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Optical flow estimation is one of the oldest and still most active research domains in computer vision. In
35 years, many methodological concepts have been introduced and have progressively improved perfor-
mances, while opening the way to new challenges. In the last decade, the growing interest in evaluation
benchmarks has stimulated a great amount of work. In this paper, we propose a survey of optical flow
estimation classifying the main principles elaborated during this evolution, with a particular concern
given to recent developments. It is conceived as a tutorial organizing in a comprehensive framework cur-
rent approaches and practices. We give insights on the motivations, interests and limitations of modeling
and optimization techniques, and we highlight similarities between methods to allow for a clear under-
standing of their behavior.
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1. Introduction out in the nineties [21,178,228]. More recently, reviewing works
Motion analysis is one of the main tasks of computer vision. From
an applicative viewpoint, the information brought by the dynamical
behavior of observed objects or by the movement of the camera
itself is a decisive element for the interpretation of observed phe-
nomena. The motion characterizations can be extremely variable
among the large number of application domains. Indeed, one can
be interested in tracking objects, quantifying deformations, retriev-
ing dominant motion, detecting abnormal behaviors, and so on. The
most low-level characterization is the estimation of a dense motion
field, corresponding to the displacement of each pixel, which is
called optical flow. Most high-level motion analysis tasks employ
optical flow as a fundamental basis upon which more semantic
interpretation is built.

Optical flow estimation has given rise to a tremendous quantity
of works for 35 years. If a certain continuity can be found since the
seminal works of [120,170], a number of methodological innova-
tions have progressively changed the field and improved perfor-
mances. Evaluation benchmarks and applicative domains have
followed this progress by proposing new challenges allowing
methods to face more and more difficult situations in terms of
motion discontinuities, large displacements, illumination changes
or computational costs. Despite great advances, handling these
issues in a unique method still remains an open problem.
Comprehensive surveys of optical flow literature were carried
have focused on variational approaches [264], benchmark results
[13], specific applications [115], or tutorials restricted to a certain
subset of methods [177,260]. However, covering all the main esti-
mation approaches and including recent developments in a com-
prehensive classification is still lacking in the optical flow field.

This survey paper is conceived as a tutorial aiming at organizing
in a comprehensive framework the main approaches and practices
for optical flow estimation. We will not try to tell the whole story
of optical flow evolution, neither we give an exhaustive list of
existing methods. We rather propose a synthetic classification of
the main methodological principles of existing methods, with a
particular concern given to recent developments. We will insist
on the modeling aspects, practical interests and limitations of each
introduced methodological element, with the aim of providing use-
ful cues for a better understanding of optical flow. We adopt a clas-
sifying approach, decomposing the optical flow estimation
problem in sub-parts. This viewpoint has the advantage of being
didactic and facilitates the identification of similarities between
methods in a global unique framework. However, this ambition
of clarity should not hide that individual methods are often con-
ceived as coherent approaches, and cannot be reduced to a mere
assembly of isolated parts.

The remainder of this paper is organized as follows. In Section 2,
we present general and basis concepts on optical flow used
throughout the paper. Section 3 is devoted to a review of data con-
stancy assumptions for optical flow and their usage for the design
of data terms. In Section 4, the parametric approach, its specific
issues and existing solutions are described. Section 5 presents
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the modeling and optimization aspects of globally regularized
methods. Section 6 focuses on the occlusion issue. Section 7 is
dedicated to the recent trend of integrating feature matching in
the optical flow estimation process. Finally, the general conclu-
sions of this survey are reported in Section 8.
2. Preliminaries

2.1. Definition of optical flow

The notion of optical flow literally refers to the displacements of
intensity patterns. This definition originates from a physiological
description of the visual perception of the world through image
formation on the retina. In that sense, while optical flow is neces-
sarily caused by relative motion between the observer and the
objects of the observed scene, it only represents motion of intensi-
ties in the image plane, and not necessarily accounts for the actual
3D motion in the physical scene [251]. This definition of optical
flow states that intensity of moving pixels remains constant during
motion, and the main difficulty is to cope with the uncertainty due
to the ill-posedness of the problem, called aperture problem
(described in Section 2.4).

However, motion of interest in computer vision is in practice the
real displacements of the objects. Thus, the variable that we actual-
ly want to retrieve is the projection on the image plane of the 3D
motion in the scene, usually called motion field. The problem of
recovering the 3D motion itself from several synchronized cameras
is also an active research domain known as scene flow estimation
[18,248]. The new problem arising is then that intensity changes
are not necessarily caused by the displacements of objects of the
scene, but can also be due to other disturbing phenomena like light-
ing changes, reflection effects or modifications of the properties of
the objects affecting their light emission or reflectance.

The terms optical flow and motion field are usually mixed up to
both designate the above definition of the motion field, and we will
carry on this practice in the sequel of this survey.
1 http://vision.middlebury.edu/flow/eval/.
2.2. Applicative domains

Optical flow provides fundamental information at the basis of
various computer vision systems, in a wide range of applicative
domains. We cite here some of the main fields where it is currently
exploited.

The increasing use of multimedia devices involving video dis-
plays accentuates the importance of several video analysis prob-
lems. Action recognition is for instance an essential task for
semantic interpretation of video content [1,130,256]. Video com-
pression standards like MPEG exploit motion estimation to predict
intermediate frames [131]. Optical flow can also be a determinant
feature in video indexing and retrieval [123,202,230]. Video
restoration of aged films is another field of interest, and can be
improved by taking optical flow estimation into account [92,270].

In a biomedical context, dynamic properties of tissues or cellu-
lar objects are also of upmost importance. The deformation of
organs [109,275] or the estimation of blood flow [124] are exam-
ples of medical applications that can require optical flow computa-
tion. Many conceptual and methodological links can also be found
between medical image registration and optical flow
[100,211,212,219,224]. In microscopy, dense motion can inform
about cell deformation [3,90,139,203], motion of cellular struc-
tures [73,89], or help for individual cell tracking [167].

Robots or vehicle navigation also exploit optical flow as input of
control systems for automatic guidance. Autonomous car driving
has received particular attention in recent years [94,98,235].
Obstacle detection and avoidance are the main tasks investigated
for general robot control in real environment exploiting optical
flow [57,67,82].

Automated video surveillance is another growing research field
requiring motion analysis. In particular, facial expression and ges-
ture recognition [31,70], crowd motion and pedestrian behavior
analysis [19,143] often involve dense motion analysis.

Among the other fields of interest, fluid flow analysis has appli-
cations in meteorology, oceanography aerodynamics or fluid
mechanics and requires to consider specific physical constraints
[65,113,115,168]. Several typical image deformations character-
ized by the conservation of texture properties during motion can
be described as dynamic textures, and receive a specific treatment
[69,85,84].

2.3. Evaluation of optical flow methods

As in other computer vision domains, much attention has been
paid to the design of appropriate evaluation procedures for optical
flow.

The visualization of motion fields provides a qualitative insight
on the accuracy of the estimation. The two main visualization tech-
niques are presented in Fig. 1. The arrow visualization directly rep-
resents motion vector and offers a good intuitive perception of
physical motion. On the counterpart, a clean display requires to
under-sample the motion field to prevent overlapping of arrows.
The color code visualization associates a color hue to a direction
and a saturation to the magnitude of the vector. It allows for a
dense visualization of the flow field and a better visual perception
of subtle differences between neighbor motion vectors.

On the other hand, objective quantitative evaluation based on
error metrics is necessary for an accurate comparison of method
performances. When ground truth is available, two error measures
are commonly used, namely the Angular Error (AE) and the
Endpoint Error (EPE). The AE of an estimated motion vector
west ¼ ðuest ;vestÞ> w.r.t. the reference vector wref ¼ ðuref ; vref Þ> is
defined by the 3D angle created by the extended vectors
ðuest; vest ;1Þ> and ðuref ;vref ;1Þ>:

AE ¼ cos�1 uesturef þ vestv ref þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

est þ v2
est þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

ref þ v2
ref þ 1

q
0B@

1CA: ð1Þ

The EPE is defined as the Euclidean distance between the two
vectors:

EPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuest � uref Þ2 þ ðvest � v ref Þ2

q
: ð2Þ

These two metrics are complementary regarding motion magni-
tude. AE is very sensitive to small estimation errors, occurring for
small displacement, whereas EPE hardly discriminates between
close motion vectors. On the contrary, AE tends to under-evaluate
distances between motion vectors in some cases of large motion
magnitudes, while EPE strongly penalizes large estimation errors.

The design of challenging benchmarks with ground truth on
which to apply these error measures has motivated a substantial
amount of work, which main steps are illustrated in Fig. 2. The first
optical flow benchmark with ground truth established by [17]
dealt either with simple parametric transformations applied to real
images, like translation or rotation, or with synthetic sequences for
which the true motion is available by construction. The resulting
motion fields were characterized by small displacements and
absence of discontinuities. More recent benchmarks have been
designed to address new types of problems or specific applicative
issues. The Middlebury benchmark1 [11,13] is composed of more
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Fig. 1. Two types of visualization of the motion field transforming I1 in I2.
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challenging sequences, partly made of smooth deformations similar
to the sequences described in [17], but also involving motion discon-
tinuities and motion details. While some sequences are synthetic,
several others were acquired in a strictly controlled environment
allowing to produce ground truth for real scenes. Issues raised by
Middlebury being almost solved by modern methods, the MPI
Sintel benchmark2 [52] has been recently proposed. It is extracted
from a synthetic movie and opens new issues mostly related to very
large displacements, occlusions, illumination changes, and effects
like blur or defocus. In parallel, dedicated datasets have been
designed to solve specific problems related to applicative contexts,
the most successful example being the KITTI benchmark3 [94] devot-
ed to assisted driving applications.
2.4. Estimation principles

Let us denote an image sequence by I : X� T ! R, where
X � R2 is the image domain and T is the sampled time interval of
the sequence. Every optical flow estimation method is based on
an assumption on the relationship between the searched motion
field w : X! R2 at time t and the image Ið�; tÞ. The most natural
and widely used assumption is that pixel intensity remains con-
stant during displacement. The brightness constancy constraint
equation (BCCE) is then defined by:
2 http://sintel.is.tue.mpg.de/.
3 http://www.cvlibs.net/datasets/kitti/index.php.
dI
dt
ðxðtÞ; tÞ ¼ 0: ð3Þ

Other feature constancy can be chosen, each encoding specific
image properties, which will be discussed in Section 3. The discrete
approximation of (3) at a given pixel x 2 X and time t yields:

IðxþwðxÞ; t þ 1Þ � Iðx; tÞ ¼ 0: ð4Þ

However, constraint (4) usually generates particularly difficult opti-
mization problems. It can be much more tractable to consider the
expanded version of (3) with partial derivatives, resulting in a linear
version of (4):

@I
@x1
ðxÞuðxÞ þ @I

@x2
ðxÞvðxÞ þ @I

@t
ðxÞ ¼ 0; ð5Þ

where wðxÞ ¼ ðuðxÞ;vðxÞÞ> and x ¼ ðx1; x2Þ>. For the sake of clarity,
we have dropped the dependency of I over t. We can also write
(5) as

rIðxÞ �wðxÞ þ ItðxÞ ¼ 0; ð6Þ

where r� ¼ @�
@x1
; @�
@x2

� �T
is the spatial gradient operator, It ¼ @I=@t is

the partial temporal derivative and the dot ‘‘�’’ denotes the inner
product.

