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 

Abstract—Evolutionary Algorithms (EAs) based Unmanned 

Aerial Vehicle (UAV) path planners have been extensively studied 

for their effectiveness and flexibility. However, they still suffer 

from a drawback that the high quality waypoints in previous 

candidate paths can hardly be exploited for further evolution as 

they evolve a path as a whole. Due to this drawback, the previous 

planners usually fail when encountering lots of obstacles. In this 

paper, a new idea of separately evaluating and evolving waypoints 

is presented to solve this drawback. By using this new idea, the 

high quality waypoints can be highly exploited. For the evaluation 

phase, a set of new evaluation functions are derived from the 

existing objectives and constraints functions to evaluate each 

waypoint. Basically, the derivation can be made only if the 

original functions are separable on waypoints. For the evolution 

phase, JADE, one state-of-the-art variant of Differential 

Evolution (DE) is employed to drive the further evolution for 

waypoints. In order to further improve the performance of the 

proposed planner, the waypoints are encoded in a rotated 

coordinate system with an external restriction. To test the 

capabilities of the new planner on planning obstacle-free paths, 5 

scenarios with increasing numbers of obstacles are constructed. 3 

existing planners and 4 variants of the proposed planner are 

employed as compared planners to show the effectiveness and 

efficiency of the proposed planner. The results verify the ability of 

the proposed planner and the idea of separate evolution in solving 

scenarios with large number of obstacles.  

 
Index Terms—Evolutionary Algorithm, Path planning, 

Unmanned Aerial Vehicle. 

 

I. INTRODUCTION 

nmanned Aerial Vehicles (UAVs) are aircrafts without 

human pilots onboard. Due to their great advantages in 

terms of crew endurance, UAVs have been entrusted in 

high-threatened missions so that human lives can be completely 
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kept away from dangers [1], [2]. In the past few decades, 

autonomous path planning technique has become increasingly 

important to the UAV, as the conventional remotely piloted 

techniques can hardly offer sufficient accuracy and timeliness 

for complex missions nowadays [3], [4]. 

The path planning problem for a UAV can be formulated as 

an optimization problem that finds a feasible path from the start 

to destination for a UAV to follow on [4]. In the literature, a 

path is usually represented as a set of segments by a sequence of 

waypoints. These segments can be line segments [3], B-spline 

Curves [1] or Bezier curves [5]. Hence, path planning, in 

general, is to find out a sequence of waypoints as well as the 

segments linking each pair of adjacent waypoints to optimize 

various objectives subject to a number of constraints. Generally, 

the curve-based representations can ensure the smoothness of 

candidate paths, while their computational costs are high as 

they introduce external local controls for generating paths. In 

this paper, line segments based paths are adopted for its 

simplicity and efficiency.  

Path planning problem is not a problem that only emerges in 

the context of UAVs. In fact, it is much more intensively 

investigated in the domain of Robotics, where path planning is 

usually referred to as motion planning [6], [7]. However, path 

planning for UAVs involves two domain-specific challenges 

that may not be encountered in a different context (e.g., motion 

planning for a robot). First, as UAVs fly above the ground and 

can change their altitude during flight, they in essence work in 

in a 3-D space. In contrast, motion planning for robots usually 

considers 2-D space as robots move on the ground. The 

additional degree of freedom significantly enlarges the mission 

space, and thereby the solution space of UAVs path planning 

problem. Second, a fixed-wing UAV cannot hover and have to 

always keep a rather high cruise speed. Such a requirement 

induces additional complicated constraints to the path planning 

problem. On the contrary, motion planning for robots can be 

immune with this requirement, because robots can slow down 

and even stop whenever necessary.  

The UAV path planning problems can be further categorized 

into 3 types, i.e., off-line planning, on-line planning and 

cooperative planning. If the global information about the 

environment is at hand, the problem is called off-line planning 

[1], [4], [9], [18]-[29], [35]. If the circumstance is partially 

known or completely unknown in advance, the path will be 

planned on-line [1], [9], [20], [22], [28]. In case a mission is too 

complex to accomplish by a single UAV, a team of UAVs are 
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called for, and hence cooperative planning is studied [1], [4], 

[20], [28]. All these three types of problems have been proved 

to be NP-Complete [10]. Among them, off-line planning is 

probably the most commonly adopted approach for UAV path 

planning. Besides, on-line planning and cooperative planning 

can be viewed as extended versions of off-line planning 

problems. Hence, this paper focuses on off-line path planning 

problems. For the sake of brevity, UAV off-line path planning 

will be referred as path planning in the rest of the paper. 

In the literature, UAV path planning problems have attracted 

a large variety of optimization applications, including A* [10], 

[11], Mixed-Integer Linear Programming [12], [13], Nonlinear 

Programming [14], Voronoi Diagram [15], [16] and 

Evolutionary Algorithms (EAs) [1], [4], [9], [18]-[29], [35]. 

One of the difficult problems in the field of the UAV path 

planning is to plan a feasible path in a scenario with obstacles. 

The difficulty of this problem results from the fact that the 

feasible space decreases rapidly with the increase of number of 

obstacles. To be detailed, on one hand, as the number of 

obstacles increases, the feasible space for each waypoint 

decreases. On the other hand, the increased obstacles lead to 

much narrower and more zigzag passageways for the UAV, and 

thus more waypoints are required to keep a path sufficiently 

flyable, i.e., smooth and safe. As a result, it becomes more 

difficult to find a feasible path in which all its waypoints are at 

feasible positions.  

Although the existing EA-based planners are found to be 

more flexible and effective than the other approaches on 

planning obstacle-free paths, they still usually fail when the 

number of obstacles becomes quite large. The reason of the 

failure for the existing EA-based planners is that a path is 

feasible only if all its waypoints are at feasible positions. 

However, when searching for a feasible path, it is unlikely that 

the feasible positions for all waypoints can be obtained 

simultaneously (e.g., in the same iteration). Instead, it is highly 

possible that one candidate path consists of good positions for 

some waypoints, while the other waypoints are in bad positions. 

In other words, waypoints in a candidate path may be of 

different qualities. Nevertheless, existing EA-based approaches 

are unable to identify such differences as they regard the whole 

candidate path rather than a single waypoint as the unit of 

evaluation and evolution. Consequently, all waypoints of a 

“bad” path will be regarded as “bad” waypoints and vice versa. 

Eventually, the lack of capability to exploit high quality 

waypoints leads the existing EA-based planners to an 

inefficient search when lots of obstacles exist. 

During the investigation of the UAV path planning problems, 

it has been noticed that most of the commonly used objective 

and constraint functions are separable on waypoints. This fact 

enlightens us that if we can explicitly decompose those 

evaluation functions and design a new evolution strategy that 

can be used to evolve each single waypoint, the waypoints can 

be evaluated and evolved separately and thus high quality 

waypoints can be exploited to improve the performances of the 

whole candidate paths. Inspired by the above considerations, a 

new EA-based path planner is proposed. Instead of searching 

for a sequence of feasible waypoints simultaneously, the 

proposed path planner evaluates and evolves each waypoint 

separately. For the evaluation phase, a set of new objective and 

constraints functions for single waypoints are derived from the 

existing functions which are used to evaluate the whole paths. 

For the evolution phase, a state-of-the-art Differential 

Evolution (DE), JADE [30] is employed to evolve each single 

waypoint. A widely used multi-criteria handling method is also 

used to select the evaluated waypoints for selection. In this way, 

the planner can be better focused on seeking good positions for 

waypoints, and information about previous good positions of 

waypoints can be better exploited. To further enhance the 

performance of the proposed planner, a recently proposed 3-D 

coordinate system [29] is also employed to encode the 

waypoints.  

Lastly, a set of detailed simulations are carried out. In the 

simulations, the proposed planner is compared with 7 compared 

planners on 5 scenarios with different numbers of obstacles. 

The obstacles are represented as ranges of missiles and 

mountains where the UAV is forbidden to fly through. By 

randomly setting missiles on ground, the numbers of obstacles 

are set as 7, 15, 30, 60 and 120 for the 5 scenarios, respectively. 

The simulation results show that the proposed idea can 

significantly improve the ability of path planners in scenarios 

with lots of obstacles. The proposed planner can outperform all 

compared planners when there are lots of obstacles.  

The rest of the paper is organized as follows: Section II 

describes the evaluation functions of the key factors of UAV 

path planning in detail. The proposed path planner is then 

introduced in Section III. In Section IV, we test the 

effectiveness of the proposed planner by comparing with 7 

planners in 5 scenarios with different numbers of obstacles. 

Lastly, the conclusions of this work and expectation of further 

research is discussed in Section V. 

II. PROBLEM DESCRIPTION 

When planning a path for an UAV, quite a few important 

factors need to be taken into consideration, such as the 

maneuverability of the UAV, the environment of the mission 

space, safety and cost of the path. These factors are involved 

either in the form of objective functions that need to be 

maximized/minimized, or in the form of constraints that a path 

must comply with. Since the purpose of this paper is not to 

construct a new set of realistic evaluation functions, we directly 

employ or derive some existing representative functions in the 

literature [1], [4], [35] to include several key factors in UAV 

path planning. Detailed technical justifications of the chosen 

functions could be found in the corresponding references, i.e., 

[1], [4], [35]. Generally, these factors restrict the paths in a 

geometric manner. Specifically, the factors to be considered 

can be categorized into two types based on the way they restrict 

the paths. The first type of factors require only the waypoints 

for evaluation. That is, those factors can be evaluated by 

checking the locations of waypoints as well as the geometric 

relations in between. Examples are maximal turning angle, 

maximal slope, minimal path length, minimal flight altitude 

and map limited. The other factors are relevant to the segments 

as well as waypoints since waypoints are not sufficient to 
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determine the real states of an UAV. In other words, the 

segments may be infeasible even when the corresponding 

waypoints are in feasible locations. Examples are minimal risks 

of kill, minimal risks of radar detection and the terrain limited. 

