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On the Sphere-Decoding Algorithm 1.
Expected Complexity

Babak Hassibi and Haris Vikalo

Abstract—The problem of finding the least-squares solution
to a system of linear equations where the unknown vector is
comprised of integers, but the matrix coefficient and given vector
are comprised of real numbers, arises in many applications:
communications, cryptography, GPS, to name a few. The problem
is equivalent to finding the closest lattice point to a given point and
is known to be NP-hard. In communications applications, how-
ever, the given vector is not arbitrary but rather is an unknown
lattice point that has been perturbed by an additive noise vector
whose statistical properties are known. Therefore, in this paper,
rather than dwell on the worst-case complexity of the integer
least-squares problem, we study its expected complexity, averaged
over the noise and over the lattice. For the “sphere decoding”
algorithm of Fincke and Pohst, we find a closed-form expression
for the expected complexity, both for the infinite and finite lattice.
It is demonstrated in the second part of this paper that, for a wide
range of signal-to-noise ratios (SNRs) and numbers of antennas,
the expected complexity is polynomial, in fact, often roughly cubic.
Since many communications systems operate at noise levels for
which the expected complexity turns out to be polynomial, this
suggests that maximum-likelihood decoding, which was hitherto
thought to be computationally intractable, can, in fact, be imple-
mented in real time—a result with many practical implications.

Index Terms—Expected complexity, integer least-squares
problem, lattice problems, multiple-antenna systems, NP hard,
sphere decoding, wireless communications.

I. INTRODUCTION AND PROBLEM STATEMENT

N this paper, we shall be concerned with the following
so-called integer least-squares problem

min
s e Z m

x— Hs|? (1)

where z € R"*1 H € R"*™_ and Z™ denote the mn-dimen-
sional integer lattice, i.e., s is an m-dimensional vector with in-
teger entries. Often, the search space is a (finite) subset of the
infinite lattice D C Z™, in which case, we have

v — Hs|. )

min
seDCZm

The integer least-squares problem has a simple geometric in-
terpretation. As the entries of s run over the integers, s spans
the “rectangular” m-dimensional lattice Z™. However, for any
given lattice-generating matrix H , the n-dimensional vector H s
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Fig. 1. Geometrical interpretation of the integer least-squares problem.

spans a “skewed” lattice. (When n > m, this skewed lattice
lives in an m-dimensional subspace of R™*1.) Therefore, given
the skewed lattice H s and given a vector z € R™*!, the integer
least-squares problem is to find the “closest” lattice point (in a
Euclidean sense) to x (see Fig. 1).

Compared to the standard least-squares problem, where the
unknown vector s is an arbitrary vector in R™*L and the so-
lution is obtained via a simple pseudo-inverse, it is much more
difficult to find the solution to (1) or (2). The main reason is that
the search space is discrete (whether it is finite or infinite). In
fact, it is well known that problems (1) and (2) are, for a gen-
eral H, NP hard, both in a worst-case sense [1] as well as in an
average sense [2].

The remainder of this paper is organized as follows. In
Section II, we give an overview of some heuristic and exact
methods to solve the integer least-squares problem. We show
that the exact methods can offer substantial gains over the
heuristic ones. However, they generally require an exponential
worst-case complexity, whereas the heuristic methods require
only cubic O(m?) computations. Section III introduces the
sphere-decoding algorithm of Fincke and Pohst and argues that,
if the received point is arbitrary, then the expected complexity
of the algorithm is exponential. Section IV introduces a random
model for the integer least-squares problem, where the received
point is assumed to be a lattice point perturbed by an additive
Gaussian noise vector with known statistical properties. It then
proceeds to compute the expected complexity of the sphere
decoding algorithm, averaged over both the noise and the
lattice, as a function of the noise variance, or signal-to-noise
ratio (SNR). This is done both for the infinite lattice as well as
some finite lattices encountered in communications problems.
Section V provides the conclusion. The Appendixes give some
mathematical background for the problems encountered in this

paper.

II. OVERVIEW OF METHODS

Since the integer least-squares problem arises in many appli-
cations and finding the exact solution is, in general, NP hard,
all practical systems employ some approximations, heuristics,
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or combinations thereof. In communications applications, these
approximations can be broadly categorized into three classes.
1) Solve the unconstrained least-squares problem to obtain
§ = H'z, where HT denotes the pseudo-inverse of H.
Since the entries of § will not necessarily be integers,
round them off to the closest integer (a process referred
to as slicing) to obtain

sp=[H'z]znm. 3)

The above 5p is often called the Babai estimate [1]. In
communications parlance, this procedure is referred to as
zero-forcing equalization.

2) Nulling and cancelling. In this method, the Babai estimate
is used for only one of the entries of s, say, the first entry
s1. s1 1s then assumed to be known, and its effect is can-
celled out to obtain a reduced-order integer least-squares
problem with m — 1 unknowns. The process is then re-
peated to find s2, etc. In communications parlance, this is
known as decision-feedback equalization.

3) Nulling and cancelling with optimal ordering. Nulling
and cancelling can suffer from “error-propagation”: If
s1 1s estimated incorrectly, it can have an adverse effect
on the estimation of the remaining unknowns so, ss,
etc. To minimize the effect of error propagation, it is
advantageous to perform nulling and cancelling from the
“strongest” to the “weakest” signal. This is the method
proposed for V-BLAST [3] (see also [4]).

The above heuristic methods all require O(mn?) computa-

tions, essentially because they all first solve the unconstrained
least-squares problem.

A. Lattice Reduction

The aforementioned heuristic methods are exact only if the
columns of H are orthogonal. In this case, H can be diagonal-
ized by a unitary transformation on the left, and so, slicing the
unconstrained least-squares solution yields the exact solution.

In practice, however, the columns of H are rarely orthogonal.
Orthogonalizing the columns of H via a QR decomposition, or
otherwise, generally destroys the lattice structure. (The reason
being that, if s has integer entries, s need not have integer en-
tries.) One method that attempts to alleviate this is lattice reduc-
tion. In these methods, one attempts to find an invertible m x m
matrix 7', such that T and T~! have integer entries (thereby pre-
serving the lattice structure) and such that the matrix G = HT
is as “orthogonal as possible.” Having found such a 7T, rather
than solve (1), one can solve the integer least-squares problem
z — Gt|]? €&

min
t e Z m

using the earlier mentioned heuristics and set s = Tt. Of
course, lattice reduction is itself NP-hard. A common heuristic
is the Lenstra, Lenstra, and Lovasz (LLL) [5] algorithm that,
permitting a gross oversimplification, can be regarded as
Gram-Schmidt over integers.