The linearized brightness constancy constraint (5) provides only
one equation to recover the two unknown components of wðxÞ.
From this single constraint, the component of the motion vector
wðxÞ in the direction of the image gradient can be computed, but
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Fig. 2. Examples of frames and ground truth from the main optical flow evaluation benchmarks.
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the two-dimensional problem remains under-constrained. This is
known as the aperture problem, stating that motion of linear
structures, as it is assumed by (5), is by nature ambiguous if the
neighboring context is not taken into account.

To make the problem well-posed, it is necessary to introduce an
additional constraint encoding a priori information on w. The a pri-
ori will take the form of spatial coherency imposed by either local
or global constraints, described in Sections 4 and 5.

It is important to mention that while (4) holds for motion of
arbitrary magnitude, the continuous motion constraint (5) restricts
its validity domain to the linear region of I, which usually
corresponds to small displacements or very smooth images. The
linearization is nevertheless necessary for methods relying on
differential computations. The standard technique to cope with
large displacements is to embed the estimation in a coarse-to-fine
scheme [27,81,174]. The idea is to create a pyramid of coarse-to-fine
downsampled versions of the original image. At the coarsest level,
the linearity domain of the image encompasses large displacements
and the estimation can be based on (5). The estimations at coarser
levels serves to warp the image at subsequent finer levels, where
the estimation then reduces to a search for small motion incre-
ments. The solution is iteratively refined at each level until reaching
the full image resolution. It is possible to continue the process in still
higher resolutions created by interpolation, as proposed in the
coarse-to-overfine approach [5]. The solution at each level of the
multi-resolution pyramid can be interpreted as a fixed point in
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the direct optimization of the non-linearized constancy Eq. (4) [45].
Almost all differential methods concerned with large displacements
resort to the multiscale approach, possibly with some additional
strategies to avoid its drawbacks.

The main undesirable effect produced by smoothing at coarse
levels is the loss of small and rapidly moving objects in the final
estimated flow field. If the object extent is smaller than its dis-
placement, it is likely to be smoothed out at coarse levels and then
‘‘forgotten’’. Avoiding this drawback has been a very active topic in
recent years. It has been accomplished mainly by integrating fea-
ture matching in the estimation process, as will be discussed in
Section 7, or by resorting to discrete optimization methods, as
detailed in Section 5.2.2.
3. Data cost

The deviations from the data constancy assumption (3) are
penalized at every pixel x 2 X via a data potential qdataðx; I1; I2;

wÞ, defined in the case of brightness constancy (4) as

qdataðx; I1; I2;wÞ ¼ /ðI2ðxþwðxÞÞ � I1ðxÞÞ; ð7Þ

where I1 ¼ Ið�; tÞ and I2 ¼ Ið�; t þ 1Þ denote two successive frames,
and /ð�Þ is the penalty function.

The brightness constancy assumption is in practice an imperfect
photometric expression of the real physical motion in the scene. A
common counter-example consists in moving the light source of an
immobile scene, producing brightness variations without motion
of any objects. In general, while it is possible to create synthetic
sequences for which the constraint strictly holds [52], it is often
violated in practice in case of changes in the illumination sources
of the scene, shadows, noise in the acquisition process, specular
reflections or large and complex deformation.

Choosing a quadratic penalty function /ðzÞ ¼ z2, as in early
works [120,170], makes optimization much easier, but assumes
that the residual of the brightness constancy constraint Eq. (3) is
normally distributed and thus gives a strong influence to large
localized violations mentioned above. It is then common to resort
to robust statistics [125] to reduce the impact of local errors con-
sidered as outliers. Common robust alternatives to quadratic
penalty are the L1 norm [45], the Tukey function [193], the
Lorentzian norm [27] or the Leclerc’s function [174]. Adapted opti-
mization schemes must then be adopted to cope with non-linearity
or non-convexity induced by the robust terms, as will be discussed
in Sections 4.2 and 5.2. A priori smoothness assumption based on
parametric constraint (Section 4) or explicit regularization
(Section 5) also counterbalances local invalidity of data constancy.

Robust statistics and regularization treat the problem of viola-
tions of the constancy assumption by considering it as noise, with
underlying distribution assumptions [155,221]. The considered
distributions may not suitably model the possibly large localized
violations implied by the above listed causes. Therefore, a large
number of alternatives to brightness constancy have been pro-
posed, aiming at more stable invariance properties. A few
experimental studies have compared performances of different
data costs given fixed optimization and regularization contexts
[227,252].

Let us notice as a preamble to this section that it is difficult in
practice to design a data term independently from the spatial
coherence constraint and the optimization strategy to which it will
be associated. For example, sophisticated feature conservation
usually involves specific optimization difficulties, and thus
requires careful design of the optimization solution. We will dedi-
cate this section to a review of the main classes of data terms for
optical flow estimation, emphasizing their validity domains and
their limitations, independently from the estimation context in
which they were elaborated.

3.1. Beyond brightness constancy

We explore several matching costs aiming at overcoming the
drawback of the brightness constancy, in particular its sensitivity
to noise and illumination changes.

3.1.1. Image transformation
A first class of data potentials exploits the same pixel-wise form

as (7), but operates on a transformed version f ðIÞ of the original
image sequence:

qdataðx; I1; I2;wÞ ¼ /ðf ðI2ÞðxþwðxÞÞ � f ðI1ÞðxÞÞ ð8Þ

Image smoothing. We can first notice that Gaussian smoothing is
applied as a pre-processing step by most methods [45,286], in
order to reduce the influence of noise. It can be viewed as a mod-
ified version of brightness constancy, setting f as a Gaussian filter-
ing operator.

High-order constancy. Image derivatives possess illumination
invariance properties that are well suited for motion estimation.
The constancy of spatial image gradient, defined by f ðIÞ ¼ rI, has
been introduced in [245] for its ability to overcome the aperture
problem when the determinant of the Hessian is non-zero.
However, when applied on the directional derivative vectors, the
gradient conservation only holds for translational or divergence
motions. To achieve rotational invariance, the penalty should
rather be applied on the magnitude of the derivatives, that is
f ðIÞ ¼ krIk [45]. It was subsequently used in the context of the
local approach (see Section 4) in [240] and integrated in global
variational methods (see Section 5) in [45].

Despite a demonstrated performance gain in the case of addi-
tive illumination changes compared to brightness constancy, gra-
dient information is also much more sensitive to noise, and
disappears in poorly textured regions. Therefore, it is always used
in addition to brightness constancy. A large number of methods
rely on this combination and achieve good results [45,181,279].
Finally [198] investigated higher-order data constancy like
Laplacian of the image f ðIÞ ¼ DI, or norm and determinant of the
Hessian f ðIÞ ¼ jH Ij; f ðIÞ ¼ detðH IÞ.

Texture. Another way to obtain robustness against illumination
changes is to work with the cartoon and texture components of the
image, as initiated in [263]. The decomposition proposed in [8]
consists in first obtaining the structure part IS by discontinuity-p-
reserving smoothing (using the ROF model [210] in [263]), and
then deriving texture part IT by subtracting IS to the original image.
Additive illumination changes only affect the cartoon image while
the texture image is less impacted. However, even if IT captures
most image information, it is still insufficiently discriminative in
some regions, and it is also more sensitive to noise than IS. To limit
this drawback, the texture image used to compute optical flow is
usually blended with the cartoon part by a parameter c
[154,231,261]: f ðIÞ ¼ IT � cIS.

Color spaces. When dealing with color images, several photo-
metric-invariant color spaces can be exploited. In particular, mul-
tiplicative illumination invariance is essential for realistic
illumination models [246] and is achieved in the HSV space by
the hue channel (local and global changes) and the saturation
channel (only global changes) [176]. As for previously mentioned
image transformations, the benefit in illumination change regions
coincide with a loss of information in other parts, and the color
channels are in practice combined with the intensity valued chan-
nel [286]. Other color spaces like normalized RGB [103] or spheri-
cal space [246] have been investigated.
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Combination of linear filters. As mentioned before, it is often nec-
essary to combine several constancy assumptions. It has been
achieved in [259] by considering K different linear filters f k provid-
ing a system of constancy equations to be solved at each pixel. In
[232], a learning approach is proposed for finding the best combi-
nation of constraints. The data constraints induced by the linear fil-
ters f k are imposed through a Gaussian Scale Mixture (GSM) /GSM .

qdataðx; I1; I2;wÞ ¼
XK

k¼1

/GSMðf k � I2ðxþwðxÞÞ � f k � I1ðxÞ;NkÞ; ð9Þ

where � denotes the convolution operator and Nk are the para-
meters of the GSM associated to each filter. By learning the para-
meters of the GSM from a set of ground truth sequences, the
‘‘weights’’ of each filter in (9) are automatically determined. These
weights are constant in the whole image. Spatially adaptive combi-
nation is also of upmost importance and will be addressed in
Section 3.2.1.

3.1.2. Patch-based similarity measures
Rather than pre-filtering images, neighborhood information can

be integrated directly in the data term by patch-based similarity
measures. Let us point out that a major issue with patch-based
measure is the determination of the size an possibly shape of the
patch.

Filtering the data term. In addition to pre-smoothing the images
(8), Bruhn et al. [49] proposed to filter the data potential as
follows:

qðx; I1; I2;wÞ ¼ f /ðI2ðxþwðxÞÞ � I1ðxÞÞð Þ; ð10Þ

where f is chosen as a Gaussian filter. While it was demonstrated
beneficial for very noisy sequences, this choice also significantly
blurs motion discontinuities and degrades the overall performance
for low amount of noise, compared to pixel-wise data term, as
emphasized in [286]. This limitation is addressed in [78,206] by
replacing the Gaussian filtering with anisotropic discontinuity-pre-
serving filtering (e.g. bilateral filtering in [78] and tensor voting in
[206]). The relation between adaptive filtering and non-linear diffu-
sion has also been exploited in [48].

Correlation-based measures. Similarity measures based on cross-
correlation have been extensively used for various correspondence
problems [44]. Normalized Cross Correlation (NCC) is usually pre-
ferred for its invariance to linear illumination changes. The NCC for
a window WðxÞ centered at pixel x is defined as

NCCðx; I1; I2;wÞ¼
P

y2WðxÞ ðI2ðyþwðxÞÞ�l2ðxþwðxÞÞÞðI1ðyÞ�l1ðxÞÞ
t1ðxÞt2ðxþwðxÞÞ

ð11Þ

where for i ¼ f1;2g; liðxÞ is the mean and tiðxÞ the standard devia-
tion of Ii in the window WðxÞ. The associated data potential is

qdataðx; I1; I2;wÞ ¼ 1� NCCðx; I1; I2;wÞ: ð12Þ

NCC is actually discriminative enough to be used in a matching pro-
cedure without additional regularization, and produces coarse but
reasonably robust motion fields. It is used in several applications
like stereovision [72], fluid flow analysis [22] or biological imaging
[146] where it also enables direct physical measures for diffusion
processes.

