be expressed in abstract terms, and using the concepts and 

facilities of any reasonably versatile general purpose high level 

language, but we must now address ourselves to the difficulties 

which arise, peculiar to the task of writing an operating system. 

    The first class of problems arises from the fact that not all 

parts of the system are concerned purely with abstract operations 

on abstract objects.  We will occasionally have to write programs 

performing physical operations on physical objects.  These opera-

tions and objects will be defined by the hardware of the target 

machine, as distinct from abstract operations and objects, which 

are defined by the compiler writer or by the programmer. Note 

that although there is a hardware representation for abstract 

objects, the program using such an object is unaware of the na-

ture of the representation.  There are hardware-defined objects 

(eg. the physical layout of capabilities) and operations (eg. 
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initiating an I/O transfer) which our language must allow 

programs to express.  Further, in many circumstances we will have 

to accept or provide arguments specified in an extra-lingual 

manner. 

    A second class of problems exists which tends not to have 

been generally recognised by writers of other systems.  One easy 

way out of many of the problems of writing the system in a high 

level language is by use of some form of 'run-time system'.  That 

is, the code produced by the compiler is not capable of running 

on the bare machine, but only in the environment produced by the 

run-time system.  The run-time system is thus a form of kernel 

producing an environment in which the compiled code executes. 

There is no objection to a run-time system as such, but if it is 

not itself written in the language then we will have failed in 

our aim of writing the operating system in the language.  We will 

see below the consequences of insisting on writing entirely in 

the high level language. 

    A third problem is not strictly part of our original aim of 

writing the system entirely in a high level language, but is 

sufficiently closely related to be worthy of attention.  We may 

wish a program to interface with programs in other languages 

using interfaces defined by those other languages.  An alterna-

tive expression of this is that we may require the ability to 

specify to the compiler the environment in which the program will 

run.  Note that if we could solve this problem entirely, we would 
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have a system capable of producing code for imbedding in machine 

code programs - we could take an existing system and replace 

parts of it by code produced from program written in a high level 

language. 

    A language system which solved all three of the above 

problems would clearly be an extremely useful tool.  Not only 

could it be used for writing an entire operating system without 

recourse to machine code, but it could also produce code to run 

in harmony with code written in other languages and it could be 

used to modify existing machine code systems.  I am not aware of 

any existing system which has solved all these problems, but we 

will see below that the solutions do not appear to be impossible. 
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1. Run-time System 

    An implementation of a general purpose high level language 

normally includes a run-time system.  This system will typically 

be concerned with storage management, input-output and run-time 

debugging facilities. It may also include such facilities as 

overlay mechanisms and dynamic program loading, and will probably 

cater for interrupts provoked by user errors.  Such run-time 

systems can become extremely large (consider FORTRAN I/O packages 

or co-ordination and storage management in SIMULA or CPASCAL), 

and can require a considerable programming effort.  They are 

almost inevitably written in machine code, and linking of 

programs to routines in the run-time system is achieved by 

mechanisms which are distinct from those used for linking to 

other parts of the program. The run-time system is treated spe-

cially by the compiler - normally the names of entry points, or 

label numbers, or even entry addresses are built into the 

compiler.  All code produced by such a compiler assumes the 

availability of the run-time system. 

    Such an arrangement is not acceptable for our aim of writing 

the operating system entirely in a high level language - we must 

insist on being able to write the run-time system in the 

language, for otherwise we have only postponed the problem; 

writing the machine code run-time system has all the pitfalls we 

are trying to avoid by use of a high level language.  Note that 

even the excuse that there is only one run-time system and 
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several programs has little force, since we are likely to want 

only one operating system for each machine.  In any case, the 

run-time system is likely to be subject to considerable modifica-

tion as the operating system develops.  Additionally, on the CAP, 

different run-time systems are appropriate for different programs 

(eg. the co-ordinator and the command program).  In particular, 

for several parts of the operating system it would be most 

inappropriate to attempt to implement the sophisticated I/O and 

storage management required for other parts.  A second difficulty 

of a compiler relying on a run-time system is the danger that the 

code produced by such a system cannot execute without it and so 

we would have difficulty in producing code for imbedding in other 

environments (such as when called from another language, or 

imbedded in existing machine code).  Thus we must retain the 

ability to compile code to run in very simple environments. 

    It will be useful, then, to investigate the reasons for 

implementers wishing to have a run-time system.  Although I will 

describe places in Algol68 where one is tempted to resort to such 

a privileged run-time system, the comments are also applicable to 

almost every other language, in greater or lesser degree. 

    One of the most drastic examples of a facility which would 

normally use a run-time system is the Algol68 construct called a 

'parallel clause'. This is a facility allowing a programmer to 

specify a set of actions to be performed asynchronously, with a 

'semaphore' facility for synchronisation purposes.  The units of 
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a parallel clause correspond fairly closely to 'asynchronous 

processes'; the overall effect is similar in its end result to 

monitors in concurrent PASCAL [28], and to some features of 

SIMULA [25], although the Algol68 facility matches neither of the 

others in their elegance.  For our present purposes, however, any 

such facility is a drawback, rather than an advantage, if it is 

considered as a primitive construct in the language.  This is 

because its implementation requires, in effect, a process co-

ordinator to be available and to be called implicitly by the 

compiled code.  That is, the process co-ordinator would be part 

of the run-time system.  The objection to the facility would be 

removed if parallel clauses were not primitive, ie. if they were 

defined in terms of simpler constructs. Such a definition would 

include a co-ordinator, but it would then be being called as sub-

program by the normal language facilities; it would merely be a 

library routine and it, and parallel clauses, would no longer be 

part of the syntax and semantics of the language.  The objection 

to parallel clauses, thus, is not to the facility (which might 

possibly be useful), but to the fact that they have to be treated 

specially, as part of the language - they should be something 

which the programmer is at liberty to define, not something that 

the language implementer must provide.  As a word of warning, 

although such high level facilities have a place in some 

languages, their provision in a general purpose language (and 

particularly in a language for writing operating systems 

including process co-ordinators) seems dangerously far down the 
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road which leads to the program being: 

            UNTIL finished DO work 

and the run-time system being correspondingly complicated. 

Parallel clauses are not available in Algol68C, nor in most other 

implementations of Algol68. 

    A common cause of code in the run-time system is input and 

output ('transput', to use one of the more successful parts of 

Algol68 jargon).  A lot of the transput code is not in fact 'run-

time system' in our sense, since it is merely a set of 

subroutines called in the normal way; there are however some 

situations where the compiler has to react specially. Although 

most of our system programs will be unlikely (and probably 

unable!) to indulge in transput, it will be instructive to look 

at some parts of it.  The most strikingly complicated part of 

transput is 'formats'.  Analogous constructs exist in many other 

languages (FORTRAN, BCPL, PL/1, COBOL), although they reach a 

peak of complexity in Algol68.  Formats virtually constitute a 

mini-language imbedded in Algol68 to describe certain transput 

operations.  Although their complexity has perturbed many 

implementers, our objection to them here is the fact that they 

implicitly call various routines.  This implicitness indicates 

that the routines are in some way treated specially by the 

compiler, and are not ordinary programs written by ordinary 

programmers. 
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    Thus, once we start considering the run-time system as 

ordinary program compiled in the normal way, we can begin to see 

features such as formats as indicating situations where the 

language designer has found the normal interface mechanisms (ie. 

procedure calls etc.) to be inadequate.  However, the designers 

response was not to make the interface mechanisms more powerful, 

but to bridge the gap by adding ad hoc syntax for his special 

purposes.  This is strikingly illustrated by the section of the 

Algol68 report defining transput.  This section is written very 

largely in the form of a program (only 'form of', since it is 

written in such a style that one would not consider executing it 

in a practical system), but at several critical points it lapses 

into ordinary English.  These points are places where the 

interface mechanisms were inadequate.  Examples are formats, and 

'straightening' [1]; a less obvious example is 'print', whose 

argument is a vector of objects, each of which can take any of an 

infinite number of data types - here the interface is defined in 

the language, except that the data type of the argument could not 

be defined in the language.  It would seem that if the designer 

found the interfaces inadequate, then a programmer would be 

justified in bemoaning their inadequacies. 

    The ideal solution to these problems would be to redesign 

those parts of the language, and to add extra interfacing 

mechanisms, so that they need no longer be treated specially by 

the compiler.  We could then write those routines, and link to 

them in the normal ways.  Such redesign is clearly not difficult 
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once we have recognised the need for it.  However, the solution I 

adopted for Algol68C is rather less than ideal: since 

incompatible changes to the language accepted by the main 

Algol68C compiler were considered undesirable, a method was 

required which would allow such parts of the run-time system to 

be written in Algol68C, while not changing the constructs (such 

as 'print') which use them. The general technique was to make 

certain identifiers known to the compiler (by placing them in the 

initialisation file), then when code generating the special 

constructs, the code generates normal procedure calls to those 

identifiers.  To avoid those identifiers being 'reserved', the 

compiler only considers definitions of them in separately 

compiled segments marked as being part of the 'prelude'. The 

mechanism (for 'print' only) is defined more precisely in the 

Algol68C reference manual [7].  This mechanism is not entirely 

satisfactory, since it treats the constructs specially, but it 

does allow us to compile the routines of the run-time system in 

the normal way; the compiler has built into it only the names of 

the routines.  Although the mechanism has at present only been 

used for 'print', it can clearly also be used for calling such 

things as the storage allocation routines (and thence, for 

example, the garbage collector, if we had one). 

    There are parts of the run-time system which present 

difficulties when we try to write them in our high level 

language, for reasons other than interface problems.  Examples of 

such parts are initialisation and termination code, and areas 
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which require access to data generated by the compiler (such as 

storage maps for the garbage collector, and routine names for 

postmortem facilities). All such difficulties appear to come into 

the classes of problems mentioned earlier, namely writing code to 

access externally defined objects, and allowing for the environ-

ment in which the code is to execute.  The same remarks apply to 

parts of the run-time system concerned with hardware defined 

operations.  Such problems are discussed in a later section 

[C2.2]. 

    Apart from register initialisation and handling of entry and 

exit points from the program, the compiler, by using the 

techniques outlined above, need have no knowledge of, or 

dependence on, a run-time system.  A complete source program, in 

this view, consists of the user's source plus the source of the 

run-time system.  The run-time system is typically pre-compiled 

and shared, but this is a facility available equally to parts of 

the user's program [B2.2]. There will be certain constructs 

which, when used, imply a call to a routine with a certain 

identifier, but this routine is defined in the normal way - it is 

in no way special, and in principle could even use, in a recur-

sive manner, the facility it makes available. 

    This gives us considerable freedom in providing a run-time 

system. We can readily provide run-time systems for differing 

machines or environments without having to inform the compiler; 

programs can be written to rely on as much or as little run-time 
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system as desired. Indeed, the run-time system does not need to 

be considered as part of the language system; a standard one (or 

a selection of them) would be provided as default by the language 

implementor, but the user (particularly if he is a system 

programmer) would be under no compulsion to use the default.  As 

part of the Algol68C separate compilation mechanism, the source 

text of a segment nominates, in its heading, what ENVIRON it is 

to be compiled in; this, in the first segment of the user's text 

indicates what run-time system is desired - if omitted, the 

default one providing the standard Algol68 system is assumed. 

Thus the code generated by the compiler for a piece of source 

text makes no assumptions about the environment in which this 

text is to execute, other than the information specified in the 

appropriate environment file.  The initial environment file 

specifies the minimal (ideally empty [C3.2]) environment. 

1.1 The CAP Run-time System 

    In developing the CAP operating system, there has been need 

for run-time systems of differing complexity for the different 

constituent programs of the system, and it was considered essen-

tial that machine code should be avoided if at all possible. 

These requirements have been met in the Algol68C system by taking 

advantage of the compiler's independence from the run-time 

system.  I have been able to produce run-time systems for the 

various situations, pre-compiled and shared between programs. 
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Many parts of the run-time system are machine independent, and 

can be made to run on another machine - this has been done for a 

PDP11 by I.Walker.  The run-time system is treated in no way spe-

cially by the compiler, and is compiled in exactly the same way 

as segments of a normal user program (but less often).  The run-

time system has considerably developed and altered as the 

operating system developed, and at one time was available under 

two operating systems - none of this has caused any serious 

difficulty. 

    The run-time system consists of five Algol68C segments, known 

as MC, MIN, SER, SYS, USE.  (A sixth segment, MATH, providing 

various mathematical functions has recently been added but need 

not concern us here.)  Each of these five segments uses the 

environment provided by the preceding one, except MC which uses 

an empty environment.  The programs of the operating system use 

the environment provided by (MC + MIN) or by (MC + MIN + SER) or 

by all five.  The default environment, providing the full 

facilities of Algol68, uses all five (now six). 

    The segment MC performs those actions which are necessary 

before code generated by the compiler can be executed.  It is the 

residue of traditional run-time system whose existence is assumed 

by the compiler, and is necessarily written in a mixture of Zcode 

and machine code, rather than in Algol68.  Ideally, MC would not 

be necessary, but at present the best we can do is try to 

minimise it. Future possibilities for this are considered later 
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[C3.2].  MC can be considered as converting the bare machine into 

a virtual machine on which compiled code can execute.  The 

actions performed are few and simple.  At each entry point (there 

are three - one defined by hardware, two by software) the 

following registers are loaded or restored from a previous dump: 

    Register 1   -  a constant 1, assumed by the translator 

    Register 11  -  the 'dsma' [app.Y] 

    Register 12  -  the global stack base 

    Register 14  -  the current stack frame base 

From the main entry point (word 0 of segment P0), control is then 

transferred either to the start of the compiled code, or as if 

exiting from the 'return' co-routine (described later [C3.1]).  A 

second entry point is word 1, to which control is transferred by 

software if a trap (program error) has occurred - from here a 

variable subroutine, 'run-time error' is called; this subroutine 

is compiled code, by default in MIN, SER or USE but optionally 

provided by the user program. The third entry point is used by 

software to interrupt a program to indicate the occurrence of a 

'quit' signal; depending on a user-settable flag this causes 

either immediate resumption of the interrupted program, or a call 

of a variable routine 'attention routine' which can be in USE or 

provided by the user.  There are two possible exits - either the 

end of the compiled code is reached, in which case MC executes a 

'return' instruction [A2.2], or the 'return' co-routine is 

called, in which case MC preserves enough information (ie. 
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registers 11 and 14) to allow resumption on next entry. 

    Additionally, at present MC contains the routines for 

allocation of heap and dynamic stack storage.  It would be 

preferable if these were compiled code in MIN, but unfortunately 

the present compiler links to them using a label number nominated 

in the environment files rather than using the identifier 

technique described above.  This undesirable situation could 

clearly easily be resolved by using this technique, but this has 

not yet been done. 

    The total size of MC is about 220 orders.  The remainder of 

the run-time system is compiled as normal Algol68C segments, 

treated in no way specially.  Where these segments are concerned 

with operations or objects not available in Algol68, 'CODE' 

sections are used to imbed explicit Zcode; where the objects or 

operations cannot be expressed in Zcode, explicit machine orders 

are imbedded. 

    The segment known as MIN is compiled using an environment 

file, 'MCENV', which corresponds to the segment MC.  This 

environment contains only the program entry and exit label 

numbers, the label numbers for the storage allocation routines, 

and data required by the compiler for the in-line operators; it 

was originally manufactured by hand, but could readily be used 

for other systems or other machines. MIN is concerned mainly with 

operations which require no interaction with the operating 

system.  These include such items as string concatenation, selec-
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tion and comparisons, and facilities such as the fast MOVE order 

for bulk data transfers.  In MIN we meet also the major example 

on the CAP of a data object defined by the hardware with which 

programmers will be concerned.  This is, of course, the 

capability.  In the absence of advanced techniques for defining 

types and operations such as discussed later, and of language and 

compiler changes such as have been proposed for handling 

capabilities [app.Z.1], the following facilities have been 

provided. 