While lattice reduction may lead to some improvement in the
solution of (1), the integer least-squares problem over the infi-
nite lattice, it is not useful for (2), which is over a subset of the
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M=8, N=4, R=16, LD Code: N/C vs. ML Decoding
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Fig. 2. Bit-error performance of a rate £ = 16 linear space-time code,
corresponding to m = 64. Exact ML solution versus nulling/cancelling with
optimal ordering. (No. of lattice points = 2128 ~ 3.4 x 103%).

lattice. The reason is that the lattice transforming matrix 7" often
destroys the properties of the subset D C Z™. Since in commu-
nications applications, we are always interested in a finite subset
of the integer lattice, we, therefore, shall not consider lattice re-
duction methods in this paper.

B. Exact Methods

With the abundance of heuristic methods, it is natural to ask
what their performance is and how close they come to the op-
timal solution. In [6], this question is studied in the context
of V-BLAST, where it is shown that the exact solution sig-
nificantly outperforms even the best heuristics. We also give
an example here in the context of space—time codes from [7],
which is shown in Fig. 2. The example is a space—time code
for a system with M = 8 transmit and N = 4 receive an-
tennas, which spreads min(M, N)T' = 32 complex symbols
from a 16-QAM constellation over 7" = 8 channel uses. [The
rate of the code is R = 32/8 x log, 16 = 16.] The equivalent
channel matrix (see [7]) has m = 2{min(M, N)T'} = 64 rows
and n = 2NT = 64 columns. Therefore, the resulting in-
teger least-squares problem corresponds to dimension m = 64,
and the entries of s each take on four integer values, say, {—3,
—1, 1, 3}. The number of lattice points in D is 454 = 2128 ~
3.4 x 1038, As can be seen from Fig. 2, the bit-error rate (BER)
performance of the exact integer least-squares solution is far su-
perior to that of the best heuristic, which, in this case, is nulling
and cancelling with optimal ordering.!

The above discussion shows that there is merit in studying
exact solutions. The most obvious one is to form a search over
the entire lattice that, although theoretically feasible for finite
lattices, invariably requires an exponential search. There do,
however, exist exact methods that are a bit more sophisticated
than the above full search. These include Kannan’s algorithm
[8] (which searches only over restricted parallelograms), the

10f course, at this point, it may appear surprising that one can even generate
the maximum-likelihood (ML) curve in Fig. 2, since it requires finding the exact
solution among a set of size 103 —more on this later.
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Fig. 3. Idea behind the sphere decoder.

KZ algorithm [9] (based on the Korkin—Zolotarev reduced basis
[10]), and the sphere-decoding algorithm of Fincke and Pohst
[11], [12]. Since then, the work of Fincke and Pohst’s sphere-de-
coding algorithm has been rediscovered in several contexts (see,
e.g., [13] in the context of GPS systems) and is the algorithm
that we will be considering in this paper. Many of the results
of this paper and various extensions can be found in the second
author’s Ph.D. dissertation [14].

III. SPHERE DECODING

The basic premise in sphere decoding is rather simple: We
attempt to search over only lattice points s € Z™ that lie in a
certain sphere of radius d around the given vector x, thereby re-
ducing the search space and, hence, the required computations
(see Fig. 3). Clearly, the closest lattice point inside the sphere
will also be the closest lattice point for the whole lattice. How-
ever, close scrutiny of this basic idea leads to two key questions.

1) How do you choose d? Clearly, if d is too large, we obtain
too many points, and the search remains exponential in
size, whereas if d is too small, we obtain no points inside
the sphere.

A natural candidate for d is the covering radius of the
lattice, defined to be the smallest radius of spheres cen-
tered at the lattice points that cover the entire space. This
is clearly the smallest radius that guarantees the existence
of a point inside the sphere for any vector z. The problem
with this choice of d is that determining the covering ra-
dius for a given lattice is itself NP hard [15].

Another choice is to use d as the distance between the
Babai estimate and the vector z, i.e., d = ||z — H3p||,
since this radius guarantees the existence of at least one
lattice point (here, the Babai estimate) inside the sphere.
However, it is again not clear in general whether this
choice of radius leads to too many lattice points lying in-
side the sphere.

2) How canwe tell which lattice points are inside the sphere?
If this requires testing the distance of each lattice point
from x (to determine whether it is less than d), then there
is no point in sphere decoding, as we will still need an
exhaustive search.

Sphere decoding does not really address the first question.
However, it does propose an efficient way to answer the
second—and more pressing—one. The basic observation is
the following. Although it is difficult to determine the lattice
points inside a general m-dimensional sphere, it is trivial to
do so in the (one-dimensional) case of . = 1. The reason is
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Fig.4. Sample tree generated to determine lattice points in a four-dimensional
sphere.

that a one-dimensional sphere reduces to the endpoints of an
interval, and so, the desired lattice points will be the integer
values that lie in this interval. We can use this observation to go
from dimension & to dimension k + 1. Suppose that we have
determined all k-dimensional lattice points that lie in a sphere
of radius d. Then, for any such k-dimensional point, the set of
admissible values of the (k + 1)th dimensional coordinate that
lie in the higher dimensional sphere of the same radius d forms
an interval.

The above means that we can determine all lattice points
in a sphere of dimension m and radius d by successively
determining all lattice points in spheres of lower dimensions
1,2, ..., m and the same radius d. Such an algorithm for deter-
mining the lattice points in an m-dimensional sphere essentially
constructs a tree where the branches in the kth level of the tree
correspond to the lattice points inside the sphere of radius d
and dimension k (see Fig. 4). Moreover, the complexity of such
an algorithm will depend on the size of the tree, i.e., on the
number of lattice points visited by the algorithm in different
dimensions.

With this brief discussion, we can now be more specific about
the problem at hand. To this end, we shall assume that n > m,
i.e., that there are at least as many equations as unknowns in
x ~ H s (the case n < m is considered in Part IT). Note that the
lattice point H s lies inside a sphere of radius d centered at z if
and only if

d* > |l — Hs|*. ()

In order to break the problem into the subproblems described
above, it is useful to consider the QR factorization of the matrix
H

H=Q[ K ] ©)

O(n—m)xm

where R is an m X m upper triangular matrix, and
Q = [@Q1 Q2] is an n x n orthogonal matrix. The matrices
@1 and @), represent the first /n and last n — m orthonormal
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columns of @, respectively. The condition (5) can, therefore,

be written as
R P |l[e: R
o-tor @dgl] =gl [5]:

2 2
= @1z — Rs|” + (| Q3]

2
d*>

where (-)* here denotes Hermitian matrix transposition. In other
words

@ — Q5" > 1@tz — R ™
Defining y = Q%z and d'’? = d? — ||Q%x||* allows us to rewrite

this as

2

d? > i Yi — iri,jsj (8)
im1 =i

where r; ; denotes an (4, j) entry of R. Here is where the upper
triangular property of R comes in handy. The right-hand side
(RHS) of the above inequality can be expanded as

dlz Z (ym - 7"’m,rnsrn)Z

+(ym—1 —Tm—1,mSm — Tm—l,m—lsm_l)z +... (9)

where the first term depends only on s,,, the second term on
{S$m;Sm—1}, and so on. Therefore, a necessary condition for
H s to lie inside the sphere is that d'2 > (Y., — T mSm)?. This
condition is equivalent to s,, belonging to the interval

{—d’+ym"<s < {d’+me

Tm,m T'm,m

(10)

where [-] denotes rounding to the nearest larger element in the
set of numbers that spans the lattice.? Similarly, |-] denotes
rounding to the nearest smaller element in the set of numbers
that spans the lattice.

