
Supplemental Materials: Missing Proofs

Proof of Theorem 2. Part 1.

Note that (6) is equivalent to

Pµ(Pξ|µ(f(x, ξ) /∈ A) ≥ α) ≤ β (17)

By the Markov inequality,

Pµ(Pξ|µ(f(x, ξ) /∈ A) ≥ α) ≤
Eµ[Pξ|µ(f(x, ξ) /∈ A)]

α

So
Eµ[Pξ|µ(f(x, ξ) /∈ A)]

α
≤ β (18)

guarantees (17). Note that (18) is equivalent to

Eµ[Pξ|µ(f(x, ξ) ∈ A)] ≥ 1− αβ

or
Pµ,ξ(f(x, ξ) ∈ A) ≥ 1− αβ (19)

where Pµ,ξ denotes the joint probability with respect to
the posterior distribution of µ and the stochasticity of ξ
given µ. The Monte Carlo scheme in PCSG precisely
generates samples according to Pµ,ξ. Theorem 1 implies
that choosing N satisfying (8) in the sampled program
(7) to obtain x guarantees (19), and consequently (6),
with probability at least 1 − δ. This concludes the proof
of Part 1.

Part 2. LetM be the event

Pµ(Pξ|µ(f(x; ξ) ∈ A) ≥ 1− α) ≥ 1− β

in the sample space under the Monte Carlo sample gen-
eration (that obtains x). Let IM be the indicator function
on the occurrence ofM. Then we have

EMC [IM]

= PMC(Pµ(Pξ|µ(f(x; ξ) ∈ A) ≥ 1− α) ≥ 1− β)

≥ 1− δ (20)

by (9). Now, consider

EMC [Pµ(Pξ|µ(f(x; ξ) ∈ A) ≥ 1− α)]

≥ EMC [Pµ(Pξ|µ(f(x; ξ) ∈ A) ≥ 1− α)IM]

≥ EMC [(1− β)IM]

≥ (1− β)(1− δ)

by using (20) in the last inequality. This concludes the
proof.

Proof of Theorem 3. From Theorem 2 part 2, if we use
βt, δt and Nt satisfying (12), we have

EMC [Pµt(Pξt|µt(f(x; ξt) ∈ At|Ft−1) < 1− α)]

≤ 1− (1− βt)(1− δt) (21)

We want to show (14), which is equivalent to

PMC(Pµ1:T
(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α

for some t ∈ S) > β) ≤ λ (22)

Note that the left hand side of (22) is bounded from above
as

PMC(Pµ1:T
(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) < 1− α

for some t ∈ S) > β)

≤ PMC

(∑
t∈S

Pµ1:T
(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1)

< 1− α) > β

)

≤ 1

β
EMC

[∑
t∈S

Pµ1:T
(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1)

< 1− α)

]
(by the Markov inequality)

=
1

β

∑
t∈S

EMC [Pµt(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1)

< 1− α)]

≤ 1

β

∑
t∈S

(1− (1− βt)(1− δt)) (by using (21))

Hence

1

β

∑
t∈S

(1− (1− βt)(1− δt)) ≤ λ (23)

guarantees that (22) holds. Noting that (23) is equivalent
to (13), we conclude our theorem.

Proof of Proposition 1. Let s = |S|. Setting βt = δt =
γ, we have

∑
t∈S(βt + δt − βtδt) = s(2γ − γ2). We

want s(2γ − γ2) ≤ βλ, or equivalently

γ2 − 2γ + βλ/s ≥ 0 (24)

Since the left hand side of (24) is a convex quadratic
function, (24) holds if and only if

γ ≥ 1 +
√

1− βλ/s or γ ≤ 1−
√

1− βλ/s

The first condition is never satisfied since γ must be≤ 1.
The second condition is valid and gives (14).



Proof of Proposition 2. Without loss of generality, we
label t as the counter in S for convenience (i.e., as-
sume that t = ζ(t) by relabeling βt and δt). We want∑∞
t=1(βt + δt − βtδt) ≤ βλ holds so that (14) holds

regardless of T . Note that

∞∑
t=1

(βt + δt − βtδt) = 2

∞∑
t=1

γt −
∞∑
t=1

γ2t (25)

We analyze the two terms of the right hand side of (25).
By definition γt = η if and only if t ≤ 1/η1/ρ. Thus, for
the first term, we have

2

∞∑
t=1

γt = 2

b 1

η1/ρ
c · η +

∞∑
t=b1/η1/ρc+1

1

tρ


≤ 2

(
η1−1/ρ +

∫ ∞
b1/η1/ρc

1

uρ
du

)

≤ 2

(
η1−1/ρ +

1

ρ− 1

1

(1/η1/ρ − 1)ρ−1

)
(26)

For the second term in (25), we have

∞∑
t=1

γ2t = b 1

η1/ρ
c · η2 +

∞∑
t=b1/η1/ρc+1

1

t2ρ

≥ η2

η1/ρ + 1
+

∫ ∞
b1/η1/ρc+1

1

u2ρ
du

≥ η2

η1/ρ + 1
+

1

2ρ− 1

1

(1/η1/ρ + 1)2ρ−1
(27)

Therefore, combining (26) and (27) into (25), we have
(15) implies 2

∑∞
t=1 γt −

∑∞
t=1 γ

2
t ≤ βλ or (14).

Proof of Corollary 4. The corollary follows immedi-
ately by noticing that the linear program (16) is trivially
convex, and applying Theorem 3.


