
A Robustness and Generalizaion

Here, we start by following the definition of robustness and
derivation of the generalization bound in Xu and Mannor
(2012):
Definition 1. Denote Z as the set from which each sample
is drawn and S as training sample set consisting of n train-
ing samples (x1, ...,xn), respectively. AlgorithmA is mapping
fromZn to hypothesis setH. Then algorithmA is (K, ε(S)) ro-
bust, for K ∈ N and ε(S) : Zn 7→ R, if Z can be partitioned
into K disjoint sets, denoted by {Ci}Ki=1, such that the follow-
ing holds for all S ∈ Zn :

∀x ∈ S, ∀z ∈ Z , ∀i = 1, ..., K : if x, z ∈ Ci, then

|L(AS ; z)− L(AS ;x)| ≤ ε(S), (1)

where L is the loss function.
Theorem 1. If a learning algorithm A is (K, ε(S)) robust,
L is upper bounded by M and the training sample set S is
generated by n IID draws from a distribution µ, then for any
0 < p ≤ 1, with probability at least 1− p we have

|Ez∼µ[L(AS ; z)]−
1

n

∑
xi∈S

L(AS ;xi)| ≤

ε(S) +M

√
2K ln 2 + 2 ln(1/p)

n

We slightly modify the aforementioned notions for describing
the generalization ability in DNNs. In Definition 1, robustness
adopts the upper bounds of the difference between loss func-
tions of two data points, given that they are on the same par-
tition Ci. When selecting any input x ∈ Rn×1 belonging to
Ci, let δx ∈ Rn×1 be any perturbation on the input satisfy-
ing (x + δx) ∈ Ci. Further, denote w ∈ Rd as the vectorized
weight of the model and L(w;x) as the loss function of the
neural network. Then, we obtain a method for measuring ro-
bustness in DNNs.

|L(w;x+ δx)− L(w;x)| < ε, (2)

which has equivalent meaning with (1).

B Extension of Lemma 1 and Proposition 1

Lemma 2. Let δx and δWi be input and weight perturbations
at i-th layer, respectively. For a n-layer neural network, the
input perturbations δx can be transferred to the combinations
of weight perturbations δWis. More formally, suppose we have
weight matrix which is between (i− 1)-th layer and i-th layer
Wi ∈ Rli×li−1 where li is the number of features in the i-th
layer and assume li ≤ li−1. Then for any δx 6= 0, there exists
δWis such that |L(w+δw;x)−L(w;x)| ' |L(w;x+δx)−
L(w;x)|.

Proof. Here, we ignore the bias term and activation function.
We start with a two-layer neural network y = W2W1x, then
generalize to n-layer DNNs. In case of n = 2, the proof can be
accomplished by finding δW2 and δW1 which satisfies

(W2 + δW2)(W1 + δW1)x = W2W1(x+ δx) (3)

(W2δ
W1 + δW2W1)x 'W2W1δ

x (4)

where δW2δW1 ≈ 0 because δ are small. Then, the following
choice of δW2 and δW1 satisfies (4) :

W2δ
W1 + δW2W1 '

W2W1δ
x

x>x
x> (5)

δW2W1 ' (
W2W1δ

x

x>x
x> −W2δ

W1) (6)

In (6), δW2 exists for ∀δW1 because rank(W1) ≤ l1. If
rank(W1) = l1 then W1 has a right inverse. Otherwise,
rank(W1) < l1 so the equation is under-determined, resulting
in infinitely many solutions.

Now, Lemma 1 can be easily generalized to any n-layer neural
networks by simply replacing (1) of Lemma 1 with the follow-
ing :

n∑
i=1

(
(

n−i∏
k=1

Wn−k+1)δ
Wi(

i−1∏
k=1

Wi−k)
)

'
(
∏n
i=1 Wn−i+1)δ

x

x>x
x> (7)

Then, we have

δWn(

i−1∏
k=1

Wi−k) '
(
∏n
i=1 Wn−i+1)δ

x

x>x
x>

−
n−1∑
i=1

(
(

n−i∏
k=1

Wn−k+1)δ
Wi(

i−1∏
k=1

Wi−k)
)

(8)

which means δWn always exists because
rank(

∏n−1
k=1 Wn−k) ≤ ln−1.

Proposition 2. Suppose |L(w+δw;x)−L(w;x)| < ε holds
for any δw such that∥∥∥∑n

i=1

(
(
∏n−i
k=1 Wn−k+1)δ

Wi(
∏i−1
k=1 Wi−k)

)∥∥∥
F
< δ.

Then |L(w;x + δx) − L(w;x)| < ε holds for any δx such
that ‖δ

x‖
‖x‖ < δ

σmax(
∏n

i=1 Wn−i+1)
.

Proof. The proof is almost same with Proposition 1 and easily
done by replacing (2) of Lemma 1 with (7). Then,∥∥∥∥∥

n∑
i=1

(
(

n−i∏
k=1

Wn−k+1)δ
Wi(

i−1∏
k=1

Wi−k)
)∥∥∥∥∥

2

F

=

∥∥(∏n
i=1 Wi)δ

x
∥∥2 ∥∥x>∥∥2

(x>x)2

≤
σ2
max(

∏n
i=1 Wn−i+1) ‖δx‖2

‖x‖2
< δ2 (9)
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