Of course, (10) is by no means sufficient. For every s, sat-
isfying (10), defining d’2_; = d? — (Ym — Tm.mSm)> and
Ym—1|m = Ym—1 — Tm—1,mSm, & SLTONZET necessary condition
can be found by looking at the first two terms in (9), which leads
to S,,—1 belonging to the interval

_d, m—1m d;n— m—1|im
{ m—1 T Ym—1 -‘Ssmqﬁ{ 1+ Ym—1] J.(“)

Tm—1,m—1

Tm—1,m—1

One can continue in a similar fashion for s,,,_» and so on until
s1, thereby obtaining all lattice points belonging to (5).

A. Sphere-Decoding Algorithm

We can now formalize the algorithm.

2Clearly, for the case of infinite lattice Z ™, this set is the set of integer num-
bers Z. The set that spans a finite subset of Z™ is a finite subset of Z, possibly
shifted.
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Input: Q=[Q1 Q2], R, z, y=0Qjz, d.
1. set k=m, df=d*—|Q5z/1*, Ymim+1 = Um
2. (Bounds for si) Set UB(sy) = [(d), +
Yrlk+1)/Trk] o sk = [(=di + Yrpsr) /res] — 1.

3. (Increase S;) s, = S + 1. If s, <
UB(sr), go to 5; else, go to 4.

4. (Increase k) k=k+1; if k= m+1,
terminate algorithm; else, go to 3.

5. (Decrease k) If k=1, go to 6; else
k=k—1, Yees1r = Uk — 2 jops1 ThijSio df =
d;c?+1_(yk+1\k+2_7'k+1,k+13k+1) , and go to 2.
6. Solution found. Save s and its dis-
tance from z, dZ2 — d? + (y1 — r1181)%, and
go to 3.

Note that the subscript k|k + 1 in yg|x41 above is used to
denote received signal y; adjusted with the already estimated
symbol components Sy41,-- -, S,. Furthermore, note that in
steps 2 and 3 of the code, we assumed unit spacing between any
two nearest elements of the set spanning the lattice. If the lattice
is scaled, i.e., if the spacing between two nearest neighbors in
the set spanning the lattice is different from 1, those algorithm
steps need to be adjusted accordingly.

We should mention that the original paper of Fincke and Pohst
[12] used slightly different notation to the one we have used. For
completeness, we shall include it here. The paper [12] makes
use of the unconstrained least-squares solution § = Hfzx =
R™1Q7x. Inthis case, it follows that ||Q3x||? = ||z||* — || H 3|2,
and so, inequality (7) becomes

& — |l||* + | H|* > |R(3 — )|, (12)
Expansion (9) becomes
d/2 > T%n,m(sm - <§m)2 + T%n—l,m—l
2
~ Tm—1,m ~
X <sm_1 — 81 + —L(sm — sm)) +... (13
Tm—1,m—1
and the intervals (10) and (11)
d d
T'm,m Tm,m
and
! !
’V‘gm—l]m ml -‘ S Sm—1 S \‘gm—lm + m—_lJ
Tm—1,m—1 Tm—1,m—1
(15)
respectively, where we have defined §m,1‘m = Sm_1 —

("m—1,m/Tm—1,m=1)(Sm — 8m). We can now alternatively
write the algorithm as follows.

Input: R, z, §, d.
la. Set k = m, d? =
§m|m+1 = §m
2a. (Bounds for si) Set =z = dl/Th ks
UB(Sk) = |_Z+ §k\k+1J ; Sk = |——Z+ §k\k+1-| -1

d? = |l=l* + 1 H3|?,
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3a. (Increase S) S = Sp + 1. If s, <
UB(sr), go to 5a; else, go to 4a.
4a. (Increase k) k=k+1; if k=m+1,
terminate algorithm; else, go to 3a.
5a. (Decrease k) If k = 1, go
to 6a; else, k = ko — 1, Sprqt =
So— Y (eg/reR)(s; = %), A =
diyy 7’1%+1,k+1(3k+1 —  Sk+1r2)?, and go
to 2.
6a. Solution found. Save s and its

distance from z, d} — df? + r (s1 — §12)%,
and go to 3a.

B. First Look at Complexity

The paper [12] gives a complexity analysis of the above al-
gorithm. The main result is that the number of arithmetic oper-
ations of the aforementioned algorithms (excluding Steps 1-3)
is at most

1 1
E(st + 3m? — 5m) + i(m2 +12m —7)

X ((2L\/%J + 1) <L4d2ﬂ;g - 1) + 1) (16)

where t = max(r{,,...,r2

s Tm.m)- In practice, ¢ grows propor-
tionally to n (r%,l, for example, is simply the squared norm
of the first column of H, which has n entries), and d> grows
proportionally to 7 (for more on this, see below), and so, the
upper bound on the number of computations in (16) can be
quite large. Our experience with numerical implementations
of the algorithm shows that the bound is extremely loose.
Moreover, although it does depend on the lattice-generating
matrix H (through the quantity ¢), it offers little insight into
the complexity of the algorithm. We, therefore, will not further
consider it.

In this paper, we propose to study the complexity of the
sphere-decoding algorithm using the geometric interpretation
we have developed so far. As mentioned earlier, the complexity
of the sphere-decoding algorithm depends on the size of the
generated tree in Fig. 4, which is equal to the sum of the
number of lattice points in spheres of radius d and dimensions
k = 1,...,m. The size of this tree depends on the matrix H
as well as on the vector x. Therefore, unlike the complexity of
solving the unconstrained least-squares problem, which only
depends on m and n and not on the specific H and z, the com-
plexity of the sphere-decoding algorithm is data dependent.