For the first type of factors, we directly borrow the existing 

functions. For the second type of factors, however, the existing 

functions have only considered the states of waypoints and 

regard those states as the behaviors of the corresponding 

segments. In this paper, we try to modify those second type of 

functions and approximate the real behaviors of a segment. The 

approximation is to first divide each segment into 𝑁𝑑 piecewise 

parts and then evaluate the 𝑁𝑑 dividing points (the waypoint is 

also regarded as one dividing point). Suppose (𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗 , 𝑑𝑧𝑖𝑗) 

indicates the 𝑗th  dividing point on the segment between 

(𝑖 − 1)th  and 𝑖th  waypoint, where 𝑖 =  2,3, … , 𝑁𝑤 , j = 

1,2,…, 𝑁𝑑, it can be calculated as: 

 

(𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗 , 𝑑𝑧𝑖𝑗) = (𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1) + 𝑗 ∙ ((𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) −

                                              (𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1))/𝑁𝑑                    (1) 

 

𝑁𝑑 reflects the trade-off between the computational cost and 

the accuracy of approximation. Generally, the larger 𝑁𝑑 is, the 

higher accuracy the approximation will have, while the 

efficiency will fall. The value of 𝑁𝑑 is problem dependent, and 

will be discussed in Section IV. 

At the end of this section, the scheme of selecting the final 

solution according to these constraints and objectives will be 

presented.  

A. Objective Functions 

1) Minimal Path Length: For military missions, shorter path are 

always preferred to longer ones, because shorter paths usually 

consume less fuel and have lower chance of encountering some 

unexpected threats, e.g., gusty wind and undetected enemy. 

Hence, the total length of the path needs to be minimized. This 

consideration leads to the objective function Path Length Ratio 

(PLR) [1], [35] given by (2), 

 

                𝑓1 =
∑ √(𝑥𝑖−𝑥𝑖−1)

2+(𝑦𝑖−𝑦𝑖−1)
2+(𝑧𝑖−𝑧𝑖−1)

2𝑁𝑤
𝑖=2

√(𝑥𝑁𝑤−𝑥1)
2
+(𝑦𝑁𝑤−𝑦1)

2
+(𝑧𝑁𝑤−𝑧1)

2
      (2) 

 

where (𝑥𝑖 , 𝑦𝑖,𝑧𝑖), 𝑖 =  2,3, … , 𝑁𝑤, denotes the position of the 

𝑖th waypoint in the 3-D mission space, 𝑁𝑤 is the total number 

of waypoints of a path (including the starting point and the 

destination). Here, the path length ratio is used instead of the 

absolute path length. [1] has given the reason that they are 

equivalent and the former one is more admissible. 

2) Minimal Probability of Kill: If a UAV is within the range of 

the hostile missiles, it is at risk. Intuitively, paths with lower 

probability of kill (PKill) are safer than those with higher ones. 

For each dividing point, the 𝑘th, 𝑘 =  1,2, … ,𝑀 (the number 

of missile), hostile missile imposes a certain probability of kill 

on the UAV only if that point is inside the region defined by the 

missile’s maximal risk distance (seen in Fig. 1), denoted as 

𝑅𝑃𝐾𝑚𝑎𝑥
𝑘 . The distance between a dividing point and the  𝑘𝑡ℎ 

missile is calculated as: 

 

 𝑑𝑖𝑠𝑖𝑗
𝑘 = √(𝑑𝑥𝑖𝑗 −𝑚𝑥𝑘)

2 + (𝑑𝑦𝑖𝑗 −𝑚𝑦𝑘)
2 + (𝑑𝑧𝑖𝑗 −𝑚𝑧𝑘)

2 

                             (3) 

where (𝑚𝑥𝑘 , 𝑚𝑦𝑘 , 𝑚𝑧𝑘) is the given location of the 𝑘th missile. 

At last, the PKill of the whole path can be calculated as: 

 

   𝑓2 = ∑ ∑ ∑ PK𝑖𝑗
𝑘𝑀

𝑘=1
𝑁𝑑
𝑗=1

𝑁𝑤
𝑖=2  with 

 PK𝑖𝑗
𝑘 = {

( 𝑅𝑃𝐾𝑚𝑎𝑥
𝑘 )4

( 𝑅𝑃𝐾𝑚𝑎𝑥
𝑘 )4+(𝑑𝑖𝑠𝑖𝑗

𝑘 )4
        𝒊𝒇  𝑑𝑖𝑠𝑖𝑗

𝑘 ≤ 𝑅𝑃𝐾𝑚𝑎𝑥
𝑘

0                                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆           

   .            (4) 

 

This formulation (4) is derived from the one suggested in 

[35], which is a simplified version of the real PKill in [1] where 

the impact of the altitude of the UAV is neglected.  

3) Minimal Risks of Radar Detection: UAV can always keep 

stealthy until enemy radars detect it. The risks of radar 

detection (RRD) should be as small as possible. The RRD is 

technically fourth power of the distance between the dividing 

point and the radar. [4] suggested a simplified version of the 

real RRD. We modify it by evaluating 𝑁𝑑 dividing points for 

each segment. The derived function is as follow, 

 

            𝑓3 = ∑ ∑ ∑ RD𝑖𝑗
𝑘𝑅

𝑘=1
𝑁𝑑
𝑗=1

𝑁𝑤
𝑖=2  with 

                RD𝑖𝑗
𝑘 = {

(
𝛿

𝑑𝑖𝑠𝑖𝑗
𝑘 )
4       𝒊𝒇  𝑑𝑖𝑠𝑖𝑗

𝑘 ≤ 𝑅𝑅𝑅𝐷𝑚𝑎𝑥
𝑘

0             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆           
            (5) 

where 

𝑑𝑖𝑠𝑖𝑗
𝑘 = √(𝑑𝑥𝑖𝑗 − 𝑟𝑥𝑘)

2 + (𝑑𝑦𝑖𝑗 − 𝑟𝑦𝑘)
2 + (𝑑𝑧𝑖𝑗 − 𝑟𝑧𝑘)

2

                                                                                  (6) 

where 𝛿 is a scale of the intensity of the radar, (𝑟𝑥𝑘 , 𝑟𝑦𝑘 , 𝑟𝑧𝑘) is 

the location of the 𝑘th radar, 𝑅 is the number of radars, and 

𝑅𝑅𝑅𝐷𝑚𝑎𝑥
𝑘  represents the maximal risk distance of missile. 

4) Minimal Flight Altitude: A UAV may need to fly at a low 

altitude to keep mass threats to the enemy on ground. The 

formulation of Flight Altitude (FA) is directly borrowed from 

[1], as follow, 

 

 
Fig. 1. a 2-D illustration of the probability of kill and risks of radar 

detection imposed on each dividing point. In this figure, 𝑁𝑑 = 6. 
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            𝑓4 = ∑ FA𝑖
𝑁𝑤
𝑖=2  𝑤𝑖𝑡ℎ FA𝑖 =

          {
  0                              𝒊𝒇  𝑧𝑖 ≤ map(𝑥𝑖 , 𝑦𝑖)       
(𝑧𝑖 −map(𝑥𝑖 , 𝑦𝑖))/𝑁𝑤        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆             

        (7) 

where map(𝑥, 𝑦) is a function that returns the elevation of the 

location (𝑥, 𝑦). 

B. Constraints Functions 

1) Maximal Turning Angle: Subject to the maneuverability of a 

UAV, a path should be sufficiently smooth. This requires the 

turning angle of the UAV at a waypoint to be kept small. The 

turning angle is defined as the angle between its previous 

direction and the current direction in the horizontal direction. 

That is, 

 

 𝑔1 = 0 𝑤ℎ𝑒𝑟𝑒 𝑔1 = ∑ 𝑐𝑖
1𝑁𝑤−1

𝑖=2  𝑤𝑖𝑡ℎ 𝑐𝑖
1 = {

1     𝒊𝒇 𝜃𝑖 > 𝜃𝑚𝑎𝑥
0        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

                                                                                            (8) 

where 𝜃𝑚𝑎𝑥  is the upper limit of the turning angle, 𝜃𝑖  is the 

turning angle at the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 =  2,3, … , 𝑁𝑤. [4] 

suggested a formulation of 𝜃𝑖 as follow, 

 

      𝜃𝑖 = arccos (
(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)∙(𝑥𝑖+1−𝑥𝑖 ,𝑦𝑖+1−𝑦𝑖)

𝑇

‖(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)‖∙‖(𝑥𝑖+1−𝑥𝑖 ,𝑦𝑖+1−𝑦𝑖)‖
)      (9) 

 

where ‖𝑥‖ means the norm of vector 𝑥.  

2) Limited UAV Slope: Similar to the turning angle, the slope 

characterizes the change of flying direction in the vertical 

direction, i.e., the diving or climbing angle. The slope is the 

included angle between the horizontal and the direction from 

the current waypoint towards the next one. For each waypoint 

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 =  2,3, … , 𝑁𝑤, [4] suggested its slope as: 

 

                         𝑟 =
𝑧𝑖−𝑧𝑖−1

||(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)||
                         (10) 

 

Similarly, the slope should be in the range of the maximal 

diving or climbing angle. For a feasible path, this constraint can 

be depicted as (11), 

 

𝑔2 = 0  𝑤ℎ𝑒𝑟𝑒 𝑔2 = ∑ 𝑐𝑖
2𝑁𝑤

𝑖=2  𝑤𝑖𝑡ℎ 𝑐𝑖
2 = {

0       𝒊𝒇  𝛼 ≤ 𝑟 ≤ 𝛽
1        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

                                                                                        (11) 

3) Terrain Limited: A UAV should fly above the rugged terrain 

and avoid collisions against the mountains. The height of the 

UAV should always be higher than the terrain below it. We 

derive the following formulation from [1]. The dividing points 

are also used as the segments may be in the mountains. This 

constraint can be depicted as follow: 

 

                                          𝑔3 = 0  where 

𝑔3 = ∑ ∑ 𝑐𝑖𝑗
3𝑁𝑑

𝑗=1
𝑁𝑤
𝑖=2  𝑤𝑖𝑡ℎ 𝑐𝑖𝑗

3 = {
1    𝒊𝒇 𝑑𝑧𝑖𝑗 ≤ map(𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗)

 0                            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

                                                                                           (12) 

4) Map Limited: Before executing a mission, a certain related 

mission space is usually investigated. Conversely, the areas 

outside the mission space is ordinarily unknown and may 

conceal unexpected dangerous, e.g., unknown hostile army. 

Thus, UAV should always fly in the mission space to keep 

away from uncertainties. Commonly, the mission space is 

assumed as a cube. For a feasible path, it should be inside of the 

cube. [1] suggested this constraint as follow, 

 

                                          𝑔4 = 0  where 

  𝑔4 = ∑ 𝑐𝑖
4𝑁𝑤

𝑖=2  𝑤𝑖𝑡ℎ 𝑐𝑖
4 = {

0             𝒊𝒇 InRange(𝑥𝑖 , 𝑦𝑖)
1                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆      

  (13)   

InRange(𝑥𝑖 , 𝑦𝑖) = (𝑙𝑥 ≤ 𝑥𝑖 ≤ ℎ𝑥)⋀(𝑙𝑦 ≤ 𝑦𝑖 ≤ ℎ𝑦)          (14) 

 

where 𝑙𝑥  and ℎ𝑥  are the lower and higher bounds for 𝑥 

coordinate system, and 𝑙𝑦  and ℎ𝑦  are the lower and higher 

bounds for 𝑦 coordinate.  

