Supplemental Materials: Missing Proofs

Proof of Theorem 2. Part 1.

Note that (6) is equivalent to
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By the Markov inequality,
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guarantees (17). Note that (18) is equivalent to
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where P, ¢ denotes the joint probability with respect to
the posterior distribution of y and the stochasticity of &
given . The Monte Carlo scheme in PCSG precisely
generates samples according to P, ¢. Theorem 1 implies
that choosing N satisfying (8) in the sampled program
(7) to obtain x guarantees (19), and consequently (6),
with probability at least 1 — §. This concludes the proof
of Part 1.

Part 2. Let M be the event
Pu(Pep(f(z;) € A)>1—a)>1-8

in the sample space under the Monte Carlo sample gen-
eration (that obtains x). Let 1,4 be the indicator function
on the occurrence of M. Then we have
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by (9). Now, consider
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by using (20) in the last inequality. This concludes the
proof.
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Proof of Theorem 3. From Theorem 2 part 2, if we use
B¢, 6 and NV, satisfying (12), we have
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We want to show (14), which is equivalent to
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Note that the left hand side of (22) is bounded from above
as
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tesS
guarantees that (22) holds. Noting that (23) is equivalent

to (13), we conclude our theorem. O

Proof of Proposition 1. Let s = |S|. Setting 3; = 6; =

v, we have >, (B + 0 — Bd;) = s(2y —~%). We
want (27 — v?) < A, or equivalently

v =27+ BA/s>0 (24)

Since the left hand side of (24) is a convex quadratic
function, (24) holds if and only if

1—-8X/s or v<1—+/1-p5)/s

The first condition is never satisfied since v must be < 1.
The second condition is valid and gives (14). O
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Proof of Proposition 2. Without loss of generality, we
label t as the counter in S for convenience (i.e., as-
sume that ¢ = ((t) by relabeling 3; and ;). We want
oo (Be + 0 — Bid) < B holds so that (14) holds
regardless of 7T". Note that
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We analyze the two terms of the right hand side of (25).
By definition v, = n if and only if ¢t < 1/771/". Thus, for
the first term, we have
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For the second term in (25), we have
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Therefore, combining (26) and (27) into (25), we have
(15) implies 272 ve — > oy 72 < BAor (14). O

Proof of Corollary 4. The corollary follows immedi-
ately by noticing that the linear program (16) is trivially
convex, and applying Theorem 3. O



