
Research report manuscript No.
(will be inserted by the editor)

Regularized optimization methods for convex MINLP problems

Welington de Oliveira

October 24, 2014

Abstract We propose regularized cutting-plane methods for solving mixed-integer nonlinear pro-
gramming problems with nonsmooth convex objective and constraint functions. In order to avoid
tailing-off effect that makes calculations unstable as the iteration process progresses, the given
algorithms require solving a regularized mixed-integer linear programming subproblem at each
iteration. The goal is to perform as few function evaluations as possible in the quest of solv-
ing convex mixed-integer nonlinear optimization problems. This is an important feature for some
industrial applications resulting in hard-to-evaluate objective and/or constraint functions. Numer-
ical experiments comparing the proposed algorithms with classical methods in this area show the
effectiveness of our approach.

Keywords Mixed-integer programming · Cutting-plane method · Nonsmooth optimization

1 Introduction

Many real-life optimization problems are modeled in a mixed-integer setting, involving discrete
and continuous decision variables. Optimization algorithms for solving mixed-integer nonlinear
programming – MINLP – problems have become an important focus of research over the last
years, [2,4,15,16]. As discussed in [11], some of these algorithms require differentiability of the
involved functions. Following the lead of [29,11], in this work we do not assume differentiability
to deal with problems of the form:

fmin := min
x∈X

f(x) s.t. c(x) ≤ 0 , (1)

where f, c : Rn → R are convex functions and X ⊂ Rn is a mixed-integer set, which is assumed
to be nonempty and bounded. Since c can be a nonsmooth function, there is no loss of generality
in assuming that c : Rn → R. Indeed, function c can be the maximum of finitely many constraints
fj(x) ≤ 0 ∈ R, i.e., c(x) = maxj fj(x).

Many methods have been proposed for solving convex MINLP problems, [15,4]. The outer-
approximation method presented in [10,15] and [12] require differentiability of both functions f
and c in order to efficiently solve the problem; see [11, § 4.1]. A technique that is closely related
to the outer-approximation method is the generalized Benders decomposition proposed in [14].
Publications [26] and [20] propose branch-and-bound algorithms for solving problem (1), and [13,
7] explore valid inequalities in these techniques. In [22] a branch-price-and-cut strategy combined
with decomposition techniques is proposed to provide valid inequalities and strong bounds to

Welington de Oliveira
IMPA - Instituto Nacional de Matemática Pura e Aplicada. Rua Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil

BCAM - Basque Center for Applied Mathematics. Alameda de Mazarredo, 14, 48009 Bilbao, Basque Country - Spain

E-mail: wlo@impa.br

2 Welington de Oliveira

guide the search in a branch-and-bound tree. Other alternatives for solving (1) are based in
Lagrangian relaxation; see for instance [24,18,3] for column generation approaches and [25,21] for
other techniques applied to stochastic optimization. Interested readers are referred to [2,16] for
more information on the aforementioned techniques for MINLP problems.

Another important method for solving nonsmooth convex MINLP problems is the extended
cutting-plane method – ECPM – proposed in [29] and further studied in [30,11,28]. The ECPM
is based on the Kelly’s classical cutting-plane algorithm given in [17] and thus, convexity of the
involved functions is exploited in order to approximate f and c by supporting hyperplanes. More
precisely, the method generates a sequence of points {xk} ∈ X by solving a sequence of MILP
subproblems, approximating the considered MINLP. It is worth mentioning that intermediate
subproblems need not be solved exactly. This is an interesting feature for dealing with MINLP
problems whose MILP subproblems is too time consuming and functions f and c in (1) can be
easily evaluated by a black-box or oracle.

In general, ECPM algorithms require more iterations to solve problem (1) than outer-approximation
based algorithms. However, the cost-per-iteration of the former method is lower because no addi-
tional nonlinear subproblem is required to be solved, in contrast to outer-approximation methods.
One additional difficulty arises when in problem (1) at least one of the functions f or c is difficult
to evaluate, a common feature in industrial optimization problems; see [24,27] for some examples.
Under this assumption, ECPM seems to be so far the method of choice: outer-approximation
techniques are not suitable, since solving the nonlinear optimization subproblems coming from
relaxations of (1) can be too time consuming. Moreover, branch-and-bound approaches might
not be suitable either: these techniques usually require too many function evaluations to solve
the problem. Therefore, it is of interest obtaining algorithms for solving MINLP problems that
require fewer function evaluations than ECPM but with a comparable cost-per-iteration. In order
to seek for such algorithms, we then propose in this work to regularize the extended cutting-plane
method of [29]. The proposed approaches are natural extensions of the level bundle methods given
in [19,27] for continuous convex minimization problems. For this reason, we name our proposals
extended level bundle methods – ELBM. We mention that the ELBM approaches are for the level
bundle methods in [19] what the ECPM of [29] is for the Kelley’s cutting-plane method [17]. In
this manner, this article combines the two different areas: nonlinear mixed-integer optimization
and nonsmooth optimization. As mentioned in [11], combination of these two optimization areas
is rare, although, both bundle methods for nonsmooth optimization and cutting-plane methods
for MINLP have their origin in the same classical cutting-plane method of Kelley [17].

This work is organized as follows: in Section 2 we give an algorithm pattern that will be em-
ployed for all presented ELBM variants. Its convergence analysis is also presented in Section 2,
without specifying precisely the level bundle type. Some variants for the method are proposed
in Section 3, aiming at solving the nonsmooth optimization problem (1) by requiring fewer func-
tion evaluations than an ECPM based algorithm. In Section 4 we provide numerical experiments
comparing some of the proposed level bundle variants with an implementation of the ECPM and
solver BONMIN [5]. Finally, Section 5 contains some concluding comments and remarks.

2 General considerations and algorithm

Given a point xk ∈ X, we assume the existence of an oracle that provides us with:[
f -oracle information: f(xk) and gkf ∈ ∂f(xk)
c-oracle information: c(xk) and gkc ∈ ∂c(xk) .

(2)

It is well known that if both f and c are convex and finite-valued functions on an open set containing
X, then their subdifferentials are nonempty for all x ∈ X. We emphasize that the requirement in
(2) is a much milder assumption than demanding knowledge of the whole subdifferentials ∂f(xk)
and ∂c(xk), as required by the outer-approximation algorithm of [11].

Regularized optimization methods for convex MINLP problems 3

With the oracle information in (2) it is useful to define, at iteration k, two polyhedral cutting-
plane models:

f̌k(x) := max
j∈Bk

{f(xj) + 〈gjf , x− x
j〉} and čk(x) := max

j∈Bk

{c(xj) + 〈gjc , x− xj〉} . (3)

The index set Bk ⊆ {1, . . . , k} corresponds to the method’s memory: {xj , (f(xj), gjf), (c(xj), gjc)}j∈Bk
.