C. Selection of the Final Solution   

The problem above described appears to be a Multi-objective 

Optimization Problem (MOP) at the first sight as there are 

several conflicting objective functions to optimize. Commonly, 

a MOP outputs a set of Pareto optimal solutions, which will be 

presented to human experts to determine the final solution to be 

followed on by the UAV. However, this does not fit the context 

of UAV path planning as no human expert is onboard to make 

such a choice. Hence, a final solution should be selected for the 

UAV. Usually, a common practice in the context of UAV is to 

integrate different objectives. In the literature, some previous 

work solve this problem by using weighted sum [4], [9], 

[19]-[21]. However, those weighted parameters appear very 

difficult to fine-tune as different objectives are in different 

scales. In this paper, we adopt a more intuitive scheme 

proposed in [1]. This scheme considers different human 

preferences to the objectives. Detailedly, this scheme takes two 

cases into account: 

1) For all the feasible paths such that 𝑓2=0, i.e., there is no 

chance for the UAV to be destroyed. The path with the smallest 

𝑓1, i.e., path length, is selected as the final output. If there exist 

more than one path sharing the same value of 𝑓2 and 𝑓1, we 

randomly select one of them as the final best output. This is 

because the objectives Minimal Probability of Radar Detection 

and Minimal Flight Altitude looks equally important to the 

UAV. 

2) For all the feasible paths such that 𝑓2> 0, i.e., it is probably 

that the UAV will be destroyed. We first calculate the relative 

𝑓2
𝑖 of each 𝑖th path as 𝑟𝑓2

𝑖= 𝑓2
𝑖/min𝑖(𝑓2

𝑖). Then, the paths with 

𝑟𝑓2
𝑖 ≥V (for example, with V =1.05) are discarded, which 

makes the non-discarded 𝑗th paths have a value of 𝑓2
𝑗
 that is 

insignificantly larger than the minimum. At last, the path with 

min𝑗(𝑓1
𝑗
) is selected. Therefore, the final output has a 𝑓2 that is 

a bit larger than the minimum, as well as a reasonable path 

length 𝑓1. 

III. THE PROPOSED PLANNER 
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Most of these EA-based approaches adopt a similar iterative 

search framework. That is, a candidate solution to the path 

planning problem is encoded as a real-valued vector that 

represents the positions of all the waypoints, and the optimal 

path is iteratively searched in the corresponding real space. At 

each iteration, a number of candidate paths are generated and 

evaluated with respect to the objective functions and 

constraints. Only those paths with higher fitness will be 

maintained, based on which new candidate paths will be 

generated by applying some search operators to the maintained 

paths. The search process terminates when the optimal (or 

sufficiently good) solution is obtained or a given time budget is 

reached. The above-described EA-based approaches have 

shown to be very effective for UAV path planning when 

obstacles in the mission space are few. However, when the 

obstacles increase, those planners usually fail. This results from 

the common disadvantage that the high quality waypoints in 

previous candidate paths appear very difficult to exploit. To be 

specific, a path is optimal only if all its waypoints are at optimal 

positions. When searching for the optimal path, it is unlikely 

that the optimal positions for all waypoints can be obtained 

simultaneously (e.g., in the same iteration). Instead, it is highly 

possible that one candidate path consists of good positions for 

some waypoints, while the other waypoints are assigned good 

positions in another candidate path. In other words, waypoints 

in a candidate path may be of different quality. However, 

existing EA-based approaches are unable to identify such 

differences. Intuitively speaking, all waypoints of a “bad” path 

will be regarded as “bad” waypoints and vice versa. Such a 

search behavior will make it difficult to exploit high quality 

waypoints in previous candidate paths and eventually lead to an 

inefficient search. 

During the investigation of the UAV path planning problems, 

it has been noticed that most of the commonly used objective 

and constraint functions are separable on waypoints. This fact 

enlightens us that if we can explicitly decompose those 

evaluation functions and design a new evolution strategy that 

can be used to evolve each single waypoint, the waypoints can 

be evaluated and evolved separately and thus high quality 

waypoints can be exploited to improve the performances of the 

whole candidate paths. Inspired by the above considerations, a 

new EA-based path planner is proposed. Instead of searching 

for the feasible path as a whole, the proposed path planner 

evaluates and evolves each waypoint separately. Detailedly, at 

each generation, for each path 𝑗, its waypoints are separately 

evolved in an ascending order, i.e., the (𝑖 + 1)th waypoint will 

be evolved after the 𝑖th  one has been evolved, 𝑖 =

 2,3, … , 𝑁𝑤 − 1 . For the 𝑖th  waypoint of the 𝑗th  path, its 

offspring is generated by referring to the 𝑖th waypoints of all 

the other candidate paths, 𝑖 =  2, 3, … , 𝑁𝑤 − 1 , 𝑗 =

 1,2, … , 𝑁𝑝 . In this way, the information of the other 𝑖th 

waypoints in the population can be explicitly exploited to 

improve the quality of the currently being evolved 𝑖th waypoint. 

After a new offspring is produced, it is asked to compete with 

its parent for survival based on their fitness values. To evaluate 

the waypoints, a set of new evaluation functions are derived 

from the commonly used functions introduced in Section II. 

The evolution of each single waypoint is performed by a 

state-of-the-art Differential Evolution (DE), JADE. The 

diagram of the evolution of waypoints is illustrated in Fig. 2. 

The evolution of each waypoint, i.e., the inner loop in Fig. 2, is 

only executed once at each generation here. Ideally, it can be 

executed any fixed times, say 𝑁. As the larger 𝑁 is, more local 

information of the waypoint can be used and the new produced 

waypoint may be with better quality. However, the efficiency 

of optimization will drop as more time budgets are required for 

the local improvements. For simplification and efficiency, here 

we set 𝑁=1. A widely used multi-criteria handling method is 

also used to select the evaluated waypoints. To further enhance 

the performance of the proposed planner, a recently proposed 

3-D coordinate system [29] is also employed to encode the 

waypoints.  

In the EAs framework, a path planner usually consists of 

several key components, i.e., evaluation, reproduction, 

selection and path representation. To detailedly introduce the 

proposed planner, each key component is described one by one 

in this section. 

A. New Evaluation Functions 

Each waypoint should be evaluated before evolution. 

However, the above-mentioned evaluation functions cannot be 

adopted in our framework as they can only be used for 

evaluating the global states of a path. Fortunately, those 

 
 

Fig. 2 The framework of the proposed path planner. 𝑁𝑤  is the number of 

waypoints of a path and 𝑁𝑝 is the number of paths. 
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commonly used evaluation functions are found separable on 

waypoints. The reason is that those objectives restrict the flight 

of the UAV at the geometric level, where most objects 

concerned are the points, segments and angles, which are all 

separable on points, i.e., waypoints. To be specific, the 

behavior of a waypoint usually depends on, except for itself, 

one or two neighbor waypoints. For example, the Minimal Path 

Length and Maximal Turning Angle involve three waypoints, 

i.e., the previous neighbor, the current waypoint and its 

successive neighbor, while the rest functions require the 

information about the current waypoint and its previous 

neighbor. In the framework of the proposed planner, as the 

waypoints of a new candidate path are produced in sequence, 

the knowledge of the previous neighbor can easily be obtained 

as they are produced earlier, while the information about the 

successive neighbor is unknown. Considering this, the two 

rules are given as below: 

1) For the evaluation function involving two waypoints, its 

local version is calculated relevant to the previous neighbor and 

the current waypoint. 

2) For the evaluation function involving three waypoints, its 

local version is calculated relevant to the previous neighbor, the 

current waypoint and the destination. 

The idea behind the second rule is driven by: suppose all the 

previous waypoints have been determined and the current 

waypoint is the last intermediate waypoint, where should it be? 

Although this idea sounds a bit greedy and the transcribed local 

versions are only approximations of their global ones, it works 

well as we will see later in the simulation results. 

Based on the two rules, the new evaluation functions, i.e., 

local versions, are introduced as follows. 

1) Minimal Path Length: As seen in Fig. 3, for the 𝑖th waypoint 

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), the PLR is calculated as follows: 

 

       𝑓′1,𝑖 = 
√(𝑥𝑖−𝑥𝑖−1)

2+(𝑦𝑖−𝑦𝑖−1)
2+(𝑧𝑖−𝑧𝑖−1)

2

√(𝑥𝑁𝑤−𝑥𝑖−1)
2
+(𝑦𝑁𝑤−𝑦𝑖−1)

2
+(𝑧𝑁𝑤−𝑧𝑖−1)

2
  

                    +  
√(𝑥𝑁𝑤−𝑥𝑖)

2
+(𝑦𝑁𝑤−𝑦𝑖)

2
+(𝑧𝑁𝑤−𝑧𝑖)

2

√(𝑥𝑁𝑤−𝑥𝑖−1)
2
+(𝑦𝑁𝑤−𝑦𝑖−1)

2
+(𝑧𝑁𝑤−𝑧𝑖−1)

2
          (15) 

2) Minimal Probability of Kill: Given the location of the 𝑘th 

missile ( 𝑚𝑥𝑘 , 𝑚𝑦𝑘 , 𝑚𝑧𝑘 ), the PKill of the 𝑖th  waypoint 

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖) can be calculated as: 

 

                                  𝑓′2,𝑖 = ∑ ∑ PK𝑖𝑗
𝑘𝑀

𝑘=1
𝑁𝑑
𝑗=1                           (16) 

 

where PK𝑖𝑗
𝑘  can be calculated following (4). 

3) Minimal Risks of Radar Detection: Given the 𝑘th  radar 

(𝑟𝑥𝑘 , 𝑟𝑦𝑘 , 𝑟𝑧𝑘), the RRD of the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖) can be 

calculated as: 

 

                                  𝑓′3,𝑖 = ∑ ∑ RD𝑖𝑗
𝑘𝑅

𝑘=1
𝑁𝑑
𝑗=1                           (17) 

 

where RD𝑖𝑗
𝑘  can be calculated following (5). 