    A new Algol68 mode, called SLOT has been defined.  This is 

represented in Zcode and machine code as the address of a 

capability. Note that SLOT cannot be of the form REF CAP, since 

de-referencing would have to cause a capability to be brought 

into ordinary store, which the hardware does not allow.  SLOT 

objects, being merely addresses, can be stored, copied and so on, 

in ordinary storage with no special care. However, various 

routines are provided in MIN to perform special operations on 

them.  For example, 'MOVECAP', 'INDINF', 'SEGINF', and 'ENTER' 

perform the corresponding machine instructions [A2.2]; note that 

'ENTER' takes special care to preserve and restore such items as 

the stack pointer.  Also, routines are available to allocate 

store in a workspace capability segment (yielding the 

corresponding SLOT value) and to explicitly relinquish such 

workspace. A problem arises when the programmer knows that some 

SLOT value corresponds to a segment containing data in a certain 

format (yielded by calling some protected procedure, or given as 
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argument to his protected procedure, or linked in when his 

protected procedure was created).  Then we must provide him with 

some means of accessing the data from Algol68.  This, again, is a 

question of accessing an externally defined object, and is the 

subject of discussion later [C2.2]; the solution at present is a 

routine taking a SLOT and yielding a REF[]INT referring to the 

corresponding segment. This, albeit imperfect, solution has 

proved sufficient for all requirements in the operating system. 

Clearly, a more general solution is desirable, but it is neither 

necessary nor urgent. 

    The run-time system used by the co-ordinator consists of MC + 

MIN. The next segment, SER, defines subroutines for exercising 

each possible entry to the co-ordinator.  These entries are 

almost all constrained by the co-ordinator such that they must be 

made via a protected procedure (available in each sub-process) 

known as ECPROC, so SER routines mainly use the 'enter' routine 

provided by MIN to enter ECPROC.  The run-time system formed by 

MC + MIN + SER is that used by the vast majority of the protected 

procedures of the operating system.  The SER segment is based on 

routines originally written by C.J.Slinn [32]. 

    The fourth segment, SYS, is concerned with the various public 

interfaces made available by the operating system.  It contains 

numerous routines, typically one for each service provided by the 

operating system; these routines are mainly implemented by calls 

on the 'enter' subroutine - their purpose is to arrange the 
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names, arguments and results in a convenient and mnemonic form.  

With the facilities thus provided, ordinary user programs rarely 

contain explicit calls on 'enter', using instead the appropriate 

service subroutines - the user does not need to know the 

complexities of any of the system interfaces. 

    The segment known as USE is mainly concerned with providing 

the definitions to implement the Algol68C transput system [7].  

This is implemented by various pieces of relatively 

straightforward code; these implement the routines required by 

the Algol68C transput by calls on the service routines provided 

by SYS.  These routines in USE are machine and system independ-

ent, requiring only a small number of primitive service routines, 

and they have been used as a basis for implementing the Algol68C 

transput elsewhere.  Other facilities implemented in USE are 

placed in that segment because they use the transput.  The most 

important of these are for handling faults (traps), and 

attentions (such as 'quit' signal from a console).  As mentioned 

above, MC causes a procedure call on a variable routine ('run-

time error' or 'attention routine' respectively) when these 

events happen. The MIN and SER segments assign to 'run-time 

error' a routine which terminates the program (by 'GOTO stop'), 

as this is the most appropriate default for users of those 

segments, and sets a flag causing MC to resume the program if an 

attention occurs (since almost all system protected procedures 

wish, by default, to ignore attentions).  In USE, these defaults 

are replaced by new ones by further assignment to these 
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variables.  The effect of the new default is that on all faults 

(except one special one) a message appropriate to the fault is 

printed (this message is generated on request by a protected 

procedure of the operating system), and then a 'backtrace' 

listing the routines active on the stack is printed.  Producing 

this backtrace involves another example of the use of an extra-

lingual data object, namely one which gives access to information 

in the activation records of the recursive stack frames.  

Fortunately (but deliberately), this object can be described by 

an Algol68 mode: 

  MODE FRAME = REF STRUCT (FRAME dynchain, INT link, 
                           FRAME statchain, REF STRING name) 

Thus the 'backtrace' routine uses a CODE section only to obtain 

an initial FRAME object referring to the current frame and is 

written thereafter in ordinary Algol68. 

    The segment MATH has recently been added to the run-time 

system to provide a package of floating point mathematical 

routines.  The package was written by P. Kemp and was intended to 

be transportable [33]; I transported it from an IBM370 (with 57-

bit sign-and-modulus mantissa, 7-bit base-16 exponent and 

truncation of excess bits) to the CAP (with 24-bit 

two's-complement mantissa, 8-bit base-2 exponent and unbiased 

rounding) in less than one day with no difficulty. 

    The run-time system at present contains no provision for a 

garbage collector.  This is a reflection of the absence of 
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garbage collection facilities in the compiler.  However, it would 

appear to be fairly straightforward to add these facilities.  The 

garbage collection code would be part of the heap storage alloca-

tion routine (which should be in MIN rather than MC).  To 

operate, the garbage collector needs access to a storage map and 

mode templates generated by the compiler; with care, there is no 

reason why these should not be valid Algol68 data objects (as has 

been done at present with stack frames).  The garbage collector 

also needs marker bits, which on the CAP would probably have to 

be a bit map, and needs a subroutine which, given an address, 

would indicate the corresponding bit.  Having determined which 

parts of the heap are accessible, the remainder is free for 

allocation.  The situation is complicated slightly by the 

presence of objects allocated not by the language system, but by 

other protected procedures. These objects all occur in segments 

other than the stack and heap.  We must either manufacture (in 

some way) templates for them, or take advantage of the assertion 

(which could not be verified) that for the correct operation of 

the current protected procedure, objects obtained from other 

protected procedures must not contain inter-segment references. 

This assertion must be satisfied, because external protected 

procedures cannot validly know the arrangement of the address 

space of this protected procedure, and to ensure correct opera-

tion the object program must not contain arguments containing 

addresses without checking their validity. This effectively means 

that the architecture is such that data objects passed as argu-
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ment must not contain addresses, so the garbage collector problem 

caused is not serious. 

    Implementing the run-time system as far as possible in 

Algol68, with minimal CODE sections, has proved very satisfactory 

during the development of the system and has allowed a large 

number of facilities to be made available with little difficulty 

and few errors.  The fact that the compiler makes no assumptions 

about the run-time system has provided great flexibility, 

including provision of differing systems, and ease of modifica-

tion - sometimes by those writing the operating system, with no 

knowledge of the compiler.  The run-time system contains only 26 

explicit machine instructions, and provides sufficient 

subroutines for handling hardware and externally defined objects 

that very few parts of the operating system (mainly the 

peripheral handlers) have found need to use CODE sections.  The 

run-time system now amounts to 5887 compiled orders and provides 

325 definitions. 
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2. Hardware Objects and Operations 

    We have been assuming until now that the language being used 

for our system is an ordinary, general purpose high level 

language, typically Algol68, but we must now consider those 

situations where the ordinary facilities prove inadequate. None 

of these situations is unique to operating system programs; they 

can occur on the CAP in totally unprivileged user programs. 

    The first such problem could be termed 'storage allocation': 

a program is liable to find that the storage management regimes 

provided by the standard language (in Algol68, a stack and a 

garbage-collected area of global storage), are inadequate for its 

purposes.  On the CAP, a programmer might appeal to the operating 

system for some extra storage for various reasons: allocating 

storage in separate segments might produce a better pattern of 

virtual memory traffic for his program, or he might be taking 

advantage of facilities allowing him to change the sizes of the 

segments independently from each other.  In a typeless language, 

such as BCPL, this is no problem: the programmer accesses each 

segment as a vector of the basic data object ('words' in BCPL). 

However, in any strongly typed language, such as Algol68, we have 

a serious problem: the program must be able to reference parts of 

its storage as a particular data type.  This implies some form of 

type transfer from the unallocated store to a specified data 

type. This has been picturesquely termed the 'white store' 

problem. 
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    The second problem we will have to consider is the most 

difficult. Our language includes a set of abstract data types 

(such as 'integer' and 'boolean') operations on them, and 

presumably mechanisms for specifying and defining operations on 

new abstract data types built up from the old ones (such as 

Algol68 'mode definitions', 'structured values', etc.).  However, 

our hardware and other programs will inevitably have available, 

and hence some programmer will inevitably want to use, data types 

which cannot be represented in terms of the types already built 

into the language and the available constructions. For such 

'hardware types' we will need to investigate more powerful type 

construction techniques than are presently available in the 

language; as will be seen later, examples exist which defy most 

existing techniques. 

    A third problem arises when we consider the set of operations 

available in our standard high level language.  The contents of 

this set will depend on the generosity of the language designer, 

but it will certainly not be sufficient for all purposes.  For 

example, it will not allow the author of the teletype-driving 

program to write his 'read character' subroutine.  It must be 

borne in mind here that we are considering a system written 

entirely in the language - there is no let-out by putting the 

subroutine into some 'run-time system'.  Other examples will 

occur even in user programs - all I/O actions, for example, will 

reduce to some operation not expressible in the language. 
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    Care must be taken not to over-rate the importance of 

hardware-defined types and operations.  The situations in which 

they occur can be kept to a minimum, and they can be handled by 

sordid techniques applied in centralized, carefully written and 

thoroughly debugged libraries.  Good solutions to the above 

problems are desirable and the problems are worth investigating, 

but the system can survive without the good solutions.  Indeed, 

at the present time, the system available on the CAP contains no 

elegant solutions to these problems, although an implementation 

of a solution to the 'white store' problem is becoming urgent; 

the CAP nevertheless contains a complete working operating system 

written in Algol68C. 

2.1 Storage Allocation 

    In Algol68, the programmer can explicitly allocate storage 

(variables) in two ways: 'local generators' and 'heap 

generators'.  The former is stack-like - the storage is 

considered free at the end of the block in which it was 

allocated, and there are language restrictions preventing 

attempts to access the store after this.  The latter allocates 

'global' storage, which is not freed while there are references 

to it, with no restrictions as to how these references are passed 

around.  In practice, the only way in which this global storage 

can be found to be free is by a garbage collector.  Other storage 

is allocated implicitly from time to time, for such purposes as 

storing subroutine links and temporary anonymous results; all 
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such implicitly allocated storage can be freed in a stack-like 

manner.  Situations arise in which the facilities offered by 

these regimes are inadequate; I have already mentioned the case 

of a programmer wanting to segment his storage (for a number of 

reasons), and other difficulties can be envisaged such as wanting 

to use user-supplied allocation routines, wanting to allow 

explicit relinquishment of storage or storage control by use 

counts. (Invokation of a garbage-collector, apart from being 

expensive, can be embarassing in real-time situations such as a 

peripheral driving process.) 

    It is not difficult to propose mechanisms which allow such 

extra facilities, but they tend to also introduce pitfalls for 

the programmer.  The following mechanism was proposed for 

Algol68C [34], but has not yet been implemented, because of 

doubts about its suitability.  A new mode, 'ADDR' is introduced, 

intended to correspond to the address of basic units of storage 

of the computer, and a mode 'AREA' intended to be a block of 

storage (typically on the CAP, a segment).  A dyadic operator '!' 

is defined, of mode PROC(AREA,INT)ADDR which yields the ADDR for 

a given cell in a given area.  A new form of generator is 

allowed, with syntax: 

    heap-symbol, primary, actual-declarer. 

where the required mode of the primary is 

    STRUCT( PROC(AREA,INT,INT)ADDR x, AREA y ) 
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The programmer might then proceed as follows: 

    AREA seg = getseg(1000) #ask for new segment#; 
    INT ptr := 0; 
    PROC get = (AREA a, INT size, align)ADDR: 
       BEGIN 
          INT n = ptr align * align + size; 
          ptr := n; 
          a ! n 
       END; 
 
    REF[]INT v = HEAP(get, seg)[0:100]INT 

    The heap-generator would cause 'get' to be called with argu-

ments:  'seg', alignment for []INT, number of cells needed for 

the object.  The user's routine determines which cells to 

allocate, yielding a suitable ADDR, and this is yielded in the 

REF[]INT value of the generator.  It should be noted that the 

operation of punning the 'white store' into the appropriate data 

type is performed as part of the generator; it is not directly 

available to the programmer.  This is deliberate, since a 

'punning' mechanism is a dangerous tool in the wrong hands; it is 

a necessary tool for storage allocation, but we should restrain 

it as much as possible.  However, we have no way of preventing 

the user writing his allocation routine in such a way as to 

allocate the same store twice.  Since such over-allocation, apart 

from being unreasonable programming practice, would also poten-

tially confuse any garbage-collector it must be forbidden (which 

is easy to implement - for example by keeping a bit-map of the 

AREA).  Similar schemes, differing in detail, have been proposed 

elsewhere [35]. 

    Arrangements for relinquishment of storage are less simple, 
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because of the diversity of techniques: garbage-collection, 

explicit-relinquish, use-counts.  Garbage-collection presents no 

difficulties, provided we have prevented the user over-

allocation, for example by allowing the user to explicitly invoke 

it giving an AREA and a routine of mode PROC(INT,INT)VOID to be 

called with the size and offset of blocks found to be free. 

Explicit relinquish is similarly simple.  Use-count schemes can 

be achieved by calling a user routine whenever a reference into 

the AREA is replicated or destroyed, but the expense is likely to 

be prohibitive. 

    As can be seen, then, a solution to the 'white store' 

problem, albeit an inelegant one, is not difficult to produce.  

It is likely that I will shortly implement some variant of the 

above scheme for the CAP, since the present facility (which 

treats all segments as REF[]INT) is becoming increasingly 

inadequate. 

2.2 New Data-types 

    What we wish to achieve is to allow the programmer to express 

in our system programming language, operations on objects which 

are not included in those provided by the original high level 

language, in order to be able to manipulate objects defined by 

the hardware or by other programs (possibly written in other 

languages).  Many languages already provide type extension 

mechanisms allowing the construction of 'new' data types - for 
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example the constructors STRUCT(...), UNION(...), REF..., [,,]... 

in Algol68.  However, all these are ways of constructing new 

types by composition of existing types.  There is no way in such 

languages to augment the set of basic data types.  Since there 

may exist hardware types not definable in terms of the given 

basic types, it is useful to investigate more fundamental ways of 

defining data types.  It should be noted that identical arguments 

apply to the set of type-constructors - in the most general solu-

tion to our problem, we should also be able to define new 

constructors. 

    Topics such as this bring to mind the various extensible 

languages, but in practice these always construct new data types 

from existing ones, since this is entirely sufficient for 

purposes other than ours. However, a mechanism has been outlined 

by P.Jorrand [36] which aims precisely at allowing the creation 

of new basic types.  I will give below an outline mechanism which 

is a transformation of his techniques arrived at by considering 

them in the context of a system such as the CAP Algol68C; the 

reader is strongly recommended to read also Jorrand's papers. 

When considering type extension, it would be inappropriate to 

omit the recent developments in languages oriented to type 

abstraction, a typical example of which is Liskov and Jones CLU 

[26].  However, we should be able to achieve sufficiently power-

ful mechanisms without the radical re-design of the high level 

language that introduction of CLU techniques would entail. 



- 106 - 

    Let us first consider Jorrand's scheme.  Having pointed out 

that other systems do not allow the definition of basic types, he 

considers what a data type entails.  A type is a set of objects, 

together with internal and possibly external representations of 

the objects, and a set of operations that can be performed on the 

objects.  For example, in Algol68, the type INT specifies a set 

of objects, with external representations such as the character 

sequence '100' and internal representations such as the bit 

patterns for fixed point numbers in some particular hardware.  A 

set of operations is available, such as addition, subtraction, 

copying.  To define new types, then, requires defining sets of 

objects, defining the representations of particular objects, and 

defining operations on the objects - more precisely, operations 

on the internal representations of the objects.  To enable the 

user to make such definitions, Jorrand first postulates a 'base 

language'.  The base language is assumed to have a primitive 

binding mechanism (such as in lambda calculus), and is assumed to 

be capable of specifying any possible operation on any internal 

representation.  The user can then, for example, define 'C' to be 

a set of objects (with, as yet, unspecified membership); he can 

define an object 'A' with internal representation given by some 

expression of the base language 'exp' to be a member of C; he can 

define operations on members of C by specifying in the base 

language the corresponding operations on their representations. 

Thus, in Jorrand's notation: 
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               DEF(C,CLASS) 
               DEF(A,AS(C,exp)) 
               DEF(P, PROC(C,D,lambda-expression)) 
               APPLY(P,A) 

Jorrand also describes definitions of set relations between types 

(such as inclusion, cartesian product, complement), and implicit 

type conversions (coercions, in Algol68 terminology) but, 

although these would be useful in an extensible language, they 

need not concern us here. 