1) Expected Complexity: Of course, since the integer
least-squares problem is NP hard, the worst-case complexity
of sphere decoding is exponential. However, if we assume that
the matrix H and vector x are generated randomly (according
to some known distributions), then the complexity of the
algorithm will itself be a random variable. In this case, it is
meaningful to study the expected (or average) complexity of
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sphere decoding and perhaps even some of its higher order
moments.3

In what follows, we will give a rough argument for the ex-
pected complexity of sphere decoding being exponential, al-
though it is not too difficult to make it rigorous. (For a rigorous
treatment, albeit using a different approach, see [2].) For an ar-
bitrary point z and an arbitrary lattice H, it is not too difficult to
show that the expected number of lattice points inside the k-di-
mensional sphere of radius d is proportional to its volume given
by (see, e.g., [15])

[MEd

™
—d
I'(%+1)

Therefore, the expected total number of points visited by the
sphere decoding is proportional to the total number of lattice
points inside spheres of dimension k = 1,...,m

k

P = gk,
Sty

A simple lower bound on P can be obtained by considering only
the volume of an arbitrary intermediate dimension, say, k

ol

E

3

e T ()L
T ( Ey 1) k Vrk
where we have assumed m > k > 1 and have used Stir-
ling’s formula for the Gamma function. Clearly, P, and its lower
bound, depend on the radius d2. This must be chosen in such a
way that the probability of the sphere decoder finding a lattice

point does not vanish to zero. This clearly requires the volume
of the m-dimensional sphere not to tend to zero, i.e.,

which for large m implies that 2erd? = m!**t(/™)_ Plugging
this into the lower bound for P yields

I3
mt=\° 1 1 1
P> — _— 6_+ 285
_( k ) Vrk VT com

where we have defined § = m/k > 1. This last expression
clearly shows that the expected number of points P and, hence,
the complexity of the algorithm grows exponentially in m (take,
e.g., 0 = 2).

[N
[N

IV. RANDOM MODEL

Although not unexpected, the above is a discouraging result.
In communications applications, however, the vector x is not

3In passing, we should mention that there is recent interest in studying the ex-
pected, rather than worst-case, complexity of various algorithms in the computer
science literature. The reader may wish to refer to the survey paper [16] and the
references therein as well as the influential papers [17] and [18]. In these works,
a uniform distribution on the underlying problem is often (artificially) assumed,
and complexity issues, such as NP-completeness, etc., are revisited. However,
as we shall see below, our problem allows for a very natural stochastic model.
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arbitrary but rather is a lattice point perturbed by additive noise
with known statistical properties. Thus, we will assume

r=Hs+wv (17
where the entries of v are independent (0, o) random vari-
ables with known variance, and the entries of H are independent

N(0,1) random variables. Furthermore, H and v are mutually
independent.

A. Choice of the Radius

The first by-product of this assumption is a method to deter-
mine the desired radius d. Note that (1/02) - ||v||? = (1/0?) -
||z — Hs]|? is a x? random variable with n degrees of freedom.
Thus, we may choose the radius to be a scaled variance of the
noise

d? = anc?

in such a way that with a high probability, we find a lattice point
inside the sphere

o
S

-1

)

where the integrand is the probability density function of the x?
random variable with n degrees of freedom, and 1 — e is setto a
value close to 1, say, 1 —e = 0.99. (If the point is not found, we
can increase the probability 1 — e, adjust the radius, and search
again.)

The important point is that the radius d is chosen based on the
statistics of the noise—and not based on the lattice H. Making
the choice based on H quickly leads us to NP hard problems
(such as determining the covering radius). Moreover, as noted
in [19] and [20], choosing the radius based on the noise has a
beneficial effect on the computational complexity.

w3

A

e rdA=1—¢
I (

N3

o\N_'

B. Implications for Complexity

Clearly, when o2 = 0, i.e., when there is no noise, the exact
solution can be found in O(mn?) time. (The pseudo-inverse
does the trick.) On the other hand, when 62 — oo, the received
vector x becomes arbitrary, for which we argued in Section III-B
that the expected complexity is exponential. What we are inter-
ested in is what happens at intermediate noise levels. In other
words, how do we transition from cubic time to exponential
complexity?

In our analysis, we shall compute the expected complexity
averaged over both the noise v as well as over the lattice-gener-
ating matrix H. Thus, we need a random model for H and will
assume that it is comprised of independent N (0, 1) entries. This
assumption is made for two reasons.

1) It makes the problem analytically tractable.

2) Itis also a very reasonable assumption for large, unstruc-
tured matrices H. (There exist many results in random
matrix theory, such as Wigner’s semicircle law, mixing
conditions, etc., that are not very sensitive to Gaussian as-
sumptions (see, e.g., [21]).
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Of course, if H possesses special structure, such as Toeplitz
structure, then this is not a reasonable assumption, and the struc-
ture must be explicitly taken into account. However, this merits
a separate analysis and will be considered in the second part of
this paper.

Now, as argued in the previous section, the complexity of
the sphere-decoding algorithm is proportional to the number
of nodes visited on the tree in Fig. 4 and, consequently, to the
number of points visited in the spheres of radius d and dimen-
sions k = 1,2,..., m. Hence, the expected complexity is pro-
portional to the number of points in such spheres that the algo-
rithm visits on average. Thus, the expected complexity of the
sphere-decoding algorithm is given by

C(m,o?, d*)

= Z(expected # of points in k — dim sphere of radius d)
k=1

éEP(k,(P:anrﬂ)

- ( flops/point ). (18)

25, (k)=2k+11

The summation in (18) goes over the dimensions k£ = 1 through
k = m. The coefficient

Folk) = 2k + 11

is the number of elementary operations (additions, subtractions,
and multiplications) that the Fincke—Pohst algorithm performs
per each visited point in dimension k.

We need to compute E,(k,d?), the expected number of
points inside the k-dimensional sphere of radius d. Let us first
begin with the highest dimension, i.e., kK = m.

1) k = m: If the lattice point s; was transmitted and the
vector z = H's; + v received, we are interested in the number
of arbitrary lattice points s, such that

||z — Hsa||2 < d2.
(See Fig. 5.) However, since © = H sy + v, this is just
v+ H(sy — sq)|” < d?. (19)

Now, the vector w = v + H(s; — s,) is clearly a zero-mean
Gaussian random vector, since its entries are the sums of zero-
mean Gaussian random variables. Now, the covariance matrix
has (4, 7) entry

Eww; =E { (’uq: + Z hik(se,6 — 3a,k)>

k=1

X <'Uj + Z hji(se — Sa,l)> }

=1

=026 + Z Z 8ii0k1 (St — Sa k) (St — Sat)
k=1 1=1

m
=615 (6> + 150 = sall?) , where l* = 3" 3.
k=1
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o o o

Fig. 5. s, transmitted and « received. We are interested whether an arbitrary
point H s, lies in a sphere of radius d centered around .

