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Abstract 

The effect of enzymatic treatment 
on textiles has been investigated using standard 
texture algorithms. An extensive study in both 
the Fourier domain and the spatial domain has 
revealed the nature of the changes and resulted 
in one single feature that  measures these changes 
in a fast and robust way. 

1 Background 

This project started when the R&D group in 
the detergent enzyme division of Novo Nordisk 
( a  world-leading manufacturer of detergent en- 
zymes) expressed the wish to  quantify the ef- 
fects of enzymatic treatment of textiles using 
digital image analysis. Until now this quantifi- 
cation has been done qualitatively using micro- 
scopic inspection and quantitatively using panel 
tests and light measurements (Hunter coordi- 
nates). There was a need for a new objective, 
robust, fast and relatively inexpensive method. 

The image acquisition is carried out using an 
RGD high-resolution slow-scan camera. Subse- 
quently we will only show results derived from 

the green hand since the textiles used in this ex- 
periment are black and gray and thus contains 
very little or no color information. The size of 
the textiles in this study is 15xlOcm. 

The study regards the enzymatic treatment 
effect for a single type. We want to  
assess the effect a t  different pII vallres and for 
different doses. To assess the (lay-to-day varia- 
tion the textiles were washed on different days 
for each pll-level. Thus we have three factors 
tha t  we want t o  investigate. 

pH: 3 levels, 1 2 3 (for pH values 7.0, 8.0 
and 9.0) 

dose: 8 levels, 0 10 25 40 50 75 100 200 

day(pl1): 3 levels, 1 2 3 

We have two repetitions for each combination, 
thus we entl up with 144 images. In figure 1 we 
see 8 textiles representing the 8 doses for pH 1, 
day 1 and repetit ion 1. 

Figure 1 :  8 textiles representing the 8 doses for pH 1, 
day 1 .  

2 Description of visual 
properties 

The object of the digital i1na.g~ analysis is t o  
compute one feature that  quantifies a given vi- 
sual property from the image array. In this case 
the visual property is the human perception of 
wear. The feature ha.s to  correlate well with 
panel tests. For enzymatic treatment 
with known eff~cts  this means that the feature 
has t o  show improvement a.s a function of dose 
and show best results for plI values close to  the 
pH with highest enzyme activity (between 7.0 
and 8.0 in our case). 

Ohvio~~sly many different features can be com. 
ptited from the image. A siluple feature is the 
average intensity, Iightncss. This has a strong 
resemblance t o  what is measl~retl hy the Hunter 
coordinates. Probahly this lightness feature also 
has a strong influence on a panel test. Figure 
2 shows the average intensity a.s a function of 
dose for pH level 1. We see that lightness only 
has discriminative capa.bilit,y for small doses. 
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Figure 2: Average intensity as a function of dose for pH 
level 1 .  

Another aspect of enzymatic effect on the 
textiles estimated by the panel test is the dis- 
tinctnessof the regular textile pattern. This dis- 
tinctness should increase as a result of the 

enzymatic treatment. The regular pattern 
in the investigated textiles resembles a rectan- 
gular grid structure. The well defined period 
of this grid makes it appropriate to  look a t  the 
textiles in the Fourier domain. This is done in 
the  next section. 

3 Analysis in the 
Fourier domain 

3.1 Frequency based met hods. 
Figure 3 shows the full resolution power spectra 
of the textiles in figure 1. The concentric circles 
are isolines for the spatial frequency. Several 
high-intensity spots in the power spectrum is 
showing the periodicity of the weaves. The spots 
of lower intensity in the high-frequency areas are 
higher harmonics. We see that  the intensity in 
the  low-frequency areas (near the center of the 
power spectrnm) is fading for higher doses of en- 
zyme. To illustrate this effect we computed the 
average of the power spectrum in the rings be- 
tween the concentric circles and plotted it ver- 
sus the radius of the rings. These averages are 
computed for each of the power spectra in figure 
3, and the avera.ge corresponding to dose 0 sub- 
tracted from the averages of each of the other 
doses. The plot is shown in figure 4, and it is 
obvious that  the averages in the low-frequency 
areas are decreasing for higher doses. We also 
note that  all the curves I ~ a s  a.pproxirnately the 
same intersection a t  a frequency corresponding 
t o  the frequency of the weaves. Thus having 
established tha t  the power spectrum actually 
contains relevant information about the textile 
wear, we will try t o  quantify this in a single 
Fourier feature. 
3.2 Spectral texture features. 
Texture features derived in the spatial frequency 
domain have been investigated in e.g. Liu & 
Jernigan (1990). The features tested in the presknt 
context are listed below. 

IJigure 3: I'ouier spcrlra o/ I l r c ;  lrx/zlrs 111 ji!~ur.r I .  
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Figure 4: Average of power spectra rings relative to dose 
0 for the spectra in figure 3. 

1. Rings 

2. Wedges 
3. Inertia 

4. Entropy 

5. Anisotropy 

The features were computed on both the 
power spectrum and the log-powrr spectrum. It 
turned out that  the features calculated on the 
log-power spectrrlm performed significantly bet- 
ter than the power spectral features. Further- 
more we found that inertia and entropy features 
performed better than the other features. The 
inertia feature performed generally a little bet- 
ter than the entropy feature, and it seems t o  be 
a more natural way summarize the phenomena 
observed in figure 4. 