    Let us now consider Jorrand's scheme in relation to the 

Algol68C system.  The critical question is what to use as the 

base language.  We need a language that allows us to express any 

operation or representation that can occur in our hardware; this 

is a severe demand, to which ultimately there can be only one 

answer - machine code. However, with care we can present this in 

a palatable form.  Algol68 is a language defined in terms of 

abstract objects and operations on them; it is the task of the 

compiler to convert these into operations on their internal 

representations.  Zcode, the intermediate code produced by the 

Algol68C system, is thus a language for expressing operations on 

internal representations of objects.  It is the task of the Zcode 

translator to convert operations on Zcode objects into operations 

on hardware objects - the design of Zcode is intended to be such 

that this transformation is straightforward, with simple 1-1 

mappings from Zcode objects into hardware ones.  We can thus see 

three levels of language - Algol68, Zcode, machine code - each of 

which has its primitive types. If the programmer is to introduce 
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a new primitive Algol68 type he will have to specify the Zcode 

for its objects and operations, just as he would give the base 

language expressions in Jorrand's scheme. Similarly, 

circumstances may arise where the Zcode types and operations are 

inadequate, and he will have to give machine code specifications 

of them.  Thus, the infamous 'code section' appears as a 

necessary tool for introducing new primitive types.  However, if 

we bear in mind Jorrand's scheme, we should be able to include 

code sections in a controlled and well-structured manner. 

    Several modern languages have been based upon mechanisms for 

defining abstract types.  The constructs used generally resemble 

the Simula 'class' mechanism [25], but are more specifically 

oriented to specifying all the properties of a type, rather than 

just grouping and invoking sets of variables and operations. 

Constructs have been proposed for adding such grouping mechanisms 

to Algol68 [B2.4], but they fall far short of complete type 

definitions.  The language CLU, designed by Liskov at MIT is 

based on the ideas of abstract types, and contains powerful type 

definition mechanisms.  Consideration of the CLU mechanisms will 

be useful for designing a primitive type definition mechanism.  

CLU is based not on conventional block structure, but on a 

sequence of independently compiled definitions; these definitions 

are either of procedures or of 'clusters'.  CLU procedures are 

straightforward, taking items of specified data types as argu-

ment, and performing manipulations on the arguments using 

whatever operations or procedures may be available.  A cluster 
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defines a type, and operations on the type; in particular, it 

defines the representation of objects in that type.  An instance 

of the type specified by a cluster can be created by invoking the 

cluster with arguments as required by the cluster.  A cluster 

makes available to users of the cluster a set of operations, many 

of which will take an item of the type defined by the cluster as 

argument.  For example, if we have defined a cluster called 

'stack' with operations called 'push' and 'pop', and if we 

defined an item called 'a' as an instance of a stack, we could 

invoke push or pop as: 

             stack.push(a,item); 
             itemvar:=stack.pop(a) 

    The crucial difference between operations defined inside a 

cluster and procedures defined outside it is that the operations 

have available to them the components of the representation of 

the type.  No information about the representation is available 

externally.  When an operation takes an object of the type as 

argument, it can specify that inside the operation the object is 

to be available as its representation.  For example, if our stack 

is represented as an array and a pointer, then inside the opera-

tion 'push', the array and pointer of the particular stack object 

given as argument will be available. Thus the cluster might be 

defined as follows.  (The syntax should be self-explanatory, and 

is similar to PASCAL.) 
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    stack: CLUSTER (size:INT) 
           IS push, pop #externally available operations#; 
              REP(sz:INT) = ( tp:INT; 
                              stk:ARRAY[1..sz] OF val 
                            ); 
 
              CREATE #called by system when creating a 'stack'# 
                 s: REP(size) 
                 s.tp := 0; 
                 RETURN s; 
                 END; 
 
              push: OPERATION(s:REP, v:val); 
                 s.tp := s.tp + 1; 
                 s.stk[s.tp] := v; 
                 RETURN; 
                 END; 
 
              pop: OPERATION(s:REP) 
                 s.tp := s.tp - 1; 
                 RETURN s.stk[s.tp+1]; 
                 END; 
 
           END #stack#; 

    For the general handling of abstract types, I find schemes 

based more closely on SIMULA (where the representation is the set 

of variables defined in the body of the class) more elegant, but 

for our present purposes, the explicit REP of CLU is more 

suitable.  We could clearly use the formalism of clusters for the 

definition of new primitive types, by having expressions of the 

base language for the bodies of the representation function and 

of the operations. 

2.3 Conclusions 

    It is clear that there is a need for some language extensions 

along the lines outlined above to enable the programmer to handle 

such situations. One must bear in mind in proposing any such 
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extensions the bewildering variety of data objects and operations 

with which hardware designers and implementers of other language 

systems can present us.  A few examples should emphasise this 

point.  A well-known example is the difficulty of passing Algol68 

multiple values (which can be scattered around the storage in a 

sparse manner) to FORTRAN without copying. This is a serious 

difficulty in providing inter-language library calls. An example 

occurring on the CAP is the handling of capabilities. Although 

these objects can be manipulated by the programmer, they cannot 

reside in ordinary storage and can only be manipulated by special 

instructions - we must always use a long spoon when handling 

capabilities.  A simpler example is in the execution of input or 

output instructions - here there is no possible alternative to 

having explicit machine code instructions.  Even within a single 

language program we have encountered situations where we must 

handle extra-lingual objects, such as mode templates and storage 

maps. 

    For each example produced, tidy ad hoc solutions can be found 

[C2.1],app.Z.1, each requiring its own language changes.  It 

would be much preferable to have a general mechanism for the 

description of such objects and operations, along the lines 

outlined above.  The 'base language' could conveniently be 

developed from the Algol68C facilities for imbedding Zcode in a 

program (and CAP Algol68C facilities for imbedding machine code 

in Zcode), since Zcode (and the imbedded machine code) is 

concerned with operations on the primitive objects from which all 
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objects must be constructed.  In the present CAP Algol68C system, 

imbedded Zcode has proved to be a sufficient, but sometimes 

inconvenient, tool for all such situations.  A more general 

mechanism would make it much more convenient, and much safer, to 

use. 
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3   The 'Program' 

3.1 Program Structure 

    At an early stage in the design of the language system, a 

decision has to be taken as to how the Algol68 concept of 

'program' maps on to the CAP architecture.  There are various 

possibilities: the complete operating system, or a single 

process, or a number (possibly one) of protected procedures, or a 

single program segment of a protected procedure.  Having the 

complete system as a single program was rapidly discarded, for a 

number of reasons.  It would require language or implementation 

mechanisms for describing process hierarchy, process structure 

and protection structure.  It would considerably blur the 

distinction between operating system and language, and would 

almost inevitably hide the causes and effects of operating system 

design choices.  It would prevent the facility, thought to be 

desirable, of allowing the system to be written in more than one 

language.  On the CAP, where there is no form of supervisor state 

or privileged mode (other than that caused by the relationship of 

a coordinator to its junior processes), there is no precise 

distinction between 'operating system' and 'ordinary' programs; 

as far as possible, system functions are hived off into protected 

procedures having minimum privilege, which run as ordinary user 

programs.  Accordingly, it is difficult even to conceive of the 

operating system as a single program.  Precisely the same argu-

ments apply against a process being a single program. 
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    We thus always consider, in any language on CAP, a 'program' 

to be a set of one or more protected procedures.  Note that we 

have therefore reduced the possible pitfall of imbedding the 

operating system in the language implementation to a very shallow 

one.  Use of several protected procedures for a single program 

could be convenient for several languages (e.g. CLU), but not for 

Algol68.  Having a conventional block structure, with the ability 

to access non-local identifiers, does not correspond to protected 

procedures with their water-tight encapsulation and narrow, 

explicit interfaces.  Further, the notion of protected procedure 

was designed to facilitate enforced checking of aspects of 

program executiion, whereas Algol68 is designed in such a way 

that very few runtime checks are needed, and those which are 

needed are more amenable to the checks provided by segmentation. 

The expense of protected procedure entry and exit cannot be 

justified for intra-program calls in Algol68, only for inter-

program calls.  It follows from this remark that the idea of 

allowing multiple Algol68 programs inside a protected procedure 

was discarded. 

    An Algol68 'program', then, is to be considered as a complete 

single CAP protected procedure.  Segmentation in the hardware 

sense is mapped onto the Algol68C separate compilation mechanism: 

sets of separately compiled segments may be placed in separate 

hardware segments, to facilitate sharing (and control of virtual 

memory traffic where this occurs) - the complete operating system 

contains only one copy of each segment of the Algol68C runtime 
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system. 

    A choice was available as to how to provide the stack 

workspace used by a program.  An early scheme was that when a 

protected procedure is called, the calling program should pass as 

one argument a sub-segment corresponding to the unused portion of 

its stack (or other workspace).  The alternative was that each 

protected procedure should contain its own private workspace.  

The former approach seemed desirable on grounds of store 

efficiency, but undesirable on protection and structural 

grounds.  If the former were used, programs would have to be 

exceedingly careful to prevent a caller, accidentally or 

maliciously, providing a segment in some way unusable (too small, 

for example, or a non-resident segment for a resident, or a 

segment subject to some external interlock); conversely, the 

called procedure could keep a capability for the workspace and so 

obtain later access to some of the caller's data.  It thus seemed 

preferable, though more expensive, for each stack to be local to 

a protected procedure.  The same stack could of course be shared 

between different instances of a program within a process (this 

is done for directory managers, for example). 

    When an Algol68 protected procedure is entered, this 

corresponds to initiating execution of the program at the 'BEGIN' 

in the runtime system; when execution reaches the corresponding 

'END', a RETURN instruction is executed.  In other words, each 

time a protected procedure is entered the effect is a complete 
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run of the corresponding program (although data can be passed as 

the argument to a particular run).  Division of the operating 

system in this way into separate programs gives a very suitable 

degree of modularisation. 

    However, it was soon found that this structure was not 

adequate, because the underlying subroutine-like nature of 

protected procedure calls was inadequate.  Treating each entry as 

a separate run of the program did not correspond to the desired 

operation of several of the system programs. For example, the 

program implementing interactive stream wished to perform some 

initialisation (such as acquiring message channels) on its first 

entry, then accept numerous entries requesting input or output on 

the stream, then after a final 'close' entry it would terminate 

its activity and return an error to any subsequent entry.  This 

could have been achieved by using variables outside of the normal 

Algol68 storage (remember that even the heap is initialised at 

the start of the runtime system), but this would involve writing 

the program in a most unnatural style, and one much less 

convenient than the one made possible by the solution I produced. 

    To arrive at the solution, we consider each protected 

procedure at any time to be either 'active' or 'inactive'.  The 

state of this flag is maintained by the runtime system, and is 

retained between entries to the protected procedure.  Initially 

(when the protected procedure is created), its state is 'inac-

tive'.  When the procedure is entered, if its state is 'inactive' 
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control starts at the beginning of the program. If control 

reaches the end of the program, its state is set to 'inactive' 

and a RETURN instruction is executed.  A routine named 'return' 

is provided by the runtime system which, when called, sets the 

state to 'active', preserves the stack pointers and executes a 

RETURN instruction.  When the protected procedure is next entered 

it is found to be in the 'active' state, so the stack pointers 

are restored by the runtime system, and control is transferred as 

if by subroutine exit from the call of 'return'.  The interactive 

stream protected procedure could now be written in the following 

form: 

    BEGIN 
       . 
       .  #initialisation# 
       . 
       UNTIL entry reason = close 
       DO CASE entry reason 
          IN . 
             .  #work# 
             . 
          ESAC; 
          return(result) 
       OD; 
       . 
       .  #tidy up# 
       . 
       return(0); 
       DO return fault(illegal entry) OD 
    END 

The relationship between the 'enter' routine in the calling 

protected procedure and the 'return' routine in the called 

protected procedure is very similar to that between co-routines. 

    This mechanism has proved very satisfactory in practice, and 

is used by most of the programs of the operating system.  Even 
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for programs which do not wish to preserve data or flow of 

control information between calls, use of the form 

    DO CASE entry reason 
       IN . 
          . 
          . 
       ESAC; 
       return(result) 
    OD 

is convenient in avoiding the overhead of runtime system 

initialisation code.  Returning from a call of 'return' takes 

only 10 instructions. 

    It was subsequently noted that the form of program obtained 

by use of 'return' is remarkably similar to that of programs 

which service requests received as messages from some other 

process.  For example: 

    BEGIN 
       . 
       .  #initialise# 
       . 
       DO receive message; 
          CASE request 
          IN . 
             .  #work# 
             . 
          ESAC; 
          return message(result) 
       OD 
    END 

Work has been done to develop an architecture to take advantage 

of this similarity, where the form of a call is the same to 

another process as to another protected procedure in this process 

[37].  The similarity with monitors should also be noted. 
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    A minor improvement which could be made to the enter/return 

mechanism would be to alter the way in which arguments are 

presented and received, so as to bring out more clearly the 

symmetry between 'enter' and 'return'. 

3.2 Program Environment 

    The Algol68C compiler makes no assumption about the target 

computer, on which the program it compiles will run.  The 

initialisation file for the compiler, together with the 

translator, specify all that needs to be known about the 

architecture of the target computer.  The environment file 

corresponding to the MC segment of the runtime system specifies 

the state in which the target computer will be on entry to the 

program.  It is this state which I wish to discuss here.  Apart 

from the information in the environment file for MC, Zcode 

assumes that the three stack pointer registers (4,5,6) are 

properly loaded - it is the responsibility of MC and the 

translator to ensure that this is so. We can consider MC as 

converting the environment which we are given into an environment 

in which compiled code can execute, and the environment file for 

MC then contains details of this environment. Thus, by changing 

MC and by changing the environment file, we could arrange to run 

(MC+program) in some different environment. Further, we can run 

without MC, provided that the environment with which we are 

provided conforms to the constraints on the stack pointers and 
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can be described by an environment file.  The compiler would be 

willing to compile code to run in any such environment.  This 

holds out a prospect of a departure from the normal approach to 

using a high level language. It has  previously been assumed that 

a compiler will compile a complete 'program' which will run in 

the precisely constrained environment provided by the language 

runtime system.  In the CAP version of Algol68C, we have seen how 

all of the runtime, except MC, is treated as ordinary program 

compiled in the normal way. We can thus consider there to be no 

runtime system other than MC; the other segments, MIN, SER, SYS 

and USE, are merely a particularly useful and commonly used 

library.  If we now were able to take the step of allowing users 

to specify different environment files in place of that 

corresponding to MC, then users would be able to compile their 

code to run in any suitable environment. 

    The severely limiting factor in applying this technique at 

present is the 'suitability' of an environment.  The compiler 

applies several constraints to the environment.  At present the 

compiler requires the existence of the heap storage allocation 

routine, but we have seen above how this requirement could be 

removed.  The major difficulty then would be the stack.  Ideally, 

we would wish to be able to run without a stack, but there is 

little prospect of this in the present compiler.  A considerable 

improvement would be obtained if the required environment was 

just a description of the base and limit of the workspace, with 

sufficient freedom in where and how this description was to be 
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found. 

    Given an easing of the suitability constraint, and given a 

convenient way of manufacturing environment files (at present an 

ill-defined and error-prone task), the compiled code could run in 

many different environments.  The environment file would, of 

course, contain descriptions of where arguments are to be found - 

these would be in the same form as, in an environment file used 

by a separately compiled segment, the descriptions of non-local 

identifiers are presented in the current system. 

    Such a programming system would greatly increase the utility 

of a language system; as well as being able to compile programs 

in the traditional manner, one could compile code to imbed in 

existing machine code environments, or in environments provided 

by other languages. There are many major operating systems and 

pieces of software written in assembler or low-level languages, 

and the ability to include high-level language sections could 

greatly ease the problems of their repair and extension. 

    No work has been done on further investigation in this line.  