Thus, w is an n-dimensional vector of zero-mean iid Gaussian
random variables with variance o2 + ||s; — s,||2. This implies
that [|w||?/2(0*+||se=sall*) = l[o+H (s —sa)[I*/2(0*+]| 51—
54]|?) is a X% random variable with n degrees of freedom. Thus,
the probability that the lattice point s, lies in a sphere of radius d
around x is given by the normalized incomplete gamma function

d2
2(02+|lsa—stll?)

d2 n -1 A
7<2(a2+||sa—st||2>’2> / rpc
(20)
Now that we have computed this probability, the expected
number of points in the m-dimensional sphere can be evaluated.
However, before doing so, let us turn to the k£ < m case.
2) k < m: Referring back to (9), we are interested in all
k-dimensional lattice points s such that

2
d?> 7w s @1
i=m—k+1 j=i

To better understand this set, let us again consider the QR de-
composition of (6) to write
lz = Hsall® = llv+ H(s: = sa)lI”

v—i—Q[

2

J(si =20

O(n—m)xm
2

ooy Jomen

O(n—m)xm

(We shall henceforth suppress the subscripts of the all-zero sub-
matrices, as long as their dimensions are self-evident.) Now,
if we partition the upper triangular matrix R and the vector

A
u = Q*v as

m—k

u
andu= | u* (22)
un—m

Rk i
Rk

R = Rmfk,mfk
Ok x (m—k)
where the block matrices Ry, —k,m—k, Iom—k,k, and Ry j, are
(m — k) x (m — k), (m — k) x k, and k x k, respectively,
and the vectors v™ %, u¥, and u™ ™ are m — k, k,and n — m
dimensional, respectively, then we can write

Iz — Hsal? = |u™ " + Ron—oymei (s — s27F)

s (5F = s+ o+ R (58 = o8|+ o= 2
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m—k m—k

where the vectors s;" ", s™~* and sk, s
dimensional, respectively, and such that

sm—k sm—k

t a

St = k 5 Saq = k .
St Sa

It is now straightforward to see that d 2 = d2 — ||u” ™| and
that ||u* + Ry, 1 (sF — s%)||? is simply the sum of the last k terms
in the sum (8). Thus, we may rewrite the inequality (21) as

k

ocarem — k and k

d2

v

[u* + R (s = sB)|[* + flum =1
uk Ry 2
[EARI

Thus, to compute the expected number of k-dimensional lat-
tice points that satisfy (21), we need to determine the probability
distribution of the RHS of (23). For this, we give the following
result.

Lemma 1: Let H be an n X m (with n > m) random matrix
with iid columns such that each column has a distribution that is
rotationally invariant from the left. In other words, for any n X n
unitary matrix O, the distribution of h,;, which is the 7th column
of H, satisfies

(23)

Ph(ﬁi) = Ph(®ﬁi)~

Consider now the QR decomposition
R

H =
o]

where ) is n X mn and unitary, and R is m X m and upper
triangular with non-negative diagonal entries. Then, () and R
are independent random matrices, where
1) @ has an isotropic distribution, i.e., one that is invariant
under premultiplication by any n X n unitary matrix

Pa(Q) = pa(0Q),

2) Consider the partitioning of R according to (22) and fur-
ther partition H as

YOO* =00 = 1.

Hy—goym—k Hy gk

H e
Hn—m—l—k,m—k

H n—m+k,k
where the subscripts indicate the dimensions of the sub-
matrices. Then, Ry, ; has the same distribution as the I?
obtained from the QR decomposition of the (n — m +
k) x k matrix Hy,_ 4k k-
Proof: See Appendix A. O
Remarks:

1) What is interesting about the above Lemma is that even
though the (n — m + k) x k submatrix [*£*] is not the R
of the QR decomposition of the (n—m+k) x k submatrix
H,, ik 1, it has the same distribution.

2) Lemma 1 clearly holds for an H with iid zero-mean unit-
variance Gaussian entries. In this case, one can be explicit

4The result as stated is more general than we need, which is for the case of an
H with iid Gaussian entries. We give it for the case of a left rotationally invariant
H with independent columns, because the result may be of interest itself.
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about the distribution of R: The entries are all independent
with the sth diagonal term having a x? distribution with
n — 1 + 1 degrees of freedom and the strictly upper trian-
gular entries having iid zero-mean unit-variance Gaussian
distributions [22], [23]. In fact, in the Gaussian case, part
2 of Lemma 1 can be inferred from [22, Th. 3.2.14].

Let us now apply Lemma 1 to the problem at hand. First,
since v has iid zero-mean o2-variance Gaussian entries and @
is unitary, the same is true of u = Q*v and also of the subvec-
tors u™F, u* and u™ ™. Moreover, since @ is independent of
R, so is u. Returning to the inequality (23), let us multiply the
vector inside the norm by an isotropically random unitary ma-
trix ©. Since this does not change norms, we have

k R
d? > H@[u:f_m] + @[ g,k] (Sf — s];)

ok
Now, clearly, the n — m + k-dimensional vector v = ©[ "]

has iid zero-mean o2-variance Gaussian entries; Also, from
part 2 of Lemma 1, the (n — m + k) x k matrix H = O[]
has iid zero-mean unit-variance Gaussian entries. Thus, we
may write (23) as

&> o+ H (sF - )| (24)
which is precisely (19), except that the dimensions have changed
from n and m to n—m+k and k. Thus, using the same argument
as presented after (19), we conclude that the probability that the
k-dimensional lattice point s* lies in a sphere of radius d around
T is

a2 n—m+£k
2 (o2 4ot o) 2
- L 2
2(62+ ngs:‘, ) )\w_l

(25)

0/ Y (("_Tk)) e MdA.

Given this probability and the one in (20), one could, in prin-
ciple, proceed by finding the argument of the gamma function in
(20) and (25) for each pair of points (s,, s;) and sum their con-
tributions; however, even for a finite lattice, this would clearly
be a computationally formidable task (and not doable at all in
the infinite lattice case). Therefore, we shall find it useful to enu-
merate the lattice, i.e., count the number of points with the same
argument of the gamma function in (20) and (25). Enumeration
of infinite and finite lattices is treated separately.