4) Minimal Flight Altitude: For the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖), the 

FA is calculated as follows: 

 

                                   𝑓′4,𝑖 = FA𝑖                                          (18) 

 

where FA𝑖 can be calculated following (7). 

5) Maximal Turning Angle: As seen in Fig. 4, the turning angle 

of the 𝑖th waypoint can be calculated as follow, 

 

         𝜃𝑖 = arccos (
(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)∙(𝑥𝑁𝑤−𝑥𝑖 ,𝑦𝑁𝑤−𝑦𝑖)

𝑇

‖(𝑥𝑖−𝑥𝑖−1 ,𝑦𝑖−𝑦𝑖−1)‖∙‖(𝑥𝑁𝑤−𝑥𝑖 ,𝑦𝑁𝑤−𝑦𝑖)‖
).  (19) 

 

The constraint of waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖) can be written as: 

 

 𝑔′1,𝑖 = 0  where  𝑔′1,𝑖 = {
1      𝒊𝒇 𝜃𝑖 > 𝜃𝑚𝑎𝑥
0     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

                 (20) 

 
Fig. 3 A 2-D illustration of the 𝑖th and (𝑖 + 1)th waypoints’ PLR, where the 

circles indicate the evolved waypoints and the start means the current waypoint 

to be served. 

 
Fig. 4 A 2-D illustration of the 𝑖th  and (𝑖 + 1)th  waypoints’ turning angle, 
where the circles indicate the evolved waypoints and the start means the current 

waypoint to be served. 
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6) Limited UAV Slope: For each waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖 ), 𝑖 =
 2,3, … , 𝑁𝑤 -1, its slope can be calculated as (10), and the 

constraint of waypoint (𝑥𝑖 , 𝑦𝑖,𝑧𝑖) can be written as: 

 

     𝑔′2,𝑖 = 0 𝑤ℎ𝑒𝑟𝑒   𝑔′2,𝑖 = {
0     𝒊𝒇  𝛼 ≤ 𝑟 ≤ 𝛽
1     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

                (21) 

 

7) Terrain Limited: This constraint of the  𝑖th  waypoint 

(𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 =  2,3, … , 𝑁𝑤-1, can be transribed as: 

 

                                   𝑔′3,𝑖 = 0  where 

 𝑔′3,𝑖 = ∑ 𝑐𝑖𝑗
3𝑁𝑑

𝑗=1   𝑤𝑖𝑡ℎ 𝑐𝑖𝑗
3 = {

1     𝒊𝒇 𝑑𝑧𝑖𝑗 ≤ map(𝑑𝑥𝑖𝑗 , 𝑑𝑦𝑖𝑗)

 0                 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆               

                                                                                           (22) 

8) Map Limited: The penalty of the 𝑖th waypoint (𝑥𝑖 , 𝑦𝑖 ,𝑧𝑖), 𝑖 =
 2,3, … , 𝑁𝑤-1, on this constraint can be calculated as follows, 

 

                                       𝑔′4,𝑖 = 0  where 

  𝑔′4,𝑖 = 𝑐𝑖
4  𝑤𝑖𝑡ℎ 𝑐𝑖

4 = {
0       𝒊𝒇  InRange(𝑥𝑖 , 𝑦𝑖)
1          𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆          

              (23) 

 Notice that, for the new evaluation functions transcribed by 

the first rule, the behaviors of the last segment, from the 

(𝑁𝑤 − 1)
th waypoint to the destination, should be laid on the 

waypoint the (𝑁𝑤 − 1)
th waypoint as well. This is reasonable 

as the (𝑁𝑤 − 1)
th waypoint determines the last two segments. 

B. Reproduction and Selection 

In the proposed planner, the reproduction component is 

independent of the other components, e.g., selection, evaluation 

and representation. Ideally, any strategy of reproduction can be 

adopted to drive the evolution. Here, JADE [30], one 

state-of-the-art variant of Differential Evolution (DE), is 

employed to evolve waypoints. DE is arguably one of the most 

powerful stochastic real-parameter optimization algorithms and 

its variants have been widely used in solving many real world 

problems [31]. DE shares the same framework with traditional 

EAs. Within this framework, DE employs a differential 

mutation operator that creates trial vectors (individuals) by 

adding the weighted difference vector between two individuals 

to a third one. This novel mutation strategy turns out to be very 

efficient. In recent years, DE has been extensively studied and 

lots of variants have been proposed [31]. Among them, JADE 

[30] is undoubtedly one of the state-of-the-art variants. JADE is 

an adaptive version of DE that requires very few parameters to 

be tuned.  

It is very easy to implement JADE into the proposed path 

planner. For intuition, we first list the framework of the 

proposed path planner in Table I and then explain them in 

details. In the pseudo code, each waypoint is denoted as 𝑥𝑗,𝑖
𝑡 , 

where 𝑖 = 2,3, …𝑁𝑤 − 1;  𝑗 = 1,2, …𝑁𝑝 , which means the 𝑖th 

waypoint of the 𝑗th path at the 𝑡th generation. And 𝑥𝑗,𝑖,𝑚
𝑡 , where 

𝑚 = 1,2,3, means the 𝑚th  coordinate value of waypoint 𝑥𝑗,𝑖
𝑡 , 

i.e., the 𝑥, 𝑦, 𝑧 coordinate, respectively. 𝜇𝐶𝑅
𝑖  and 𝜇𝐹

𝑖  are 

adaptive parameters for updating 𝐶𝑅  and 𝐹 , i.e., two key 

parameters for crossover and mutation, for the 𝑖th waypoints. 

Steps 9 to 12 describe the mutation scheme: firstly, three 

distinct 𝑖th waypoints are randomly selected from the whole 

population at the  𝑡th generation, denoted as 𝑥𝑞𝑏𝑒𝑠𝑡 , 𝑥𝑟1 and 𝑥𝑟2, 

respectively. Specifically, 𝑥𝑞𝑏𝑒𝑠𝑡  must be selected from the top 

𝑞% of the 𝑖th waypoints. The value of 𝑞 is usually chosen from 

[5, 20]. The term 𝑥1:𝑁𝑝,𝑖
𝑡  indicates all the 𝑖th waypoints at the 

𝑡th generation. Strictly, the selected waypoint 𝑥𝑞𝑏𝑒𝑠𝑡  may not 

be the best reference for generating offspring for the waypoint 

𝑥𝑗,𝑖
𝑡 . This is because the good behavior of 𝑥𝑞𝑏𝑒𝑠𝑡  is referred to a 

path different from the 𝑗th path and a good waypoint of one 

path may not be good in the other path. Nevertheless, this 

mutation scheme is still reasonable: at the early stage of the 

search process, candidate paths are quite diverse. Although the 

feasibility of the segment from 𝑥𝑗,𝑖−1
𝑡  to 𝑥𝑞𝑏𝑒𝑠𝑡  cannot be 

guaranteed, the location of 𝑥𝑞𝑏𝑒𝑠𝑡 is at least in the good (or even 

feasible) regions. This information provides a bias for the 

generated offspring towards the feasible regions. This stage can 

be seen as the coarse tuning. As the optimization goes on, 

waypoints in each order will gradually converge and candidate 

paths will get closer to each other. At this stage, the information 

of 𝑥𝑞𝑏𝑒𝑠𝑡 can be used to fine tune the waypoints and gradually 

drive the segments to feasibility.  

 With this mutation scheme, a new potential waypoint 𝑣𝑗,𝑖
𝑡  is 

generated by step 12. After that, the crossover scheme is from 

steps 13 to 20 with respect to the three coordinates. The 

evaluation and ranking is at step 21, where the parent waypoint 

and offspring waypoint are asked to compete for survival. As 

introduced in the subsection III.A, the evaluations of the parent 

and offspring waypoints are in relation to their common 

previous waypoint 𝑥𝑗,𝑖−1
𝑡 , and the destination if necessary. The 

ranking of the parent and its offspring in terms of their 

evaluation values will be introduced later in this subsection. At 

step 24, 𝑆𝐶𝑅
𝑖  and 𝑆𝐹

𝑖  record the value of 𝐶𝑅 and 𝐹 of successful 

reproduction where offspring is better than its parent. The 

update scheme is shown in step 29 and 30, where mean𝐴(𝑆𝐶𝑅
𝑖 ) 

is the ordinary arithmetic mean and mean𝐿(𝑆𝐹
𝑖 ) is the Lehmer 

mean that is 

 

                     mean𝐿(𝑆𝐹
𝑖 ) =

∑ 𝐹2
𝐹∈𝑆𝐹

𝑖

∑ 𝐹
𝐹∈𝑆𝐹

𝑖
  .                                 (24) 

 

Parameter c is used to control the adaptation of 𝜇𝐶𝑅
𝑖  and 𝜇𝐹

𝑖 . 

The authors of [30] suggest that 𝑐 works well if it is chosen 

within the range of [0.05, 0.2]. In this work, we set 𝑐 as 0.1. 

After 𝜇𝐶𝑅
𝑖  and 𝜇𝐹

𝑖  are updated, the parameters 𝐶𝑅  and 𝐹  are 

adaptively generated in step 8, where randn(𝜇𝐶𝑅
𝑖 , 0.1) is the 

Gaussian distribution with mean 𝜇𝐶𝑅
𝑖  and standard deviation 

0.1. randc(𝜇𝐹
𝑖 , 0.1)  represents the Cauchy distribution with 

mean 𝜇𝐹
𝑖  and scale parameter 0.1. Step 32 indecates the next 

generation starts.  

The parent waypoint and new reproduced waypoint are 

evaluated at step 21. After evaluation, they will compete for 
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survival by comparing their fitness. However, it is not intuitive 

for such a comparison as each waypoint receives a vector of 

fitness values rather than a scalar. To deal with this difficulty, 

most previous work try to combine the fitness vector into a 

scalar with some weight parameters [4], [9], [19]-[21]. 

However, those weight parameters appear very difficult to 

fine-tune as different constraints and objectives are in different 

scales. In this paper, a multi-criteria handling method [33] 

based on the priorities is adopted to select the best waypoint, 

which has already been used in [1], [29] and [34]. In fact, we 

have already introduced a priorities based selection scheme in 

Section II. However, it cannot be adopted here as it is used to 

select the best path for output rather than a temporarily better 

waypoint. The first step of the waypoint selection scheme is to 

place all these 8 constraints and objectives in different priority 

levels, which reflects the human preferences. To be specific, 4 

constraints are placed in the highest level as they must be 

satisfied. PL and PKill that should be firstly minimized are 

placed in the second level and RRD and FA are placed in the 

lowest level. Then, a waypoint 𝑎 is said to dominate waypoint 

𝑏, only if one of the following situations happen:  

1) 𝑎 and 𝑏 are all feasible and 𝑎 dominates 𝑏 based on the 

criteria in second level. 