Throughout this work we will refer to Bk as information bundle. Convexity of f and c ensures that
the above models are under approximations of the respective functions, i.e.,

f̌k(x) 6 f(x) and čk(x) 6 c(x) for all k and all x ∈ Rn .

The above inequalities are crucial for cutting-plane based methods. For instance, the extended
cutting-plane method of [29] deals with problem (1) by solving at each iteration k a MILP problem
of the form

xk+1 ∈ arg min
x∈X

f̌k(x) s.t. čk(x) ≤ 0 , (4)

which provides f̌k(xk+1) as a lower bound to the optimal value fmin of (1). Therefore, the measure
max{f(xk+1)− f̌k(xk+1), c(xk+1)} gives a certificate of optimality for the ECPM algorithm, which
can be stopped with a δTol-solution xk+1 if max{f(xk+1) − f̌k(xk+1), c(xk+1)} 6 δTol, for some
δTol > 0.

In this work we are interested in regularized variants of (4) aiming at reducing the number of
oracle calls required to solve (1). When regularization terms come into play, the value f̌k(xk+1)
may no longer be a valid lower bound for fmin; see (6) and (7) below. Therefore, other alternatives
for the above certificate of optimality must be employed instead: given a lower bound fklow for fmin

at iteration k, we proceed as [27] to define the following certificate of optimality

Ok := min
j≤k

[
max{f(xj)− fklow, c(x

j)}
]
, with xkbest yielding the minimum Ok. (5)

Remark 1 Sequence {Ok} is non-increasing and non-negative by construction. It is easy to see that
if Ok = 0 for an arbitrary k, then xkbest is a solution to problem (1). We refer the reader to [27,
Lemma 1] for a formal proof of this claim. ut

Given a parameter γ ∈ (0, 1), the certificate of optimality Ok is also useful to define the so called
level parameter and level set, respectively given by

fklev := fklow + γOk and Xk := {x ∈ X : f̌k(x) ≤ fklev, čk(x) ≤ 0} . (6)

Provided that Xk is nonempty, a new iterate xk+1 for a certain extended level bundle method is
a properly chosen point in Xk. A general way to choose the next iterate xk+1 in Xk is by solving
the following optimization problem:

xk+1 = arg min
x∈Xk

ϕ(x; x̂k) , (7)

where x̂k ∈ X is a given stability center and ϕ : Rn → R+ a given stability function. Different
choices for the function ϕ and stability center x̂k define different level bundle methods, as discussed
in Section 3 below. For instance, in the convex setting, [19] takes x̂k = xk and ϕ(x; x̂k) as the
Euclidean distance ‖x − x̂k‖2. In this article we are interested in a mixed-integer setting; thus,
other choices for the stability center x̂k and stability function ϕ in (7) might be preferable (for
instance, setting ϕ as the `1-norm).

Remark 2 As discussed in [27], if the set Xk is empty, then fklev < f(x) for all x ∈ {x̃ ∈ X : čk(x̃) 6
0}. Since čk(·) 6 c(·), it follows that fklev is a lower bound for the optimal value fmin whenever Xk

is an empty set. We can thus update the lower bound fklow by the simple rule presented in [27]:

set fklow ← fklev whenever Xk = ∅; then use (6) to increase the level parameter. ut

4 Welington de Oliveira

We now give our algorithm, which is an extension of [27, Algorithm 1] to the mixed-integer setting,
leaving unspecified for the moment a rule to define the next iterate xk+1. We will come back to
this subject in Section 3 below.

Algorithm 1 (General framework for extended level bundle methods)
Step 0. Select γ ∈ (0, 1) and a stopping tolerance δTol > 0. Choose x0 ∈ X, f0low ≤ fmin, a stability function

ϕ and a rule to define the stability center x̂k in (7). Call the oracle to obtain (f(x0), g0f) and (c(x0), g0c). Set
B0 ← {0}, `← 0, k(`)← 0, and k ← 0.

Step 1. Find xkbest and Ok as in (5). If Ok ≤ δTol, stop: xkbest is a δTol-solution.
Step 2. If Ok ≤ (1− γ)Ok(`), set k(`+ 1)← k and `← `+ 1. Choose Bk ⊃ {k}.
Step 3. Define fklev and Xk as in (6). Choose a stability center x̂k according to the given rule.

Step 4. If Xk = ∅, set fklow ← fklev, k(`+ 1)← k, `← `+ 1, and go back to Step 1.

Otherwise, find a point xk+1 ∈ Xk by solving (7).

Step 5. Call the oracle to compute (f(xk+1), gk+1
f) and (c(xk+1), gk+1

c).

Step 6. Set Bk+1 = Bk ∪ {k + 1}, fk+1
low ← fklow, k ← k + 1 and go back to Step 1.

Suppose that the initial lower bound f0
low is not available, then f0

low can be obtained by solving
the MILP problem minx∈X f(x0) + 〈g0

f , x− x0〉, or its linear programming relaxation.
From the practical viewpoint, usually optimality and feasibility tolerances are different, reflect-

ing the fact that one may be satisfied with an approximated solution, but needs the constraints
to be strictly satisfied. Moreover, tolerances are typically given as relative to avoid problems with
scaling. For these reasons, an alternative stopping test could be of the form

f(xkbest)− fklow

(1 + |fklow|)
≤ δfTol and c(xkbest) ≤ δcTol ,

for given tolerances δcTol, δ
f
Tol > 0, with δcTol usually less than δfTol. In order to ease notation, we

consider in the convergence analysis of Algorithm 1 the simpler stopping test Ok ≤ δTol.

Remark 3 A natural procedure in Step 5 corresponds to try to find xk+1 directly, instead of
verifying whether Xk is an empty set. If an optimization solver is employed to solve subproblem (7)
to define xk+1, we may expect an exit flag providing information on feasibility of Xk. ut

Since a regularized subproblem as (7) is solved to define the next iterate xk+1, the index set Bk can
be reduced in Step 2 whenever the algorithm provides a sufficient decrease of the improvement
function. This is akin to a complete restart of the algorithm, but with some form of memory,
yielded by Ok, x̂k and ϕ, that ensures overall convergence.

In what follows, consider cycles denoted by

K` := {k(`), . . . , k(`+ 1)− 1}, for ` ≥ 0 . (8)

In Step 6, Algorithm 1 adds one more index into Bk+1. Therefore, two more constraints f(xk+1)+
〈gk+1

f , x− xk+1〉 ≤ 0 and c(xk+1) + 〈gk+1
c , x− xk+1〉 ≤ 0 are added into the level set given in (6).