The inertia feature I and log-power inertia 
LI is computed as 
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Figure 5: Normalized log-power inertia versus logfdose). 
W e  see that the measure reflects the expected ranking. 

where we are summing over aU frequencies. The 
normalized inertia is the inertia divided by the 
inertia of the corresponding textile with dose = 
0. In figure 5 we show the normalized log-power 
inertia vs. log(dose) for all three values of pH. 
Thus the measure is averaged over days and rep- 
etitions. It can be seen that  there is a clear 
distinction between the performance of the en- 
zymes a t  the three pH values. In addition there 
seems to  be an approximately linear relation be- 
tween the inertia and log(dose). 

3.3 Discussion of results 
The spectral approach has provided us with a 
useful feature and a lot of insight regarding the 
nature of this problem. The use of the F F T  
algorithm however introduces some, somewhat 
technical, limitations regarding computational 
speed and the flexibility in removing textile ir- 
regularities from the analysis. 

4 Spatial domain features 
The distinctness property and other textural 
properties can also be measured by textural fea- 
tures in the spatial domain. Siew, Hodgson, 
& Wood (1988) used features based on differ- 
ent texture matrices for carpet wear assessment. 
The conclusion of the paper was, tha.t features 
based on texture ma.trices (e.g. GLCM) can be 
used t o  characterize the appearance of carpets 
and changes, they undergo during wear. The 
problem of carpet wear assessment is similar t o  
measuring effects of enzymatic treatment, and 
therefore we included GLCM features in our 
study. 

4.1 Spatial features 
The spatial domain f e a t ~ ~ r e s  included in this 
study were a set of first-order statistics : 

and the following 15 GLCM features (Haral- 
ick, Shanmugam, & Dinstein, 1973; Laws, 1980; 
Conners, Trivedi, & Harlow, 1984; Parkkinen, 
Selkainaho, Rt Oja, 1990) : 

1. Energy 

2. Entropy 

3. Maximum probability 

4. Correlation 

5. Diagonal correlation 

6. Kappa 

7. Difference energy 

8. Difference entropy 

9. Inertia 

10. Local homogeneity 

11. Sum energy 

12. Sum entropy 

13. Sum variance 

14. Cluster shade 

15. Cluster prominence. 

The features were computed for several num- 
bers of gray levels and a t  several resolutions. 
Attempts to  make the features robust have in- 
cluded correction for inhomogeneous lighting and 
automatic removal of texlile irregularities. 

4.2 The operational feature 
Many of the tested features performed weU on 
subsets of the images, but only a few features 
gave an overall good and robust measurement. 

It was possible to  find a relatively simple 
feature with an overall good and robust per- 
formance. This featlure is computed as follows. 
The image is transformed to  a resolution where 
the  regular textile pattern has just disappeared 
(in our case the images were lowpass-filtered 
and subsampled t o  1/16 size). Then the vari- 
ance of this image is computed. The variances 
are normalized (divided) by the variance of the 
corresponding textile with dose=O. The aver- 
age over days and repetitions of this feature is 
shown in figure 6 in a log-log plot. It ranks the 
textiles just as expected and it seems that a lin- 
ear fit is appropriate for each pII level. This 
feature shall subsequently t)e called the coarse- 
scale normalized variartce (csnv) feature. The 
csnv feature can he compared to  the the Fourier 
inertia feature in the Fourier domain. The low- 



5 Conclusion 

Figure 6: Plot of (log) coarse-scale normalized varian.ce 
vrrsus log(dose). W e  sce that the measure rejects the 
expected mnking. 

pass filter we used correspond approximately 
t o  a m~lltiplication with a Gaussian weighting 
function centered a t  (0,O) in the Fourier do- 
main. For the Fourier inertia feature the weight- 
ing function is (u2 + v2). Thus the csnv feature 
measures the energy in the low frequencies and 
the inertia feature measures the energy in the 
high frequencies. Since the measures are nor- 
malized they will actually measure sinlilar prop- 
erties, but as the textile wear seems to  be best 
described in the low frequencies, the inertia fea- 
ture is not as robust as the csnv feature. 

Fitting a general linear model with the SAS 
GLM-procedure: 

proc glm; 
class ph day; 
model logvar = logdose ph day(ph) 
ph*logdose logdose*day (ph) ; 
lsmeans ph; 
random day (ph) ; 

gives an R-Square of 0.956079, i.e. 95.6% of the 
variation is described by the model. 

The type 111 sun of squares give 
Source DF  I.' Value Pr  > F 

LD 1 1944.35 0.0001 
P I1 2 11.99 0.0001 

D(PH) G 2.12 0.0565 
LD*PH 2 1.22 0.2999 

LD*D(PH) 6 2.06 0.0637 
where LD=LOGDOSE and II(PH)=DAY(PH). 

It follows that  the amount of variability explained 
by pH and dose are orders o f  magnitude greater 
than the remaining effects, inclusive the day-to- 
day variability. Thus the roncl~~sive model will 
only include the pH and dose effects. The least 
square means for the three pH levels show the 

We have obtained a single feature from digital 
image analysis t o  describe the effect of 
enzymatic treatment of textiles. This feature is 
also fast to  compute and seems to  be robust. 
Other features measuring the variation in the 
textile that  is coarser than the regular textile 
pattern can possibly describe the same textile 
properties, but the coarse-scale normalized vari- 
ance seems t o  be the feature that has the over- 
all best performance of the features confiidercd. 
The feature may also be useful in e . 6  carpet 
wear assessment. 
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expected ranking: 
PH LSMEAN 

1 -1.04568416 
2 -0.96280088 
3 -0.77615044 