The two aspects requiring most work would be the description of 

the environment, and resolving the problems of handling 

externally defined objects [C2].  Such a system would derive 

quite readily from the approach adopted throughout the develop-

ment of the CAP Algol68C system. 
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Section D:  Summary and Conclusions 

    It was the intention, when the work described in this thesis 

was initially embarked upon, that most of the research would be 

concerned with the invention of new language features.  However, 

the system finally produced and now existing has no such language 

features (other than 'CODE' sections).  Indeed, not only does the 

language system produced have no features which are peculiarly 

'system programming language' features, but equally it has no 

features peculiarly oriented towards the architecture of the 

target computer, the CAP.  It is not obvious, then, why such a 

language system should have had the success that it undoubtedly 

has had in being favoured by those writing system programs for 

the CAP. 

    Admittedly, there have been circumstances, external to the 

design of the language system, working in its favour.  The 

programmer supporting and developing the Algol68C system for CAP 

(me), was at all times closely in contact with those writing the 

system programs, and so was able to respond to requirements as 

they arose.  Also, the machine independent compiler was written 

and maintained in Cambridge.  However, these remarks are equally 

applicable to the alternative high level language system 

available, BCPL.  We must also bear in mind that A68, despite the 

obscurity and inaccessibility of its definition, and despite the 

fact that one can readily write very bad A68 programs, is 
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actually a very convenient language to write in once you have 

tried it.  All other things being equal, I would much prefer to 

write in Algol68 than in BCPL, and I believe this view to be 

shared by most programmers with experience of Algol68. 

    What, then, has made the CAP Algol68C system convenient for 

system programming? 

    The first feature is compiler portability: with regard to 

which machines and operating systems we could compile on, and 

with regard to which machines and operating systems we could 

compile for.  This has been achieved by maximising the machine 

independence and system independence of the compiler 

(particularly by use of a low-level intermediate code) and of the 

runtime system (by writing as much of it as possible in a high-

level language).  This has given us freedom, as the CAP operating 

system developed, to cross-compile firstly from a different 

machine, then from a different operating system running on the 

CAP.  In effect, the compiler has followed wherever the 

programmers wished to lead it. 

    Enforcing strict separation between the compiling system and 

the runtime system has been very beneficial.  This separation has 

been made to the extent that neither the compiler nor the 

translator contain any built-in assumptions about the runtime 

system.  This has made it a straightforward matter to change the 

runtime system as and when the operating system facilities used 

changed.  Because the runtime system does not entail changes to 
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the compiler or translator, no specialist knowledge or expertise 

are required - those writing the operating system can, if 

desired, change the runtime system without reference to a 

language expert.  Equally, the same compiling software can be 

used with more than one runtime system.  At one stage, three were 

provided - for running under the temporary operating system , for 

running on an empty machine, and for sub-processes of the 

coordinator.  (There is currently only one runtime system.) 

    A consequence of this separation and of the manner in which 

the runtime system is provided has been that there are no pre-

requisite mechanisms.  If a program segment does not use certain 

facilities normally provided by the runtime system, then they 

need not be provided. This feature is an essential requirement if 

we are to be able to write the more intimate parts of the 

operating system, such as the coordinator or the process driving 

the swapping disc.  Achieving this effect comes naturally, given 

the separation, if we write the runtime system in the language 

itself, compiled in an unprivileged manner; then we can compile 

another source text, such as the coordinator, instead of all or 

part of the runtime system - there is no possibility of this not 

being acceptable to the compiling system.  At the other extreme, 

a large and elaborate runtime system is available to those 

programs which require it. 

    In achieving the above effects, the separate compilation 

mechanism has been useful.  Not only does it allow pre-compila-
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tion of the runtime system, and segmentation to optimise virtual 

memory traffic, but it allows the executable code of the runtime 

system to be shared on a system-wide basis.  As described above, 

several extensions to the separate compilation mechanism are 

desirable. 

    The technique of considering the operating system, not as a 

single program, but as a set of co-operating programs, is 

generally felt to have been a success.  This is partly due to the 

CAP having a conveniently modular architecture, and partly due to 

the lack of a good modular construct in Algol68, but it also has 

merits in its own right. Primarily, it avoids having operating 

system design decisions imbedded in, or even pre-empted by, 

language system design decisions.  Also, it is attractive to have 

language independent interfaces to operating system modules; this 

is, in any case, essential for the publicly accessible modules.  

I believe that multi-processing and inter-process communication 

facilities, although desirable in a language when experimenting 

with such mechanisms, are not desirable in an implementation 

system. 

    There remain, of course, unresolved problems.  Foremost 

amongst these is the handling of extra-lingual objects - objects 

defined outside the language system, in terms of another 

language, or of the hardware. The Algol68C 'CODE' section, 

although strictly sufficient to handle these objects, is not a 

satisfactory solution.  It is good enough for imbedding extra-
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lingual operations, such as input-output orders, and has allowed 

the definition of a satisfactory set of routines for the handling 

of capabilities, but a better solution is highly desirable for 

the general problem.  This, hopefully, would arise as the outcome 

of further research along the lines suggested in our discussion 

on such objects earlier.  The impact of this problem has been 

very much reduced on the CAP by a general strategy, in building 

the operating system, of restricting each data structure so that 

only one program is responsible for operations upon it.  This is 

highly desirable to promote integrity and security in the 

operating system, but has also had the effect that complicated 

objects are never passed between programs.  Calling interfaces 

are mainly a set of (up to 4) integers, with occasionally a 

single integer array or other capability.  Thus, although the 

problem should not be ignored, other design criteria counteract 

its effect.  Note, however, that any language system of 

sufficient power for writing an operating system such as 

envisaged here must contain facilities for executing specific 

machine code orders (for I/O), and facilities for allowing the 

bit-level specification of data objects.  This can be seen even 

in specially designed 'System Programming Languages' [38,39]. 

    Another area where more research could profitably be made is, 

as discussed above, to attempt to maximise the flexibility 

available in specifying the environment available to compiled 

code. 
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    Finally, two conclusions emerge from this work.  Firstly, it 

is important to separate the design of the operating system from 

the design of the language system being used to write it. 

Secondly, by judicious design of the implementation of the 

language system, system programming language features become less 

important. 
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                          Algol68C on CAP 
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1. The A68C Command 
 
    This command invokes the Cambridge Algol68C compiler.  The compiler 
will accept the source of a single Algol68C program segment, and the 
command can be used to produce the intermediate code for the segment, or 
to produce executable binary for the segment, or to update a PCB, or to 
create (and possibly execute) a new PCB.  It thus allows a range of uses, 
from compile-and-go for a simple program, to maintenance of a large multi-
segment program.  The choice between these uses is controlled by the 
presence and content of the 'ZCODE' and 'NAME' heading items, and the 
keywords 'ZCODE' and 'PCB' on the command line, as described below and in 
the description of the ZCAP command. 
 
    The keyword parameter HEAP should be set to an integer value if you 
wish to alter the amount of store used for compiler workspace.  The 
default value is sufficient for quite large program segments, and can 
profitably be reduced (to, say, 10K) for compiling small programs.  The 
maximum useful value is at present 32K. 
 
    Strings specifying input or output for the compiler may each be as 
described below for strings presented to 'sysopen'. 
 
    The compiler's main input stream, on which it expects the source of 
the program segment, is specified by the string given as the first 
positional parameter on the command line. 
 
    The keyword parameter 'SYSPRINT' may be used to re-direct the 
compiler's diagnostic output stream.  The default is '/M'. 
 
    The program heading is presented in up to two portions; the compiler 
looks first at the string, if any, given as the value of the OPT keyword 
parameter, then accepts heading items from the start of the main input. 
 
    The compiler will accept the following heading items: 
 
USING {handle} FROM {string} 
 
This is described in the Algol68C Reference Manual.  The string specifies 
the environment file to be read.  Note that the string need not be the 
same string as was used when producing the environment in an earlier 
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compilation.  Note that environment files read when compiling the parent 
of this segment are also read when compiling this segment.  If no USING 
directive is found, a default is assumed which gives access to libraries 
providing the full facilities described in Chapter 8 of the Manual - see 
below. 
 
TITLE {tag} 
 
The tag is verified on the compiler's diagnostic output stream. 
 
ENVOUT {string} 
 
If the segment contains any ENVIRON statements then this string is used to 
open the output stream for the environment file.  By default the string 
'ENVOUT' is used, and a suitable keyword parameter may be supplied on the 
command line when invoking the compiler. 
 
XREF 
 
Requests that the compiler produce cross-reference data regarding this 
segment, for subsequent processing by the A68XREF program.  See also the 
'XREFOUT' heading item. 
 
XREFOUT {string} 
 
If the heading item XREF is present, then this string is used to open the 
output stream for the cross-reference data.  By default the string 'XREF' 
is used, and a suitable keyword parameter may be supplied on the command 
line when invoking the compiler. 
 
ZCODE {string} 
 
This string is used to open the output stream for the intermediate code 
produced by the compiler.  By default the string 'ZCODE' is used.  If the 
string 'ZCODE' is used, and the keyword ZCODE was not supplied on the 
command line when invoking the compiler, then the Zcode is sent to an 
anonymous stream, and after the compilation the Zcode translator ('ZCAP') 
is automatically invoked.  In this case, the translator uses this 
anonymous stream as its only input, and has available to it the command 
line used to invoke the compiler.  See below for description of the action 
of the translator. 
 
NAME {string} 
 
This string is passed to the Zcode translator - see below. 
 
TRACE {bits-denotation} 
 
A facility for compiler debugging 
 
KEY {bits-denotation} 
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Ignored at present 
 
CASESTROP 
 
Selects as 'stropping' convention from this point onwards the convention 
that tags are written in lower case letters, with digits allowed, and 
indicants are written in upper case letters. This is the default stropping 
convention. 
 
QUOTESTROP 
 
Selects as 'stropping' convention from this point onwards the convention 
that tags are written in letters of either case, with digits allowed, and 
indicants are written in letters of either case, and each indicant must be 
preceded by the apostrophe character. Upper and lower case letters are 
treated as equivalent. 
 
UPPER 
 
Selects as 'stropping' convention from this point onwards the convention 
that tags are written in lower case letters, with digits allowed, and 
indicants are written in upper case letters, with digits allowed, and each 
indicant may optionally be preceded by a dot. 
 
POINT 
 
Selects as 'stropping' convention from this point onwards the convention 
that tags are written in letters of either case, with digits allowed, and 
indicants are written in letters of either case, with digits allowed, and 
each indicant must be preceded by a dot. Upper and lower case letters are 
treated as equivalent. 



 

 
- 4 - 

 

2. The ZCAP Command 
 
    This command invokes the CAP translator for Zcode (the intermediate 
language used by Algol68C).  The translator is usually invoked by the A68C 
command, but may be invoked directly.  When invoked by the A68C command, 
the input stream for the translator consists of the Zcode produced by the 
compiler.  When invoked directly, the input consists of the concatenation 
of the streams specified by the serial parameters on the command line, in 
numerical order from 1. 
 
    The input stream should contain Zcode for one or more Algol68C program 
segments.  The program segments must form a single sub-tree of the tree of 
Algol68C segments which form the complete program, and they must be 
presented in a top-down order.  The Zcode is assembled into a single CAP 
machine segment.  The address which this segment must have in the 
resulting protected procedure is allocated by the translator and verified 
on the main output. 
 
    The translator can dispose of the segment containing the assembled 
binary in a number of ways.  If it can determine a file title for 
preserving the binary then it will do so and stop (otherwise the binary 
will be placed in a PCB, as described below). If the command line 
contained the keyword 'BIN', then the string given as its value is used to 
preserve the segment. Otherwise, if when the segment was compiled the 
heading had a NAME directive containing 
 
"S=filetitle" 
 
then this file title is used to preserve the segment. In all other cases, 
the translator will place the binary in a PCB.  If the translator needs to 
create the PCB, it is initialised with a suitable sized stack and heap.  
If the translator knows the file titles for the superior segments of this 
one, then it will update the PCB to contain these.  If the command line 
contains the keyword 'PCB' then the string given as its value nominates 
the PCB, which is created if it does not already exist. Otherwise, if the 
heading had a NAME directive containing 
 
"P=filetitle" 
 
then this file title nominates the PCB, which is created if it does not 
already exist. Otherwise a PCB is created, initialised, updated, and 
entered to execute the compiled program. 
 
    If one or more of the Algol68C program segments presented in this run 
of the translator contains an ENVIRON statement for which the 
corresponding Algol68C program segment is not presented in this run of the 
translator, then each such program segment presented in this run must have 
had in its heading a NAME directive containing 
 
"L=filetitle" 
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Further, all these file titles must be identical. This file title is then 
used during the present run of the translator for the output of linking 
information, and the same file title is opened for input when assembling 
the program segments corresponding to such ENVIRON statements. 
 
    In addition to standard Zcode, the translator will accept the 
directive: 
 
M op ba bm N    insert machine code instruction (given in 
 
octal), eg. M123 10 11 +123 
 
Some other extensions exist, but they are not useful to the ordinary 
user.  Registers in M directives are octal CAP machine register numbers.  
The translation from Zcode registers is as follows: 
 
    Zcode (octal) = CAP (octal) = CAP (decimal)    Use 
 
        0               0             0           constant 0 
        1               1             1           constant 1 
        4               13            11          {system} 
        5               16            14          local stack 
        6               14            12          global stack 
        7               15            13          {system} 
        10              2             2           work, result 
        11              3             3           work 
        12              4             4           work 
        13              5             5           work 
        14              6             6           work 
        15              7             7           work 
        16              10            8           work 
        17              11            9           work 
        20              accumulator 
 
    Offset parts in M directives are as for Zcode instructions; they are 
treated as if the architecture allowed 32 bits.  This is achieved by, as 
necessary, converting n-type orders into s-type ones, or inserting MOD 
orders. 
 
    All ZCODE values except floating point are manipulated in CAP 
registers 0 to 14.  Floating point values are manipulated in the 
accumulator, and exist in main storage as standardised 24+8 numbers only. 
 
    Strings between CODE and EDOC in programs are passed to the 
translator, as described in the Algol68C Reference Manual.  If a CODE 
section contains an applied occurrence of an identifier, then the Zcode 
produced by the compiler will contains in its place a corresponding Zcode 
register number and offset.  Note that it is not sensible to have applied 
occurrences inside 'M' directives. 
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3. The CAP Algol68C Libraries 
 
    The libraries provided for Algol68C on CAP provide numerous facilities 
beyond those specified in the Algol68C Reference Manual. The authoritative 
definition for the facilities described in the manual is the manual; an 
outline of those facilities and of the extensions is given here.  Other 
definitions than those listed here are available to the user program, but 
this is due only to the inadequacies of block structure and such 
definitions should not normally be used, and certainly not without 
consulting the author. 
 
    The library is arranged in four machine segments: 
 
        MIN is P0 
        SER is P1 
        USE is P2 
        MATH is P3 
 
The default USING directive gives access to MATH, USE, SER and MIN with 
the user program starting in P4.  This default may be over-ridden by 
providing a USING directive as follows: 
 
        USING USER FROM ".**.A68.ENV.MIN" 
            gives MIN, with user program from P1 
 
        USING SERVICES FROM ".**.A68.ENV.SER" 
            gives MIN and SER, with user program from P2 
 
        USING USER FROM ".**.A68.ENV.USE" 
            gives MIN, SER and USE, with user program from P3 
 
        USING USER FROM ".**.A68.ENV.MATH" 
            gives all four segments, with user program from P4. 
 