We thus conclude that
Xj+1 ⊂ Xj ⊂ Xk(`) for all j, j + 1 ∈ K` , (9)

because from (8), it follows by construction that f
k(`)
low = f jlow and f

k(`)
lev ≥ f

j
lev for all j ∈ K`.

2.1 Convergence analysis

We first recall that f and c are convex functions and X is a bounded set. Thus, there exist two
constants Lf , Lc > 0 (possibly unknown) such that

|f(x)− f(x̃)| ≤ Lf‖x− x̃‖ and |c(x)− c(x̃)| ≤ Lc‖x− x̃‖ , (10)

for all x, x̃ ∈ X. We start our analysis with the following two lemmas that hold regardless of how
xk+1 ∈ Xk is chosen (for example, xk+1 can be any feasible point for (7)).

Regularized optimization methods for convex MINLP problems 5

Lemma 1 If δTol = 0 and `→∞, then Ok → 0.

Proof Let A be an index set gathering indices ` updated only in Step 4 of Algorithm 1. Suppose
that A has infinitely many indices. Whenever the level set is found to be empty in Step 4, the
lower bound fklow is increased by an amount of γOk > 0 and the cycle-counter ` is incremented by

one. Moreover, Remark 2 ensures that fklow 6 fmin for all k > 0. We conclude that f
k(`+1)
low > f

k(`)
low

because the stopping test in Step 2 fails. Since fmin < ∞ is an upper bound on this sequence,
we must therefore have that Ok → 0. (Hence, if δTol > 0 there cannot be an infinite loop between
Steps 4 and 1.)

Suppose now that A is a finite set. Then, there exists an index ¯̀ ≥ 0 such that Xk 6= ∅ for
all k ≥ k(¯̀). It follows from Step 2 that (1 − γ)`−

¯̀+1Ok(¯̀) ≥ Ok(`+1) for ` ≥ ¯̀. The result is now
proven because γ ∈ (0, 1), {Ok} is non-increasing and `→∞. ut

If the tolerance δTol is strictly positive, Lemma 1 ensures that the stopping test of Algorithm 1
will be triggered as long as ` increases sufficiently. Accordingly, our goal is to show that each cycle
represented by K` in (8) has only finitely many indices. For this we need the following result,
which is a particular case of Lemma 3 in [27].

Lemma 2 Let ` ≥ 0 be arbitrary, γ ∈ (0, 1) be given, and Λ = max{Lf , Lc}, where Lf and Lc

are the Lipschitz constants for f and c given in (10). At iteration k ∈ K` of Algorithm 1, the
following estimates hold:

‖xk+1 − xj‖ ≥ (1− γ)

Λ
Ok for j = k(`) + 1, . . . , k .

Proof We recall that K` ⊂ Bk. Therefore, since xk+1 is chosen in Xk given in (6), we get

f(xj) + 〈gjf , x
k+1 − xj〉 6 f̌k(xk+1) 6 fklev and c(xj) + 〈gjc , xk+1 − xj〉 6 čk(xk+1) 6 0

for all j ∈ K` such that j > k(`). By applying the Cauchy-Schwarz inequality we thus derive

f(xj)− fklev 6 ‖gjf ‖‖x
k+1 − xj‖ 6 Λ‖xk+1 − xj‖ and c(xj) 6 ‖gjc‖‖xk+1 − xj‖ 6 Λ‖xk+1 − xj‖ .

Since fklev = fklow + γOk and Ok > 0 by Remark 1, we conclude that

Λ‖xk+1 − xj‖ > max{f(xj)− (fklow + γOk), c(xj)} > max{f(xj)− fklow − γOk, c(xj)− γOk}
= −γOk + max{f(xj)− fklow, c(x

j)} > (1− γ)Ok ,

where the last inequality is due to (5). Hence, the result follows. ut

As long as the iterate xk+1 is a point belonging to the level set Xk, Algorithm 1 ensures Ok → 0.
This statement is formalized in the following result.

Theorem 1 Suppose the mixed-integer feasible set X 6= ∅ in (1) is bounded, and that f0
low is

chosen to satisfy f0
low ≤ fmin. Then, if δTol = 0 Algorithm 1 ensures that Ok → 0 regardless the

employed rule to define xk+1 ∈ Xk. If δTol > 0, Algorithm 1 finds a δTol-solution to problem (1)
in finitely many iterations.

Proof By Remark 1 and Lemma 1 we just need to show that each cycle K` given in (8) with ` ≥ 0
has finitely many indices. In order to do so, let us suppose by contradiction that there is an index
` ≥ 0 such K` has infinitely many indices k. Thus, it holds that Xk 6= ∅ and Ok > (1 − γ)Ok(`) ≥
ε > 0 for all k ∈ K` (if such ε > 0 does not exist, then Ok(`) = 0 and the algorithm would have

terminated). It follows from (9) that the (infinite) sequence {xk}k∈K` is contained in the bounded
level set Xk(`). Lemma 2 gives

‖xk+1 − xj‖ ≥ (1− γ)Ok
Λ

≥ (1− γ)ε

Λ
> 0 for all j, k ∈ K` such that j 6 k .

The above relation shows that the bounded (and infinite) sequence {xk}k∈K` ⊂ X has no accu-
mulation point in the closed and bounded set X, which is impossible in a finite-dimensional space.
Hence, each cycle K` must have only finitely many indices and the result follows. ut

6 Welington de Oliveira

Theorem 1 shows convergence of Algorithm 1 by assuming that xk+1 is arbitrarily chosen in the
set Xk given in (6) (for example by solving (4), the ECPM subproblem, or by using a single tree
strategy, [2, § 3.3]). Notwithstanding, the number of oracle calls to be performed by Algorithm 1
depends strongly on the rule to determine the iterates in Step 4. In the next section we give some
alternatives to determine iterates by solving a subproblem as (7).

3 Obtaining new iterates: extended level bundle variants

Notice that when Xk is nonempty, the point xk+1 determined by solving (4) belongs to Xk. In this
case, Algorithm 1 is nothing but the extended cutting-plane algorithm proposed in [29].

It is worth mentioning that cutting-plane algorithms have three known drawbacks: (a) no
matter how good is the initial point x0 given to the algorithm, the iteration process will not exploit
quality of x0 for defining new iterates (initial iterates xk can be far away from the “good candidate”
x0); (b) tailing-off effect that makes calculations unstable as the iteration process progresses; (c)
optimization subproblem (4) determining new iterates has more and more constraints and, hence,
gets more and more ill-conditioned and difficult to solve.