The computational cost of (11) is a major limitation. Unlike sim-
ple cross-correlation which can be efficiently computed with Fast
Fourier Transform (FFT), the computation of NCC for matching pur-
pose cannot be easily performed in the frequency domain. In [163]
only the numerator is computed with FFT and the denominator is
rewritten as a product of sums, independent of the position of the
pixel and thus efficiently computable with integral images [83]. In
[171] this idea is generalized and the numerator is also computed
with integral images, dramatically reducing the computation time
and making it invariant to the patch size.

The challenge of integrating NCC in a variational optimization
scheme is to cope with its non-differentiability. Indeed, Taylor
expansion on the terms containing wðxÞ in (11) still yields a highly
non-linear potential. The approach of [180,272] has been applied
to NCC but is able to handle arbitrary data terms as well. The
authors directly linearize the data term and compute its spatial
derivatives with finite differences. Werlberger et al. [272] keeps a
second-order approximation to ensure the convexity of the energy,
necessary in the primal–dual scheme used. Another recent tech-
nique allowing fast computation of NCC relies on the fact that
NCC is actually equivalent to the Sum of Square Differences (SSD)
when the images are filtered with the cheaply computed correla-
tion transform [79].

Census. Census transform [283] recently regained interest
and was promoted in [226] for optical flow estimation
[108,118,179,182,183,205,252]. The Census signature is a bit string
reflecting relative value of pixels of a patch with respect to the cen-
ter pixel. By discarding the absolute intensity values, only the
structure of the neighborhood is encoded in the signature, which
makes it robust to illumination changes. It has shown robust
behavior in outdoor scenes and vehicle driving scenarios
[205,226,252]. Integrating the Census transform in variational
optical flow is not trivial since it cannot be easily linearized.
Solutions to remedy this problem are convex approximation
[252], reformulation as a generalization of the gradient constancy
conservation [108] or linearization of the data term [182,205] as
previously mentioned for NCC [272].
3.2. Spatially adaptive data cost

The validity of each of matching costs is limited to a given range
of visual situations. In a single frame, regions can coexist satisfying
a given constancy assumption, and violating others. One solution
could be to linearly combine them to take advantage of their com-
plementary invariance properties. Softly selecting the best con-
stancy constraint at each pixel is usually devoted to the robust
penalty function, limiting the influence of local constraint viola-
tions. However, the data term should ideally be spatially adapted.

We distinguish two classes of methods achieving the spatial
adaptivity: (i) optimization of the weights of a linear combination
of data potentials, and (ii) estimation of the spatial distribution of
the errors attached to a single data potential. The normalization of
the data term used in [214,221,286] could fall in this category since
a spatially varying weight is applied to the data term. It is derived
from the linearized brightness constancy equation to prevent too
strong constraints in regions of high image gradient (see a detailed
interpretation in [286]).
3.2.1. Combination of constancy assumptions
The combination of P data constraints can be expressed as the

weighted sum of their associated potentials qpðx; I1; I2;wÞ:

qdataðx; I1; I2;wÞ ¼
XP

p¼1

kpðxÞqpðx; I1; I2;wÞ: ð13Þ

Weights kpðxÞ are spatially variant and have to be optimized to
locally favor different data terms.

The idea of combining several data constraints has already been
explored twenty years ago in [116]. In addition to the classical
brightness constancy, the authors exploited a complementary
sparse edge-based constraint. Weights kpðxÞ are binary confidence
measures derived from hypothesis testing providing evidence on
each constraint.
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In [279], intensity and gradient conservation are combined and
their complementarity is experimentally demonstrated. The
weights are defined to operate a binary selection between the
two constraints and are obtained by considering a mean field
approximation of (13), which intuitively amounts to selecting the
constraint having the lower (normalized) potential. This idea has
been used subsequently in [181].

The work of [140] addresses the problem in its most general
form (13), allowing the combination of an arbitrary number and
type of data conservation assumptions. A confidence measure for
arbitrary data term is designed as an extension of the feature dis-
criminability [218] to data discriminability. The confidence mea-
sures are used as local constraints on the weights kpðxÞ in (13),
and a regularization on kpðxÞ is also imposed. The weights are then
optimized jointly with the motion field.

3.2.2. Modeling intensity variations
Another way to handle errors related to the constancy con-

straint is to design more elaborated models of intensity variations.
The goal is to explicitly model the intensity changes due to envi-
ronmental effects so as to isolate more accurately motion-induced
changes.

The most common approach introduces an additional variable
representing deviations from constancy assumption by a function
eðx; I1; I2; nÞ parametrized by the vector n:

qdataðx; I1; I2;w; nÞ ¼ /ðI2ðxþwðxÞÞ � I1ðxÞ � eðx; I1; I2; nÞÞ: ð14Þ

The model proposed by [188] is composed of an offset change
no : X! R, accounting, e.g., for moving shadows or highlights, and
a multiplicative change nm : X! R encoding linear illumination
variations. The error function can then be expressed as

eðx; I1; I2; nÞ ¼ nmðxÞI1ðxÞ þ noðxÞ: ð15Þ

This general formulation has been exploited in a number of works,
considering either the offset parameter alone [55,89,193], the mul-
tiplier alone [284] or both parameters [142,159,239]. They may dif-
fer on the type of spatial coherency, the penalty function, or the
optimization strategy. A smoothness constraint is assumed on no

and nm, either with a local parametric form [188,193] or a global
regularization [55,89,142,159,239]. The offset formulation is also
used in [10,88], but is associated to a sparsity constraint aiming
at retrieving violations due to occlusions. The more general
approach of [74] parametrizes intensity changes in terms of
Brightness Transfer Function [106], which coefficients are learned
from training data.

The model (15) is based on a general polynomial approxima-
tion. If specific knowledge about the observed physical process is
available, dedicated models can be designed. A number of physical
constraints are explored in [110], where a generic local estimation
framework is designed based on a Taylor expansion of arbitrary
data constraints similar to the subsequent methods [180,272].

4. Parametric approach

As explained in Section 2.4, a spatial coherence constraint on
the flow field must be added to the previously described data
terms. To this end, one can impose the flow field to follow a para-
metric model in regionR# X. The motion field wa : R ! R2 is then
fully characterized by the associated parameter vector a. When the
region R is a small sub-domain of the image, these methods are
referred to as local approaches. The objective energy to be mini-
mized is the weighted sum of the potentials provided by each pixel
of R:ba ¼ arg min

a

X
x2R

gðxÞ qdataðx; I1; I2;waÞ ð16Þ
where gðxÞ is a spatial weighting function controlling the influence
of pixel x in the estimation.

It is crucial to determine the local estimation domain where the
parametric form of the motion model is a valid approximation of
the true motion. Low-order polynomial motion models like trans-
lation or affine deformation can usually represent motion in small
neighborhoods, whereas more complex models like deviations
from affine constraint or combination of basis functions can deal
with larger regions.

We first give an overview of the mostly used motion models
and their associated optimization strategies. Secondly, we discuss
about the different ways to define appropriate local estimation
supports.

4.1. Motion models

The choice of the motion model is driven by a trade-off between
efficiency and representativeness. Complex nonlinear and physi-
cal-based models can be exploited to model deformations for
image registration [224]. These models are particularly well adapt-
ed to physically constrained situations as they can be encountered
in medical imaging, and in particular to capture smooth deforma-
tions. In contrast, optical flow is dealing with temporal sequences
of arbitrary content, usually involving motions of several objects
with unrelated behaviors, generating motion discontinuities as
well as smooth motion parts. As a result, it is difficult to capture
the whole complexity of motion fields with a single unifying and
computationally tractable parametric model. Therefore, attempts
in this direction are not frequent and not among the best perform-
ing methods in optical flow benchmarks. The approach of most
parametric methods for optical flow is rather to rely on much sim-
pler motion models, mostly polynomial models, and to restrict
their application to local domains, where they can represent accu-
rate approximations.

We will restrict ourselves to linear models of the form

waðxÞ ¼
XK

k¼1

bkðxÞakðxÞ; ð17Þ

where b ¼ fbkðxÞgk2½1;K�; bkðxÞ 2 R2 are basis functions and
aðxÞ ¼ fakðxÞgk2½1;K� are the parameters to be optimized. Other para-
metric models than those described here can be found, like planar
surfaces or rigid body [23], or wavelet bases [75,76,217,274]. It
can also be noted that parametric models are sometimes completed
with explicit regularization terms (see Section 5) imposed on the
parameters themselves [75,133,175,191].

4.1.1. Polynomial models
Polynomial models are among the most compact parametric

representations of motion fields and are also remarkably well suit-
ed to retrieve local physical motion of individual objects and even
deformable motion. The polynomial model can be seen as a special
case of (17), which we write for clarity as:

whðxÞ ¼ BðxÞ h; ð18Þ

where BðxÞ is a matrix determining the form of the model and h is
the parameter vector. Apart from the exception of [191] where
the parameters are spatially variant and regularized, the parameter
h is kept constant over the estimation domain. The matrix BðxÞ
depends on the pixel coordinates x 2 R, and the order of the poly-
nomial determines the complexity of the motion field. Low-order
polynomials are usually sufficient to model smooth motion fields,
and their small number of parameters allows for efficient computa-
tion. The two mostly used polynomial models correspond to the
translation and the affine motion:
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Translational : h ¼ ða1; a2Þ>; BðxÞ ¼
1 0
0 1

� �
Affine : h ¼ ða1; a2; a3; a4; a5; a6Þ>;

BðxÞ ¼
1 x1 x2 0 0 0
0 0 0 1 x1 x2

� �
with x ¼ ðx1; x2Þ>.

The translation assumption is very restrictive and must be
applied to very small regions [170]. The physical assumption
underlying the affine model is a rigid motion of 3D planar surfaces
projected orthogonally on the image plane. Higher-order polyno-
mials can model more complex situations, but are still too smooth
to allow for motion discontinuities. For example, the 8-parameter
quadratic model represents rigid motion of a planar surface in per-
spective projection. The small number of parameters of the affine
model and its realistic local assumption make it often considered
as the best trade-off between complexity and descriptiveness
[27,88,175,193]. The accuracy of local affine motion estimation in
appropriate estimation support was experimentally demonstrated
in [88].

4.1.2. Learned basis
The basis functions can also be learned from a set of training

flow fields. As for polynomial models, the resulting learned motion
models cannot describe motion of complex scenes, but they are
able to retrieve a larger diversity of local motion patterns, includ-
ing discontinuities.

