A Robustness and Generalizaion

Here, we start by following the definition of robustness and
derivation of the generalization bound in Xu and Mannor
(2012):

Definition 1. Denote Z as the set from which each sample
is drawn and S as training sample set consisting of n train-
ing samples (X1, ..., Xn ), respectively. Algorithm A is mapping
from Z" to hypothesis set H. Then algorithm A is (K, €(S)) ro-
bust, for K € Nand €(S) : Z" — R, if Z can be partitioned
into K disjoint sets, denoted by {C; Y11, such that the follow-
ing holds for all S € Z™ :

Vxe S, Vze Z, Vi=1,..,K:ifx,z € C;, then
|L(As;z) — L(As;x)| < €(9), (D

where L is the loss function.

Theorem 1. If a learning algorithm A is (K, €(S)) robust,
L is upper bounded by M and the training sample set S is
generated by n IID draws from a distribution pu, then for any
0 < p < 1, with probability at least 1 — p we have

\IEZW[L‘,(As;Z)]—% > L(As;xi)| <

x; €S

«5) +M\/2Kln2 +n21n(1/p)

We slightly modify the aforementioned notions for describing
the generalization ability in DNNs. In Definition 1, robustness
adopts the upper bounds of the difference between loss func-
tions of two data points, given that they are on the same par-
tition C;. When selecting any input x € R™*! belonging to
Ci, let 8 € R™*! be any perturbation on the input satisfy-
ing (x + %) € C;. Further, denote w € R as the vectorized
weight of the model and £(w;x) as the loss function of the
neural network. Then, we obtain a method for measuring ro-
bustness in DNNs.

|L(w;x +8%) — L(w;x)| <, 2)

which has equivalent meaning with (1).

B Extension of Lemma 1 and Proposition 1

Lemma 2. Let 8 and 8¢ be input and weight perturbations
at i-th layer, respectively. For a n-layer neural network, the
input perturbations 8§ can be transferred to the combinations
of weight perturbations 8t s. More formally, suppose we have
weight matrix which is between (i — 1)-th layer and i-th layer
W, € RY>bi=1 ywhere l; is the number of features in the i-th
layer and assume l; < l;_1. Then for any & # 0, there exists
dWis such that |L(w+8;x) — L(w; x)| =~ |L(w; x+6%)—
L(w;x)].

Proof. Here, we ignore the bias term and activation function.
We start with a two-layer neural network y = W2 Wx, then
generalize to n-layer DNNGs. In case of n = 2, the proof can be
accomplished by finding W2 and W which satisfies

(W2 +6V2) (W, +6Vx = WoW, (x+6%) (3)

(W™t + V2 W) )x ~ Wy W, 6" 4)

where §W28W1 ~ () because & are small. Then, the following
choice of W2 and 6W1 satisfies (4) :

WoWi6* +
——X

Wod™ 4+ 6 Wy o )
W = (VT W) @

In (6), W2 exists for V6W* because rank(W,) < ;. If
rank(W1) = [ then W1 has a right inverse. Otherwise,
rank(W1) < l1 so the equation is under-determined, resulting
in infinitely many solutions.

Now, Lemma 1 can be easily generalized to any n-layer neural
networks by simply replacing (1) of Lemma 1 with the follow-
ing :

i ((ﬁ Woi1)0™ (ﬁ Wi—k))
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Then, we have

i—1 " | }
5W71(H Wi—k) ~ (Hizl Wn*hLl)(s XT

ptet xTx
n—1 n—t i—1
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i=1 k=1 k=1
which means sWn always exists because
rank([172) W) < ln-1. O

Proposition 2. Suppose |L(w +8%;x) — L(w;x)| < € holds
for any 8% such that

|2 (0 W) 8™ (T2 W) )| < 6
Then |L(w;x + 6°) — L(w;x)| < € holds for any 6 such

that 1271 <
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Proof. The proof is almost same with Proposition 1 and easily
done by replacing (2) of Lemma 1 with (7). Then,
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