In the convex setting, bundle methods [19,8] are able to overcome all the three drawbacks
mentioned above. A special class of bundle methods, known as level bundle methods [8], employs
subproblem (7) for defining new iterates. Depending on the choice of the stability function ϕ and
stability center x̂k in (7), the resulting algorithm provides:

(i) an upper bound for the maximum number of iterations performed in each cycle K`; and

(ii) a strategy to keep the information bundle Bk bounded, i.e., restricted memory.

Characteristics (i) and (ii) above are well-known in the level bundle literature, [8]. However, the
mixed-integer setting is rather intricate. We thus rely on the essence of level bundle methods to
provide techniques that overcome items (a) and (b) above, and try to remedy, in the practical
viewpoint, item (c). No theoretical guarantees for (i) and (ii) are given.

3.1 Choosing stability centers

There is considerable freedom to choose the stability centers x̂k in subproblem (7), solved at each
iteration by Algorithm 1. We now enumerate some possibilities:

– Fixed stability center. A simple rule to update x̂k along the iterative process is

x̂k+1 = x̂ for all iteration k ,

where x̂ ∈ Rn is an arbitrary but fixed point; for example x̂ = x0, the initial point.

– Current iterate. Proposed in [19], this rule consists in taking

x̂k+1 = xk+1 for all iteration k .

– Incumbent iterate. As in [27], the rule consists in updating the stability center only after obtaining
enough decrease of the certificate of optimality, that is,

if Ok ≤ (1− γ)Ok(`), then set x̂k+1 ← xkbest. Otherwise, set x̂k+1 ← x̂k.

– Serious iterate. If f(xk+1) ≤ f(x̂k)−(1−γ)Ok and c(xk+1) ≤ 0, or1 c+(xk+1) ≤ c+(x̂k)−(1−γ)Ok,
then set x̂k+1 ← xk+1. Otherwise, set x̂k+1 ← x̂k.

A good choice for the stability-center rule will depend on the problem’s assumptions. For
example, if a good estimate x̂ for the optimal solution is known, one may employ the fixed stability
center rule. On the other hand, if nothing about the optimal solution is known, one may prefer the
current iterate rule, aiming to escape from bad quality initial iterates xk. Overall, a satisfactory
rule is the incumbent iterate one, which is a hybrid of the two previous rules. The serious iterate
rule is designed to overcome the cutting-plane method’s drawback mentioned in item (a) above.

We now deal with another important ingredient for Algorithm 1: the stability function ϕ.

1 The notation c+ stands for c+(x) = max{c(x), 0}.

Regularized optimization methods for convex MINLP problems 7

3.2 Choosing stability functions

As for the stability center, there is also a fair amount of freedom to choose the stability function
ϕ in (7). The main importance of ϕ is to keep the next iterate near to the given center x̂k. Below
we list some alternatives for ϕ.

– `2-norm. Most level bundle methods found in literature employ the Euclidean norm as a sta-
bilization function; see [8]. Accordingly, subproblem (7) results in a mixed-integer quadratic
programming problem - MIQP, that is

xk+1 ∈ arg min
x∈Xk

‖x− x̂k‖2 ≡ min
x∈Xk

〈x, x〉 − 2〈x, x̂k〉 .

(If both x and x̂ belong to {0, 1}n, then the objective function above can be written as 〈12−x̂
k, x〉,

where 1 ∈ Rn is the vector of ones. In this case, subproblem above is a binary linear programming
problem.)

– `1-norm. Differently from the Euclidean norm, the `1-norm choice for the stability function ϕ
leads to a MILP problem:

xk+1 ∈ arg min
x∈Xk

‖x− x̂k‖1 ≡ min
x∈Xk,s∈Rn

n∑
i=1

si s.t. xi− x̂ki ≤ si, x̂ki −xi ≤ si ∀i = 1, . . . , n .

(For binary variables, ‖x− x̂k‖1 can be written as
∑

j∈{i:x̂k
i =0} xj +

∑
j∈{i:x̂k

i =1}(1− xj), which

is a linear function.)

– `∞-norm. Taking `∞ as the stability function also leads to a MILP problem:

xk+1 ∈ arg min
x∈Xk

‖x− x̂k‖∞ ≡ min
x∈Xk,s∈R

s s.t. xi − x̂ki ≤ s, x̂ki − xi ≤ s ∀i = 1, . . . , n .

– Doubly stabilization. Given a norm ‖ · ‖ and a prox-step tk > 0, the next iterate can be obtained
by solving the following doubly stabilized subproblem:

xk+1 ∈ arg min
x∈Xk

f̌k(x) +
1

2tk
‖x− x̂k‖ .

With this choice for subproblem (7), Algorithm 1 becomes a mixed-integer variant of the method
proposed [9].

In general, MIQP problems are more difficult to solve than MILP. Therefore, the `1 and `∞
norms might be preferable to the `2-norm as stabilization functions. A possible advantage of the
`∞-norm over the `1 is that when dealing with the above formulation of problem (7), less extra
variables are required to put the problem in a canonical form.

We have presented four alternatives for defining the stability function, and four rules for choos-
ing the stability centers. In a total, sixteen variants of Algorithm 1 are provided. Naturally, more
variants can be proposed by simply changing ϕ or the stability-center rule.

4 Numerical assessment

In this section we report some numerical experiments comparing four level bundle variants with
an extended cutting-plane algorithm and software BONMIN [5]. The goal is to verify empirically
that one can reduce the number of oracle calls required to solve a convex MINLP problem by
regularizing the MILP subproblem as in (7). As mentioned in the Introduction, performing fewer
oracle calls is of interest in some industrial applications, where the involved functions are costly.

8 Welington de Oliveira

Solvers. In order to solve the corresponding subproblems (7) at each iteration we employed the
Gurobi toolbox for Matlab; see http://www.gurobi.com. In a total, seven solvers were consid-
ered. Four of them employ Algorithm 1 (coded in Matlab), with two different stability functions,
and two rules to define stability centers in (7). The solvers are named:

– `1 – Current iterate rule to define x̂k, and `1-norm for the stability function;

– `∞ – Current iterate rule to define x̂k, and `∞-norm for the stability function;

– ˆ̀
1 – Incumbent iterate rule to define x̂k, and `1-norm for the stability function;

– ˆ̀∞ – Incumbent iterate rule to define x̂k, and `∞-norm for the stability function;

– CP – Algorithm 1 solving subproblem (4) to define xk+1.