The design of the training set reflects the assumption on the
form of the flow. In a generic point of view, Black et al. [32] used
synthetic motion fields representing simple motion patterns. The
method of [190] relies on a large number of patches of ground
truth motion fields. The training set can be dedicated to a specific
application, as in [87] where the aim is to estimate mouth motion.
To avoid resorting to external ground truth, [93] defines the train-
ing set on the processed sequence itself. The basis set is composed
of trajectories constructed by feature tracking on large temporal
scales, in regions ensuring reliable tracks. In all these works, an
orthogonal basis of flow fields is generated by PCA decomposition,
conserving only the first K components containing most of the vari-
ance of the training set.

4.1.3. Free-form deformations
The free-form deformation model (FFD) [211] has been original-

ly introduced for image registration and has demonstrated great
efficiency to retrieve smooth deformations. The displacements
are defined on a coarse regular subgrid of the image and is interpo-
lated on the final resolution with B-splines. The motion basis bkðxÞ
is thus formed with the displacements of the K control points and
coefficients akðxÞ are B-spline influence functions. The dimension-
ality reduction induced by the subsampling of the image grid
makes the computation much easier, and the spatial coherence of
the deformation is ensured by the B-spline interpolation. On the
counterpart, the framework cannot retrieve sharp motion disconti-
nuities, while it is necessary for optical flow applications.
Image-adaptive non-regular control points distribution [212] or
coarse-to-fine spacing strategies [211] are possibilities to address
this issue.

The work of [236] was the first to apply this idea to optical flow,
with non-uniform control points defined on image-driven quad-
trees. In [201], B-Splines defined on a uniform grid are used to
retrieve smooth deformations. In [101] the problem is turned in
a discrete setting. The range of motion labels is iteratively adapted
by estimating a local uncertainty covariance. Despite good results,
the method is still limited by over-smoothing. The method of [219]
addresses the discontinuity problem with a sparsity constraint on
the B-spline coefficients, allowing to modulate the influence of the
control points. Recent approaches [100,101,219] also add an
explicit regularization on the motion field, overlapping with the
methodology described in Section 5.

4.2. Optimization

Parametric models are usually associated with the penalty of a
pixel-wise data constancy constraint (7). In case of intensity con-
stancy (5), energy (16) then writes:

EðaÞ ¼
X
x2R

gðxÞ/ rIðxÞ �waðxÞ þ ItðxÞð Þ ð19Þ

where rI is the image gradient and It ¼ @I=@t. The special case of a
quadratic function / and a translational model as in [170] leads to a
very simple optimization problem, since the cancelling of the
derivatives of (19) amounts to solving the linear system Ma ¼ b,
with

M ¼

X
x

gðxÞ I2
x1
ðxÞ

X
x

gðxÞ Ix1 ðxÞIx2 ðxÞX
x

gðxÞ Ix1 ðxÞIx2 ðxÞ
X

x

gðxÞ I2
x2
ðxÞ

0BB@
1CCA

b ¼ �

X
x

gðxÞ Ix1 ðxÞItðxÞX
x

gðxÞ Ix2 ðxÞItðxÞ

0BB@
1CCA

where Ix1 and Ix2 are the partial derivatives of I respectively along
the horizontal axis x1 and the vertical axis x2. The rank of M allows
one to decide if a unique solution of the linear system exists, and
can be used to adapt the size of the local domain R (see
Section 4.3.2). Despite the limitations of the quadratic penalty, this
approach has become very popular for its implementation sim-
plicity, low computational cost and available code in the OpenCV
library [36,41].

However, robust estimation is often advocated [27,32,76,
193,215] as mentioned in Section 3, especially for polynomial
models, to deal with the frequent case of multiple motions in the
estimation domain. Among the variety of optimization methods
used in case of robust penalty function, the Iterative Reweighted
Least Squares (IRLS) [119] and gradient descent approaches have
mostly been used. IRLS proceeds by successive optimizations of
quadratic problems weighted by a function of the current estimate
and is implemented in the Motion2D software [193,215] with.
Gradient descent approaches are often coupled with Graduated
Non-Convexity (GNC) [27,33] to cope with non-convexity of (19).
Regarding the slow convergence of steepest descent, it is prefer-
able to use second order approximations and Newton methods,
or quasi Newton methods like L-BFGS or Levenberg–Marquardt,
approximating the Hessian for large dimension problems.

4.3. Neighborhood selection

As previously mentioned, the spatial adaptation of the para-
meters aðxÞ is a way to cope with complex and discontinuous flow
fields [93,191,219]. This approach often involves a priori con-
straints on the spatial distribution of aðxÞ and is thus strongly
related to the methods that will be presented in Section 5. Such
a dense parameter map moves away from the compactness of
parametric models.

On the other hand, when parameters are constant over the esti-
mation domain R, the resulting motion field is smooth and can
constitute a valid approximation only in regions of coherent
motion. The region R must be large enough to enable motion esti-
mation, while small enough to keep valid the parametric
approximation (generalized aperture problem [27]). We will
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describe below the strategies for defining R in the case of constant
parameters aðxÞ ¼ a over R, for polynomial models.

4.3.1. Entire domain
Despite their inability to retrieve realistic motion in arbitrary

scenes, polynomial models combined with robust estimation are
well adapted to capture the dominant image motion. Applied in
the whole image domain X, they become particularly useful to
separate or compensate the camera motion [193]. Applications to
moving object detection [194] or to action recognition [202] are
among the most common ones.

4.3.2. Square patches
The approach initiated by [170] performs independent estima-

tions in small square or circular patches. Most of the related meth-
ods use fixed patch size, and conserve the velocity vector deduced
from the estimated motion model at the square center
[12,26,141,284]. This choice is very popular for its simplicity of
implementation and can be naturally parallelized [222,284]. It is
still extensively used for numerous applications. However, follow-
ing the generalized aperture problem, patches centered at each
pixel with a fixed size are likely to contain either multiple motions
or no image gradient.

Multiple motions in a single patch can be partially handled with
robust estimation by rejecting secondary motions, considered as
outliers [27,95,193,215].

The second option is to adapt the size or the position of the
patch so that it contains an unimodal motion distribution. The size
of the patch can be adapted with a bias-variance criterion [173], or
based on a confidence measure on the reliability of the local
domain for parametric estimation. Starting from a small patch size,
it is thus possible to increase the size of the patch until the condi-
tion for a reliable domain is violated [173,215]. In the translational
model case, one can analyze the singularity of the matrix M of the
linear system (20) and, for example, impose a minimum threshold
to the maximum eigenvalue of M [17]. Rather than adapting the
size, [132] adapts the position of the patches. Patches corrupted
by strong intensity edges are displaced by a mean-shift procedure
to reach more homogeneous regions. The method described in [88]
adapts both size and position of the square patches. This adapta-
tion is performed thanks to the aggregation framework decoupling
the estimation of candidates with predefined sizes and positions,
and their selection achieved with a global model (see Section 5).

Finally, local adaptation of the weights gðxÞ in (16) is another
way to adapt the estimation support. It can be done for instance
with bilateral filter weights as in [78], or using the non-linear
structure tensor [48].

4.3.3. Segmented regions
The optimal supports to perform polynomial motion estimation

ideally correspond to a segmentation of the image in coherently
moving regions. We briefly describe two types of approaches:
independent image segmentation and joint estimation of motion
and region supports or frontiers.

Image segmentation. While the ultimate goal is to segment the
unknown motion field, color-based image segmentation is a much
simpler alternative which can help motion estimation. It can be
reasonably assumed that motion discontinuities coincide with
image discontinuities (but the inverse is far from being true). It
implies that an image segmentation is a motion field over-segmen-
tation, and obtained regions are thus guaranteed to contain no
motion discontinuity. However, merely estimating motion in the
resulting regions is problematic for two reasons.

The first limitation is that the segmented regions may not con-
tain enough information for motion estimation. Parametric estima-
tions in these regions must be performed by circumvented ways.
The very fine over-segmentation of [287] imposes for instance to
perform region matching. Generally, an independent coarse and
cheap motion estimation is fused with the color image segmenta-
tion to overcome the lack of information [28,34,278]. In [278],
hybrid regions are found by applying mean-shift segmentation in
the extended space of color and motion. Differently, [28,34] fit a
parametric flow field on the coarse initial motion field, obtained
with a global regularized method [30] for [28], and with the sparse
KLT tracker [218] for [34].

The second problem is that spatial coherence between estimat-
ed motion in neighboring segments is not ensured. Global regular-
ization (see Section 5) can here be imposed, either on the motion
parameters associated to each region [278] (similarly to [133],
not resorting to image segmentation), on the coarse motion field
completing color information [28] or, in a layered approach, on
the layer assignment function [34].

Joint estimation and segmentation. Color segmentation is usually
too dependent on the image content to make it the basis of a robust
motion estimation method. Rather than considering segmentation
and estimation as two independent tasks, most methods have a
coupled approach of the problem. Motion parameters and region
supports are jointly estimated by minimizing a global energy
imposing a coupling between them. This approach has first been
addressed as a labeling problem [37,195] where the label field
l : X! fl1; . . . ; lNg associated to the N regions is estimated jointly
with the motion parameters in each region a ¼ fa1; . . . ;aNg, in a
discrete Markov Random Field framework:

Eða; lÞ ¼
X
x2Xd

qdata x; I1; I2;walðxÞ

� �
þ
X
hx;yi

qMRF
reg ðlðxÞ; lðyÞÞ; ð20Þ

where Xd is the discrete image domain and qMRF
reg ðlðxÞ; lðyÞÞ is a

regularization prior on the label field, typically chosen as
qMRF

reg ðlðxÞ; lðyÞÞ ¼ 1� dðlðxÞ; lðyÞÞ, with dð�Þ the Kronecker function.
The optimization is done alternatively between motion and regions.
Another viewpoint in a variational framework extends the
Mumford–Shah formulation of image segmentation [184] to motion
segmentation [66,199,247]. In addition to the data fitting potential
inside each region Ri, a constraint restricting the length LðCÞ of the
set of region boundaries C is imposed globally, resulting in the
energy

Eða;CÞ ¼
XN

i¼1

Z
Ri

qdataðx; I1; I2;wai
Þdxþ mLðCÞ: ð21Þ

The minimization is performed alternatively on the flow and the
boundaries. Minimizing (21) with respect to C requires a differen-
tiable approximation of the contour length LðCÞ. It is common to
implicitly represent the partitioning of the image with level sets,
which allows to represent the interior of the regions by the sign
of the function, as well as the total length of the boundaries by their
level lines. One level set function can only represent two regions.
For an arbitrary number of N regions, it is possible to define N cor-
responding levels sets, at the price of a high computational cost and
a more complex energy to prevent vacuums in the partitioning.
Other strategies can be employed, as the one of [56] re-used in
[66], for more sophisticated combinations between functions. In
[199], this level set framework is augmented with an edge-driven
tracking and background detection. In [207], the two images are
jointly segmented, and they influence each other through a dynam-
ic prior term determined by the similarity of the two evolving
shapes. Segmentation of static and dynamic textures is performed
in [84] by assigning different data conservation assumptions to each
class. A graph-cut optimization scheme has been proposed in [80].
These two formulations (20) and (21) can be found in numerous
other works [137,175,213,244]. Similarly, layered approaches
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[9,223,231,234,257,277] aim at decomposing the observed scene
into overlapping layers and introduce information about depth
ordering of regions. An important interest of such methods is to
provide a natural occlusion handling framework.