C. Infinite Lattice Case

The above probability (25) depends only on the Euclidean
distance between the points s¥ and s*, that is, on ||s* — s¥||2 =
||s*||2. Now, since in an infinite integer lattice s, — s; = s is
just another lattice point, we conclude that the probability in (25)
depends only on the squared norm of an arbitrary lattice point
in the k-dimensional lattice. It is, thus, straightforward to see
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that the expected number of lattice points inside a k-dimensional
sphere of radius d is given by

> d? n—m-+k
2\ _
Ey(k,d )_27 (2(a2+l)’ 2 )

-(# of k-dimensional lattice points with [|s¥||*=1). (26)

Since ||s*]|? = s3+...+s2, we basically need to figure out how
many ways a non-negative integer [ can be represented as the
sum of k squared integers. This is a classic problem in number
theory, and the solution is denoted by 7 (l) [24]. There exist a
plethora of results on how to compute 7 (). We only mention
one here due to Euler: 74 (/) is given by the coefficient of z! in
the expansion

oo k oo
(1+2me2> :1+Zrk(l)xl.
m=1 =1

(For more on the problem of representing integers as the sum of
squares, see Appendix B.)

The above arguments lead to the following result.

Theorem 1 (Expected Complexity of Sphere Decoding Over
Infinite Lattice): Consider the model

27)

r=Hs+wv

where v € R™*! is comprised of iid N'(0,0?) entries, H €
R™*™ is comprised of iid A/(0,1) entries, and s € Z™ is an
m-dimensional vector whose entries are integer numbers. Then,
the expected complexity of the sphere-decoding algorithm of
Section III-A with a search radius d for solving the integer least-
squares problem

min ||z — Hs||?
sezZm
is given by
C(m, 0%, d*) =" f,(k)
k=1
> d? n—m+k
). (28
Proof: Follows from the earlier discussions. O

We should remark that, for any given search radius d, there
always exists a probability that no lattice point is found. There-
fore, to obtain the optimal solution, it is necessary to increase the
search radius. One plausible way of doing this is to start with a
radius for which the probability of finding the transmitted point
is 1 — ¢, then, if no point is found to increase the search radius to
a value such that the probability of not finding the transmitted
point is 1 — €2, and so on. For such a strategy, we have the fol-
lowing result.

Corollary 1 (Expected Complexity for Finding the Optimal
Solution): Consider the setting of Theorem 1. Given any 0 <
€ < 1, consider a strategy where we first choose a radius such
that we find the transmitted lattice point with probability 1 — €,
and then increase it to a probability of 1 — €2, and so on, if no
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point is found. Then, the expected complexity of the sphere-
decoding algorithm to find the optimal solution is bounded by

C(m,0%,e) < (1=e)e™ > f,(k)
i=1 k=1

— ano? n—m+k
X§7<2(a2+z)’ B >7"k<l) (29)

where «; is chosen such that

7(()‘;—'n,g):1—ei,z':1,2,... 30)
Note that the probability of having to perform ¢ decoding
steps in order to find the transmitted point can be calculated to

be (1 — ¢)e'~1 as follows:

p (d(@)? > [|vl* > d(i — 1)?)
=p (ol < d()?) —p (l0l* < di - 1)?)
=l- -1+ t=(1-ee!

where d(7) denotes sphere radius at the ith decoding step. We
remark that this is different from the probability of having
to perform : decoding steps in (29) since there is always the
error probability of the sphere decoder finding a lattice point,
even when the transmitted lattice point is not inside the sphere.
This explains why we have only an upper bound in the above
corollary.

D. Finite Lattice Case

In communications problems, rather than being unbounded
integers, the entries in the unknown m-dimensional vector s are
often points that belong to an L-PAM constellations

L-1 L-3 L-3 L-1
Dp=4-— y T PR ’ .
2 2 2 2

€1y

In fact, L is often taken as a power of 2. We say that the point s
then belongs to the lattice constellation D7*

D?Z’DLX'DLX...XDL
m—times

where X -operation denotes the Cartesian product.
Furthermore, in this case, rather than the noise variance o2,
one is interested in the signal-to-noise ratio p

m(L? —1)

1202 G2

p =
The probability expression (25) for finding an arbitrary lat-
tice point H s¥ inside a sphere around the given point x when
the point s¥ was transmitted holds for the finite lattice case as
well. However, counting the lattice points that have the same ar-
gument of the incomplete gamma function in (25) is not as easy.
The reason is that unlike in the infinite lattice case, the difference
between two lattice points in D%, s* — s¥ is not necessarily an-
other lattice point in Df. Thus, the lattice enumeration that we
used in the previous section needs to be performed over pairs of
points (%, s).
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Fig. 6. Counting for D% .

“corner” points: s; — s, € {0, £1, £2, £3}

|
[N}

|
N

N |—
N =

“center” points: s, — s, € {F1,0, £1, +2}

Fig. 7. Counting for D%.

More formally, the number of subset lattice points in the k-di-
mensional sphere is given by

DS

I ok ok k k_ok|]?—
B 7Sa€DL7||St —sa“ =l

ano® n—m+k
T\22+1) 2

and enumerating the set

{(sf,s';) s, 5% € DE ||sk — sk||* = z}
appears to be complicated.

For this, we propose a modification of Euler’s generating
function technique. In particular, for various finite lattices, we
will define generating polynomials that, when combined appro-
priately, perform the counting operations for us.

Let us do the case study for various values of L.

1) Dk: The constellation D% consists of the corners of
a k-dim hypercube, as illustrated in Fig. 6. Due to
symmetry, all points in the hypercube are essen-
tially equivalent. Therefore, without loss of gener-
ality, we can assume that the “lower-left-corner” point

sk = [—=(1/2),—(1/2),...,—(1/2)]T has been trans-
mitted. Then, depending on whether the corresponding

entry of s¥ is —(1/2) or 1/2, the vector s& — sF is

comprised of zero and one entries. The number of such

vectors whose squared norm is [ is clearly given by the

number of vectors that have [ entries at one, which is (’;) .

This gives the number of points in D% at distance I from

ok

2) DX: In this case, all points in the constellation are not the
same. For each entry of s*, we can distinguish between the
“corner” and the “center” points, as illustrated in Fig. 7.
Extending Euler’s idea, for the corner points, we identify
the generating polynomial

fo(z) =14z + a2t +2° (33)
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and, for the center points, the polynomial

01(z) =14 22 + z*. (34)
Essentially, the powers in the polynomials g(z) and
61(x) contain information about possible squared dis-
tances between an arbitrary point s* and the trans-
mitted point s¥. For instance, if an entry in the trans-
mitted vector sf, say, S¢1, 1S a corner point, then
Sa,1 — St € {0,£1,£2,£3}, depending on s, 1 € Dy.
Thus, the squared norm of their difference |sq,1 — s¢1 2
can be either 0, 1, 4, or 9, as described by the powers
of fo(x). On the other hand, if s;; is a center point,
then s,1 — s;,1 € {0,£1,F1,+2} [which explains
coefficient 2 in front of term z in 1 (x)]. Now, if among
the k entries of sf, we choose a corner point j times, the
number of ways ||sF — s¥||? can add up to [ is given by
the coefficient of 2! in the polynomial