    The protected procedure manufactured (by linking a PCB, by calling 
'MAKEENTER', or by a SYSGEN) must contain the appropriate library 
segments, the user program segment(s) in the slots nominated by the CAP 
Zcode translator, a workspace segment for the stack in I0 and a workspace 
segment for the heap in I1.  The file titles which can be used to retrieve 
the library segments are of the form .*.A68.BIN.<level><serial>, for 
example .*.A68.BIN.MIN84, and all have the same value of 'serial'.  In 
most cases, the translator will ensure that a nominated PCB contains the 
appropriate segments, as described above.  The access permitted for the 
protected procedure to the library and user program segments must be at 
least read-execute (RE), and to the stack and heap must be at least read-
write (RW).  The size of the stack segment required for a particular 
program is difficult to assess, but a minimum of 300 words is 
recommended.  The heap is not required by library levels MIN and SER 
unless provoked by the user program, but USE will require at least 300 
words for buffer space (more if a default input stream is provided). 
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    In addition to the definitions described below, and initialising 
variables defined below, each segment of the library performs various 
actions.  The MIN level, in addition to initialising 'runtime error' and 
the 'ignore attention' flag, calls 'reserve slot' to mark that the 
segments used for the stack and heap are not to be allocated.  The MIN 
level also executes 'ENVIRON USER', but only if no attention has been 
notified to the program during the initialisation.  On exit from the 
program, a RETURN order is executed, with in B2 the last argument that was 
presented to 'set return code' (or 0 if there has been no such call). The 
SER level calls 'makeind(3)' (as does the 'return' subroutine on re-
entry), and assigns to 'runtime error' the routine 
 
        (STRING s, INT i)VOID: 
            ( return fault(i); set return code(i); GOTO stop ) 
 
If no attention has been notified to the program during the 
initialisation, the SER level executes 'ENVIRON SERVICES'.  If the program 
has been entered under the 'command' interface, and if the keyword 
parameter 'HEAP' is present, the USE level reads its value.  If this is 
not an integer then 'runtime error' is called, otherwise the heap segment 
is adjusted to this size (in words).  The USE level assigns 'a68c error' 
to 'runtime error' and 'a68c attention' to 'attention routine', and calls 
'allow attention'.  If no attention has been notified to the program, the 
USE level executes 'PRELUDE USER'.  On exit from the program, the USE 
level closes all files that have not been otherwise closed.  The MATH 
level executes 'PRELUDE USER'. 
 
    Note that all REAL arithmetic is performed using 24-bit mantissa and 
8-bit base-2 exponent.  This gives about 6.9 decimal digits of accuracy. 
The rounding algorithm provided by the hardware is close to being 
unbiased.  The mathematical functions (except REAL**REAL) are believed to 
be very accurate (close to 6.9 digits). 
 
    Operators specified in the manual are not included in the description 
below.  All such operators are available at any level, except that ** for 
REAL operands and all operators for COMPL are available only when using 
the MATH level. 
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3.1 Definitions provided by MIN 
 
MIN includes subroutines for allocation of space on heap and stack. 
 
3.1.1 Arguments from caller 
 
enterarg1        INT             the value B1 had on entry or re-entry. 
enterarg2        INT             the value B2 had on entry or re-entry. 
enterarg3        INT             the value B3 had on entry or re-entry. 
enterarg4        INT             the value B4 had on entry or re-entry. 
enterarg5        INT             the value B5 had on entry or re-entry. 
 
enter access     INT             the access bits obtained from the ENTER 
                                 capability used to enter the program. 
 
real arg         REAL            the value in the accumulator on entry 
                                 or re-entry 
 
3.1.2 Environment enquiries 
 
int lengths      INT             see manual;  1 
real lengths     INT             see manual;  1 
bits lengths     INT             see manual;  1 
bytes lengths    INT             see manual;  1 
 
int shorths      INT             see manual;  1 
real shorths     INT             see manual;  1 
bits shorths     INT             see manual;  1 
bytes shorths    INT             see manual;  1 
 
int size         INT             see manual;  1 
real size        INT             see manual;  1 
bits size        INT             see manual;  1 
bool size        INT             see manual;  1 
char size        INT             see manual;  1 
bytes size       INT             see manual;  1 
 
int align        INT             see manual;  0 
real align       INT             see manual;  0 
bits align       INT             see manual;  0 
bool align       INT             see manual;  0 
char align       INT             see manual;  0 
bytes align      INT             see manual;  0 
 
maxint           INT             see manual;  2**31 - 1 
bitswidth        INT             see manual;  32 
byteswidth       INT             see manual;  4 
 
max abs char     INT             see manual;  255 
blank            CHAR            see manual;  "*S" 
error char       CHAR            see manual;  "**" 
null character   CHAR            see manual;  REPR 0 
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flip             CHAR            see manual;  "T" 
flop             CHAR            see manual;  "F" 
 
int width        INT             see manual;  10 
real width       INT             see manual;  8 
exp width        INT             see manual;  2 
 
3.1.3 Fault numbers 
 
error number mask INT            ABS16rf0ff00ff 
error data mask  INT             ABS16r0000ff00 
error count mask INT             ABS16r0f000000 
 
previous error   INT             fault number issued after giving 
                                 suitable message for an error; 
                                 = ABS16r80000000 
 
stack full error INT             Fault number issued when the stack is 
                                 full 
heap full error  INT             Fault number issued when the heap is 
                                 full 
i indy full error INT            Fault number issued when the I 
                                 capability segment is full 
bad open idf error INT           Fault number issued if an illegal 
                                 string is presented to 'lookup idf', 
                                 'sysopen', or 'open' 
file closed error INT            Fault number issued when using a file 
                                 which has been closed 
non digit error  INT             Fault number issued when a character 
                                 other than a digit was the first 
                                 character encountered when reading an 
                                 integer or exponent-part 
heap size error  INT             Fault number issued if a non-integer 
                                 was was given as the value of the 
                                 'HEAP' keyword parameter 
mathlib error    INT             Fault number issued if an illegal 
                                 argument was given to one of the 
                                 mathematical routines 
not segment error INT            Return code issued if 'lookupidf' or 
                                 'sysopen' is asked to open for input 
                                 a file title indicating a PCB or 
                                 directory 
sysread error    INT             Return code issued if the string "" 
                                 could not be opened on 'standin 
                                 channel' due to an error in the 
                                 'SYSREAD' keyword parameter 
file ended error INT             Fault number issued on attempting 
                                 to read beyond the end of a book 
charpos error    INT             Fault number issued on attempting to 
                                 position outside the bounds of the 
                                 current line 
backspace error  INT             Fault number issued on attempting to 
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                                 backspace before the start of the line 
not open error   INT             Fault number issued on attempting to 
                                 perform transput on a FILE for which 
                                 'open' failed 
reserve error    INT             Fault number issued on attempting to 
                                 reserve a SLOT in the 'I' capability 
                                 segment, the SLOT being already in use 
no digit error   INT             Fault number issued if no character 
                                 could be read when reading an integer 
                                 or exponent-part 
int overflow error INT           Fault number issued if the digits of 
                                 an integer or exponent-part being read 
                                 would exceed maxint 
readbool error   INT             Fault number issued if neither flip nor 
                                 flop is encountered when reading a BOOL 
real overflow error INT          Fault number issued when reading a REAL 
                                 if the magnitude of the value would 
                                 exceed maxreal 
plus i times error INT           Fault number issued if 'I' or 'i' are 
                                 not encountered at the appropriate 
                                 point when reading a COMPL value 
fix float error  INT             Fault number issued if the arguments 
                                 to one of the REAL or COMPL output or 
                                 conversion routines are inconsistent 
normal error     INT             Fault number issued if the standard 
                                 deviation for 'normal random' is not 
                                 acceptable 
 
return correct   INT             see manual;  0 
return warn      INT             see manual;  1 
return soft      INT             see manual;  2 
return hard      INT             see manual;  3 
return fatal     INT             see manual;  4 
 
3.1.4 BITS, BYTES, CHAR and STRING 
 
bitspack         =([]BOOL a)BITS: see manual 
 
bytespack        =(STRING a)BYTES: see manual 
 
packbytes        =(REF[]CHAR a)BYTES: see manual 
 
punstring        =(REF[]INT v)STRING: 
                                 a punning operation yielding the 
                                 string assumed to be in 'v', whose 
                                 stride must be 1 
 
packstring       =(REF[]INT v)INT:        see manual 
 
unpackstring     =(STRING s, REF[]INT v)VOID: 
                                 copies the characters of 's' into 'v' 
                                 (whose LWB must be 0) in a format 
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                                 suitable for 'packstring' 
 
copystring       =(REF[]INT v)STRING: 
                                 allocates heap storage and copies the 
                                 packed string from 'v' into it 
 
putbyte          =(CHAR c,REF[]INT v,INT i)VOID: 
                                 places ABS c in the i'th byte of 'v', 
                                 whose stride must be 1.  Bytes are 
                                 numbered as for the PUTBYTE instruction 
 
char in string   =(CHAR c,REF INT i,STRING s)BOOL: 
                                 see manual 
 
=*               operator        defined for all combinations of CHAR 
                                 and STRING.  Meaning as for '=', except 
                                 that upper and lower case letters are 
                                 treated as equivalent 
 
~*               operator        the negation of '=*' 
 
3.1.5 Operations on SLOT's 
 
SLOT             mode            used to represent the address of a 
                                 capability 
 
+                =(SLOT s,INT i)SLOT: 
                                 the address of offset 'i' from 's' 
 
G                =(INT i)SLOT    the i'th capability in the G 
                                 capability segment 
A                =(INT i)SLOT    the i'th capability in the A 
                                 capability segment 
N                =(INT i)SLOT    the i'th capability in the N 
                                 capability segment 
P                =(INT i)SLOT    the i'th capability in the P 
                                 capability segment 
I                =(INT i)SLOT    the i'th capability in the I 
                                 capability segment 
R                =(INT i)SLOT    the i'th capability in the R 
                                 capability segment 
 
seg addr         =(INT i,j)SLOT: the j'th capability in the i'th 
                                 capability segment 
 
n0               SLOT            N0 
n1               SLOT            N1 
n2               SLOT            N2 
null capability  SLOT            G3 
 
maparray         =(SLOT s)REF[]INT: 
                                 yields an array with LWB=0 and 



 

 
- 12 - 

 

                                 UPB=65534 corresponding to the segment 
                                 whose capability is or will be at 's'; 
                                 the capability is not touched in any 
                                 way 
 
mapsegment       =(SLOT s)REF[]INT: 
                                 yields an array with LWB=0 and correct 
                                 upper bound for the segment currently 
                                 described by 's' 
 
mapstring        =(SLOT s)STRING: yields the STRING currently existing 
                                 in the segment described by 's' 
 
indinf           =(SLOT s)INT    the result of an INDINF order 
seginf           =(SLOT s)INT    the result of a SEGINF order 
segsize          =(SLOT s)INT:   the number of words in 's' 
cseginf          =(SLOT s)INT    the result of a CSEGINF order 
 
movecap          =(SLOT s,t)VOID performs a MOVECAP order from 's' to 
                                 't' 
movecapa         =(SLOT s,t)VOID performs a MOVECAPA order from 's' to 
                                 't' 
refine           =(SLOT s,INT i,SLOT t)VOID: 
                                 performs a REFINE order with base 's' 
                                 and size and access 'i' to 't' 
 
makeind          =(INT i)VOID    performs a MAKEIND order with argument 
                                 'i' 
 
3.1.6 Fault and attention handling 
 
runtime error    REF PROC(STRING,INT)VOID: 
                                 the routine referred to by this 
                                 variable is called whenever the library 
                                 detects an error, or when an error is 
                                 indicated to the program by the system 
                                 The STRING argument in such calls is "" 
                                 and the INT argument is the fault 
                                 number.  This variable is initialised 
                                 by MIN to cause exit from the program. 
 
ignore attention PROC VOID       sets the 'ignore attention' flag to 
                                 inhibit calling of 'attention 
                                 routine' (see below) 
 
allow attention  PROC VOID       unsets the 'ignore attention' flag, 
                                 and if 'attention happened' would 
                                 yield TRUE then calls 'attention 
                                 routine' 
 
attention routine REF PROC VOID  the routine referred to by this 
                                 variable is called whenever an 
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                                 'attention' is notified to the program, 
                                 unless at that time the 'ignore 
                                 attention' flag is set.  Exitting from 
                                 this call will cause a fault.  This 
                                 variable is not initialised in MIN. 
 
attention happened PROC BOOL     yields TRUE if an attention has been 
                                 notified to the program (regardless of 
                                 'ignore attention'), unless 'clear 
                                 attention' (in SER) has been called 
                                 subsequently. 
 
3.1.7 Enter and return 
 
enter            =(SLOT s, INT i,j,k,l,m)INT: 
                                 enters the cpabaility 's' with 'i' to 
                                 'm' in B1 to B5; yields the value B2 
                                 has when control returns to this 
                                 program 
 
enter2           =(SLOT s, INT i,j,k,l,m, REF INT p,q,r,s)VOID: 
                                 as 'enter' but the values found in B2 
                                 to B5 on return are assigned to the 
                                 variables 'p' to 's' 
 
set return code  =(INT i)VOID:   see manual; left in B2 on exit from the 
                                 program 
 
return           =(INT i)VOID:   executes a RETURN order with 'i' in B2, 
                                 but when this program is next entered 
                                 control will resume as if by exit from 
                                 the call of 'return'. 'enterarg1' to 
                                 'enterarg5' and 'enter access' will 
                                 have been updated to the values found 
                                 in B1 to B5 and B14 on re-entry.  This 
                                 facility can be used in a manner 
                                 resembling co-routines. 
 
return2          =(INT i,j,k,l)VOID: 
                                 as 'return', but 'i' to 'l' are placed 
                                 in B2 to B5 before executing the RETURN 
                                 order. 
 
stop             label           after the 'ENVIRON USER' statement 
 
3.1.8 Move, moverow, movestring 
 
move             =(REF[]INT v,w, INT i)VOID: 
                                 copies the contents of the first 'i' 
                                 elements of 'v' into those of 'w'. 
                                 Both LWB's must be 0 and the UPB's must 
                                 both be at least 'i' 
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movestring       =(STRING s, SLOT t)VOID: 
                                 places in 't' a capability for 's' 
 
moverow          =(REF[]INT v, INT i, SLOT s)VOID: 
                                 places in 's' a capability for 'v', 
                                 whose LWB must be 0 and UPB must be 'i' 
 
3.1.9 Allocation routines for SLOT's 
 
i indy size      INT             the number of capabilities in the I 
                                 indirectory 
 
getslot          PROC SLOT       allocates a capability in the I 
                                 indirectory; will not allocate a 
                                 capability which has been marked by 
                                 'reserve slot', and will not re-use a 
                                 capability until it has been freed by 
                                 'freeslot'. 'getslot' will call 
                                 'runtime error' if it cannot allocate a 
                                 slot. 
 
reserve slot     =(INT i)SLOT:   indicates that the i'th capability of 
                                 capability segment 'I' is to be 
                                 assumed to be in use.  Yields the 
                                 corresponding SLOT value. 
 
free slot        =(SLOT s)VOID:  if 's' is in the I indirectory, 
                                 indicates that it is free for 
                                 re-allocation. The capability at 's' is 
                                 over-written with a null capability. 
 