Two main drawbacks affect the joint motion estimation and
segmentation approach. First, alternating minimization w.r.t.
regions and flow fields is computationally expensive. The related
layered approach [233,234] achieving state-of-the-art results
requires several hours to process a pair of 640� 480 pixels, and
even GPU-based implementation [244] can need up to an hour.

Second, the initialization of motion and segmentation para-
meters usually has a substantial impact on the evolution of the
region contours throughout the minimization procedure.
Therefore, paradoxically, the best performing methods in terms
of accuracy of optical flow fields resort to pre-calculated motion
fields obtained with independent methods to initialize their algo-
rithm. For example, the results reported in [233,244] are obtained
with an initialization by the result of the methods of [231,271]
respectively. Nevertheless it is shown in [244] that the initializa-
tion affects more the speed of convergence than the final result.

Some works exploit more complex flow field representations
than polynomial approximation, by authorizing deformations from
an initial affine model [28,175,233] or an explicit regularized mod-
el [4,46]. Allowing such complex and discontinuous motion fields
in segmented regions actually tends too produce larger regions,
and ultimately leads to global approaches where motion disconti-
nuities are handled by the global modeling itself. Consequently,
regions may not represent coherent motion, but rather a delin-
eation adapted to the specific estimation method. Finally, imposing
prior on shapes and contours has been investigated in medical
imaging [138], but a limited number of regions can be handled at
the same time.
5. Regularized models

In an alternating manner to the parametric representation of
spatial coherence, mostly adapted to smooth deformations, the
global form of the motion field can be imposed by an explicit
regularization term. Motion discontinuities are then no more rep-
resented by the boundaries of the regions delimiting parametric
motion fields, but they are involved in the global model, often con-
sidered as outliers w.r.t. smoothness assumptions. The variational
approach has been initially proposed by [120] and is usually
referred to as the global approach, since the regularization term
interconnects all the pixels of the image and thus requires the opti-
mization of the objective energy to be performed globally. In this
subsection, we review current versions of the regularization model
and optimization strategies.

In its most general form, the energy minimized by global
regularization methods can be written as:

EglobalðwÞ ¼
Z

X
qdataðx; I1; I2;wÞ þ kqregðx;wÞdx ð22Þ

where qdataðx; I1; I2;wÞ is the data potential, as discussed in
Section 3, qregðx;wÞ is the regularization potential encoding an a pri-
ori assumption on the field w, and k is a parameter tuning the bal-
ance between the two terms. Broadly speaking, the regularization
potential aims at smoothing the motion field in regions of coherent
motion while preserving motion discontinuities at the boundaries
of moving objects. Finding the trade-off can also be partially
addressed in the adaptation of the balance parameter k
[112,156,189,286].

A major interest of the global variational framework is its
versatility, allowing one to model different forms of flow fields
by combining different data and regularization terms. One must
nevertheless keep in mind that minimizing (22) is often a tricky
task. The potentially unlimited combinations of data terms and
regularization terms is restricted in practice to those compatible
with efficient minimization. Besides, advances in optical flow have
often been correlated with new possibilities offered by optimiza-
tion techniques. For example, efficient Primal–Dual minimization
for Total Variation regularization [55] have motivated a number
of optical flow models [244,269,285]. The development of efficient
discrete optimization techniques based on graph cuts [40] or mes-
sage passing [147] also inspired various works [59,161,181].
Another consequence of the close intricacy between energy model
and optimization technique is the difficulty to compare perfor-
mances of different models, as global optimum is in general not
guaranteed for sophisticated energies and the quality of the local
optimum depends on the type of optimization method.

We will detail in Section 5.1 existing regularization models
independently from optimization techniques, for the sake of
clarity. Section 5.2 focuses on the dependency between specific
energy models and optimization methods.

5.1. Regularization models

5.1.1. Spatial flow gradient constraint
The most natural and widely used way to impose smoothness of

the motion field is to penalize the magnitude of the flow gradient:

qregðx;wÞ ¼ hðx; I1Þ/ðkrwðxÞk2Þ ð23Þ

where /ð�Þ is the penalty function and hðx; I1Þ is a weighting
function.

A taxonomy of optical flow regularizers has been proposed in
[266]. The authors focus on convex and rotational invariance prop-
erties, and prove uniqueness of the solution in each case. For each
regularization of type (23), they show the equivalence between the
resolution of the Euler–Lagrange equations associated with energy
(22) and diffusion filtering. In addition, a diffusion tensor is derived
for each particular variation of (23). We will give a more succinct
overview, taking only some elements from this classification and
integrating more recent approaches.

Flow-driven regularization. In flow-driven approaches, no rela-
tion between the form of the flow field and the structure of the
image is assumed. The weighting function is thus hðx; I1Þ ¼
1; 8x 2 X. The seminal formulation of [120] adopts a quadratic
penalization function:

qregðx;wÞ ¼ ruðxÞ2 þrvðxÞ2; ð24Þ

with wðxÞ ¼ ðuðxÞ;vðxÞÞ>. The quadratic penalization being unable
to capture motion discontinuities, the introduction of a comple-
mentary line process to handle motion discontinuities in the MRF
framework [116,153], and the use of robust sub-quadratic penalties
[27,77,174] have soon been employed to overcome the problem.
Among the wide panel of robust functions, the popular para-
meter-free Total Variation (TV) prior, has interesting and useful
properties [45,63,279,285]. Contrary to most other robust norms,
the TV yields a convex constraint facilitating optimization. The
non-differentiability in 0 is generally alleviated by using the
regularized version /ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ �2
p

, where � is a small constant.
Associated to proximal splitting minimization, TV involves solving
several ROF (Rudin–Osher–Fatemi) models [210], for which very
efficient algorithms exist [54]. A series of optical flow estimation
methods have exploited this idea for fast and accurate minimization
[55,263,272,285].

TV regularization actually favors piecewise constant flow fields.
This framework is known to transform a smoothly varying variable
to a succession of small discontinuous constant steps (staircasing
artifacts). This undesirable effect can be reduced by replacing the
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L1 penalization by a quadratic one for small gradient magnitude,
which is the behavior of the Huber norm [220,271]. Another possi-
bility is to penalize higher-order derivatives of the flow, as done in
[241] for the second derivative, to favor piecewise affine flow
fields. The Total Generalized Variation (TGV) [43], generalizes L1

penalization to arbitrarily high order derivatives. The performance
gain of the second order TGV has been experimentally shown for
smooth deformation conditions, for which the staircasing effect is
prominent with TV regularization [42,205,252].

Despite the demonstrated performance of TV due to its algorith-
mic attractiveness, the real distribution of optical flow derivatives
has been shown to follow a more heavy-tailed and concave distri-
bution [208]. Finding good approximate solutions for non-convex
priors has motivated a number of works and will be discussed in
Section 5.2. When appropriate minimization strategy is available,
like graph cuts or the recent work of [192], this kind of penalty
functions has proven to yield improvements compared to the TV
model. Efficient methods to minimize Potts model have also
recently been investigated [53].

Inclusion of image gradient information. It is natural to assume a
link between the motion field and its source image I1. As already
stated in Section 4.3.3 about the relationship between motion
and image segmentation, it is reasonable to consider that motion
discontinuities coincide with image discontinuities delineating
moving objects. This information can be incorporated in the
regularization through the weighting function hðx; I1Þ taken as a

smooth decreasing function of krIk2 [2,10,181,263,279], often
defined as

hðx; I1Þ ¼ e�krIðxÞk2=12
; ð25Þ

where 1 is a parameter setting the influence of the image gradient
on the regularization. Despite the risk of over-segmentation, this
simple weighting strategy usually improves experimental results.

The weighting function (25) is isotropic since the smoothing is
modulated by the same value in all the directions. This is subopti-
mal since we would ideally like to prevent the smoothing only
across the boundaries, and allow it along them. This can be
achieved by defining the regularization axes differently from the
horizontal and vertical axes. The eigenvectors s1 and s2 of the struc-
ture tensor RqðxÞ ¼ Kq � ½rIðxÞrIðxÞ>� are well adapted since s1 is
oriented across local image edges and s2 is orthogonal to s1. This
idea has been first introduced in [186], which regularizer has been
rewritten in [286] as:

qregðx;wÞ ¼
1

krIðxÞk2 þ 2j2
j2 u2

s1
ðxÞ þ v2

s1
ðxÞ

� ��
þðkrIðxÞk2 þ j2Þ u2

s2
ðxÞ þ v2

s2
ðxÞ

� ��
ð26Þ

where usi
; fi ¼ 1;2g, are the derivatives of u along the si axis and j is

a regularization parameter. When j is small, the regularization is
reduced in the direction of the image gradient s1 and strengthened
along image edges s2 depending on the image gradient magnitude

krIðxÞk2. In [186], the eigenvectors s1 and s2 are obtained with a
radius q ¼ 0 for the Gaussian filtering of the structure tensor RqðxÞ.

The classical artifact produced by purely image-driven regular-
ization is an over-fitting of the flow field on image boundaries,
creating artificial motion discontinuities. To reduce the impact of
image gradient in the regularization, Sun et al. proposed in [232]
to keep the s1 and s2 directions, while suppressing the weighting

on krIðxÞk2 in (26) and employing a robust penalty function /:

qregðx;wÞ ¼ /ðu2
s1
ðxÞÞ þ /ðv2

s1
ðxÞÞ þ /ðu2

s2
ðxÞÞ þ /ðv2

s2
ðxÞÞ: ð27Þ

The work of [286] proposed a generalized computation of the
regularization axes, oriented to follow the data constraint rather
than the image edges. In analogy with the previous approach defin-
ing s1; s2 from the structure tensor, they compute the eigenvectors
of a so-called regularization tensor, designed to be complementary
with the data term. The approach of [286] can be generalized to
data potentials built from the combination of L linear constancy
constraints, that is,

qdataðx; I1; I2;wÞ ¼
XL

‘¼1

/ðA‘ðxÞ>wðxÞ þ B‘ðxÞÞ: ð28Þ

For this kind of data potential, the regularisation tensor is defined
by

RqðxÞ ¼
XL

‘¼1

Kq � A‘ðxÞA‘ðxÞ>; ð29Þ

where Kq is a Gaussian kernel and s1; s2 are the eigenvectors of
RqðxÞ. Taking L ¼ 1; A1ðxÞ ¼ rIðxÞ and B1ðxÞ ¼ ItðxÞ yields the
brightness constancy constraint, and the regularization tensor
reduces to the structure tensor. For more elaborated data terms,
as the combination of normalized brightness and gradient constan-
cy used in [286], the resulting axes are more consistent with the
data constraints.