2) 𝑎 and 𝑏 are all feasible and 𝑎 cannot dominate 𝑏 based on 

the criteria in second level, but 𝑎 dominates 𝑏  based on the 

criteria in lowest level. 

3) 𝑎 is feasible but 𝑏 is not. 

4) 𝑎 and 𝑏 are all infeasible, while 𝑎 dominates 𝑏 based on 

the criteria in the highest level. 

If waypoint 𝑎  dominates waypoint 𝑏 , 𝑎  is selected as the 

survivor, and vice versa. If 𝑎 and 𝑏 cannot dominate each other, 

we will keep the parent waypoint alive.  

C. Representation of Waypoints 

In most existing work, the waypoint is usually represented as 

a 3-D coordinate within a Cartesian coordinate system or a 

polar coordinate system in previous work. Recently, [29] 

discussed the shortage of these two coordinate systems, either 

generating very large search spaces or appearing very difficult 

for local controls, e.g., mutation and crossover. To solve these 

problems, [29] proposed a new coordinate system. The new 

coordinate system ( 𝑥’, 𝑦’, 𝑧’ ), is actually a rotation of the 

Cartesian coordinate system (𝑥, 𝑦, 𝑧 ), where its x’ axis lies 

along the horizontal direction from the start to the destination 

and y’ keeps being orthogonal to x’ axis, and z’ axis stays the 

same with z axis. A 2-D illustration of the relation between 

these two coordinate systems is shown in Fig. 5. For any 

waypoint (𝑥𝑖
′, 𝑦𝑖

′, 𝑧𝑖
′), 𝑖=1,2,…𝑁𝑤, in rotated coordinate system, 

its codification in Cartesian coordinate system, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), is 

mathematically defined as follows: 

 

{
 
 

 
 𝑥𝑖 = 𝑥1 + cos (𝜑 + 𝜙) ∙ √𝑥𝑖

′2 + 𝑦𝑖
′2

𝑦𝑖 = 𝑦1 + sin(𝜑 + 𝜙) ∙√𝑥𝑖
′2 + 𝑦𝑖

′2

𝑧𝑖 = 𝑧𝑖
′

                             (25) 

 

where 𝜑 is the angle included by the direction from start to 

waypoint and x’ axis, and 𝜙 is the angle between x’ axis and x 

axis. According to (25), for example, the codifications of the 

start and destination in the rotated coordinate system are 

( 0, 0, 𝑧1 ) and ( √(𝑥𝑁𝑤 − 𝑥1)
2 + (𝑦𝑁𝑤 − 𝑦1)

2, 0 , 𝑧𝑁𝑤 ), 

respectively.  

 
Fig. 5.The adopted coordinate system is a rotation of Cartesian coordinate. 

Table I: The Framework of The Proposed Path Planer 

 

1        Begin 

2              Set 𝑡 =  1; 𝜇𝐶𝑅
𝑖 = 0.5; 𝜇𝐹

𝑖 = 0.5; 𝑖 = 2,3,…𝑁𝑤 − 1. 

3              Uniformly generate 𝑁𝑝 candidate paths, of which each 

waypoint is denoted as 𝑥𝑗,𝑖
𝑡 . 𝑗 = 1,2,…𝑁𝑝.  

4           repeat until a fixed number of generations runs out   

5                 Set 𝑆𝐹
𝑖 = 𝜙; 𝑆𝐶𝑅

𝑖 = 𝜙;  

6                    For j = 1 to 𝑁𝑝 

7                          For i = 2 to 𝑁𝑤 − 1 

8                               𝐶𝑅 = randn(𝜇𝐶𝑅
𝑖 , 0.1), 𝐹 = randc(𝜇𝐹

𝑖 , 0.1); 

9                               Randomly choose 𝑥𝑞𝑏𝑒𝑠𝑡 from the 𝑞% “best”  

waypoints of 𝑥1:𝑁𝑝,𝑖
𝑡 .  

10                             Randomly choose 𝑥𝑟1 ≠ 𝑥𝑗,𝑖
𝑡  from 𝑥1:𝑁𝑝,𝑖

𝑡 . 

11                             Randomly choose 𝑥𝑟2 ≠ 𝑥𝑟1 ≠ 𝑥𝑗,𝑖
𝑡  from 𝑥1:𝑁𝑝,𝑖

𝑡 . 

12                                 𝑣𝑗,𝑖
𝑡 = 𝑥𝑗,𝑖

𝑡 + 𝐹 ∙ (𝑥𝑞𝑏𝑒𝑠𝑡 − 𝑥𝑗,𝑖
𝑡 ) + 𝐹 ∙ (𝑥𝑟1 − 𝑥𝑟2).  

13                             Generate 𝑚rand = randint(1,3);  

14                             For m = 1 to 3 

15                                   If m = 𝑚rand or rand(0,1) < 𝐶𝑅 

16                                        𝑢𝑗,𝑖,𝑚
𝑡 = 𝑣𝑗,𝑖,𝑚

𝑡 ; 

17                                   Else 

18                                        𝑢𝑗,𝑖,𝑚
𝑡 = 𝑥𝑗,𝑖,𝑚

𝑡 ; 

19                                   End 

20                             End  

21                             If f(𝑥𝑗,𝑖−1
𝑡 , 𝑥𝑗,𝑖

𝑡 ) ≤ f(𝑥𝑗,𝑖−1
𝑡 , 𝑢𝑗,𝑖

𝑡 ) 

22                                   𝑥𝑗,𝑖
𝑡+1 = 𝑥𝑗,𝑖

𝑡 ; 

23                             Else  

24                                   𝑥𝑗,𝑖
𝑡+1 = 𝑢𝑗,𝑖

𝑡 ; 𝐶𝑅 → 𝑆𝐶𝑅
𝑖 , 𝐹 → 𝑆𝐹

𝑖  

25                             End  

26                        End 

27                  End 

28                  For i = 2 to 𝑁𝑤 − 1 

29                        𝜇𝐶𝑅
𝑖 = (1 − 𝑐) ∙ 𝜇𝐶𝑅

𝑖 + 𝑐 ∙ mean𝐴(𝑆𝐶𝑅
𝑖 ); 

30                        𝜇𝐹
𝑖 = (1 − 𝑐) ∙ 𝜇𝐹

𝑖 + 𝑐 ∙ mean𝐿(𝑆𝐹
𝑖 ); 

31                  End 

32                  t = t + 1; 

33            End 

34      End 
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 Within the rotated coordinate system, an external restriction 

is imposed on the encoded paths. This restriction forces the 𝑥′ 
coordinates of waypoints along the paths to be monotone 

increasing. With this restriction, the search space can be 

significantly reduced. To be specific, as the waypoints along 

the x′ axis will not intersect, the search space can be explicitly 

equally divided into 𝑁𝑤 − 2 subspaces along the x′ axis. And 

within each subspace, the 𝑁𝑤 − 2 corresponding intermediate 

waypoints will be generated. Consequently, the whole search 

space has been reduced for (𝑁𝑤 − 2 )
𝑁𝑤−2 times. Some other 

researchers [35] have also noticed the advantage of this 

restriction, and a quite similar rotated coordinate system has 

been adopted. Although this advantage is attractive, this 

restriction compromises the flexibility of the planners as the 

UAV cannot go backward. In relation with this shortage, the 

researchers briefly mentioned in [35] that there are very few 

cases where a UAV needs to go backward to bypass the 

obstacles. In fact, such cases only happen at the beginning of 

the flight and at the end of the path. The cause of this case is that 

the angle 𝜂1, included by the x′ axis and the line-of-sight (LOS) 

between the start/destination and the edge of the obstacles, is 

larger than 90°. From this point of view, we can easily remedy 

this limitation by artificially inserting an Intermediate Fixed 

point (IF) somewhere safe, so that the new angle 𝜂2 at the IF is 

smaller than 90°, as seen in Fig. 6. The angle 𝜂2 is defined as 

the included angle between the LOS from the IF to 

start/destination and the LOS from the IF to the edge of the 

obstacles. After that, the original path planning problem can be 

solved as two sub-problems from the start to the IF and from the 

IF to the destination, as illustrated with the dot line in Fig. 6. 

The use of IF is not a new idea as it has been used in [1] to 

control the B-spline curves. The proper location for IF is 

usually very easy to obtain. Although the artificial insertion 

slightly decreases the autonomous capacity of the proposed 

planner, it is still worthwhile, considering its contribution to the 

reduction of the search space. 

Note that the waypoints are encoded in rotated coordinate 

system through the whole search process. However, since the 

new evaluation functions require the Cartesian coordinate 

encoded waypoints, it is necessary to generate a Cartesian 

coordinate copy of those waypoints according to (25) as the 

inputs of the evaluation phase.  

IV. SIMULATION RESULTS 

Ideally, by evolving waypoints separately, the waypoints 

with better quality can be better exploited to guide the evolution. 

To verify its actual ability, the proposed planner is asked to 

handle different scenarios with increasing obstacles. In each 

scenario, the proposed planner is compared with 7 compared 

planners from different viewpoints. The superiorities of the 

proposed planner over the compared planners are shown based 

on the effectiveness and efficiency. To test how the evaluation 

accuracy influences the proposed planner, the impacts of the 

number of dividing points, i.e., 𝑁𝑑, is also analyzed and tested. 

The sensitive analysis is also given for a proper choice of the 

only EA-related parameter, i.e.,  𝑁𝑤. Lastly, we clarify that the 

proposed planner is insensitive to the quality of the initialized 

solutions. 

A. Scenarios Description 

In the field of path planning for UAVs, there are no widely 

accepted benchmark problems. Hence, we have designed 5 

scenarios with different numbers of obstacles for the simulation. 

Detailedly, the scenarios consist of three key components, i.e., 

terrain, obstacles and the start as well as the destination. The 

terrain here is represented as the landscape of a variant of the 

well-known Foxhole Shekel optimization problem (seen in Fig. 

7), formulated as (26).  

 

ℎ(𝒙) = ∑
0.1

∑ (𝑥𝑗−𝑎𝑖𝑗)
2+𝑐𝑖

2
𝑗=1

30
𝑖=1                         (26) 

 

where parameters 𝒂 and 𝒄 are employed to vary the landscape. 