– B-BB – A NLP-based branch-and-bound algorithm implemented in BONMIN [5];

– B-QG – An implementation of the branch-and-cut algorithm proposed in [23] and available in
BONMIN.

Notice that solver CP is nothing but a simple variant of the extended cutting-plane method pro-
posed in [29]. Solvers B-BB and B-QG are available in the software BONMIN (https://projects.
coin-or.org/Bonmin), which were employed through the OPTI toolbox for Matlab [6].

Algorithm’s parameters. All the solvers were initialized with x0, a point that solves the following
MILP problem:

min
x∈X
〈gf , x̃− x〉 s.t. c(x̃) + 〈gc, x̃− x〉 ≤ 0 ,

where x̃ ∈ Rn is (in most of test-problems) the vector of ones, and gc ∈ ∂f(x̃) (respectively,
gc ∈ ∂c(x̃)). A lower bound f0

low was set as the optimal value of the above MILP problem.
Moreover, we set γ = 0.2 in Algorithm 1 and use the relative stopping test Ok/(1 + |fklow|) ≤ 10−4.
Since the five first solvers use the same stopping test, obtained solutions have the same accuracy.
Solvers B-BB and B-QG were set with the same relative tolerance. If the stopping test is not satisfied,
the five first algorithms stop by the maximum number of iterations, which was set as 3000. All
solvers were set with a CPU time limit of one hour. In order to illustrate the solvers’ performance
we have considered several test problems described below.

Problems from MINLP Library. We consider a set of 25 test-problems from the MINLP Library
available at http://www.gamsworld.org/minlp. These problems have the form

min
x∈X

f(x) s.t. fi(x) ≤ 0, for i = 1, . . . ,m,

with f, fi : Rn → R convex and continuously differentiable functions. Solvers B-BB and B-QG

consider the original problem structure, while solvers CP, `1, `∞, ˆ̀
1 and ˆ̀∞ consider the nonsmooth

reformulation (1), by taking c(x) = maxj=1,...,m fj(x).
Table 4 presents the problem’s names, dimensions (n,m) (which are the number of variables

and nonlinear constraints, respectively) and optimal values. CPU time (in seconds) and number
of oracle calls required to solve these 25 problems are also presented in the Table 4 for five solvers:
CP, `1, `∞, B-BB and B-QG. Total CPU time and oracle calls are presented in the last line of the
table. As reported, solvers CP, `1, `∞ and B-QG could solve all these problems within the CPU
time limit of one hour (in contrast to B-BB), being B-QG much faster than the other considered
solvers. However, solvers B-QG and B-BB required significantly more oracle calls than the cutting-
plane based algorithms CP, `1 and `∞. This shows that the latter class of methods is preferable
when function evaluation is expensive. Concerning number of oracles calls, solver `∞ was the most
effective one for this set of problems: `∞ performed 23.6% (respectively 99.97%) fewer oracles calls
than CP (respectively B-QG).

Results for solvers ˆ̀∞ and ˆ̀
1 on these problems are summarized in Table 4, where total CPU

time and number of oracle calls are reported. Table 4 also presents results for the considered
cutting-plane based methods applied to the test-problems by adopting formulation (1), but with
c : Rn → Rm̃ defined as follows: by partitioning the set {1, . . . ,m} into m̃ ≤ m subsets I1, . . . , Im̃
such that Ii ∩ Ij = ∅ if i 6= j, we reformulate each test-problem as (1) with cj(x) = maxi∈Ij fj(x),

Regularized optimization methods for convex MINLP problems 9

Data CPU time (s) # Oracle calls
Problem (n,m) f∗ CP `1 `∞ B-BB B-QG CP `1 `∞ B-BB B-QG

st_e14 (11,13) 4.58 0.2 0.3 0.2 0.9 0.2 21 15 13 36 11
synthes2 (11,13) 73.04 0.1 0.2 0.2 0.3 0.2 11 11 11 94 39
synthes3 (17,23) 68.01 0.2 0.4 0.4 0.6 0.5 18 15 15 145 129
ex1223 (11,13) 4.58 0.2 0.3 0.2 0.2 0.1 21 15 13 36 11
ex1223b (7,9) 4.58 0.2 0.3 0.2 0.3 0.1 18 16 14 21 11
flay02h (46,51) 37.95 0.8 2.4 2.4 0.3 0.2 53 52 59 13 43
flay02m (14,11) 37.95 0.5 1.2 1.1 0.2 0.1 38 41 38 6 15
flay03h (122,144) 48.99 7.7 21.4 18.6 2.8 1.7 172 165 157 1519 1884
flay03m (26,24) 48.99 1.6 5.2 4.2 1.6 0.2 73 88 76 1067 73
flay04m (42,42) 54.41 12.7 19.5 18.8 43.9 2.8 184 119 129 41352 12015

m3 (26,43) 37.80 0.5 1.0 1.1 1.2 0.1 36 35 36 827 272
m6 (86,157) 82.26 11.3 15.5 10.7 255.7 7.7 153 129 103 212356 124191
m7 (114,211) 106.76 21.1 47.0 44.6 2359.1 37.9 204 185 140 1886624 605724

m7_ar2_1 (112,269) 190.23 41.8 67.5 56.7 3600.1 42.4 234 213 164 2798895 1131309
m7_ar3_1 (112,269) 143.59 114.6 168.3 89.3 3600.3 50.0 227 204 161 2642214 926234
m7_ar4_1 (112,269) 106.76 38.9 54.3 28.4 3600.1 20.2 211 194 145 2553283 296164
m7_ar5_1 (112,269) 106.46 37.4 58.9 63.1 3600.1 141.3 222 195 153 2613613 4820486
m7_ar25_1 (112,269) 143.59 25.9 41.6 27.3 426.8 10.0 217 200 151 326416 308859

gear (4,0) 0.00 0.0 0.1 0.1 0.4 0.0 6 11 10 136 14
tls2 (37,24) 5.30 0.2 0.5 0.5 13.6 1.1 15 16 16 11891 4912
tls4 (105,64) 8.30 1279.4 2063.2 1640.4 2568.2 71.4 276 271 242 2345105 981449
batch (46,69) 285506.51 2.3 3.9 5.0 1.4 0.3 78 62 77 89 224

batchdes (19,19) 167427.66 0.2 0.4 0.4 0.3 0.1 23 18 20 10 10
batch0812 (100,217) 2687026.78 4.0 6.9 7.3 5.1 1.6 90 66 79 634 1711

batchs101006m (278,1019) 769440.42 317.6 384.6 533.6 35.6 23.6 1000 572 727 7998 102142
Sum - - 1919.4 2965.0 2554.8 20119.1 414.1 3601 2908 2749 15444380 9317932

Table 1 Comparison of five solvers on 25 test-problems from MINLP library.