E\ .
<j>9é(z)0’f /(). (35)
3) DE: Note that
N 7 5 3 1135 7"
DSZ T o 5 9 97900’ o .
272 20 2°2°2°2°2
Let us define the following subsets of Dg:
T 55
So=9—-=,= Si1=49—=,=
0 { 2’2}’ ! { 2'2}
33 11
Sy =49—-,= Sg=4q4—=,-¢. 36
S B N S

Similar to the L = 4 case, we can identify the following
polynomials for counting s, — s; in DE lattice:

Yo(z) =14z +2* +2° +:1:16+:E25+a:36+:v49
Y1(z) =14 2z 4+ 2t + 2% + 216 4 225 4 236

Yo(x) =14 22 4 22* + 2° 4 2 —i—mza

Y3(x) =14 22 + 22* + 227 + 216 37)

Therefore, if among k entries of s¥, we choose j; points
from S;, i € {0,1,2, 3}, then the number of ways ||sf —
s%||? can add up to [ is given by the coefficient of z'! in the
polynomial

)1/}30 (@)y] (2)d ()93 (=) (38)

( k
j07j 17j27j3
where jo + ji + j2 + js = k, and (]'oajll,cjz,js) =
k!/jold1l2!s!.
4) Counting for D’fﬁ and higher order lattices is done
similarly.
We can now summarize the above results for the expected
computational complexity of the Fincke—Pohst algorithm for fi-
nite lattices in the following theorem.
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Theorem 2. [Expected Complexity of the Sphere Decoding
Over a Finite Lattice]: Consider the model

r=Hs+wv

where v € R"™*! is comprised of iid N'(0,1) entries, H €
R"™*™ is comprised of iid N'(0, p/m) entries, and s € D" is an
m-dimensional vector whose entries are elements of an L-PAM
constellation. Then, the expected complexity of the sphere-de-
coding algorithm of Section III-A with a search radius of d for
solving the integer least-squares problem

x — Hs|?

min
seD

1) for a 2-PAM constellation is

k
k an n—m+k
xZ(Jv 3 (39)
=0 2 (1 + m(L271))
2) for a 4-PAM constellation is
m 1 k k
Clm,p,d®) = fo(k) Y % > <z>
k=1 q 1=0
an n—m+k
X gri(q)y (40)

(l-f-m)’ 2

where gx;(q) is the coefficient of 7 in the polynomial
(1 + 24 2* + 291 4 22 4+ 2*)*!

3) for an 8-PAM constellation is

C(m, p,d?) ij: Z Z

q Jotiiti2+iz=k

Ghjoirinis (1)

N an .n—m—i-k @1

2(1+ 12pq ) 2

m(LZ-1)

where g, j,j2js (¢) 18 the coefficient of ¢ in the polyno-
mial (38).
4) similar expressions can be obtained for 16-PAM, etc.,
constellations.
The number of elementary operations per visited point in
(39)-@4l)is fo(k) =2k + 9+ 2L5
Proof: Follows from the above discussions. O
We remark that to obtain the optimal solution to the integer
least-squares problem, we will occasionally need to increase the
search radius d, and so, we can obtain a result similar to that of
Corollary 1, which we omit for brevity.

5Since D7 is a shifted integer lattice, we assume that each rounding in step 2
of the algorithm in Section ITI-A takes L — 1 operations. Hence, f, (k) slightly
differs from the one used to find expected complexity of sphere decoding in the
infinite lattice Z™.
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V. CONCLUSION

In many communication problems, ML detection reduces to
solving an integer least-squares problem, i.e., a search for the
closest integer lattice point to the given vector. In such applica-
tions, ML detection is rarely performed, on the grounds that it
requires exponential complexity and is, therefore, computation-
ally intractable. However, what distinguishes the communica-
tions applications from many other instances of integer least-
squares problems is that the given vector is not arbitrary but
rather is an unknown lattice point that has been perturbed by an
additive noise vector with known statistical properties. There-
fore, the complexity of finding the closest lattice point for any
given algorithm should, in fact, be viewed as a random variable.
This is the approach taken in this paper and, for the “sphere-de-
coding” algorithm of Fincke and Pohst, we obtained a closed-
form expression for the mean, averaged over both the noise and
the lattice, of the complexity. This was done for both finite and
infinite lattices.

Based on these closed-form expressions, in the second part of
this paper, we will demonstrate that over a wide range of SNRs,
rates, and dimensions, the expected complexity of sphere de-
coding is polynomial (often roughly cubic), which implies the
practical feasibility of sphere decoding in many applications.
The second part of this paper will deal with various generaliza-
tions of this result and will also address the computation of the
variance of the sphere-decoding algorithm.

We should also mention that there are many variants of the
sphere-decoding algorithm, some of which are mentioned in
Section VII of the second part of this paper. While these algo-
rithms generally outperform the standard sphere decoder men-
tioned here, the computation of their expected complexity ap-
pears to be a formidable task. Our results may, therefore, be
viewed as upper bounds for these more powerful algorithms.

APPENDIX

A. Proof of Lemma 1

Let us start with part 1. Since H is rotationally invariant from
the left, for any unitary matrix ©, we may write

PH(H) :PH(@H)-

If we consider the QR decomposition H = @) R, the above equa-
tion implies that

pa(H) =pu(QR) = pu(R) (A1)

since () is unitary. In other words, for random matrices
that are rotationally invariant from the left, the distri-
bution only depends on the upper triangular matrix R
and not on the unitary (). For example, for a com-
plex Gaussian matrix with iid CA/(0,1) entries, we have
pu(H) = (1/xN))e wH H — (1/7N")e R R ) We now
show that (A.1) implies that () and R are independent and @)
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is isotropically random. Indeed, the joint distribution of ) and
R is given by

OH
9(Q, R)

pQ.r(Q; R) = pr(QR) - (A.2)

where the Jacobian 0H/9(Q, R) can be computed to be (see,
e.g., [23, Th. 3.1])

= KHr?i(nﬂ)H‘s(QQ* - 1)

where K is a constant independent of R and ) (that need
not concern us here), and the delta function is defined as
S(W) = [T, 6(wii)] TT,s.; 8(R(wi;))8(3(w;;)) for Hermi-
tian matrices W = W*. Using (A.1) and (A.2), we have

m

po.r(QR) = K -pu(R) [[ri""*6(QQ" - 1)

=1

which, due to the separability of the function, implies

pQ,r(Q, R) = po(Q)pr(R)

where

PQ(Q)=K16(QQ" — 1), and pr(R)=Kopu(R) H T?z‘(n_i)ﬂ

(A.3)
for suitable constants K7 and K. Thus, ) and R are indepen-
dent. The distribution po(Q) = K16(QQ* —I) shows that © is
isotropically random since po(©Q) = po(QQ) = po(Q) for
all unitary ©, Q. (A proof of the fact that the distribution of an
isotropically random unitary @ is given by (A.3) can be found
in [25].)

