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Extraction of 3D planar Primitives from Raw Airborne Laser Data:
a Normal Driven RANSAC Approach
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Abstract

Airborne laser data are nowadays well-known to
provide regular and accurate altimetric data. Build-
ing reconstruction strategies from traditional stereo
images may highly be enhanced using such data to-
gether with. The aim of this paper is to propose an
efficient algorithm for extracting 3D planar primi-
tives from a laser survey over urban areas. It is based
on a normal driven random sample consensus (ND-
RANSAC) which consists of randomly selecting sets
of three points within laser points sharing the same
orientation of normal vectors. A robust plane is then
estimated with laser points that are likely to belong
to the real roof facet. The number of draws is man-
aged automatically with o statistical analysis of the
distribution of normal vectors within an approzima-
tion of the Gaussian sphere of the scene. Promising
results are presented with laser data acquired over
the city of Amiens, France.

1 Introduction

For the last past years, laser altimetry has become
an accurate technique to describe topography from
an airborne platform. Initially, it provides a set of
laser strips (3D point clouds) acquired by means of
laser distance measurements, combined with an in-
tegrated GPS/INertial System [6]. The entire post-
processing of laser data has nowadays reached a high
level of automation. It consists of three main steps:

i. Adjusting strips with regard to each other to
provide a global coherent point cloud over a
survey

ii. Filtering the point cloud into ground /non-ground

points

iii. Analyzing and generating models of specific
landscapes.
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We consider that step i and ii have already been
processed with standard algorithm. We would like
to focus this study on the third item, more precisely
on the building reconstruction problem. Accurate
3D building retrieval is the main objective of the
forthcoming 3D urban cartography. The aim of this
study is to explore the potentialities of using solely
3D laser data to detect 3D planar hypothesis of roof
facets over a set of connected buildings.

Many authors have tackled the problem so far.
Haala and Brenner [2] extract planar roof primi-
tives from dense altimetry data by planar segmenta-
tion algorithms (region growing onto normals), us-
ing additional ground plane information for gaining
knowledge on topological relationships between roof
planes. Maas and Vosselman [7] proposed a first so-
lution involving invariant moments of point clouds.
A second approach, also studied by Hofmann [4],
consists of detecting planar faces in a triangulated
point set, investigating the parameter space of planes
(dual space of 3D points). Plane directions are ex-
tracted through a 3D cluster analysis on the Gaus-
sian sphere. An obvious disadvantage of this tech-
nique is that parallel planar faces cannot be sep-
arated directly on the Gaussian sphere. Pottman
[9] proposes to use a special distance to measure the
proximity of planes and then to enhance the 3D clus-
tering process. An other approach [11] is based on
the well-known 3D Hough transform to detect planar
faces from the irregularly distributed point clouds.

This paper proposes an alternative solution to
detect roof facets of buildings based on a Normal
Driven RANSAC (RANdom SAmple Consensus) re-
lated approach. Having presented the RANSAC al-
gorithm, we will describe our modified approach be-
fore showing some results and concluding.

2 Background

The RANSAC algorithm introduced by Fischler
and Bolles [1] with applications to the context of
roof facet detection would be formulated as follow
(cf. algorithm 1): randomly select a set of N plans
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(3 points m) within a point cloud S and keep mem-
ory of the number of points (supports) which dis-
tance from the associated planes are less than a
critical distance (d). A least square estimation of
the final plane (Pgina) is performed with the set of
supports (M finq) belonging to the plane with the
highest score. The set M f;pq; is then extracted from
the initial point cloud S. The algorithm runs until
card(S) < 3.

Algorithm 1 Basic RANSAC for detecting roof
facets
repeat
while n < N do
Randomly select a plan P (3 points)
M ={m € S/|lm - P(m)| < d}
Mca'rcl(M) +~M
n=n+1
end while
M tinal = argmax, oy My
Prinat = Argming, e, lIm — P'(m)
S « S\M Ffinal
until card(S) < 3
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This approach may be extremely time consuming
since we must ensure a minimum number of draws
(N) so that a correct plan P should be instantiated.
Most often it is not worthy to try all possible draws
[3]- In other words, for a given probability p of draw-
ing a correct plane P (that is three points without
outlier), we would like to maximize the probability w
that any selected point is an inlier (w® for 3 points).
p, w and N are related to each other by the following
equation :

1-p=10-v¥ )" N= log(1 —p)

" log(1 —w?) (1)

N can therefore be calculated directly from the knowl-
edge of p and w. p is generally kept constant to
0.99. The general idea of this paper is that search-
ing for the roof facets where they really could be lo-
cated should highly improve the efficiency of a blind
RANSAC approach. In our context, main plane di-
rections correspond to roof facet orientations. As
a result, focusing the consensus onto regions shar-
ing the same normal orientation will constrain the
probability w to follow specific statistical rules as
developed in section 3.2.2.

3 Theory

3.1 Point clustering based on surface nor-
mal estimation

There are several methods for obtaining local sur-
face normal from range data [8]. These normals are
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then processed for segmenting planar surface regions
of range images like the fast segmentation method
of Taylor [10]. It is a split-and-merge method, where
the homogeneity criterion is based on the compari-
son of two angles describing the normal orientation
and the original range value. Merging is based on
simple minimum and maximum value comparison of
neighboring regions.

Here, we propose a planar segmentation of the
laser point cloud by analyzing the Gaussian sphere
(GS) of the scene. Normal vectors are calculated
over a regular grid by extracting a circular neigh-
boring of the central 3D point. A plan is then es-
timated using a robust regression of M-estimators’
family with the norm L; 5 [12]. The mass density
of the normal vectors on the GS is described by an
extended Gaussian image (EGI) [5]. First, the GS
can be approximated by a tessellation of the sphere
based on regular polyhedrons. Such tessellation is
computed from a geodesic dome based on the icosa-
hedron divided into f sections (f is a power of 2).
The EGI can be computed locally by counting the
number of surface normals that belong to each cell.
The values in the cells can be thought as an his-
togram of the orientations.