The reason of adopting this terrain is that the landscape appears 

very rugged and the local optima can be imaged as “mountains” 

in real life, which is similar to the real terrain. The mission 

space is limited within the space of [0,10] × [0,10] × [0,1.5]. 
The obstacles are the zones that are dangerous and even 

prohibited for the UAV to fly through. In our scenarios, the 

obstacles are depicted as the range of hostile missiles and 

mountains. The number of obstacles is varied by randomly 

setting the missiles on the ground in the range of [1,9] × [1,9]. 

 
Fig. 6.The inserted fixed point can remedy the limitation of the external 

restriction. The left figure shows the situation where the start is crowded by 

obstacles. While the right figure shows the situation at the destination. The 
solid lines are LOSs from the UAV to the destination or the edge of 

obstacles. The dotted lines are the possible paths for the UAV. 

 
Fig. 7.The landscape of Modified Foxholes Shekel problem consists of 

some mountains and valleys, which is close to a real terrain.   
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Specifically, the number of missiles in the 5 scenarios is set as 7, 

15, 30, 60 and 120, respectively. For each missile, a coupled 

radar is set aside the missile. The diameters of the range of 

missiles and radar detections are set 0.5 and 1.5, respectively. 

The start position of mission is set at (0.5, 0.5, ℎ([0.5, 0.5])) 
and the destination is set at (9.6, 9.6, ℎ([9.6, 9.6])).  

B. Compared Algorithms  

In the literature, there are quite a few related work focusing 

on planning obstacles-free paths. In this simulation, we select 3 

recently proposed EA-based planners as the first group of 

compared algorithms, denoted as planner A, B and C, 

respectively. The aim of this group of comparisons is to show 

the effectiveness and efficiency of the proposed planner. 

Planner A [1] was based on Genetic Algorithms (GAs). The 

candidate paths were first initialized in Polar coordinate system 

and then evolved in the Cartesian coordinate system. The 

evolution was processed by a single-point crossover and 

Gaussian mutation. The immigrants were also included. 

Planner B [29] encoded the candidate paths in the rotated 

coordinate system. Within such a codification, the evolution 

process was driven by a simple Estimation of Distribution 

Algorithm (EDA), i.e., UMDAc . [34] suggested a set of 

comparison measures for UAV path planning. By using these 

measures, a lot of EA-based variants, including GAs, DEs and 

Particle Swarm Optimizations (PSOs) were compared. Among 

them, two DE-based approaches, i.e., D14 and D15 in [34], 

were found most effective. As D14 and D15 perform generally 

the same, we thus simply employ D15 as the compared planners 

C. Planner C encodes the candidate paths in Cartesian 

coordinate system. A DE/rand/1/bin reproduction strategy is 

used to evolve the candidate paths. All these three planners 

employ the same selection strategy with the proposed planner. 

Despite of the first comparison group, two variants of the 

proposed planner were also employed as compared planners. 

The purpose of this comparative study is to show how the 

proposed separate evolution idea improves the performance of 

path planning. We denote these 2 planners as Planner D and E, 

respectively. Both these 2 planners use the same selection 

strategy and EA, i.e., JADE, with the proposed planner. 

Specifically, Planner D encodes the waypoints in the rotated 

coordinate system with external restriction as the proposed 

planer does, while it excludes the proposed separate evolution 

strategy. Instead, it evolves the whole candidate path as the 

existing work does. Planner E evolves the waypoints separately 

as the proposed planner does, but it encodes the waypoints in 

the ordinary Cartesian coordinate system.  

There are two kinds of parameters for planners, i.e., 

non-EA-related parameters and EA-related parameters. One 

typical non-EA-related parameter is the number of waypoints 

in a path, i.e., 𝑁𝑤 . In the UAV path planning problems, a 

candidate path is usually represented as a sequence of 

waypoints. This candidate path is in fact an approximation to a 

real flight. From this point of view, more waypoints can keep 

the candidate path closer to a real flight. However, the search 

space will be too large and both the effectiveness and efficiency 

of the planner will fall. To balance this trade-off, there is no 

widely acknowledged criterion for choosing an optimal 𝑁𝑤 . 

Instead, the existing planners usually select a rather small 𝑁𝑤 

that sufficiently guarantees the feasibility of candidate paths. 

This idea is also used in this paper to set  𝑁𝑤. In our simulation, 

the increasing obstacles in 5 scenarios lead to increasingly 

narrower and more zigzag feasible passageway for the UAV. 

To keep the path sufficiently smooth and safe, 𝑁𝑤 should be 

increased for the scenarios with more obstacles. Thus, by 

testing several different possible values, we find some feasible 

𝑁𝑤, i.e., 𝑁𝑤 =7, 10, 12, 15 and 20, for the proposed planner in 

the corresponding scenarios with 7, 15, 30, 60 and 120 

obstacles, respectively. Taking the scenario with 7 obstacles as 

an example, we tested the proposed planner with 𝑁𝑤 = 4, 7, 10. 

We found that 𝑁𝑤 = 4 cannot guarantee good performances of 

the proposed planner, while 𝑁𝑤 = 10  requires much more 

computational time. Hence, we set 𝑁𝑤 = 7 for that scenario. 

Generally speaking, some other values of 𝑁𝑤 can also be used 

as long as the feasibility of candidate paths and the 

computational efficiency can be guaranteed. 

Relating to 𝑁𝑤, another non-EA-related parameter is 𝑁𝑑, i.e., 

the number of dividing points in each segment. Recall that the 

purpose of using dividing points is to detect the violations of 

segments regarding the missiles, radars and mountains. If the 

interval between two adjacent dividing points is smaller than 

the range of missiles, radars and mountains, the violations of 

segment are highly possible to be detected. This geometric 

relation can be depicted as follow, 

 

                                        
𝑃𝐿

(𝑁𝑤−1)∙𝑁𝑑
< 𝐷                                (27) 

 

where 𝑃𝐿 is the path length and 𝐷 is the minimal diameter of 

the range of missiles, radars or mountains. The ranges of 

mountains are usually larger than 0.5, i.e., the diameter of the 

range of missiles. Hence, we set 𝐷 = 0.5. The smallest 𝑁𝑤, i.e., 

7, and the largest feasible path length, which is 1.5 times of the 

distance between start and destination, are also considered. The 

value 1.5 is the preference of Minimal Path Length Ratio, as 

shown in Table III. According to (27), we have 𝑁𝑑 > 4 . 

Generally, 𝑁𝑑  reflects the trade-off between accuracy of 

evaluations and computational cost. The larger 𝑁𝑑  is, the 

higher accuracy of evaluations we can get, while the efficiency 

will fall. In this simulation, we simply set 𝑁𝑑 = 6 for all the 

planners. Furthermore, we also test the proposed planner with 

𝑁𝑑 = 12 and 𝑁𝑑 = 18 to see how 𝑁𝑑 influences the planner. 

The EA-related parameters of planners A and C are those 

suggested in the original work [2] and [34]. In [29], the 

EA-related parameters of planner B, i.e., population size, are 

problem-dependent. For the purpose of unifying the population 

sizes in different scenarios, they are set as 200 in this paper. The 

EA-related parameters of Planners D and E are set the same 

with the proposed planner. As all the components of the 

proposed planner are parameterless, there is actually only one 

EA-related parameter to be fine-tuned, i.e., the population size 

𝑁𝑝. After a set of parameter sensitive analyses (which will be 

discussed later), 𝑁𝑝 is set to 10. For intuition, the parameter 

settings of these 8 planners are listed in Table II, where 𝑁𝑒𝑤6, 
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𝑁𝑒𝑤12  and 𝑁𝑒𝑤18  are the proposed planner with 𝑁𝑑 =
6, 12, 18, respectively. 

TABLE II.  PARAMETER SETTINGS 

Planners Parameters 
A 𝑁𝑝=30, 𝑁𝑠=12, 𝑃𝑐=0.75, 𝑃𝑚=0.008, 𝐶𝑚𝑠=0.1, 𝐶𝑚𝑏=0.5; 

𝑁𝑑=6 

B 𝑁𝑝=200, 𝑁𝑠=100; 𝑁𝑑=6 

C 𝑁𝑝 = 100, 𝐹𝑚𝑖𝑛 = 0.1, 𝐹𝑚𝑎𝑥 = 0.8; 𝑁𝑑=6 
D 𝑁𝑝=10; 𝑁𝑑=6 
E 𝑁𝑝=10; 𝑁𝑑=6 

𝑵𝒆𝒘𝟔 𝑁𝑝=10; 𝑁𝑑=6 
𝑵𝒆𝒘𝟏𝟐 𝑁𝑝=10; 𝑁𝑑=12 

𝑵𝒆𝒘𝟏𝟖 𝑁𝑝=10; 𝑁𝑑=18 

 

C. Performances Measures 

Through the whole simulations, the best path of each planner 

in each scenario is output when 100 generations run out. All the 

results are obtained by repeating 𝑁𝑟=25 runs on the Matlab 

2012b software on a windows-8 personal computer with 

i3-2350 @ 2.30GHz CPU and 2GB RAM.  

To compare the final outputs, generally, most of the previous 

work lack of a statistical analysis. This situation makes the 

comparison among UAV planners far from rigorous. 

Fortunately, some researchers [34] have noticed this gap and 

suggested several metrics for statistical comparison in UAV 

path planning domain. In this paper, we adopt one of them, i.e., 

the Statistical Front-Dominance Ranking Procedure (SFDRP) 

metric to measure the ability of the 8 planners. SFDRP 

measures the performances of two planners, for example, 

planner A and B, to see if they are statistically different by 

comparing their final outputs in terms of corresponding 

objectives and constraints. The term (◇
𝐴𝑙

𝐵1:𝑁𝑟
)  counts the 

numbers of the best path of the 𝑙th run obtained by planner A is 

dominated by each of the 𝑁𝑟 best paths obtained by planner B 

and vice versa (◇
𝐵𝑙

𝐴1:𝑁𝑟
) . To be detailed, ◇

𝐴𝑙

𝐵1:𝑁𝑟
=

∑ 𝐼𝑐(𝐴𝑙  ≺ 𝐵𝑚)𝑚=1:𝑁𝑟
 and ◇

𝐵𝑙

𝐴1:𝑁𝑟
= ∑ 𝐼𝑐(𝐵𝑙  ≺ 𝐴𝑚)𝑚=1:𝑁𝑟

, 

where 𝐼𝑐(⋅) is the indicator function that returns 1 if the input 

condition is true and 0 otherwise, and A ≺ B   means B 

dominates A. Then, the non-parametric Wilcoxon rank sum test 

is applied to the vectors [◇
𝐴1

𝐵1:𝑁𝑟
+ 1,◇

𝐴2

𝐵1:𝑁𝑟
+ 1,… ,◇

𝐴𝑁𝑟

𝐵1:𝑁𝑟
+

1]  and [◇
𝐵1

𝐴1:𝑁𝑟
+ 1,◇

𝐵2

𝐴1:𝑁𝑟
+ 1,… ,◇

𝐵𝑁𝑟

𝐴1:𝑁𝑟
+ 1] . If this test 

finds a statistically significant difference, the median of each 

vector can be used to infer which planner dominates the other 

one. To illustrate the results of the statistical test, [34] suggests 

a type of graphic presentation (as seen in Fig. 8). In each cell of 

each graphic we represent when a planner in the Y axis is better 

(less dominated, in white), equivalent (no statistically different, 

in gray) or worst (more dominated, in black) than a planner in 

the X axis.  