This concludes the proof of Part 1. (We remark that the proof
of part 1 only required that H be rotationally invariant. We did
not require the independence of the columns of H. This inde-
pendence is required for the proof of Part 2, to which we now
turn our attention.)

Consider the partitioning

Hmfk,mfk

H =
Hn—m—l—k,m—k Hn—'m,-‘,—k,k

Hy ok }

where the subscripts indicate the dimensions of the submatrices.
Now, consider the QR decomposition of the leading m — k
columns of H, i.e.,

|: Hm—k,m—k :| _ Q |:Pm—k,m—k:|
Hymibm—t] " 0

where Q1 is n x (m — k) unitary, and P,_jm—sk
is upper triangular with non-negative diagonal en-
tries. Now, since P?ifk,mfkpm—k;m—k = H;“nfk’mik
Honkeom—t+H e 1 Hnomikm—k, Wwhich is the
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leading (m — k) x (m — k) submatrix of H*H, we conclude

that P,,,_ . —r is indeed the leading (m — k) X (m — k) subma-

trix of ¥ in the partitioning (22),1i.e., Ppy—g,m—k = Bm—km—k-

Applying the unitary matrix Q] to the full H (and not just its
leading m — k columns), we have

« Ry—km—t  Hm—kk

@i = 0 Hpy ik (AD

Now, since (7 depends only on the first m — k columns of
H and these are independent of the remaining k£ columns, by
the rotational invariance of the columns of H, we conclude that

H,, _ 11,1 has the same distribution as H,, _ , 1 ,%.° Now, if we
consider the QR decomposition of H,,_ ., 41k

_ Ry
Hn—m+k,k = Q2|: S,k:|

combining this with (A.4), we have

I 0 Roy—oom—t Hm—pk
QTH = |:0 ) :| 0 Rng
2 0 0
and so

I 0 Rokm—t Hm ki

H=0 {0 0 } 0 Ry (A.5)
? 0 0
. I 0. . . . .
Since (1 0 Q is unitary and since the diagonal entries
2

of Ry—km—r and Ry are non-negative, we conclude that
this is indeed the QR decomposition of H (which justifies our
use of the notation Ry ;, for the R in the QR of Flk7k).7 Since
anerk,k and H, 4+, have the same distribution, we
conclude that 2, ;. has the same distribution as the R obtained
from the QR decomposition of H,, ;.-

This concludes the proof of Part 2.

B. Representing Integers as a Sum of Squares

The quest of representing a positive integer as the sum of
squares has a long history in mathematics and number theory.
The problem of determining the number of ways that a non-neg-
ative integer [ can be represented as k squares was first posed by
Waring in 1770 and is denoted by 7(1).8 The first known result
in this direction is due to Diophantus of Alexandria (325-409
A.D.), who showed that no integer of the form 4m + 3 can be
represented as the sum of two squares. In other words, 2 (4m +
3) = 0. In 1632, Girard conjectured that [ is the sum of two
squares if the prime divisors of / of the form 4m + 3 occur in
[ in an even power. (For example, [ = 32.5 = 32 + 62, while
| = 33-5 cannot be represented as the sum of two squares.) Euler

6This is also true of Hp,_k o and Hop_k s, though we shall not need this
fact.

"Thus, for example, H,., _x.x = R &5

8In fact, Waring considered the much more general problem of determining
the number of ways an integer can be represented as the sum of k integers raised
to the power ¢. In this sense, the number of ways an integer can be represented
as the sum of k squares is essentially the ¢ = 2 Waring problem.
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proved this conjecture in 1749. However, he did not give an ex-
plicit formula for 75 (1). This was done by Legendre in 1798 and
Gauss in 1801, who showed that

ra(l) = 4(d1(l) — ds(1)) (B.1)
where d; (1) and d3([) are the number of divisors of [ congruent
to 1 and 3 mod 4, respectively.

In 1770, Lagrange proved his famous Four Squares Theorem,
which states that every positive integer can be represented as the
sum of four squares. This essentially establishes that r4(l) > 0
for all positive integers [; however, Lagrange did not give an
explicit formula for 74(1).

In terms of computing the value of 7 ([), the first result is
due to Euler, who introduced (what is now known as) the Jacobi
theta function

)= Y e =142 o™ (B.2)
m=—o0 m=1
and established the following.
Theorem 3: Let 6(x) be given by (B.2). Then
0% (x) =1+ Y ri(l)2'. (B.3)
1=1

In other words, the number of ways a non-negative integer / can
be represented as the sum of k squares is given by the coefficient
of x! in the expansion of 6% (z).

This can be illustrated as follows: 8% (x) is clearly a series in
which each term has an exponent that is obtained as the sum of &k
squares; since the summation in (B.2) goes over all integers, the
coefficients in front of each term in the series expansion 6% ()
must be equal to the number of ways that the exponent in that
same term can be represented as the sum of k squares.

Using the connection between the above theta function and
elliptic functions, Jacobi in 1829 obtained closed-form expres-
sions for 7 (l) when k = 2,4,6,8 (see [24, Ch. 9]). His formula
for £ = 4 immediately yields Lagrange’s Four Squares The-
orem. Solutions for £ = 10 and & = 12 were found by Liouville
and Eisenstein. Later, Ramanujan, Hardy, and Littlewood ob-
tained formulas for even k < 24. For odd k, the only results are
due to Dirichlet, who found r3(l), and Eisenstein, Smith, and
Minkowski, who found r5(1) and r7(1).

For a long time, these were the only known explicit for-
mulas for r(l). Indeed, results by Glaisher, and by Rankin
(1965), using the theory of modular forms, discouraged many
researchers from obtaining further closed-form expressions.
The subject was, therefore, presumed to be “dead” until very
recently. In 1994, as a consequence of their study of certain
affine super-algebras, Kac and Wakimoto conjectured formulas
for 0% (x) when k = 4m? and k = 4m(m + 1) [26]. In 1996,
these conjectures were proved by Milne using Jacobi’s elliptic
functions, Hankel determinants and continued fractions [27].
For an expository review of this and subsequent results, the
interested reader is referred to [28].

This exhausts known closed-form solutions for r(1). There
exist many asymptotic results (in both & and /) (see, e.g., [29,
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Ch. 5]). In any case, for any given k and [, the value of () can
be numerically computed using Euler’s formula (B.3). More-
over, 7 (() is also a built-in function in Mathematica, SumOf -
SquaresR [k, 1] [30].
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