The angular spread (related to the number of
faces) depends on the error we tolerate for the co-
herence of the normal vectors in a cell. As a re-
sult, within a specific cell, normals will be

distributed following a certain density of probabil-
ity p(ng,ny,n;), which will be analyzed in the next
section.

Each cell with a minimum number of laser points
is affected to the corresponding image of normal vec-
tors. Regions sharing the same normal orientation
are detected. They are then labeled providing a set
of clusters which are ordered depending on their sur-
face. We will see that only most represented orien-
tations (largest areas) will be treated selecting laser
points belonging to these areas.

T
Ny

3.2 The ND-RANSAC algorithm

The RANSAC algorithm is a general robust ap-
proach to estimate models. Instead of using as much
as of the data as possible to obtain an initial solu-
tion and then attempting to eliminate the invalid
data point, RANSAC uses as small data set as feasi-
ble and enlarges this set with consistent data when
possible. Two parameters have to be tuned: the
critical distance and the number of draws. The first
one depends on the noise ratio of the data while the
second one depends on the statistical distribution of
points onto the Gaussian sphere.



(2)

Figure 1: (a) Vector model of a synthetic building
generated by manual restitution from aerial images
(b) Orientation histogram collected on a geodesic
dome derived from the icosahedron (there are 500
faces). This is a discrete approximation of the EGI
calculated only onto non vertical planes of (a). The
length of the green vectors attached to the center
of a cell is proportional to the number of surface
normals which fall within the range of directions
spanned by that cell. Blue points are the projec-
tion of normals onto the Gaussian sphere.

3.2.1 The critical distance

We noticed in section 2 that supports were consid-
ered in the set M only if their distance to the asso-
ciated random plane was less than a critical distance
d. This distance may be seen as the standard devia-
tion of the supports with regard to the 3D plane. d
is therefore defined for each cluster C as proportional
to the final residual square root of a least square fit-
ted plane estimated from the entire laser points {P}
within C. If { P'} is the orthogonal projection of { P}
onto the fitted plane, then

a= [ IIP-P?
PeC

3.2.2 The number of draws

(2)

The number of draws to be performed depends on
the distribution p(7) of the normal vectors within

Ng .
a cluster (where 7 = (Z” ) are considered as three

random variables), and especially on the probability
w that any selected point is an inlier (equation 1).
Following the definition of a probability and consid-
ering that the final plane will be close to the math-
ematical expectation E(7) of the distribution, w

satisfies: B(7)+7
w = /

p(7)d7
E(R)-7

(3)
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We may assume that the three random variables
Ng, Ny, N, are independent to write:
E(ng)+on, E(ny)+on,
w =/ Dy(ny) dny.
E(nz)—0on,

Pa(na) dn,. /

E(ny)—any
E(n;)+0n,

/ pz(nz)dn,.
E(nz)—on,

(4)

Pz(ng) (resp. py(ny),p.(n;)) is explicitly calcu-

lated as the derivative of the empirical probability
density function Fk, (resp. Fk,,Fk,) with:

0 if z < infn;
[Té; ifn; <z < TMit1
1 if z > supn;

(5)

where n; is the proportion of values less than = and
K, (resp. Ky,K,) the number of realizations of the
random variable n, (resp. ny,n;).

4 Results and Discussion

The algorithm was tested onto a laser data set
acquired over the city of Amiens, France, by the
company TopoSys(©. This firm owns a self-made
lidar acquisition system, which is composed of two
rigid blocks of optical fibers (emission and reception
of laser pulses). The ground pattern of laser im-
pacts is strongly irregularly distributed. The spatial
density of the point cloud is roughly one point ev-
ery 10 cm along the flight track and one point every
1.2m in the cross-track direction. The density is 7.5
points/m?.

Results presented in figure 2(b) (resp. 2(d)) have
been computed with the following parameters: nor-
mals are calculated over a 0.15m resolution grid
(resp. 0.30m) onto a circular neighborhood of 2m
radius, the minimum number of laser points within
a cluster is set to 30. Finally, each cluster must
be composed of at least 25 pixels to be considered.
Our methodology is slightly less general than a clas-
sical RANSAC which provides, whatsoever, relevant
planes within the point cloud after theoretically an
infinite number of iterations. Nevertheless, it is par-
ticularly interesting to take benefit of the specific
geometry of buildings which make the success of the
method dependent on the correctness of the normal
vector map. A visible artifact of such dependence
is that roof facets are retrieved by patches (see fig-
ure 2(b)). This can be treated a posteriori with a
plane fusion algorithm. However, if we consider laser
data as auxiliary data sources, these planar primi-
tives bring strong geometric constraints to advanced
reconstruction strategies.



(@) (b)

(d)

Figure 2: (a) and (c) are the cluster images coded in
gray level whereon laser points have been projected
(green points) as well as retrieved facets (red poly-
gons). (b) and (d) are the 3D representation of roof
facets (green polygons). Red points are the resid-
uals of laser points which have to be considered as
support of any plane.

5 Conclusion

We have presented in this article a strategy for
detecting 3D planar primitive from airborne laser
data. It is based on a random sample consensus
driven with information concerning normals of the
3D scene. The main contribution with regard to a
traditional RANSAC approach consists of minimiz-
ing the number of random draws by analyzing the
distribution of the normal vectors within a cell of an
EGI. Results are promising and will be soon inte-
grated into a joint segmentation algorithm of aerial
images and laser data.
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