CPU time (s) # Oracle calls

m̃ CP `1 `∞ ˆ̀
1

ˆ̀∞ CP `1 `∞ ˆ̀
1

ˆ̀∞
1 1919.4 2965.0 2554.8 5094.2 3695.9 3601 2908 2749 3426 3088
50 727.9 678.6 789.9 710.2 1218.7 544 526 522 536 514
m 666.6 865.9 821.9 1042.7 918.2 355 341 342 362 338

Table 2 Analysis of total CPU time and number of oracle calls to solve 25 MINLP problems.

for j = 1, . . . , m̃. We consider in Table 4 m̃ ∈ {1, 50,m}. For the case m̃ = 1, all the level
bundle variants require fewer oracle calls than the extended cutting-plane solver CP. When all the
problem’s constraints are considered individually, i.e. m̃ = m, all the five solvers have a comparable
performance in terms of oracle calls, being CP slightly faster than the other variants.

In what follows we will be dealing only with nonsmooth MINLP problems, and thus solvers
B-BB and B-QG will not be employed. It is already clear from Table 4 that such solvers require in
general many oracle calls, an attribute that we aim to avoid.

MaxQuad problems. In this subsection we consider randomly generated MINLP problems of the
form (1) with objective functions given by

f1(x) = max
i=1,...,10

{
〈Qix, x〉+ 〈qi, x〉

}
+ α|x|1 and f∞(x) = max

i=1,...,10

{
〈Qix, x〉+ 〈qi, x〉

}
+ α|x|∞ ,

where Qi ∈ Rn×n and qi ∈ Rn are randomly generated matrices and vectors for all i = 1, . . . , 10
(Qi are symmetric and positive semidefinite matrices). Parameter α runs through the values α ∈
{0.5, 1}. The problem’s dimension n varies according to n ∈ {10, 20, 30, 40}, and feasible set is

X =

x ∈ Zp × Rn−p :
1

n

n∑
i=1

xi ≤ −1 and

x1 ∈ {−3,−2,−1, 0}
xi ∈ {−1, 0} if i = 2, . . . , p
xi ∈ [−20, 20] if i = p+ 1 . . . , n

 .

In the above set, the integer number p is defined as p = min{n/2, 10}. The nonlinear and nons-

mooth constraint function is given by c(x) = max
{
e−

1
n

∑n
i=1 xi , e−xn

}
−e . With this setting, we

have considered four different types of problems, named

• 1 : min f1(x) s.t. x ∈ X and c(x) ≤ 0 , • 2 : min f∞(x) s.t. x ∈ X and c(x) ≤ 0 ,
• 3 : min f1(x) s.t. x ∈ X , • 4 : min f∞(x) s.t. x ∈ X .

10 Welington de Oliveira

For each problem and considered dimension n, ten instances were generated and solved by em-
ploying the five cutting-plane based solvers.

Table 4 provides the average (over ten instances) of CPU time, number of oracle calls, and
number of empty level sets. If any solver reached the maximum number of iterations, which was
fixed as 3000, we consider the problem not solved. If at least one problem belonging to a given
set of ten instances was not solved, we provide the character “-” in Table 4. We mention that the
number of iterations of solver CP coincides with the number of oracle calls. For the other solvers,
the (average) number of iterations can be obtained by summing the (average) number of oracle
calls and (average) number of empty level sets.

n Prob CPU time (s) # Oracle calls # Empty level set

CP ˆ̀
1

ˆ̀∞ `1 `∞ CP ˆ̀
1

ˆ̀∞ `1 `∞ ˆ̀
1

ˆ̀∞ `1 `∞
10 1 1.3 2.9 2.6 3.2 2.8 38.7 32.8 31.3 34.1 33.1 18.4 17.4 18.8 18.0
10 2 1.3 3.0 3.1 3.1 3.1 38.6 37.0 38.5 39.1 38.2 18.6 18.0 18.1 17.1
10 3 1.5 3.4 3.4 3.5 3.4 52.5 40.8 42.5 43.4 44.1 22.2 21.6 23.2 21.8
10 4 1.6 3.3 3.1 3.3 3.3 53.0 41.1 39.7 42.1 42.6 23.0 21.9 23.0 20.8
20 1 12.0 15.4 19.0 18.0 19.2 157.1 119.3 131.1 134.3 136.5 32.7 30.1 32.2 30.5
20 2 5.8 8.4 9.9 8.9 10.1 153.5 121.1 130.6 129.0 135.9 32.9 31.0 32.1 30.0
20 3 7.5 11.1 12.9 11.9 13.7 198.7 144.5 160.2 156.1 169.8 35.5 33.1 34.8 34.0
20 4 6.7 10.0 12.0 11.0 11.7 190.5 138.6 155.5 152.0 155.5 35.0 33.7 34.6 33.3
30 1 108.5 67.2 123.7 74.0 95.5 656.8 381.6 515.8 415.5 469.6 41.6 40.0 41.2 39.7
30 2 116.8 66.1 119.3 72.5 94.0 656.4 378.1 503.5 408.5 466.0 42.8 40.0 41.9 40.1
30 3 200.4 83.5 160.7 86.4 113.5 920.0 446.8 619.6 477.2 555.3 43.0 40.4 43.0 40.5
30 4 135.3 74.2 146.1 82.4 104.7 797.2 421.2 589.7 464.2 527.6 43.0 40.2 42.8 40.1
40 1 - 299.9 789.8 292.3 423.9 - 740.4 1192.2 768.4 928.5 44.3 40.9 44.1 41.8
40 2 - 268.3 702.1 287.8 388.7 - 703.4 1131.5 759.6 890.2 45.5 42.1 44.4 42.5
40 3 - 347.2 999.7 337.5 492.8 - 810.6 1330.1 869.5 1044.1 46.0 43.4 45.6 43.2
40 4 - 327.7 1014.2 331.1 462.4 - 789.2 1333.6 846.8 1011.1 45.9 43.6 45.5 43.3

Table 3 Average over ten instances. Total of 160 different problems.

Table 4 shows that solver CP was faster than the extended level bundle solvers (ˆ̀
1, ˆ̀∞, `1, and

`∞) for the small instances, corresponding to n = 10 and n = 20. However, for instances with

dimension n ≥ 30, all the level bundle solvers but ˆ̀∞ were faster than CP, which failed to solve
10 of the largest instances within the maximum number of iterations. Notice also that the level
bundle solvers solved all the 160 problems without reaching the maximum number of iterations,
and required significantly fewer oracle calls than CP.