5.1.2. Non-local regularization
The gradient of the flow can only provide a local constraint on

the interaction between pixels. Assuming long range interactions
can capture more precisely the form of the motion field. Such
non-local regularization has been recently investigated in
[79,154,231,269] by describing the structure of the flow in an
extended neighborhood NðxÞ in a discrete setting as:

qregðx;wÞ ¼
X

y2N ðxÞ
kðx; y; I1Þ / kwðxÞ �wðyÞk2

� �
: ð30Þ

The weights kðx; y; I1Þ indicate which pixel y 2 NðxÞ should share a
similar motion with pixel x. They are derived from the bilateral fil-
ter, favoring small distances in the spatial and color spaces [281]:

kðx; y; I1Þ ¼ exp �kx� yk2

r2
s
� kI1ðxÞ � I1ðyÞk2

r2
c

 !
; ð31Þ

where rs and rc control the influence of spatial distance and color
similarity. This approach is image-driven in a similar way to local
weighting (25), in the sense that the smoothness is weighted by
the image edges. Nevertheless, the integration on a large neighbor-
hood mitigates the influence of local gradients and more globally
exhibits the structure of the objects. It is implemented as an alter-
nate weighted median filtering in [231] and interpreted as a low-
level soft segmentation in [272].

The high-order regularization causes severe optimization diffi-
culties discussed in Section 5.2, in particular in terms of computa-
tional cost, increasing with the size of the neighborhood NðxÞ.

5.1.3. Temporal coherence
A natural idea is to extend the spatial regularization described

above to the temporal dimension, assuming that motion varies
smoothly across consecutive frames. Similarly with the spatial
case, smoothness on the time axis can be achieved either locally,
based on the temporal gradient, or taking into account a longer
interval by working on trajectories.

Constraint on the temporal flow gradient. The most straightfor-
ward way to model temporal smoothness is to penalize the tempo-
ral flow gradient, analogously with the spatial flow gradient in
Section 5.1.1 [185]. This simple extension is however unrealistic
since motion of objects necessarily implies a temporal change of
flow fields. Thus, regularization on the spatio-temporal direction
of the motion field is more appropriate, and is achieved in
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[60,187,267,286] by extension of the spatial gradient penalties
described in Section 5.1.1 to the spatio-temporal dimension.
However, the performance of local temporal regularization is
deceiving in most cases.

Constraint on the trajectory. Regularization based on temporal
derivatives is unable to model large displacements. In this case,
temporal coherence is more adequately modeled along the trajecto-
ries of objects. It was done in [29], who does not model explicitly
the trajectories but estimates temporal changes on warped images
to alleviate the problem of large displacements. However, the warp-
ing is done sequentially in the forward direction and is thus prone
to propagate errors. In the same spirit, Volz et al. [253] considers the
same coordinate system for groups of five frames, which implies an
implicit natural registration. The estimation is done jointly in all
frames of the sequence, which overcomes the lack of feedback with
previous frames of [29]. The trajectory constraint in [93] is explicit-
ly imposed by modeling the flow field as linear combination of
long-term trajectory bases, obtained from few reliable tracks.

5.2. Optimization

As previously mentioned the optimization strategy employed to
minimize (22) has a decisive influence on the final result. We give
an overview of the main continuous and discrete optimization
methods and point out their adaptability to specific energy terms.

5.2.1. Continuous methods
Resolution of the Euler–Lagrange equations. The Euler–Lagrange

equations give necessary conditions for minimizing energy of the
form

EðwÞ ¼
Z

X
Fðx;w;rwÞ dx; ð32Þ

which is the case of (22) with
Fðx;w;rwÞ ¼ qdataðx; I1; I2;wÞ þ kqregðx;rwÞ when the regulariza-
tion is a function of the flow gradient (23). They provide the follow-
ing system of partial differential equations:

@qdataðx; I1; I2;wÞ
@u

� k div
@qregðx;rwÞ

@ru

� �
¼ 0

@qdataðx; I1; I2;wÞ
@v � k div

@qregðx;rwÞ
@rv

� �
¼ 0;

8>>><>>>: ð33Þ

where @�
@z is the partial derivative operator with respect to z;divð�Þ is

the divergence operator. The system (33) can be rewritten by intro-
ducing the diffusion tensor D accounting for the relation with diffu-
sion equations [266]:

@qdataðx; I1; I2;wÞ
@u

� k div DðxÞruðxÞð Þ ¼ 0

@qdataðx; I1; I2;wÞ
@v � k div DðxÞrvðxÞð Þ ¼ 0:

8>><>>: ð34Þ

The analogy with diffusion equations makes explicit the direction
and magnitude of the smoothing, which correspond respectively
to the eigenvectors and eigenvalues of DðxÞ.

The discretization of the gradient and divergence operators
yields a large system of equations to be solved. If the system is lin-
ear, its sparsity makes it well suited for iterative solvers like Gauss–
Seidel or successive over-relaxation (SOR) [45]. Nevertheless, the
linear case is in practice only encountered in the model of [120]
using quadratic penalties and a linearized data constraint. To cope
with non-linearity, the typical approach [45,265] is to resort to
time-lagged schemes [62] by handling each source of non-linearity
with fixed point iterations, turning the problem into a succession of
linear systems, and updating iteratively the non-linear parts.
Convergence of the scheme is ensured if the linear systems are
solved exactly, but approximations and frequent updates often
yield in practice good results and much faster convergence.

Fast computational schemes have been employed for achieving
near real-time performance. A multigrid framework has been pro-
posed in [50]. The scheme is very efficient, but it is problem-speci-
fic and requires a substantial implementation effort. Another
approach is to consider the solution of the Euler–Lagrange equa-
tion as the steady state of the corresponding diffusion process
(34), and use the Fast Explicit Diffusion (FED) principle [105] to
accelerate convergence by adapting the time steps. The implemen-
tation of [107] exploits the natural parallelization of explicit
schemes to achieve a quasi real-time version of the variational
method of [286] on GPU, based on FED.

The approach of [45] has become standard because of its sim-
plicity, the wide range of models it can handle, and its good
experimental performances even for non-convex energies
[45,164,253].

Early discretization. The computation of the Euler–Lagrange
equations can be complex or impossible for some forms of the
energy (22). Moreover, one can argue that the discretization of
the Euler–Lagrange equations can generate numerical errors with
respect to the original energy [204]. A way to alleviate these short-
comings is to avoid computing the Euler–Lagrange equations and
instead to directly discretize the energy (22). The equation to solve
is then simply the cancellation of the differentiated discretized
energy:

@EðwÞ
@w

¼ 0: ð35Þ

Solving (35) amounts to inverting a large linear system, similar to
the one obtained by Euler–Lagrange equation discretization for
energies of the form (32). Employing a fixed-point iterations
scheme to cope with non-linearity amounts to an IRLS approach,
which is shown by [165] to be equivalent to the above described
resolution of the Euler–Lagrange equations with fixed-point.

Contrary to the Euler–Lagrange scheme, the regularization is
not imposed to be a derivative of w, and non-local regularization
terms (30) can be handled. However, such an approach yields a
dense linear system, not solvable with standard iterative methods.
In [154], a linear-time method is proposed to compute matrix pro-
duct by successive Gaussian filtering, allowing to efficiently
inverse the dense linear system with a conjugate gradient solver.
The method of [232] also exploited the ability of handling more
general energies to optimize learned data and regularization terms.
The general experimental study of [231] and the complex method
of [233] also follows this approach, with Graduated Non Convexity
(GNC) to cope with multimodality of the energy [27,33].

Instead of solving (35), a gradient descent method can be
applied to minimize the discretized energy. Due to the large scale
of the problem, Newton methods requiring the inversion of the
Hessian of the energy are not applicable, and only quasi-Newton
methods are computationally tractable. A few works have explored
this direction, with Truncated Newton [134,135] or L-BFGS [75].

Half-quadratic minimization. Instead of solving directly the ener-
gy (22), a number of optimization methods proceed to the addition
of an auxiliary variable splitting the original problem into easier
sub-problems. The half-quadratic minimization falls in this class.
It can be shown that under non-restrictive conditions [58,96], a
function / can be rewritten as the following function U introduc-
ing the additional variable c 2�0;1�:

/ðzÞ ¼ inf
c

Uðz; cÞ ¼ inf
c

cz2 þ wðcÞ
� �

; ð36Þ

where the function w can be explicitly derived from /. The robust
non-convex penalty /ðzÞ in data and regularization potentials can
be replaced by Uðz; cÞ in the data and regularization terms, so that
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the optimization in z becomes easy since it involves only quadratic
terms. Moreover, the minimization w.r.t. c has a closed-form
solution:

bc ¼ arg min
c

Uðz; cÞ ¼ /0ðzÞ
2z

: ð37Þ

The original minimization problem in z is thus turned into alternate
simple optimizations on z and c. This approach also leads to the IRLS
algorithm described in Section 4.2.

The introduction of this approach for optical flow estimation
coincided with the use of robust penalties for discontinuity pre-
serving regularization [7,32,77,174] and was more recently
exploited in [65,112].

Proximal splitting. Another successful optimization method
based on alternate minimization of simple sub-problems has been
proposed by [8] and used for optical flow in [285]. The data and
regularization terms are splitted and associated to separate vari-
ables, which are quadratically coupled by a third term:

Esplitðw;vÞ ¼
Z

X
qdataðx; I1; I2;wÞdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Edata

þ 1
2e

Z
X
kwðxÞ � vðxÞk2dx

þ k
Z

X
qregðx; vÞdx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ereg

; ð38Þ

where v is an auxiliary variable. The parameter e sets the intensity
of the coupling. If e is small, (38) tends to the original univariate
problem (22). The minimization w.r.t. each variable is the computa-
tion of the proximal operator of Edata and Ereg:

arg minwEsplitðw; bv Þ ¼ proxEdata
ðbv Þ

arg minvEsplitð bw;vÞ ¼ proxEreg
ð bwÞ;

(
ð39Þ

where the proximity operator of a function f is defined by

proxf ðzÞ ¼ arg min
u

f ðuÞ þ 1
2
ku� zk2

� �
: ð40Þ

The minimization problems (39) can be viewed as alternating
coarse pixel-wise data matching and denoising of the flow field. A
large number of variants and generalizations of this proximal split-
ting idea exist, among which the alternating direction method of
multipliers (ADMM) [38] or the formalization in a primal–dual
framework described in [55].

This approach has initially been designed for L1 penalty on the
data and regularization terms, a.k.a. TV-L1 model [8,285], for the
simplicity of the resulting optimization sub-problems. The opti-
mization of the data term with v fixed is efficiently performed
by a thresholding scheme [280], and fixing w yields the Rudin–
Osher–Fatemi model [210], optimized with the duality based algo-
rithm of [54]. An advantage is that a differentiable approximation
of the L1 norm is not required, as in [45], and one can solve for the
exact TV–L1 model.