3.1.10 Store management 
 
heap slot        SLOT            the capability used for the heap 
                                 segment (I1) 
 
stack available  PROC REAL       see manual; the stack is separate from 
                                 the heap 
heap available   PROC REAL       see manual 
store available  PROC REAL       see manual 
store used       PROC REAL       see manual 
 
3.1.11 Layout of capabilities 
 
cap mctype       INT             d31=1, d30=1; the field used by the 
                                 microprogram to distinguish types of 
                                 capability 
cap type         INT             d29,28,27,26=1; the field used by 
                                 software to distinguish types of 
                                 capability 
cap access       INT             d21,20,19,18,17,16=1; the field used 
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                                 for access bits in a store capability 
cap length       INT             d15 to d0 = 1; the field used for 
                                 'length' in a store capability 
hardware bit     INT             d31=1, d30=0; indicates 'store-type' 
                                 capability to the microprogram 
enter bit        INT             d31=0, d30=1; indicates 'enter-type' to 
                                 the microprogram 
store capability INT             d29=1, d28=0, d27=1, d26=1; indicates a 
                                 normal store-type capability to the 
                                 system software 
 
exec access      INT             d16=1; access right in store capability 
read access      INT             d17=1; access right in store capability 
write access     INT             d18=1; access right in store capability 
rcap access      INT             d20=1; access right 'RC' in store 
                                 capability 
wcap access      INT             d21=1; access right 'WC' in store 
                                 capability 
 
send capability  INT             d29=0, d28=1, d27=0, d26=0; for 
                                 messages 
receive capability INT           d29=0, d28=1, d27=0, d26=1; for 
                                 messages 
reply capability INT             d29=0, d28=1, d27=1, d26=0; for 
                                 messages 
 
null message                INT  d23=0, d22=0; message type 
data message                INT  d23=0, d22=1; message type 
segment message             INT  d23=1, d22=0; message type 
full message                INT  d23=1, d22=1; message type 
reply message               INT  d24=1; message type 
data reply message          INT  data message ! reply message 
seg reply message           INT  segment message ! reply message 
full reply message          INT  full message ! reply message 
 
channel access              INT  d29=1, d28=1, d27=0, d26=0; for SETUP 
permission capability       INT  d29=0, d28=1, d27=1, d26=1; for ECPROC 
 
process create permission   INT 
signal attention permission INT 
capability permission       INT 
store permission            INT 
peripheral permission       INT 
info permission             INT 
system crash permission     INT 
channel permission          INT 
 
clear attention capability  INT  d29=1, d28=1, d27=0, d26=1; for ECPROC 
 
3.1.12 Layout of words 
 
rhword           INT             ABS16r0000ffff 
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lhword           INT             ABS16rffff0000 
 
byte0            INT             ABS16r000000ff 
byte1            INT             ABS16r0000ff00 
byte2            INT             ABS16r00ff0000 
byte3            INT             ABS16rff000000 
 
bit0             INT             ABS16r00000001 
  . 
  . 
  . 
bit31            INT             ABS16r80000000 
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3.2 Definitions provided by SER 
 
ecproc           SLOT            G1 
setup            SLOT            G2 
 
3.2.1 Sending messages 
 
send null message =(SLOT s)VOID: send null message down 's' 
 
send data message =(SLOT s, INT a,b,c,d)VOID: 
                                 sends (a,b,c,d) 
 
send segment message =(SLOT s, t)VOID: 
                                 sends 't' 
 
send full message =(SLOT s, INT a,b,c,d, SLOT t)VOID: 
                                 sends (a,b,c,d,t) 
 
send null message wait event =(SLOT s)VOID: 
                                 send down channel 's' then wait 
 
send data message wait event =(SLOT s, INT a,b,c,d)VOID: 
                                 as above 
 
send segment message wait event =(SLOT s, t)VOID: 
                                 as above 
 
send full message wait event =(SLOT s, INT a,b,c,d, SLOT t)VOID: 
                                 as above 
 
receive null message =(SLOT s)VOID: 
                                 receive from 's' 
 
receive data message =(SLOT s, REF INT w,x,y,z)VOID: 
                                 assign into (w,x,y,z) 
 
receive segment message =(SLOT s, t)VOID: 
                                 movecap into 't' 
 
receive full message =(SLOT s, t, REF INT w,x,y,z)VOID: 
 
receive reply data message =(SLOT s, r, REF INT w,x,y,z)VOID: 
                                 receive from 's', assign into 
                                 (w,x,y,z), reply capability 'r' 
 
receive reply segment message =(SLOT s, r)VOID: 
 
receive reply full message =(SLOT s, r, INT w,x,y,z)VOID: 
 
return message   =(SLOT r)VOID:  null reply to message 
 
return data message =(SLOT r, INT a,b,c,d)VOID: 
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                                 reply (a,b,c,d) down 'r' 
 
return message wait event =(SLOT r)VOID: 
                                 reply then wait 
 
return data message wait event =(SLOT r, INT a,b,c,d)VOID: 
 
messages         =(SLOT s)INT:   the number of messages waiting to be 
                                 received by receive capability 's' 
 
3.2.2 Miscellaneous Coordinator facilities 
 
wait event       PROC VOID       coordinator entry 
 
reserve for reading =(SLOT s)VOID: 
                                 reserve segment or wait 
 
reserve for writing =(SLOT s)VOID: 
                                 reserve for unique access or wait 
 
release reservation PROC VOID    what it says! 
 
clear fault      PROC VOID       ensure program no longer in 'fault 
                                 state' 
 
cause fault      =(INT i)VOID:   notify a fault 'i' immediately 
 
return fault     =(INT i)VOID:   place in fault state 'i', but don't 
                                 cause any transfer of control in this 
                                 protected procedure; safe even if 
                                 already in fault state 
 
signal attention =(SLOT p, INT i,j)VOID: 
                                 notify process number 'i' of an 
                                 attention at level 'j'; permission 'p' 
 
clear attention  =(SLOT p)VOID:  clear attention state; 'p' is 
                                 permission or null capability. Also 
                                 clears 'attention happened'. 
 
create process   =(SLOT p, s)VOID: 
                                 commence running a process whose PRL is 
                                 's'; permission 'p' 
 
create prl capability =(SLOT p, s, INT i,j)INT: 
                                 create a capability (i,j) in the PRL of 
                                 this process, and yield a capability 
                                 for it in 's'; permission 'p' 
 
create capability =(SLOT p, s, INT i,j)VOID: 
                                 create an indirectory-level capability 
                                 (i,j) and yield it in 's'; permission 
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                                 'p' 
 
update prl capability =(SLOT p, INT i,j,k)VOID: 
                                 update the PRL capability at offset 'i' 
                                 to contain (j,k); permission 'p' 
 
read prl capability =(SLOT p, s, REF INT w,x)INT: 
                                 assign into (w,x) the words of the PRL 
                                 capability referred to by 's'; 
                                 permission 'p' 
 
read capability =(SLOT p, s, REF INT w,x)VOID: 
                                 read the indirectory-level capability 
                                 's', permission 'p' 
 
prlgarb          PROC VOID       call the PRL garbage collector 
 
claim device     =(SLOT p, INT i, SLOT s)VOID: 
                                 direct future interrupts from device 
                                 'i' to this process; yield pstore 
                                 capability for device in 's'; 
                                 permission 'p' 
 
release device   =(SLOT p, s)VOID: 
                                 device with pstore 's' no longer needed 
                                 by this process; permission 'p' 
 
system crash     =(SLOT p, INT i)VOID: 
                                 request the coordinator to stop the 
                                 system immediately with reason 'i', 
                                 permission 'p' 
 
3.2.3 Channel set-up 
 
setup receive    =(SLOT s, REF SLOT t, INT i)VOID: 
                                 set up a 'receive' capability according 
                                 to channel 's' and message type 'i'; 
                                 result allocated by 'getslot' and 
                                 assigned to 't' 
 
setup send       =(SLOT s, REF SLOT t, INT i)VOID: 
                                 'send' capability 
 
setup send with reply 
                 =(SLOT s, REF SLOT t, INT i, REF SLOT u, INT j)VOID: 
                                 setup send capability for channel 's', 
                                 message type 'i', assigned to 't', with 
                                 reply type 'j', capability for 
                                 receiving replies assinged to 'u' 
 
setup reply      =(REF SLOT s, INT i)VOID: 
                                 set up reply capability for sending 
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                                 replies of type 'i' assigned to 's' 
 
setup reply with store =(REF SLOT s, INT i, SLOT t)VOID: 
                                 setup reply capability for replying to 
                                 segment-type messages whose segment 
                                 will be placed in 't' 
 
3.2.4 Timer facilities 
 
timer info       =(REF INT rtc, time, data, day)VOID: 
                                 assign the current clock values 
 
clock            PROC REAL       see manual 



 

 
- 21 - 

 

3.3 Definitions provided by USE 
 
storeman         SLOT            G4 
make enter       SLOT            G5 
ioc              SLOT            G6 
fault            SLOT            G7 
 
3.3.1 Interface from outside world 
 
user idf         STRING          name of user provided in G8 
 
job number       REF INT         the number of this job, provided in G8 
 
command line     STRING          provided if called by 'command' 
                                 interface, in A0 
 
command dir      SLOT            directory provided by 'commmand'; A1 
 
command parms    SLOT            'parms' provided by 'command'; A2 
 
current dir      REF SLOT        directory used by routines provided to 
                                 interface to DIRMAN; initialised to 
                                 'command dir' 
 
parms            REF SLOT        program called by routines provided to 
                                 interface to PARMS; initialised to 
                                 'command parms' 
 
machine          PROC BOOL       whether called by 'command' interface 
 
command          =(SLOT prog, parms, STRING line)INT: 
                                 enters 'prog' as if called under the 
                                 'command' interface, with 'parms' as 
                                 parameter decoder, and command line 
                                 'line' 
 
3.3.2 Interface with DIRMAN 
 
delete access    INT             'D' right in access matrix element, at 
                                 d16 
update access    INT             'U' right in access matrix element, at 
                                 d16 
alter access     INT             'A' right in access matrix element, at 
                                 d16 
max access       INT             indicates maximum obtainable access 
                                 when given as argument to 'retrieve' 
 
create access    INT             'C' access to directory, at d16 
vmode access     INT             'V' access to directory, at d16 
xmode access     INT             'X' access to directory, at d16 
ymode access     INT             'Y' access to directory, at d16 
zmode access     INT             'Z' access to directory, at d16 
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modify access    INT             'M' access to PCB, at d16 
inspect access   INT             'I' access to PCB, at d16 
link access      INT             'L' access to PCB, at d16 
 
swc access       INT             'S' access to software capability, at 
                                 d16 
 
all seg          INT             access /RWE, at d16 
all dir          INT             access /CVXYZ, at d16 
all pcb          INT             access /MIL, at d16 
all swc          INT             access /s, at d16 
 
default seg am   INT             matrix /ADURW/ARW/RW/R 
exec seg am      INT             matrix /ADURE/ARE/RE/RE 
default dir am   INT             matrix /ADCV/ACX/CY/Z 
default pcb am   INT             matrix /ADMIL/AMIL/IL/L 
default swc am   INT             matrix /ADUS/AS/S/ 
 
unknown          INT             VMO type 0 
segtype          INT             VMO type 1 
dirtype          INT             VMO type 2 
pcbtype          INT             VMO type 3 
swctype          INT             VMO type 4 
 
retrieve         =(SLOT s, STRING t, INT i)INT: 
                                 retrieve capability with title 't' from 
                                 'current dir', with requested access 
                                 'i' into 's'; yields DIRMAN return code 
 
remove           =(STRING s)INT: remove entry 's' from 'current dir'; 
                                 yields DIRMAN return code 
 
preserve         =(SLOT s, STRING t, INT i)INT: 
                                 preserve capability 's' in 'current 
                                 dir' as entry 't' with access matrix 
                                 'i'; yields DIRMAN return code 
 
alter            =(STRING s,INT remove,add)INT: 
                                 alter access matrix for 's' in 'current 
                                 dir' by removing bits 'remove' and 
                                 including bits 'add' 
 
examine          INT             DIRMAN entry reason 
file details     INT             DIRMAN entry reason 
file examine     INT             DIRMAN entry reason 
 
3.3.3 Interface with STOREMAN 
 
ensure           =(SLOT s)VOID:  update VMO 's' on disc; yields 0 
 
outform          =(SLOT s)VOID:  recommendation to RSM about VMO 's' 



 

 
- 23 - 

 

 
change size      =(SLOT s, INT i)VOID: 
                                 change size of VMO 's' by amount 'i', 
                                 which may be positive or negative. 
 
newseg           =(SLOT s, INT i,j)VOID: 
                                 allocate segment-type VMO of size 'i' 
                                 with access 'j'; result to 's'. 
 
capinf           =(SLOT s)INT:   yields information about capability 
                                 's'; result is negative if 's' is not 
                                 for a complete VMO, nor a software 
                                 capability. Otherwise result is 
                                 type,access,SIN (see STOREMAN 
                                 documentation). 
 
get size access  =(SLOT s)INT:   yields size in d23 to d0, access in d31 
                                 to d24 (n.b.) 
 
open window      =(SLOT s, INT b,a)SLOT: 
                                 yields a SLOT windowing 's' from base 
                                 'b' with size and access 'a' 
 
move window      =(SLOT s, INT b,a)VOID: 
                                 moves window 's' to base 'b' with size 
                                 and access 'a' 
 
close window     =(SLOT s)VOID:  close, and write up if needed, 's' 
 
details          =(SLOT s, REF INT size, acc, type)VOID: 
                                 assigns details about 's' 
 
new instance     =(SLOT s)VOID:  updates 's' to be a new version of 's' 
 
3.3.4 Calls to i/o system 
 
input            INT             stream direction 
output           INT             stream direction 
 
ttr standard     INT             stream state: reflect, escapes, ignore 
                                 parity 
ttr no reflect   INT             stream state 
stdout state     INT             stream state: c.r. l.f. after records 
overprint state  INT             stream state: c.r. after records 
sameline state   INT             stream state: force out after records 
newpage state    INT             stream state: form feed after records 
tr standard      INT             stream state: ASCII, no escapes, parity 
tr binary        INT             stream state 
tp binary        INT             stream state 
close option     INT             state at end of input stream 
 
wrrecord         =(SLOT s, REF[]CHAR v)VOID: 
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                                 send buffer 'v' to stream 's' 
 
rdrecord         =(SLOT s, REF[]CHAR v)INT: 
                                 read record from 's' into 'v'; yields 
                                 number of characters, or -1 if a stream 
                                 state change was found. 
 
close stream     =(SLOT s)VOID:  If 's' is in capability segment 'I', 
                                 then enter 's' to close it; if the 
                                 stream was created by 'stream from seg' 
                                 or by "/A" to 'sysopen' then the 
                                 segment is left in N0. 
 
read state       =(SLOT s)INT:   yields the current stream state of 's' 
 
set state        =(SLOT s, INT i)VOID: 
                                 set the stream state of 's' to 'i' 
 
extract doc      =(SLOT s, d, INT t)INT: 
                                extract from stream 's' a document with 
                                terminator 't' into slot 'd'. 
 
insert doc       =(SLOT s, d)INT: 
                                insert document 'd' into stream 's' 
 
stream from seg  =(REF SLOT s, INT d)VOID: 
                                 Creates a stream, with direction 'd' 
                                 (which should be 'input' or 'output'), 
                                 to/from the segment 's'; freeslot(s) is 
                                 called, and the stream is placed in a 
                                 newly allocated slot assigned to 's'. 
 
lookup idf       =(STRING s, BOOL b, REF SLOT t)INT: 
                                 Obtains a capability as specified by 
                                 's' and assigns it to 't'.  's' can be 
                                 any string as accepted by 'sysopen'. 
                                 The stream is for input if 'b' is TRUE. 
                                 Capability produced is a segment if 
                                 this is reasonable, otherwise a stream. 
                                 Yields results as for 'sysopen'. 
 