Despite of the statistical analysis of the outputs, we have also 

constructed the comparisons on the average of the convergence 

speed and elapse time of each planner. Briefly, we first 

calculate the generation when all the constraints are satisfied, 

denoted as 𝐺𝑐, the generation when PKill and PRL are satisfied, 

denoted as 𝐺𝑠 , and the generation when RRD and FA are 

satisfied, denoted as 𝐺𝑡 . And the elapse time 𝐸𝑇  of each 

planner in each run is noted. Then we average each metric 

above with respect to those runs where the corresponding 

indices are satisfied, denoted as 𝐺𝑐̃, 𝐺𝑠̃, 𝐺𝑡̃ and 𝐸𝑇̃, respectively. 

If the objectives/constraints of any planner have never been 

satisfied through all 25 runs, the corresponding 𝐺𝑐̃/𝐺𝑠̃/𝐺𝑡̃ will 

be noted as N/A. Lastly, the number of successful runs out of 

total 25 runs is also calculated, denoted as 𝑆𝑅. Generally, a 

constraint or an objective is said to be satisfied if its value is 

less than its preference. If all constraints and objectives are 

satisfied, it is said a successful run. The preferences listed in 

Table III. As seen in Table III, no constraint violation is 

allowed. The PLR should be less than 1.5 as we have 

introduced earlier. The preference of PKill is set to be 0 so that 

no risk of kill is permitted. That is, the zones within the range of 

hostile missiles are actually obstacles that are prohibited to fly 

through. The UAV should fly no higher than 0.5 above the 

terrain. Since that the diameter of range of missiles is also 0.5, 

the preference of flight altitude in fact prevents the UAV from 

flying above the missiles. Consequently, the UAV can only 

bypass the obstacle from its flank. The preference of RRD 

should be related to the scale of the intensity of the radars. 

TABLE III.  PREFERENCES OF CRITERIA 

Constraints 

Name Maximal 

Turning 

Angle 

Limited 

UAV Slope 

Terrain 

Limited 

Map 

Limited 

Priority 

Level 

1𝑠𝑡 1𝑠𝑡 1𝑠𝑡 1𝑠𝑡 

Preference 0 0 0 0 

Objectives 

Name Minimal 

Path 

Length 

Ratio 

Minimal 

Risks of 

Kill 

Minimal 

Risks of 

Radar 

Detection 

Minimal 

Flight 

Altitude 

Priority 

Level 

2𝑠𝑡 2𝑠𝑡 3𝑠𝑡 3𝑠𝑡 

Preference 1.5 0 30 0.5 

 

D. Results and Analyses 

First, the results of all the 25 runs of those 8 planners in each 

scenario have been statistically analyzed. Those results are 

shown by means of graphic representations in Fig.8. Among all 

the planners, 𝑁𝑒𝑤6, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 perform the best when 

the number of obstacles increases. Within these three new 

planners, 𝑁𝑒𝑤6 has slightly better results. However, we cannot 

claim any superiority of 𝑁𝑑 = 6 over 𝑁𝑑 = 12 and 𝑁𝑑 = 18 as 

they have different evaluation accuracy. In [34], the DE-based 

planner (Planner C) is empirically better than the GA-based 

planner. This also happens when the obstacles are few (see Fig. 

8(a)). However, when encountering more obstacles, GA-based 

Planner A performs significantly better than Planner C, which 

seems to be in contradiction with the conclusion in [34]. In fact, 
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(a)                                                                (b)                                                                 (c) 

 
                                                                (d)                                                              (e) 

 
Fig. 8.The statistical analyses of the 8 planners in scenarios with 7, 15, 30, 60 and 120 ADUs are shown in (a)-(e), respectively. In the axes, 1-8 are with respect 

to the Planners 𝑁𝑒𝑤6, 𝑁𝑒𝑤12, 𝑁𝑒𝑤18, A, B, C, D and E. In each cell of each graphic we represent when the planners in the Y axis is better (less dominated, in 

white), equivalent (no statistically different, in gray) or worst (more dominated, in black) than the planners in the X axis. 

the reason behind these distinct results is comprehensible. In 

[34], all compared planners are encoded in Cartesian coordinate 

system, and the selected DEs outperform GAs. While the 

candidate paths of Planner A [1] here are first generated in 

Polar coordinate system and then evolved freely in Cartesian 

coordinate system. The Polar coordinate system has been 

acknowledged to be able to reduce the search space. Hence, 

when the obstacles increase and the feasible space decreases, 

Planner A overtakes Planner C in terms of the reduced search 

space. It can be inferred from this pair of results that the choice 

of the encoded coordinate system has an important impact on 

the planners especially when there are large number of 

obstacles. Similar conclusion can be obtained by comparing 

𝑁𝑒𝑤6 and Planner E. The only difference between these two 

planners is the employed coordinate systems. Apparently, 

𝑁𝑒𝑤6 outperforms Planner E in all scenarios. In relation to this 

pair of comparison, the advantage of 𝑁𝑒𝑤6 can be owed to the 

rotated coordinate system that it can significantly reduce the 

search space. Note that the superiority of 𝑁𝑒𝑤6  is not only 

based on the employed rotated coordinate system. As seen in 

Fig. 8, Planner E performs significantly better than Planner D in 

the latter four scenarios. As the basis planners of 𝑁𝑒𝑤6, the 

performances of Planner D and Planner E reflect the real 

contributions of the rotated coordinate system and separate 

evolution to 𝑁𝑒𝑤6. From the results, it can be inferred that the 

rotated coordinate system contributes less, comparing to the 

proposed idea of separate evolution.  

Besides statistical analyses, the convergence speed, runtime 

and successful rate of the 8 planners are listed in Table IV-VIII. 

Planner 𝑁𝑒𝑤6, Planner D and Planner E consume the least 𝐸𝑇̃ 

due to the small population size, i.e., 𝑁𝑝 = 10 . 𝑁𝑒𝑤12  and 

𝑁𝑒𝑤18 also have the same population size, while they are more 

computationally expensive. This is because they evaluate more 

dividing points for each segment, which elevates the evaluation 

accuracy while compromises the efficiency. Planners A, B and 

C spend much more computational time than the others due to  

TABLE IV.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE OF 8 PLANNERS ON 7-MISSILES SCENARIO 

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹  

(%) 

𝑵𝒆𝒘𝟔 5.84 6.60 7.04 127.74 100 

𝑵𝒆𝒘𝟏𝟐 7.44 10.40 11.44 208.18 100 

𝑵𝒆𝒘𝟏𝟖 8.72 12.88 13.42 360.16 96 

A 5.75 8.48 8.48 363.55 100 

B 4.92 5.8 6.04 1549.37 100 

C 24.96 27.20 27.52 1392.68 100 

D 28.08 30.12 31.24 122.04 100 

E 16.71 18.40 18.74 128.08 92 

TABLE V.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE OF 8 PLANNERS ON 15-MISSILES SCENARIO 

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹  

(%) 

𝑵𝒆𝒘𝟔 8.44 10.44 11.08 218.99 100 

𝑵𝒆𝒘𝟏𝟐 10.52 20.52 20.52 360.35 100 

𝑵𝒆𝒘𝟏𝟖 10.36 15.76 16.72 530.34 100 

A 13.24 19.71 23.70 577.38 92 

B 18.52 24.64 28.20 2811.79 100 

C 83.00 86.00 89.50 2233.14 8 

D 62.16 63.56 66.83 195.36 72 

E 38.75 43.09 43.74 204.32 92 
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TABLE II.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE OF 8 PLANNERS ON 30-MISSILES SCENARIO 

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹 

(%) 
𝑵𝒆𝒘𝟔 11.52 16.68 20.44 250.64 100 

𝑵𝒆𝒘𝟏𝟐 12.28 23.32 28.58 424.99 96 

𝑵𝒆𝒘𝟏𝟖 11.84 22.88 29.38 649.72 96 

A 8.92 32.40 29.23 664.71 52 

B 38.36 50.36 61.52 3564.82 92 

C N/A N/A N/A 2546.61 0 

D 80.67 84.75 84.00 238.14 8 

E 57.00 64.80 65.00 247.90 20 

TABLE III.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE OF 8 PLANNERS ON 60-MISSILES SCENARIO 

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹 

(%) 
𝑵𝒆𝒘𝟔 13.36 18.32 36.92 303.55 96 

𝑵𝒆𝒘𝟏𝟐 12.92 22.04 46.04 481.16 96 

𝑵𝒆𝒘𝟏𝟖 12.76 19.80 45.92 769.26 100 

A 16.21 41.71 40.00 891.92 12 

B 77.13 88.73 N/A 4512.69 0 

C N/A N/A N/A 3075.40 0 

D N/A N/A N/A 288.53 0 

E N/A N/A N/A 295.40 0 

 

the larger population sizes. However, those larger population 

sizes cannot remain them effective in scenarios involving lots 

of obstacles due to their poorly exploitation of high quality 

waypoints. Specifically, Planner C deteriorates rapidly when 

obstacles increase. Planner A has the ability of generating paths 

satisfying all 4 constraints rapidly in all scenarios. This is 

because the polar coordinate system essentially restricts the 

turning angle and slope and Planner A actually has only two 

constraints, i.e., Map Limited and Terrain Limited, to satisfy.  

As a result, 𝑁𝑒𝑤6 keeps high stability on both efficiency and 

effectiveness in all scenarios. On one hand, its 𝐸𝑇̃ is acceptable 

and its convergence speed is very fast. Note that the 𝐸𝑇̃ is the 

total runtime for 100 generations. Thus, it is easy to know that 

𝑁𝑒𝑤6 spends the least runtime to obtain the feasible solution by 

calculating 
𝑮𝒕̃×𝑬𝑻̃

100
. On the other hand, 𝑁𝑒𝑤6 keeps very high 𝑆𝑅 

for all scenarios and is statistically the best. 