In a general point of view, the independence of the optimization
of data and regularization parts allows one to design dedicated
minimization schemes in a variety of cases. The restriction is to
be able to compute the proximal operators, and the convergence
is ensured only for convex energies. For the data part, the thresh-
olding scheme of [285] is applicable in some cases for the L1 norm,
and efficient solutions have been found to handle an additional
fundamental matrix constraint [262], a truncated L1 norm of nor-
malized cross correlation [269], or mutual information [196].
Another advantage of the pixel-wise nature of the data part
minimization is that it enables parallel implementation strategies
which can dramatically speed up the algorithm and reach real-
time [285]. Based on the pixel-wise property, [227] proposes a
discrete exhaustive matching for optimization in w, which opens
the usage of arbitrary data terms, only limited by the computation-
al cost of the matching. Patch-based similarity measures have also
recently been implemented with the fast PatchMatch algorithm
[15] by [114].

Concerning the regularization part, it is possible to minimize
non-local regularization terms [79,272]. From an evaluation view-
point, the decoupling in the minimization process also allows for a
fair comparison of the effects of different data and regularization
terms [252].
5.2.2. Combinatorial methods
In a discrete setting, the solution of the minimization of (22) is

searched in a set of discrete labels L corresponding to a quantiza-
tion of the continuous motion vector space or the selection of a
finite subset of motion vectors. We give a fast overview of basic
principles of optimization methods for this combinatorial problem.
For a more complete analysis, see the recent review of [255]. The
spatial discretization of (22) yields an energy in the Markov
Random Field (MRF) framework:

EDðwÞ ¼
X
x2XD

qdataðx; I1; I2;wÞ þ
X

y2NðxÞ
qMRFðx; y;wÞ

" #
; ð41Þ

where XD is the discrete image domain, NðxÞ denotes the pixels
interacting with x in the model and qMRF is the discrete version of
qregðx; y; I1; I2;wÞ which explicitly takes into account the interaction
between two neighboring pixels x and y.

An important advantage of discrete optimization over the con-
tinuous approach is that it does not require differentiation of the
energy and can thus handle a wider variety of data and regulariza-
tion terms. On the counterpart, a trade-off has to be found between
the accuracy of the motion labeling and the size of the search space
L. Indeed, discrete optimization methods are usually severely lim-
ited in terms of accuracy and speed by the number of labels, par-
ticularly for optical flow where subpixel accuracy is necessary,
and where the two-dimensional motion space becomes more
rapidly intractable than the one-dimensional stereo case for
instance. Therefore, the design of the label space L is a crucial com-
ponent of discrete optimization methods for optical flow.

Among early methods for minimizing (41), simulated annealing
[97] offers proved convergence towards the global minimum based
on stochastic relaxation. However, the optimal convergence is
guaranteed only under prohibitive computational cost. An approx-
imate solution can be obtained much faster with the Iterated
Conditional Modes [25] or its High Confidence First variant [61],
operating by iterative local minimizations of the energy, but this
local optimum often yields poor results compared to modern
methods [237], especially for non-convex functions. A multi-scale
MRF approach was designed in [117] where the energy function
is minimized over nested subspaces of the original discrete label
space. This constrained optimization scheme offered simple imple-
mentation and fast convergence towards high quality estimates for
non-linear problems such as motion computation.

Graph cut. The work of [39] gave rise to rapidly growing
research interest and advances on graph cut approaches for MRF-
based energy minimization. The basis of graph cuts is the max-
flow/min-cut problem consisting in finding the optimal path
between two nodes in a directed graph, solvable by many algo-
rithm in polynomial time [91,102]. It is possible to model an undi-
rected MRF structure as a directed graph by introducing two
additional source and sink nodes, and then interpret the min-cut
partition as a binary label segmentation of the MRF energy. The
global minimum of the binary optimization can be guaranteed
for pairwise interactions and submodular functions. In summary,
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it is possible to find the global optimum for the energy (41) under
the following conditions:

– submodularity of qMRFðx; y;wÞ,
– pairwise interactions,
– binary labels.

Research on graph cuts has attempted to overcome these three
constraints, based on the original max-flow/min-cut algorithm.

Submodularity of the pairwise term is a required property for
convergence of the algorithm. Finding good approximate solution
can be achieved with the Quadratic Pseudo Boolean Optimization
(QPBO) [35,148,209], leading to an optimal but partial labeling.
Dealing with higher-order local interactions between pixels has
also been addressed in several recent works [86,128,144,150].

Submodularity and pairwise interactions are not too restrictive
constraints for a large range of computer vision problems and let
room for a number of applications. On the contrary, the cardinality
of the label space satisfies jLj > 2 in most cases, so that the binary
label requirement is a much harder limitation. The extension of
binary graph cuts to multi-label have mostly been realized through
iterative move-making techniques. The idea is to create at each
iteration a binary-labeled space composed of the current solution
and a new proposal label. The label set L is thus explored progres-
sively by each new proposal. If each binary minimization per-
formed with the max-flow/min-cut method is ensured to be
optimal, a decreasing of the energy is guaranteed at each iteration,
and the method converges to a local minimum. It can be noticed
that the class of move-making methods is not restricted to graph
cuts and the moves can be achieved by other techniques such as
the variational approach of [242], optimizing in the continuous
space by relaxing the binary variable.

The elements of a move-making method are the move-space,
specifying the set of new labeling proposals at each iteration, and
the way the moves themselves are performed. The most popular
move-space is the expansion-move, where the proposal labeling is
defined as a constant label map. Another common alternative is
the ab-swap move based on a label exchange at pixels having
labels a or b. The range-move [250] extends binary proposal choice
to a larger range of labels, in the case of ordered label spaces. Pre-
computed labelings computed with independent and possibly con-
tinuous methods, can also serve as proposals [161].

Additionally, computational efficiency of graph-cut approaches
have been addressed by several works. The most representative
ones are [152], operating in a Primal–Dual framework and speeding
up convergence by minimizing the Primal–Dual gap, and on the
other hand, [145] working on dynamic MRF and exploiting previous
iterations as initializations. For more details about existing move-s-
paces, see [249,255]. Applications for optical flow have increased
rapidly in recent years [59,64,88,101,99,161,164,234,279].

Message passing. Belief propagation is based on the max-product
algorithm, which is able to find the MAP of a probability distribu-
tion expressed as a product of factors, and thus representable in a
factor graph (see [157] for a detailed introduction). Taking the
negative logarithmic version of such distribution amounts to con-
sidering MRFs of the form (41), which can motivate to rename the
algorithm min-sum in this case. In a nutshell, the minimization is
done by iteratively updating local messages reflecting influence of
local label configurations on the energy. After convergence of the
messages, they can be used to define the probability of assigning
a given label to a node, and the label with the maximum probabil-
ity is chosen. The max-product has originally been designed for tree
structures and is guaranteed to find the global optimum in this
case. Nevertheless, it can also be used for MRFs exhibiting cycles
(it is referred to as loopy belief propagation in this case [200]),
without convergence guarantees but showing good experimental
results in a large number of computer vision problems [136,236].
The Tree Reweighted message passing approach [254] deals with
similar concepts, but with a particular message passing strategy
based on tree representations. The sequential approach of [147]
has proven to yield good results and computational performance
compared to other discrete methods in [237]. It has been applied
for optical flow estimation in [104,121,160,181]. It is also exploited
for image matching involving large deformation models to cope
with high computational complexity, as described in [216] or in
the SIFT-Flow algorithm [166].
6. Occlusion handling

The data costs described in Section 3 have been defined as mea-
sures of some data constancy between two corresponding points.
However, they do not take into account the case of pixels without
correspondence, namely occlusions. The occlusion issue in
motion estimation, stereovision or image correspondence has
motivated different types of investigation [10,116,34,129,149,
162,225,273,276]. Occluded regions in the current image of the
video sequence are defined as the set of pixels which become hidden
by occluding (moving) objects in the next image, as illustrated in
Fig. 3. These pixels have no corresponding points in the next image
and motion is not observable at their locations. Points on (static or
moving) objects which leave the camera field of view to the next
image are part of a similar situation. Hence, the occlusion issue must
be carefully addressed to ensure a reliable and accurate computed
optical flow. This is particularly the case for large displacements
[229], as in the MPI Sintel dataset [52]. Most methods implicitly deal
with occlusion, together with other sources of violation of the data
constancy assumption, by using robust norms in the data term, as
emphasized in Section 3. To describe explicit occlusion handling
approaches, we must further distinguish between occlusion detec-
tion, i.e., segmenting the image into occluded and non-occluded
regions, and occlusion filling, i.e., recovering the missing flow
subfields in occluded regions.
6.1. Occlusion detection

Occlusion detection has been mostly investigated as a subse-
quent operation to motion computation, by thresholding a consis-
tency measure issued from the estimated motion field. Several
criteria have been proposed as geometric forward–backward
motion mismatch [127,181], mapping unicity [279], divergence
of the flow field [14] or data constancy violation [276]. The main
limitation of the sequential approach is that accuracy of occlusion
detection is highly dependent on the quality of the motion estima-
tion. Several flow and image criteria have also been combined in a
learning framework [126].

Other approaches estimate the occlusion map jointly with the
motion field in an alternate optimization scheme [10,88,127,
197,244]. In the continuous setting of [10] involving a sparsity
constraint for occlusion detection, the data constancy deviation is
balanced by an estimated continuous residual intensity field, from
which occluded points are retrieved by thresholding. The usual
drawback of alternate optimization schemes is the convergence
towards local minima due to the strong coupling between motion
and occlusions. This problem is addressed in [88] by introducing an
occlusion confidence map in the model, guiding occlusion estima-
tion at each iteration independently from the current motion
estimate.

Finally, occlusion map can also be retrieved from the decompo-
sition of the motion field in layers [223,233,234]. Indeed, occluded
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parts of each layers can be naturally derived from their depth
ordering and the way they overlap with each other.

6.2. Occlusion filling

When occluded regions are known, occlusion filling with
motion vectors is conceptually closely related to image inpainting,
since it recovers motion in regions where it is by definition not
observable. Inpainting methods can be coarsely divided into two
classes, diffusion-based methods [24,56] and exemplar-based
methods [6,68,151]. A synthesis of these two approaches has been
investigated in [51] in a variational framework.

Let us denote O � X the set of occluded pixels of I1. Classical
methods for occlusion filling with motion vectors operate in a
global regularization framework by cancelling the data term at
occluded points, that is qdataðxo;w; I1; I2Þ ¼ 0;8xo 2 O. Thus, this
class of diffusion-based (or geometry-oriented) occlusion filling
relies on the diffusion process of the regularization to propagate
motion from non-occluded regions to occluded regions via partial
derivative equation (PDE) resolution [10,197,279].