3.3.5 Low-level transput 
 
CHANNEL          MODE            see manual; is of the form REF X 
 
SYSFILE          MODE            see manual; is of the form REF Y 
 
sysfile from slot =(REF SYSFILE sf, SLOT s, CHANNEL c)VOID: 
                                 analogous to 'sysopen' but takes a SLOT 
                                 and has no yield (faults in error 
                                 cases). The channel must be 'standin 
                                 channel' or 'standout channel'. If the 
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                                 slot is a segment, 'stream from seg' is 
                                 called to produce the stream; the 
                                 segment will be available in N0 after 
                                 calling 'close' or 'sysclose'. 
 
sysopen          =(REF SYSFILE sf, STRING s, CHANNEL c)INT: 
                                 see manual.  The meaning of the string 
                                 is as follows.  If the channel is 
                                 'parameter channel', then the book 
                                 produced contains a single line which 
                                 is the string value given as the value 
                                 of the keyword parameter 's', or if s = 
                                 "", then the keyword parameter 'OPT'; 
                                 but a negative return code will be 
                                 given if the program was not called 
                                 under the 'command' interface or if the 
                                 keyword parameter was not set or was in 
                                 some way wrong.  If the channel is 
                                 'string channel' then the book produced 
                                 has a single line which contains the 
                                 characters of the string 's'. If the 
                                 channel is 'standin channel' or 
                                 'standout channel' then the following 
                                 possibilities exist except that only 
                                 those which are sensible for input are 
                                 available on 'standin channel', and 
                                 only those for output on 'standout 
                                 channel'. If the string is "" then an 
                                 attempt is made to open using the 
                                 string 'SYSREAD' (for input) or 
                                 'SYSPRINT' (for output); if this fails, 
                                 then (for output only) the string '/M' 
                                 is used. If the string begins with '.' 
                                 it is assumed to be a file title and is 
                                 retrieved with read access, or created 
                                 and retained, from/in the directory 
                                 'current dir'. If the string is '/M' 
                                 then the book corresponds to the main 
                                 output (G9) or input (G10) of the 
                                 process.  If the string is '/A' on 
                                 'standout channel' an anonymous segment 
                                 is created for output; this segment 
                                 will be available in N0 after calling 
                                 'close' or 'sysclose'.  If otherwise 
                                 the string begins with '/' then it 
                                 should specify a route name known to 
                                 IOC, such as /LP or /TP or /TR1 or /TT2 
                                 and a stream to/from the corresponding 
                                 route is obtained.  If the string 
                                 commences with a decimal digit, then 
                                 under the 'command' interface the 
                                 string given as value of the 
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                                 corresponding serial parameter is used, 
                                 otherwise the corresponding capability 
                                 in the A capability segment.  If the 
                                 string begins with a letter then it is 
                                 treated (if under the 'command' 
                                 interface) as the name of a keyword 
                                 parameter, and the corresponding string 
                                 value is used. 
                                     Any other string will cause 'bad 
                                 open idf error' to be yielded. 
                                     The value yielded is 0, or a return 
                                 code from PARMS, or a standard negative 
                                 fault number, and can be presented to 
                                 'error message'.  A suitable value is 
                                 always assigned to 'sf'. 
 
sysclose         =(SYSFILE sf)BOOL: 
                                 see manual.  Any partially written line 
                                 is output.  Any argument (even 'SKIP') 
                                 is acceptable. 
 
sysendline       =(SYSFILE sf)BOOL: 
                                 see manual.  For input, the next line 
                                 is not physically read from the stream 
                                 until the next call of 'sysfileended', 
                                 'sysendline', or any routine actually 
                                 requiring the line. 
 
sysfileopen      =(SYSFILE sf)BOOL: 
                                 whether 'sf' is currently open (i.e. 
                                 the call of 'sysopen' yielded 0 and 
                                 'sysclose' has not been called for 
                                 'sf') 
 
sysfileended     =(SYSFILE sf)BOOL: 
                                 see manual 
 
syslineended     =(SYSFILE sf)BOOL: 
                                 see manual 
 
sysreadmood      =(SYSFILE sf)BOOL: 
                                 see manual 
 
sysmaxpos        =(SYSFILE sf)INT: 
                                 see manual 
 
syscharpos       =(SYSFILE sf)INT: 
                                 see manual 
 
syssetpos        =(SYSFILE sf, INT i)BOOL: 
                                 see manual 
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sysmovepos       =(SYSFILE sf, INT i)BOOL: 
                                 see manual 
 
syscharsleft     =(SYSFILE sf)INT: 
                                 see manual 
 
syslinepos       =(SYSFILE sf)INT: 
                                 see manual 
 
syswritechar     =(SYSFILE sf, CHAR c)BOOL: 
                                 see manual 
 
force upper case REF BOOL        When TRUE, causes 'sysreadchar' to 
                                 convert all alphabetic characters into 
                                 upper case. Initialised by 'USE' to 
                                 FALSE. 
 
sysreadchar      =(SYSFILE sf, REF CHAR c)BOOL: 
                                 see manual, 'sysendline'  and 'force 
                                 upper case'. 
 
3.3.6 User-level transput 
 
standin channel  CHANNEL         see manual and 'sysopen' 
standout channel CHANNEL         see manual and 'sysopen' 
parameter channel CHANNEL        see manual and 'sysopen' 
string channel   CHANNEL         see 'sysopen' 
 
print            TRANSOUT        see manual 
read             TRANSIN         see manual 
 
FILE             mode            see manual 
 
chan             =(REF FILE f)CHANNEL: 
                                 see manual 
 
make term        =(REF FILE f, STRING s)VOID: 
                                 see manual 
 
on logical file end =(REF FILE f, PROC(REF FILE)BOOL p)VOID: 
                                 see manual 
 
on physical file end =(REF FILE f, PROC(REF FILE)BOOL p)VOID: 
                                 see manual 
 
on line end      =(REF FILE f, PROC(REF FILE)BOOL p)VOID: 
                                 see manual 
 
on value error   =(REF FILE f, PROC(REF FILE)BOOL p)VOID: 
                                 see manual 
 
on char error    =(REF FILE f, PROC(REF FILE, REF CHAR)BOOL p)VOID: 
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                                 see manual 
 
char number      =(REF FILE f)INT: 
                                 see manual 
 
line number      =(REF FILE f)INT: 
                                 see manual 
 
file open        =(REF FILE f)BOOL: 
                                 calls 'sysfileopen(b OF f)' 
 
set char number  =(REF FILE f, INT i)BOOL: 
                                 see manual 
 
open             =(REF FILE f, STRING s, CHANNEL c)INT: 
                                 see manual and 'sysopen' 
 
file from slot   =(REF FILE f, SLOT s, CHANNEL c)VOID: 
                                 analogous to 'open' and 'sysfile from 
                                 slot' 
 
close            =(REF FILE f)VOID: 
                                 see manual and 'sysclose'; must be 
                                 given a FILE which was created by 
                                 'open' or 'file from slot'. 
 
scratch          =(REF FILE f)VOID: 
                                 as 'close', but does its best to 
                                 prevent any output reaching its 
                                 destination. 
 
newline          =(REF FILE f)VOID: 
                                 see manual and 'sysendline' 
 
set file state   =(REF FILE f, INT i)VOID: 
                                 set the stream state of the 
                                 corresponding stream.  Will fault if 
                                 the file was opened on 'string channel' 
                                 or 'parameter channel' 
 
endrec           =(REF FILE f)VOID: 
                                 as 'newline', but with the stream state 
                                 set temporarily to 'sameline state' 
                                 Note that this can be called  from 
                                 'print' 
 
overprint        =(REF FILE f)VOID: 
                                 as 'endrec' but with 'overprint state' 
 
newpage          =(REF FILE f)VOID: 
                                 as 'endrec' but with 'newpage state' 
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space            =(REF FILE f)VOID: 
                                 see manual 
 
backspace        =(REF FILE f)VOID: 
                                 see manual 
 
readchar         PROC CHAR       see manual, 'sysendline' and 'force 
                                 upper case' 
 
readint          PROC INT        see manual 
 
readbool         PROC BOOL       see manual, 'flip' and 'flop' 
 
readbits         PROC BITS       see manual 
 
readbytes        PROC BYTES      see manual 
 
readstring       PROC STRING     see manual 
 
printchar        =(CHAR c)VOID:  see manual 
 
printint         =(INT i)VOID:   see manual 
 
printbool        =(BOOL b)VOID:  see manual 
 
bitsradix        REF INT         see 'printbits'; initialised to 0 
 
printbits        =(BITS b)VOID:  If 'bits radix' is 0, see manual. 
                                 Otherwise prints 'b' as a sequence of 
                                 digits to base 2 (for bitsradix=2), or 
                                 4 (bitsradix=4) or 8 (bitsradix=8) or 
                                 16 (otherwise).  Leading zeroes are 
                                 suppressed. 
 
hexdigit         []CHAR          When subscripted with 0 to 15, yields 
                                 the corresponding digit ('0' to '9' or 
                                 'A' to 'F') 
 
printhex         =(BITS b)VOID:  prints 'b' as an 8-digit hex number. 
 
printbytes       =(BYTES b)VOID: see manual 
 
printstring      =(STRING s)VOID: see manual 
 
standout         REF FILE        see manual.  The library attempts to 
                                 open 'standout' on 'standout channel' 
                                 using "". 
 
standin          REF FILE        see manual.  The library attempts to 
                                 open 'standin' on 'standin channel' 
                                 using "". 
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3.3.7 Fault and attention handling 
 
errout           FILE            The value referred to by 'standout' 
                                 after it has been presented to a call 
                                 of 'open' by the library 
 
error message    (INT i)VOID:    prints, on standout, the string 
                                 corresponding to fault number 'i', as 
                                 provided by the FAULT program (G7). 
 
a68c error       =(STRING s, INT i)VOID: 
                                 The USE level of the library assigns 
                                 this routine to 'runtime error'. Calls 
                                 'return fault(i)', assigns 'errout' to 
                                 'standout', prints a message for the 
                                 fault number (or 's' if this is not 
                                 ""), calls 'return fault 
                                 (ABS16r80000000)', calls 'backtrace', 
                                 sets return code to 'i', and jumps to 
                                 'stop'. 
 
backtrace        PROC VOID       prints on 'standout' a list of the 
                                 currently active routines. 
 
a68c attention   PROC VOID       The USE level of the library assigns 
                                 this routine to 'attention routine'. It 
                                 calls 'return fault(previous error)', 
                                 assigns 'errout' to 'standout'.  If the 
                                 attention can be cleared with a null 
                                 capability (i.e. the attention was 
                                 level 'I') it does so and calls 
                                 'backtrace', otherwise it calls 
                                 'scratch(standout)'.  In either case it 
                                 then jumps to 'stop' 
 
stop             label           set after 'PRELUDE USER' 
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3.4 Definitions provided by MATH 
 
maxreal          REAL            see manual; exponent 127, mantissa 
                                 16r7fffff; about 1e39. 
 
smallreal        REAL            see manual; exponent -22, mantissa 
                                 16r400001; about 1.19e-7 
 
pi               REAL            see manual 
 
3.4.1 Input and output for REAL and COMPL 
 
readreal         PROC REAL       see manual; exponent characters can be 
                                 'E' or 'e' or '≤'. 
 
readcompl        PROC COMPL      see manual; plus-i-times characters can 
                                 be 'I' or 'i'. 
 
NUMBER           mode            UNION(INT,REAL) 
 
printfixed       =(NUMBER n, INT w,a)BOOL: 
                                 see manual 
 
printfloat       =(NUMBER n, INT w,a,e)VOID: 
                                 see manual 
 
printwhole       =(NUMBER n, INT w)BOOL: 
                                 see manual 
 
printreal        =(REAL r)VOID:  see manual 
 
printcompl       =(COMPL z)VOID: see manual 
 
fixed            =(NUMBER n, INT w,a)STRING: 
                                 see manual 
 
float            =(NUMBER n, INT w,a,e)STRING: 
                                 see manual 
 
whole            =(NUMBER n, INT w)STRING: 
                                 see manual 
 
3.4.2 Mathematical subroutines 
 
sqrt             =(REAL x)REAL:  see manual; calls 'runtime error' for 
                                 negative arguments 
 
exp              =(REAL x)REAL:  see manual; calls 'runtime error' if 
                                 result would cause overflow 
 
ln               =(REAL x)REAL:  see manual; calls 'runtime error' for 
                                 negative arguments 
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sin              =(REAL x)REAL:  see manual 
 
cos              =(REAL x)REAL:  see manual 
 
tan              =(REAL x)REAL:  see manual; calls 'runtime error' for 
                                 arguments near singularities of tan 
 
arcsin           =(REAL x)REAL:  see manual; calls 'runtime error' if 
                                 x>1 or x<-1 
 
arccos           =(REAL x)REAL:  see manual; calls 'runtime error' if 
                                 x>1 or x<-1 
 
arctan           =(REAL x)REAL:  see manual 
 
3.4.3 Random number generators 
 
SYSRANDOM        mode            see manual 
RANDOMDATA       mode            see manual 
 
get random       =(INT i)RANDOMDATA: 
                                 see manual 
 
save random      PROC RANDOMDATA see manual 
 
change random    =(RANDOMDATA r)VOID: 
                                 see manual 
 
random           PROC REAL       see manual 
 
normal random    =(REAL m,s)REAL: 
                                 see manual 
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                 Storage Management for ALGOL68 
 
                          A. D. Birrell 
 
Abstract     This paper describes some of the 
         techniques which can be used for managing the 
         run time storage required for an ALGOL68 
         program.  The emphasis is on stack storage, 
         since garbage collection techniques would 
         require another paper. The problems caused by 
         some ALGOL68 constructs are described; the 
         solutions given are mainly those adopted in 
         the Cambridge ALGOL68C system. 
 
 
 
1   Representation of objects. 
 
    ALGOL68 is a language concerned with internal objects and 
operations upon them.  In designing the storage management for 
ALGOL68 one of the first questions to be faced is how to 
represent these objects.  In other words, when a value of some 
mode (data type) is assigned, or yielded, what bit patterns are 
physically moved around the store of the machine. 
 
    For some modes, the choice of representation is 
straightforward: 
 
        int  =>  appropriate (machine-dependent) bit pattern - 
                 typically a single word. 
 
        char =>  single byte (if possible). 
 
        real =>  floating point number. 
 
    Other modes can be built out of simpler parts: 
 
        struct(...)     =>  concatenation of the fields, possibly 
                            with gaps for boundary alignment. 
 
        union(...)      =>  (marker, value) 
 
        routine         =>  (entry address, environment pointer) 
 
    Note that although the ALGOL68 report does not talk of values 
of mode union(...), a value which has been united is universally 
represented as the value with a small marker indicating its mode. 
The 'environment pointer' in a routine is used in addressing 
items in blocks outside the routine - this is considered later. 
 
    It should be pointed out here that it is possible to achieve 
considerable simplification of many of our problems by an 
indirection.  By representing values of the more complicated 
modes by a pointer to data in a global storage area, the whole 
stack organization is simplified; this substitutes the problems 
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of managing the global storage area for the problems described 
below. I believe such a technique has been adopted in the 
Carnegie-Mellon implementation of ALGOL68S. 
 
    The representation of multiple values is a cause of many 
problems.  There are several causes.  Firstly, we must always 
know the bounds of an array (multiple value), so that we can 
generate code to copy the array, and for array bound checking. 
Often, situations arise such that we cannot know these bounds at 
compile time and so must store them as part of the run time 
representation.  Secondly, the facility of trimming a multiple 
value allows the program to manipulate sub-arrays.  Unless we 
copy the elements of an array when we trim (which seems 
needlessly expensive), we must store separately from the elements 
a block containing the bounds of, and a pointer to, the elements. 
Thirdly, when subscripting an array we require a uniform distance 
between the addresses of the elements.  When the elements are 
themselves arrays, we must carefully consider how to achieve 
this. 
 
    For example: 
 
        [][]int v= ( []int x=(1,2) 
                           y=(1,2,3), 
                           z=(1,2,3,4); 
                     (x,y,z) 
                   ); 
 
    We require that   (address for v[1]) - (address for v[2]) 
                    = (address for v[2]) - (address for v[3]) 
 
All these requirements can be satisfied by using a descriptor 
containing bounds and a pointer to the elements.  Thus: 
 
        z ---> 1 4 
 
                      1 2 3 4 
 
        v ---> 1 3 
 
                      1 2   1 3   1 4 
 
                                         1 2 3 4 
 
                                   1 2 3 
 
                             1 2 
 
    Additionally, the descriptor contains a stride for each 
dimension, to indicate the spacing between elements.  For 
example, if we have 
 
        [,,]int w = (......); 
        [,]int p = w[,1,]; 
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then the representations of 'w' and 'p' are: 
 
    w =    1 10 100 1 10 10 1 10 1 
 
 
                     strides 
 
0        1             10       11            100      101 
w[1,1,1] w[1,1,2]      w[1,2,1] w[1,2,2]      w[2,1,1] w[2,1,2] 
p[1,1]   p[1,2]                               p[2,1]   p[2,2] 
 
 
    p =    1 10 100 1 10 1 
 
 
                strides 
 
    A final step in the representation of such objects is usually 
that the pointer, instead of being the address of the first 
physical element, is the address which would be that of the 
element whose subscript is 0 in each dimension, even if this is 
not physically part of the array (or even a legal address).  This 
simplifies subscripting, since the computation no longer involves 
the bounds (unless for checking purposes). 
 
    Thus in general objects involving array elements can be 
complicated tree structures.  When such an object is assigned, or 
storage for it is generated, we must generate code to manage such 
tree structures.  Innocuous looking declarations or assignments 
can generate considerable tracts of code, and the presence of 
such objects is the major reason for complexity in our stack 
management.  In future we will term the first level of such an 
object the static part of the object (its size is known at 
compile time); the remainder of the object is the dynamic part 
(its size may not be known until run time). 
 
    The representation of names, that is objects whose mode is of 
the form ref amode, is mainly straightforward - the address of an 
amode object. However, a complication arises if amode is of the 
form [...]bmode.  This complication is caused by trimming; the 
scope of the name yielded by trimming is the same as that of the 
name being trimmed.  Thus the descriptor produced can 
 
be required to exist longer than the block in which the trimming 
occurs, and so cannot be allocated on the present stack frame. 
For example 
 
        [1:10] ref[] int v; 
        [1:20] int w; 
        for i to 10 do int j; ... ; v[i]:=w[i:i+10 at i] od; 
 
    Here, the descriptors for the arrays referred to by the 
elements of 'w' are created when trimming 'w' inside the loop, 
but their storage cannot be allocated at this point.  For this 
reason, when allocating store for an object whose mode is of the 
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form ref[....]bmode, we also allocate store for a descriptor. 
For example the declaration of 'v' allocates store for 10 extra 
descriptors.  An immediate optimisation is to represent such 
names as the descriptor, rather than its address.  For example, 
 
        v =     1 10 4 
 
 
                1 10     2 11     3 12          elements of 'v' 
 
 
                                                elements of 'w' 
 
 
        w =     1 10 
 
    Note that this causes the implementor some tedium, since 
ref[...]bmode must always be handled as a special case.  It also 
causes minor complications in handling identity relations for 
objects of such modes. 
 