Table 4 gives the total CPU time and number of oracle calls to solve all 150 successful instances
of the considered problems. As shown, all the level bundle solvers performed better (in terms of
CPU time and number of oracle calls) than CP. The table also presents the percentage of CPU
time and oracle call reduction with respect to CP.

Total CP ˆ̀
1

ˆ̀∞ `1 `∞
Oracle calls 89955 45775 67273 49245 56622
Reduction % (w.r.t CP) - 49.1 25.2 45.3 37.1
CPU Time (min) 615.1 207.4 542.5 213.6 291.3
Reduction % (w.r.t CP) - 66.3 11.8 65.3 52.6

Table 4 Number of oracle calls and CPU time over 150 successful instances.

As one can notice, regularizing subproblem (4) pays off. Solver ˆ̀
1 reduced the number of oracle

calls in 49%, and CPU time in 66%. Its counterpart `1, with current iterate rule, also provided
good results. Reduction of oracle calls provided by the level solvers avoids the MILP subproblems
to become large and too difficult to be solved. This explains why reducing oracle calls in 45%
(solver `1) provided a CPU time reduction of 65%.

QR problems. In this subsection we consider a class of problems denoted by QR in [1, § 4.2]. These
test problems have objective functions given by f(x) = maxj=1,...,10{bj‖x−yj‖22 +aj} , where each

Regularized optimization methods for convex MINLP problems 11

aj and every component of each fixed center yj is a random number uniformly drawn in [-5,5],
and each bj is a random number uniformly drawn in [0,5]. Feasible set is, for p = n/2, given by

X =

{
x ∈ Zp × Rn−p :

[
xi ∈ {0, 1} if i = 1, . . . , p
xi ∈ [−2, 2] if i = p+ 1 . . . , n

]}
.

For each problem’s dimension n ∈ {10, 20, 30, 40}, ten instances were generated and solved by
employing the five cutting-plane based solvers. Table 4 presents the average (over ten instances)
of CPU time, number of oracle calls, and number of empty level sets.

n CPU time (s) # Oracle calls # Empty level set

CP ˆ̀
1

ˆ̀∞ `1 `∞ CP ˆ̀
1

ˆ̀∞ `1 `∞ ˆ̀
1

ˆ̀∞ `1 `∞
10 0.5 0.9 0.9 0.9 0.9 40.5 31.5 32.2 33.8 34.4 13.5 12.9 13.4 13.0
20 9.4 7.1 14.5 8.6 12.2 205.8 114.8 168.1 132.0 159.5 19.8 19.8 19.7 19.9
30 46.2 39.2 109.5 43.5 74.0 480.9 263.7 443.8 293.7 378.1 22.3 21.4 22.6 21.2
40 148.2 82.3 368.5 90.7 185.7 928.2 371.8 747.3 403.3 552.2 23.3 21.5 22.7 21.8

Table 5 Average over ten instances. Total of 40 different problems.

Table 6 gives the total CPU time and number of oracle calls required to solve all 40 instances.
Although level solvers performed fewer oracle calls, variants with `∞ norm stabilization required

Total CP ˆ̀
1

ˆ̀∞ `1 `∞
Oracle calls 16554 7818 13914 8628 11242
Reduction % (w.r.t CP) - 52.8 15.9 47.9 32.1
CPU Time (min) 34.1 21.6 82.2 23.9 45.5
Reduction % (w.r.t CP) - 36.6 -141.5 29.7 -33.5

Table 6 Number of oracle calls and CPU time over 40 instances.

more CPU time than the CP solver. This shows that the resulting MILP subproblem (7) with `∞
norm is (for these class of problems) more difficult to solve than (4).

Stochastic programming problems. In this subsection we consider a linearly constrained stochastic
programming problem written as (1), with f(x) = q>x + 1

N

∑N
i=1Qi(x) and feasible set X =

{(z, y) ∈ Z10 × R50
+ : Ay + Bz = b, 0 ≤ z ≤ 10}, where q ∈ R60, b ∈ R30, and Qi(x) :=

minr∈R90
+
d>r s.t. Wr = hi−Tx is the recourse function (which is convex) and depends on the i-

th scenario hi ∈ R60. Matrices W and T have appropriate dimensions, and no nonlinear constraint
c is considered. Note that f is an expensive function if the number N of scenarios is large.

We have considered five configurations of the problem, obtained by varying N according to
{50, 100, 200, 300, 500}. For each number of scenarios N , 10 different problems were randomly
generated by changing the sample {h1, . . . , hN}.

N CPU time (s) # Oracle calls # Empty level set

CP ˆ̀
1

ˆ̀∞ `1 `∞ CP ˆ̀
1

ˆ̀∞ `1 `∞ ˆ̀
1

ˆ̀∞ `1 `∞
50 49.1 45.8 50.8 49.4 51.0 168.3 113.6 131.6 125.7 135.3 23.9 23.0 22.3 22.7
100 86.7 70.3 80.6 76.0 84.3 179.1 118.1 139.5 130.0 148.2 23.3 23.4 22.8 23.1
200 148.4 113.1 131.1 125.2 137.3 174.0 117.6 138.0 131.5 146.0 23.7 23.2 22.2 22.9
300 203.4 165.6 192.0 181.3 195.7 165.8 123.5 144.1 135.9 148.1 24.0 23.8 23.0 22.9
500 363.0 274.9 304.0 302.7 321.3 181.7 126.9 144.2 140.7 153.0 24.1 23.2 23.3 23.3

Table 7 Average over ten instances. Total of 50 different problems.

Table 8 gives the total CPU time and number of oracle calls to solve all 50 instances of the
considered problem. As shown, all the level bundle solvers performed better (in terms of CPU
time and number of oracle calls) than CP. The table also presents the percentage of CPU time and

oracle call reduction with respect to the latter algorithm. Solver ˆ̀
1 reduced the number of oracle

12 Welington de Oliveira

Total CP ˆ̀
1

ˆ̀∞ `1 `∞
Oracle calls 8689 5997 6974 6638 7306
Reduction % (w.r.t CP) - 31.0 19.7 23.6 15.9
CPU Time (min) 141.8 111.6 126.4 122.4 131.6
Reduction % (w.r.t CP) - 17.3 6.3 10.5 2.7

Table 8 Number of oracle calls and CPU time over 50 instances

calls in 31%, and CPU time in 17%, showing the effectiveness of the regularized cutting-plane
variant.