It is known that diffusion-based inpainting methods perform
well in case of thin missing areas or cartoon-like images, but they
are usually unable to handle for large missing regions. Rather than
simply cancelling the data term, it is then necessary to design valid
data costs for occluded pixels when dealing with large occlusion
regions. This is achieved in [88], following the inpainting analogy
and inspired by the superior performances of exemplar-based
approach for large missing regions. At occluded pixels x 2 O, the
data cost imposes proximity with the motion vector of a matched
non-occluded pixel mðxoÞ 2 X n O, assumed to belong to the same
object as xo and thus to have similar motion:

qdataðxo;w; I1; I2Þ ¼ kwðxoÞ �wðmðxoÞÞk2
: ð42Þ

Another possible definition of data cost at occluded pixels can be
found in [14], under the assumption of temporal constancy of
motion. Assuming that a pixel xo 2 O of I1, occluded in the next
frame I2, is non-occluded in the previous frame I0, backward data
constancy is imposed at occluded pixels:

qdataðxo;w; I1; I2Þ ¼ /ðI0 � I1ðxo �wðxoÞÞÞ: ð43Þ
7. Combining feature matching and optical flow

An increasing challenge for optical flow estimation is to handle
very large displacements and deformations, as it is reflected in the
recent MPI Sintel benchmarks [52], where is it not rare to find dis-
placements of more than 100 pixels. As a consequence, the gap
between feature matching and optical flow tends to vanish, and
several methods have tried to combine density and accuracy of
optical flow with the ability to capture large displacements of fea-
ture matching.

Finding correspondences by matching image features can be
considered as a local parametric approach since a given neighbor-
hood of the pixel to match is assumed to translate or undergo
another parametric transformation towards its correspondence
location. The similarity measures can be patch-based distances
(see Section 3.1.2), or more complex and sparse feature
descriptions often based on histogram of oriented gradients
[20,71,169,282], or segment matching [258]. The fundamental dif-
ference lies in the optimization process, since the parametric for-
mulation has a differential optimization process imposing
linearization, whereas feature matching explores a discrete space
of admissible correspondences. Although being integer displace-
ments and prone to errors, feature matching can thus handle large
displacements without coarse-to-fine-schemes, with arbitrarily
complex similarity measures. Regarding their complementarity of
advantages, the combination of feature matching with regulariza-
tion approaches is therefore of upmost interest.

We consider three approaches to obtain dense and accurate
motion fields with feature matching: local filtering of correspon-
dences, integration in a variational framework, and generation of
coarse initialization for variational refinement.

7.1. Correspondence filtering

Pure feature matching has long been considered unable to pro-
duce dense flow fields with competitive accuracy with the previ-
ously described local and global approaches. There are three
reasons for this:

1. The optimization of the similarity measure is often per-
formed with exhaustive search, which induces prohibitive
computational cost.

2. Repetitive textures or uninformative regions are sources of
ambiguities for the matching process and generate large
errors.

3. The correspondence process usually limits the accuracy to
integer displacements, contrary to local and global approach-
es working in the continuous R2 space.

Several recent advances attempted to overcome these three
seemingly inherent limitations.

Research on speeding up block matching include multi-scale
search strategies [243], integral images [83] or search in trees



16 D. Fortun et al. / Computer Vision and Image Understanding 134 (2015) 1–21
[158], but the recent most spectacular contribution was achieved
in [15,16] with the PatchMatch algorithm. The method scans the
image in the lexicographic and inverse order, and alternates two
simple steps at each pixel: the propagation step minimizes locally
the data cost in the space composed by the current pixel and its
two predecessors in the scanning order, the second step proposes
a small set of new candidates randomly chosen in the neighbor-
hood of the current correspondence. It is easy to extend the match-
ing to more complex transformations than translation, like rotation
or scale factor [16] by increasing the degree of the search space.
The method was originally designed for image editing and was
applied to several other applications [16], with impressive results
regarding the low computation time. For motion estimation, the
interesting property is that the computational cost is not affected
by the spatial extension of the search space, so that no trade-off
has to be found between speed and displacement range.

The problem of matching ambiguities comes from the lack of
discriminative power of the data cost. Without resorting to explicit
regularization (Section 5), the coherency induced by simple local
filtering of patch correspondences [122] has been shown to be suf-
ficient in practice to reduce most ambiguities and provide satisfac-
tory dense results. The filtering is achieved in [122] by guided
filtering [111] and in [172] by weighted median.

Subpixel accuracy is usually reached by upscaling image resolu-
tion or by locally approximating the matching surface by a polyno-
mial function. The induced computational cost is reduced in
[122,227] by GPU implementation, and can also be handled by
iterative refinement [160].

The combination of the three ingredients has led to the develop-
ment of competitive optical flow estimation methods based on
pure feature matching locally filtered [122,172,238].

7.2. Feature matching in global regularized model

As discussed in Section 2.4, a major limitation of the global
variational framework is the loss of small and fast objects due to
the use of a coarse-to-fine estimation scheme. One recently inves-
tigated approach to overcome this problem is to integrate an infor-
mation from feature matching into the variational framework, thus
combining advantages of both methods.

The approach of [47], inspired by [113], made the first step in
this way by adding to the classical data potential a new constraint
taking into account an off-line computation of sparse feature cor-
respondences. Let us denote wc the displacement field obtained
with a possibly sparse feature matching process. The new com-
bined data potential is then

qþdataðx; I1; I2;w;wcÞ ¼ qdataðx; I1; I2;wÞ þ bqcorrespðx;w;wcÞ; ð44Þ

where b is a trade-off parameter and the matching potential is
defined as:

qcorrespðx;w;wcÞ ¼ dðx;wcÞ cðx;wcÞ /ðkwðxÞ �wcðxÞk2Þ: ð45Þ

The binary function dðx;wcÞ returns 1 if wcðxÞ is defined at x and 0
otherwise, and the weights cðx;wcÞ correspond to the matching
cost. The third term of (45) imposes the motion field to be close
to the motion vectors obtained by feature matching.

The advantage of this approach is that the term qcorrespðx;w;wcÞ
is both differentiable and valid for large displacements. Problems
related to the use of coarse-to-fine schemes are thus avoided.
The main drawback is that the importance of the matching term
qcorrespðx;wc;wÞ relatively to the data term qdataðx; I1; I2;wÞ is mostly
determined by the value of the matching cost cðx;wcÞ.
Consequently the final variational estimation is extremely depen-
dent on the reliability of the confidence measure, which is very
difficult to guarantee as emphasized in [42]. Matching errors are
thus easily driven by cðx;wcÞ and are likely to have a high impact
on the final result. Reducing the impact of local feature matching
errors by the regularization and the robust penalization /ð�Þ is
insufficient in practice in a lot of cases.

Recently, the authors of [268] based their method on [47] by tak-
ing the model (45) and improving the feature matching stage. They
demonstrated a significant performance improvement due to the
increased reliability of the matching. The method of [42] is also
built upon [47] with a modified matching component by using seg-
ment matching [258]. The matching term is generalized to handle
weakly localized line features. It is done through a point-to-line dis-
tance in addition to the point-to-point distance of (45), combined
with a confidence measure for segment matching based on the
assumption of a linear mapping between segments. Moreover, con-
sidering the unreliability of confidence measure, [42] gets rid of the
matching cost cðx;wcÞ and relies only on the regularization for
robustness to matching errors. To sum up, the tendency is to take
into account the great dependency of the estimation on the quality
of the feature matching, and thus to concentrate most efforts on the
design of robust matching algorithms.

7.3. Feature matching for coarse initialization

Another recently investigated approach taking advantage of
feature matching consists in exploiting the (possibly sparse) field
of integer displacements to provide a coarse but relevant initializa-
tion for a variational refinement [59,181,279]. These methods are
composed of three steps:

1. A feature matching step provides a limited number of candi-
dates at each pixel.

2. These candidates serve as labels for the discrete optimization
(see Section 5.2) of a global regularized model.

3. The resulting coarse optical flow field is refined with one of the
variational optimization techniques described in Section 5.2.

The idea is that steps 1 and 2 handle indifferently small and
large displacements of objects at any scale, and the initialization
is assumed to be good enough to avoid the coarse-to-fine scheme
in step 3. The specificity of [279] is that the three steps are repeat-
ed at each level of a multiresolution pyramid. Since steps 2 and 3
have already been discussed in previous subsections, we focus on
the specificity of step 1, that is, the production of candidates from
feature matching.

In [279], the feature matching is only performed at a restricted
number of keypoints. After pruning of similar vectors, only a few
displacement vectors are retained. Each of these vectors is expand-
ed to produce a global constant flow field, used as candidates for
step 2.

The approach of [181] is to consider an integer discretization of
the two-dimensional motion field. Based on the observation that
correlation-based patch matching is able to reproduce coarsely
the motion distribution pattern of ground truth motion fields,
the discretized motion space is delineated by the matching vectors.

The approach of [59] is close to [181] since the idea is to rely on
the dominant motion patterns of dense patch matching. In [59], the
candidates to feed discrete optimization are obtained by explicitly
clustering PatchMatch motion fields [16] to keep only dominant
patterns.

Another strategy has recently been investigated in [88], exploit-
ing the aggregation paradigm. Feature matching is used as a part of
a generation procedure of continuous motion candidates, and the
best candidates are then selected in the aggregation step with a
global model, without need of subsequent variational refinement.
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8. Conclusion and perspectives

Through the analysis of optical flow literature, we have intro-
duced principles of optical flow modeling and computation, and
classified the main methodological aspects of existing methods.
From this taxonomy, interests and limitations of each class have
been put forward.

This study also exhibits the main research directions for
improving current state-of-the-art. In terms of performance, it
can be considered from results of the Middlebury benchmark
[13] that for a range of sequences with small displacements, mod-
erate intensity changes and piecewise smooth displacements of
large structures, globally regularized models and joint estimation
and segmentation methods are able to obtain satisfying results.
However, moving away from these dataset characteristics, as it is
the case in recent benchmarks [52,94] or applicative domains
[89], unveils the shortcomings of current methods in challenging
situations, and it opens the way to potentially large improvements.

In particular, some of the main difficulties are caused by large
displacements. To avoid the drawbacks of coarse-to-fine schemes
of variational methods, an active research direction focuses on
the design of computationally tractable discrete optimization
methods for the large scale problem of optical flow. We have
noticed that dealing with larger displacements brings optical flow
closer to feature matching. However, attempts to combine these
two worlds still consider them separately and try to fuse their
independent results, often leading to high sensitivity to matching
errors. Another essential problem lies in large occlusions that are
inevitably associated to large motion. Large intensity changes
appearing in real environments or in specific applications, or
caused by large deformations, is another main problem of current
methods. The most promising direction seems to be the spatial
adaptation of the data term.

Finally, another remaining challenge is to reduce the computa-
tional cost of the best performing methods.

We observe an evolution of the scope of optical flow, which was
originally devoted to image sequences with high frame-rate, for
which deviations from small displacements and brightness conser-
vation stayed reasonably low. As this well identified problem
becomes better handled, optical flow estimation tends to apply
on larger class of sequences. Thus, the gap between optical flow
and other correspondence problems like registration or feature
matching progressively reduces and opens the way to unified cor-
respondence methods.
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