As analyzed above, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 also have very good 

TABLE IV.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE OF 8 PLANNERS ON 120-MISSILES SCENARIO 

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹 

(%) 

𝑵𝒆𝒘𝟔 19.56 26.29 48.55 408.88 88 

𝑵𝒆𝒘𝟏𝟐 16.64 24.92 53.95 560.63 80 

𝑵𝒆𝒘𝟏𝟖 17.44 26.38 51.15 854.05 80 

A 17.16 N/A N/A 1116.74 0 

B N/A N/A N/A 5378.61 0 

C N/A N/A N/A 3845.90 0 

D N/A N/A N/A 391.78 0 

E N/A N/A N/A 386.24 0 

TABLE V.  COMPARISON OF THE CONVERGENCE SPEED, RUNTIME AND 

SUCCESS RATE AMONG  PLANNERS A, D AND E ON 60-MISSILES SCENARIO  

Planner 𝑮𝒄̃ 𝑮𝒔̃ 𝑮𝒕̃ 𝑬𝑻̃ 

(s) 

𝑺𝑹 

(%) 
A 8.92 32.40 29.23 664.71 52 

D 80.67 84.75 84.00 238.14 8 

𝑫𝟑𝟎 75.20 81.57 91.25 777.99 16 

E 57.00 64.80 65.00 247.90 20 

𝑬𝟑𝟎 50.80 59.46 64.46 715.12 96 

 

 
(a)                                                             (b)                                                              (c) 

 
    (d)                                                                     (e) 

Fig. 9.The best paths of 𝑁𝑒𝑤6, 𝑁𝑒𝑤12 and 𝑁𝑒𝑤18 in 5 scenarios are shown in (a)-(e), respectively. The star-line represents the best path of Planner 𝑁𝑒𝑤6, the 

diamond-line indicates the best result of Planner 𝑁𝑒𝑤12 and the circle-line is the best path of Planner 𝑁𝑒𝑤18. 
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final outputs. It is difficult to tell how 𝑁𝑑 impacts the proposed 

planner by statistical analyses. In other words, the evaluation of 

candidate paths are essentially related to 𝑁𝑑. To illustrate the 

impacts of 𝑁𝑑, the best paths, out of 25 runs, of 𝑁𝑒𝑤6, 𝑁𝑒𝑤12 

and 𝑁𝑒𝑤18 in the 5 scenarios are shown in Fig. 9 (a)-(e) in a 

2-D view, respectively. In these figures, the ranges of missiles 

and radars are represented by groups of concentric circles. With 

the preferences in Table III, the paths are forbidden to go 

through the smaller circles and are better to be out of the bigger 

circles. The terrain is depicted in color contour line where 

higher places are darker. The paths of 𝑁𝑒𝑤6 , 𝑁𝑒𝑤12  and 

𝑁𝑒𝑤18  are presented as star-lines, diamond-lines and 

circle-lines, respectively. The stars, diamonds and circles are 

the corresponding waypoints. As seen, the best paths always 

keep smooth and avoid all the obstacles, i.e., missiles and 

mountains, in all scenarios. No significant differences between 

the best paths of three planners can be observed in Fig. 9, which 

implies that 𝑁𝑑 = 6  is sufficient for planners to detect the 

radars, missiles and mountains. Specially, one interesting 

phenomenon is that the paths of the three planners get closer 

when obstacles increase. This is because the increasing 

obstacles reduce the feasible space and thus the effective 

planners have fewer choices for producing best paths.   

Both Planner D and Planner E can overtake Planner C. While 

the superiority of Planner A over Planner D and Planner E may 

be because Planner A uses a larger population size. To verify 

this viewpoint, we have made another comparison among 

Planner A, Planners D and E with the same population size, i.e., 

𝑁𝑝 = 30. As the purpose of this comparison is to show whether 

a larger population size will influence the performances of 

Planner D and Planner E or not, we simply give just one 

example on the scenario with 30 obstacles for illustration. The 

results are shown in Table IX. As seen, when 𝑁𝑝 increases from 

10 to 30, the 𝑆𝑅 of Planner E improves significantly from 20% 

to 96%, which means Planner 𝐸30 is more stable than Planner A. 

Hence, it verifies the point that it is the larger population size 

that makes Planner A outperforms the original Planner E. For 

Planner D, although Planner 𝐷30 is slightly better than Planner 

D, it seems that the population size 𝑁𝑝 = 30 is still not enough 

for a remarkable promotion. It can be observed that, due to the 

effective exploitation of waypoints, Planner 𝐸30 benefits much 

more than Planner 𝐷30 from the increased 𝑁𝑝. This comparison 

shows the advantages of the proposed idea of separate 

evolution. On the other hand, it again verifies that the separate 

evolution idea contributes more than the rotated coordinate 

system to the proposed planner.  

Besides the comparisons among planners, we also carry out a 

parameter sensitive analyses of the new proposed planners. As 

most planners employ 6 dividing points, we thus analyze the 

parameter sensitivity based on 𝑁𝑒𝑤6.  There is only one 

parameter, i.e., 𝑁𝑝, that needs carefully fine-tuned. To find out 

a proper  𝑁𝑝 , the performances of  𝐺𝑡̃ , 𝐸𝑇̃ and 𝑆𝑅  of  𝑁𝑒𝑤6 

with different values of 𝑁𝑝, i.e., 6, 8, 10, 12 and 14, on the 5 

scenarios are recorded and shown in Fig. 10 (a)-(c). The reason 

of testing these three metrics is that  𝐺𝑡̃ indicates the generation 

when the path has satisfied all objectives and constraints, i.e., 

the convergence speed, 𝐸𝑇̃  presents the real running time, 

while 𝑆𝑅 reflects the stability of the planner. And the reason of 

testing such small population sizes is because we believe the 

separately evolving strategy has highly effectively exploited 

the better waypoints during optimization and thus the 

population can be reduced. As seen in Fig. 10 (a)-(c), in each 

scenario, as the 𝑁𝑝 increases, 𝐺𝑡̃ keeps generally the same, and 

𝑆𝑅  increases. However, 𝐸𝑇̃  also generally increases, which 

means that higher computation times will be required to 

produce relatively good outputs. These results show that such a 

small 𝑁𝑝 appears very sensitive, hence we need to determine a 

proper 𝑁𝑝. To balance the trade-off between the effectiveness 

and efficiency, we suggest 𝑁𝑝=10.  

In the above analyses, the advantages of the proposed idea of 

separate evolution has been discussed. It is shown that the 

proposed planner is more effective and efficient than the 

compared planners. Besides, it is also shown that the separate 

 
Fig. 10(c).  𝑆𝑅  of the proposed planner with 𝑁𝑝 = 6, 8, 10, 12, 14 on 5 

scenarios. 

 
Fig. 10(a).  𝐺𝑡̃  of the proposed planner with 𝑁𝑝 =  6, 8, 10, 12, 14 on 5 

scenarios. Here, the proposed planner cannot produce feasible path with 

𝑁𝑝 = 6 and 8 on the last scenario, thus the corresponding lines miss 

 
Fig. 10(b).  𝐸𝑇̃(s)  of the proposed planner with 𝑁𝑝 =  6, 8, 10, 12, 14 on 5 

scenarios. 
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evolution makes the proposed planner more stable than the 

compared planners. This stability results from the fact that the 

separate evolution is insensitive to the quality of the initialized 

solutions. To illustrate this viewpoint, the process of Planner E 

on the first scenario is recorded. The reason of choosing 

Planner E instead of 𝑁𝑒𝑤6 is to eliminate the influence of the 

rotated coordinate system. As seen in Fig.11, the initialized 

waypoints are scattered in the mission space and the candidate 

paths are far from feasible. Under the impact of the separate 

evolution, waypoints in each order will finally converge to a 

rather good state, respectively. This is because, for all the 𝑖th 

waypoints, there will be one or several optimal locations, in 

terms of the global information of all the other waypoints. The 

process of the separate evolution can be regarded as a 

sub-problem that finding the optimal solution for the 𝑖th 

waypoint of a path, regarding all the 𝑖th  waypoints as the 

candidate population. From this point of view, the separate 

evolution can have a better ability of convergence and thus is 

insensitive to the quality of the initialized population. 

V. CONCLUSION AND FUTURE WORK 

The path planning technique is very important to the 

autonomy of Unmanned Aerial Vehicles (UAVs). In this field, 

three major tasks are required to be solved. This paper studies 

the off-line planning problem, which is the basic of the other 

two, i.e., on-line planning and cooperative planning. There 

have been quite a few research work proposed for the off-line 

planning problem. However, they are usually ineffective when 

the scenarios involve lots of obstacles. The reason behind those 

failures are that the information of better waypoints are not 

highly exploited during the optimization. This paper proposes a 

new idea to solve this shortage by separately evaluating and 

evolving the waypoints. To practice this idea into the UAV path 

planning, we first derive a set of new evaluation functions from 

the existing evaluation functions for the evaluations of single 

waypoints. This derivation is based on that those evaluation 

functions are separable on waypoints. For the purpose of 

separately evolving the waypoints, JADE is employed. A 

rotated coordinate system is also used to encode the waypoints 

for the reduction of the search space. To validate the proposed 

planner, we compare it with 7 planners from different 

viewpoints on 5 scenarios with increasing obstacles. From the 

simulation results, the effectiveness and efficiency of the 

proposed planner are shown. The advantages of the separate 

evolution idea are also discussed.  

Although the advantages of the new proposed planner has 

been shown, the EA-based off-line planners still required to be 

further studied. For example, our work has to pre-define the 

number of waypoints, i.e., 𝑁𝑤, which is still difficult for a UAV 

to decide on-the-fly. Hence, a strategy that can autonomously 

choose the number of waypoints for UAV is to be studied. 

As the on-line planning and cooperative planning are based 

on off-line planning, we may further extend our work onto 

those two problems as they are more practical in real life 

missions. As a matter of fact, the path planning for single UAV 

is usually regarded as the cornerstone of cooperative path 

planning for multiple UAVs. The cooperation constraints, e.g., 

time cooperation, distance cooperation, are usually independent 

from the other objectives and constraints. Hence, ideally, we 

can extend our proposed planner to a cooperative planner by 

introducing external cooperation constraints as [1] does. 
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