5 Concluding remarks

In this work we have proposed a class of regularized cutting-plane methods for convex and non-
smooth mixed-integer nonlinear programming problems. Each iterate of the proposed variants is
obtained by solving either a MIQP or a MILP subproblem. Although the given algorithm does
not require solving a subproblem exactly at each iteration, solving it exactly for a given stability
center and function may effectively reduce the number of oracle calls to solve the problem. As
shown in Section 3, there is considerable freedom in choosing the subproblem structure. Moreover,
the number of constraints (cutting-plane linearizations) can be reduced at some certain iterations,
called critical iterations.

We have compared numerically some of the proposed variants with a non-regularized extended
cutting-plane algorithm (CP) and the BONMIN solver on several academic MINLP problems. In
some variants with fixed stability center, the number of oracle calls was reduced in around 50%
with respect to CP, keeping approximately the same computational effort per iteration. Reduction
of oracle calls was even more effective when compared to BONMIN. This is an important matter
when dealing with MINLP problems whose involved functions are costly.

Acknowledgements. The author gratefully acknowledges financial support provided by Severo
Ochoa Program SEV-2013-0323 and Basque Government BERC Program 2014-2017.

References

1. A. Astorino, A. Frangioni, M. Gaudioso, and E. Gorgone, Piecewise-quadratic approximations in convex
numerical optimization, SIAM Journal on Optimization, 21 (2011), pp. 1418–1438.

2. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, Mixed-integer nonlinear
optimization, Acta Numerica, 22 (2013), pp. 1–131.

3. H. Ben Amor, J. Desrosiers, and A. Frangioni, On the Choice of Explicit Stabilizing Terms in Column
Generation, Discrete Applied Mathematics, 157 (2009), pp. 1167–1184.

4. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, and A. WäChter, An algorithmic framework for convex mixed integer nonlinear
programs, Discret. Optim., 5 (2008), pp. 186–204.

5. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi,
F. Margot, N. Sawaya, and A. Wächter, An algorithmic framework for convex mixed integer nonlinear
programs, Discrete Optimization, 5 (2008), pp. 186 – 204. In Memory of George B. Dantzig.

6. J. Currie and D. I. Wilson, OPTI: Lowering the Barrier Between Open Source Optimizers and the Indus-
trial MATLAB User, in Foundations of Computer-Aided Process Operations, N. Sahinidis and J. Pinto, eds.,
Savannah, Georgia, USA, 8–11 January 2012.

7. C. DAmbrosio, A. Frangioni, L. Liberti, and A. Lodi, On interval-subgradient and no-good cuts, Operations
Research Letters, 38 (2010), pp. 341 – 345.

8. W. de Oliveira and C. Sagastizábal, Bundle methods in the xxist century: A birds’-eye view, Pesquisa
Operacional, 34 (2014), pp. 647–670.

9. W. de Oliveira and M. Solodov, A doubly stabilized bundle method for nonsmooth convex optimization,
tech. report, 2013. Available at url = http://www.optimization-online.org/DB-HTML/2013/04/3828.html.

10. M. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear
programs, Mathematical Programming, 36 (1986), pp. 307–339.

11. V.-P. Eronen, M. M. Makela, and T. Westerlund, On the generalization of ecp and oa methods to
nonsmooth convex minlp problems, Optimization, 63 (2014), pp. 1057–1073.

Regularized optimization methods for convex MINLP problems 13

12. R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by outer approximation, Mathematical
Programming, 66 (1994), pp. 327–349.

13. A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed integer programs, Mathematical
Programming, 106 (2006), pp. 225–236.

14. A. Geoffrion, Generalized benders decomposition, Journal of Optimization Theory and Applications, 10
(1972), pp. 237–260.

15. I. E. Grossmann, Review of nonlinear mixed-integer and disjunctive programming techniques, Optimization
and Engineering, 3 (2002), pp. 227–252.

16. R. Hemmecke, M. Kppe, J. Lee, and R. Weismantel, Nonlinear integer programming, in 50 Years of Integer
Programming 1958-2008, M. Jnger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. A. Wolsey, eds., Springer Berlin Heidelberg, 2010, pp. 561–618.

17. J. Kelley, Jr., The cutting-plane method for solving convex programs, Journal of the Society for Industrial
and Applied Mathematics, 8 (1960), pp. 703–712.

18. K. Kiwiel and C. Lemaréchal, An inexact bundle variant suited to column generation, Math. Program., 118
(2009), pp. 177–206.

19. C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods, Math. Program., 69
(1995), pp. 111–147.

20. S. Leyffer, Integrating sqp and branch-and-bound for mixed integer nonlinear programming, Computational
Optimization and Applications, 18 (1998), pp. 295–309.

21. M. Lubin, K. Martin, C. G. Petra, and B. Sandk, On parallelizing dual decomposition in stochastic integer
programming, Operations Research Letters, 41 (2013), pp. 252 – 258.

22. P. Munari and J. Gondzio, Using the primal-dual interior point algorithm within the branch-price-and-cut
method, Computers & Operations Research, 40 (2013), pp. 2026 – 2036.

23. I. Quesada and I. Grossmann, An lp/nlp based branch and bound algorithm for convex minlp optimization
problems, Computers & Chemical Engineering, 16 (1992), pp. 937 – 947.

24. C. Sagastizábal, Divide to conquer: decomposition methods for energy optimization, Mathematical Program-
ming, 134 (2012), pp. 187–222.

25. P. Schütz, A. Tomasgard, and S. Ahmed, Supply chain design under uncertainty using sample average
approximation and dual decomposition, European Journal of Operational Research, 199 (2009), pp. 409 – 419.

26. R. A. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex programming, Mathematical
Programming, 86 (1999), pp. 515–532.

27. W. van Ackooij and W. de Oliveira, Level bundle methods for constrained convex optimization with various
oracles, Computational Optimization and Applications, 57 (2014), pp. 555–597.

28. T. Westerlund and K. Lundqvist, Alpha-ecp, version 5.101: An interactive minlp-solver based on the
extended cutting plane method, Tech. Report 01-178-A, Process Design Laboratory at Abo Akademi University,
2005. Updated version of 2005-10-21. Available at http://www.abo.fi/~twesterl/A-ECPManual.pdf.

29. T. Westerlund and F. Pettersson, An extended cutting plane method for solving convex minlp problems,
Computers & Chemical Engineering, 19, Supplement 1 (1995), pp. 131 – 136. European Symposium on Com-
puter Aided Process Engineering.

30. T. Westerlund and R. Pörn, Solving pseudo-convex mixed integer optimization problems by cutting plane
techniques, Optimization and Engineering, 3 (2002), pp. 253–280.