 
 
2   The stack 
 
    The stack organisation we will develop is based on the 
conventional ALGOL60 stack, which is summarised here. 
 
    The stack consists of a number of frames, one for each block 
which has been entered but has not yet terminated. 
 
    At any time there is a current display.  A display consists 
of a number of display registers (or levels), each containing the 
address of some frame.  The current display consists of registers 
addressing the current and each textually enclosing block. 
 
    To access a word of the stack, we use an address of the form 
 
        [display register] + offset 
 
where the display register (but not its contents) and the offset 
are known at compile time. 
 
    Due to recursion, there may be more than one frame for each 
block. 
 
    On entry to a block, a new frame is started and an extra 
display register added to the display in order to address the 
frame. 
 
    On entry to a procedure, the complete display is reset to 
correspond to the block in which the procedure (not the call) 
occurred.  To allow this operation, the representation of a 
 



 

- 5 - 

 
 
routine value contains an environment pointer indicating the 
values to load as the new display.  This routine value is known 
as a closure; due to recursion, there may be different closures 
for a single routine text. 
 
    On exit from a block or procedure, the display is restored to 
its previous value. 
 
    In ALGOL68, there are several categories of data we wish to 
store on the stack. 
 
a)  A heading containing the address of the previous frame, 
    subroutine link, information for setting up the display, etc. 
 
b)  values for definitions: for 'int i' the value referred to, 
    for 'real x = random' the value itself. 
 
c)  anonymous results created during elaboration of the block. 
 
d)  array elements 
 
e)  storage for explicit loc generators. 
 
    Of these (a), (b) and (c) are straightforward, but (d) and 
(e) are difficult since the amount of storage required may be 
large and may not be known at compile time. 
 
    It is common practice to store (a), (b), (c) at the start of 
the frame, with (d) and (e) at the end.  This has two advantages: 
the offsets written in instructions are smaller (many machines 
place severe limitations on such offsets), and we always know the 
offsets for identifiers at compile time.  We can thus consider 
each frame as being divided into a static frame containing (a), 
(b), (c), and a dynamic frame (possibly empty) containing (d) and 
(e). Further, it is convenient to treat (c) separately as the 
SWOST (static working stack) frame, calling the remainder of the 
static frame the static idf frame. Similarly, we can sub-divide 
the dynamic frame into the DWOST frame containing the dynamic 
parts of SWOST objects, and the dynamic idf frame.  For example: 
 
        begin 
           int p, q, r, [1:3]ref int s; 
           for i to 3 do s[i] := loc int od; 
           . 
           . 
           (p,q,r) #row display# 
           . 
           . 
        end 
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|<-------- static frame --------->|<----- dynamic frame ------->| 
|                                 |                             | 
|<- static idf frame ->|<--SWOST->|<---dynamic idf--->|<-DWOST->| 
|                      |   frame  |    frame          |  frame  | 
|                      |          |                   |         | 
|                      |          |                   |         | 
|                      |          |                   |         | 
|                      |          |                   |         | 
 
heading          1 3     1 3 
 
          p q r   s     descriptor  elements loc       elements 
                        for (p,q,r)  of 's' generators of (p,q,r) 
 
 
  display register for 
  this frame 
 
 
    Management of the static frames is mainly straightforward. 
Storage is allocated on the static idf frame only at definitions. 
The structure of the language is such that at a definition, none 
of the anonymous results which have been created in the current 
block still exist, so the SWOST part of the frame is empty.  Thus 
the static idf frame is contiguous storage starting at the end of 
the heading area.  The SWOST, then, is always placed at the end 
of the static idf frame.  However, situations can arise which 
produce holes in the SWOST; these are typically when we are 
constrained to produce the result of some action without 
overwriting its parameters.  An example might be: 
 
        compl w := ...,  z := ..  ; 
 
        ...  w * z .... 
 
 
 
 
            w    z    store for 
                      w * z 
 
    It is always possible to avoid such holes by copying, and 
with sufficient care most holes can be avoided without copying. 
In ALGOL68C, we decided that the extra expense of allowing the 
holes was not great enough to justify the complexity (or expense, 
if we copy) of avoiding them. Accordingly, holes are allowed to 
occur on SWOST; however since SWOST for a block is always empty 
at a semicolon and before a definition, such holes are generally 
of short duration.  It should be noted that all static frame 
offsets are known at compile time.  No run time management is 
required. 
 
    Before considering the management of dynamic frames, we 
should look at an optimisation available to us.  Within a single 
procedure, we know at compile time all the offsets inside each 
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static frame.  If, then, we place all static frames first, 
followed by the dynamic frames, we will be able to address all 
the static frames with a single display register, pointing to the 
base of the first static frame.  This optimisation is often 
described as having one frame per procedure, but this is not 
really an accurate description.  In terms of when store is 
allocated and recovered, and in the interleaving of static idf 
frames with SWOST, we are still running one frame per block.  The 
only alteration is to omit some display registers, and move the 
dynamic frames.  The dynamic frames are still, in every sense, 
one per block.  This optimisation gives us several gains. The 
number of display levels is drastically reduced, being limited to 
the textual nesting depth of procedures - in practice, we have 
never encountered depths greater than 5, although ALGOL68C allows 
for 64.  The number of display registers required is in fact less 
than the textual nesting depth, since if an enclosing frame is 
not referenced from inside a procedure, it can be omitted from 
the display.  (This is allowed by, and required by, the rules on 
the scope of routine values.)  It is possible, instead of keeping 
the complete display, to keep only a pointer to the static frames 
of the current procedure, and store there a pointer to the frames 
of the enclosing procedure.  Then accessing a frame of an 
enclosing procedure is achieved by indirecting down this static 
chain.  Since the number of levels on the static chain is 
typically less than 5, these indirections never go very far.  In 
ALGOL68C we maintain a pointer to the outermost level, and one to 
the current procedure; in this way only about 2% of static frame 
accesses require indirection down the static chain (and then, 
less than 4 indirections).  These indirections can be further 
reduced by remembering which registers currently address outer 
levels.  It should be noted that, using the above techniques, if 
a block requires no dynamic frame then no run time cost is 
incurred by block entry or exit.  This means that the programmer 
can freely use begin/end for structuring his program without 
worrying about extra code being generated.  The environment 
pointer of a routine is now a pointer to the frames of the 
enclosing routine, and is used for the static chain when the body 
of the routine is elaborated. 
 
    The mechanism used by ALGOL68C for run time management of 
dynamic frames is unusual.  At first sight it appears too 
complicated, but by paying a little in in conceptual complexity 
we have attempted to minimize run time actions, and as far as 
possible to eliminate them completely for blocks or procedures 
with no dynamic frame.  We define a drange to be any range 
(block) which, excluding inner ranges, allocates storage on a 
dynamic frame, and a droutine to be any routine containing a 
drange.  For each dynamic frame we will require a pointer to the 
top of that frame - this we call the dsmd (dynamic stack 
management data) for the frame.  ALGOL68C always keeps the dsmd 
stored on the static frame at an address known as the dsma - as 
will be seen, this simplifies our run time actions.  With the 
stack organization as described above, we would perform the 
following actions; these will be modified in the light of changes 
to be described later. 



 

- 8 - 

a)  On entry to the outermost drange of a droutine, we allocate a 
    dsma and initialise its dsmd to the top of the static frames. 
 
b)  On entry to an inner drange, we allocate a new dsma and 
    initialise its dsmd to the previous dsmd. 
 
c)  To allocate storage on a dynamic frame, we use and update the 
    current dsmd (as addressed by the current dsma). 
 
d)  On exit from an inner drange, we revert to the outer dsma. 
    Note that this is not a run time action, since we know the 
    dsma (as a static frame offset) at compile time. 
 
    This mechanism is simpler at run time than the alternative of 
keeping a single dsmd and preserving/restoring it; it is the only 
tenable mechanism for the stack organization described below. 
Under this scheme, jumps present no problem - at the target 
label, we revert to the appropriate dsma. It is difficult to 
produce an alternative scheme which does not have to preserve the 
dsmd at every call in case there is a jump out of a drange in 
some inner routine; such preservation has the effect that you pay 
for dynamic frames even if you do not use them.  An example of 
our stack organization would now be: 
 
        begin 
           [1:10]int a; 
           proc f = int: 
              begin 
                 [1:10]int b; 
                 int p, q; 
                 begin 
                    [1:10]int c; 
                    . 
                    . 
                    . 
                 end 
              end; 
           f 
        end 
 
The stack after declaring 'c' might be: 
 
  outer block                 middle     inner 
                              block      block 
 
 
outer  a  elements heading p q middle b inner c elements elements 
dsmd      of 'a'   for 'f'     dsmd     dsmd    of 'b'   of 'c' 
 
 
 
 
 
  outer display    display register     current 
  register         for 'f'              dsma 
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    Considerable difficulty is presented by argument passing, 
when the arguments have dynamic parts allocated during their 
elaboration.  For example: 
 
        ( random < 0.5 | f | g )(a, loc[x:y]int, b) 
 
Firstly, consider which display register to use for addressing 
the static parts of the arguments while inside the called 
routine. 
 
a)  Using the display register of the calling routine is not 
    possible, since inside the called routine we would not know 
    the offsets for the arguments. 
 
b)  We could use a separate display register solely for the 
    arguments, but this would double the number of display 
    levels.  (This solution is quite commonly adopted by other 
    implementors.) 
 
c)  The only other possibility is to address the static parts of 
    the arguments using the display register of the called 
    routine. 
 
Assuming choice (c), then, we must consider where to place the 
dynamic frame allocated for the arguments. 
 
a)  We cannot place it before the static parts of the arguments, 
    since we do not yet know its size. 
 
b)  We can place it after the static parts of the arguments only 
    if we place it after the other static frames of the called 
    routine, but in ALGOL68C we do not know the size of the 
    called routine's static frames while we are elaborating the 
    call.  Some implementors do arrange to maintain this 
    information at run time. 
 
By this stage in the design of the stack we have accumulated 
(albeit implicitly) several problems. 
 
1)  Where to place the dynamic parts pf arguments. 
 
2)  How, at the calling end, to address the static parts of the 
    arguments since we do not at that stage have a display 
    register for them. 
 
3)  Storage is wasted since dynamic frames start at the high 
    water mark of the static frames of the routine. 
 
4)  The ALGOL68C separate compilation mechanism would require a 
    display register for each segment. 
 
5)  Any proposed solution of (1) to (4) with this form of stack 
    organisation appears to be much too complicated. 
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    In ALGOL68C, to solve these problems we made a drastic 
re-arrangement. Instead of continuing attempts to organize a 
single stack, we split the storage into two independent stacks. 
The static stack contains all static frames, and is addressed by 
display registers and offsets; the dynamic stack contains all 
dynamic frames, and is referred to from the static stack. 
 
    We can now have a simple solution to the argument passing 
problem. The static frame for the arguments is addressed at the 
calling end using the display register of the calling routine - 
since there are no intervening dynamic frames we know all the 
offsets at compile time.  Inside the called routine, the 
arguments form the first static frame.  The dynamic frame (if 
any) for the aguments is treated as any other dynamic frame, with 
no additional problems; if there is such a dynamic frame, the 
arguments will constitute a drange.  Thus: 
 
 
  static    calling       store for static         called routine 
  stack     static frames heading   argument frame static frames 
 
 
 
  dynamic   calling            argument            called routine 
  stack     dynamic frames     dynamic frame       dynamic frames 
 
 
    The wasted static frame storage is eliminated, and we do not 
need a separate display register for separately compiled 
segments. 
 
    With this revised organisation, we must revise the actions to 
be performed for managing the dynamic frames.  Since we no longer 
know at compile time the base for the first dynamic frame of a 
droutine, this information must be passed with the call.  Since 
we do not know at the call whether the called routine is, or will 
call, a droutine, the information must be passed with every call. 
To avoid this causing a run time action on every call, we always 
have the current dsma available at run time (in a particular 
register, say, or in a fixed store location).  The actions to be 
performed are then: 
 
a)  On entry to any drange, allocate a new dsma, initialise its 
    dsmd to the previous dsmd, and reset the run time dsma. 
 
b)  On exit from any drange, restore the run time dsma to its 
    previous value. 
 
c)  To permit (b) in the outer drange of a droutine, preserve the 
    dsma on entry to a droutine. 
 
To allow for labels and jumps, we include as a droutine any 
routine containing a label; at a label we reset the dsma to the 
appropriate value.  Note that these arrangements still satisfy 
the dictum that if you don't use the dynamic stack then you 
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shouldn't pay for it (except at labels).  Our example might now 
be as follows: 
 
        begin 
           [1:10]int a; 
           proc f = (int i)int: 
              begin 
                 [1:10]int b; 
                 begin 
                    [1:10]int c; 
                    ( i <= 1 | 1 | i * f(i-1) ) 
                 end 
              end; 
           print( f(1) ) 
        end 
 
The stacks after declaring 'c' would be: 
 
             outer block              middle block  inner block 
 
 
 
  static    a outer heading i preserved b middle c inner 
  stack       dsmd  for 'f'   dsma        dsmd     dsmd 
 
 
                                                     current dsma 
 
  dynamic   elements       elements      elements 
  stack     of 'a'         of 'b'        of 'c' 
 
 
    One serious problem remains in our description of the stacks 
- this is the yielding of a result from a block or a procedure. 
The difficulty is that the result is constructed on stack frames, 
inside the block or procedure, which are about to be 
relinquished.  For example: 
 
        begin 
           [1:1000]int a; 
           . 
           . 
           . 
           (1,2,3,4) 
        end 
 
 
  static    previous a descriptor    current 
  stack     dsmd       for (1,2,3,4) dsmd 
 
 
 
  dynamic   previous elements  1 2 3 4 
  stack     frames   of 'a' 
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There are basically two possibilities: either copy the value onto 
the outer SWOST and DWOST, or delay relinquishing the frames. 
However, copying can be very expensive (and sometimes very 
difficult), while delaying relinquishment can waste vast amounts 
of storage.  An extensive analysis of this problem has been given 
by Branquart, and an algorithm which assists in copying has been 
given by Meertens.  It is certainly best to delay the decision as 
to whether to copy or to avoid relinquishing, until as late as 
possible.  At present ALGOL68C does not recover the storage in 
this situation - this is hardly satisfactory.  With sufficient 
care, it is possible to achieve satisfactory results even in 
extreme examples such as: 
 
        op * = ([]int x,y)[]int: ... , 
           + = ([]int p,q)[]int: ... ; 
        [1:100]int a,b,c; 
 
        l: a * b + ( ... | c | goto l ); 
 
In particular, the compiler can treat some constructs as if they 
were dranges (though not actually ranges) to aid the recovery of 
dynamic stack. 
 
 
 
3   Summary 
 
    The power and flexibility of the constructs available in 
ALGOL68 lead to considerable complexity in the objects being 
manipulated and in the management of the storage for them.  By 
dividing the stack into two independent stacks we greatly 
simplify these problems, although on an unsegmented machine the 
need for three storage areas (the stacks and the heap) presents 
extra difficulties.  An alternative solution, often adopted, is 
to place dynamic parts on the heap in times of difficulty - this 
we still must do when assigning objects of modes such as 
union([]int,[]real) - but this approach was discarded, because it 
is expensive and because it uses the heap behind the programmer's 
back.  A full discussion of the problems of result passing would 
be outwith the scope of this paper, as are the techniques 
available for flex. 
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1   A68C and CAP protected procedures 

Introduces the coroutine mechanism for invoking CAP protected 

procedures. 

2   Program Sharing 

Explains the details of the CAP Algol68C separate compilation 

mechanism. 

3   CAPABILITIES in ALGOL68C 

Describes facilities for manipulating CAP capabilities fro within 

CAP Algol68C. 
 


