
A APPENDIX

A.1 DERIVATION OF COROLLARY 1 & 2

Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by
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Proof. Recall that, in the case of Gaussian distributed
random vectors, the pdf of ρ is
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This directly yields that ω :=
√
qρ has the density func-
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(A.2)
as q → ∞, using the fact that Γ( q2 )

Γ( q−1
2 )
∼
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q
2 . Therefore

the probability that two random Gaussian vectors are not
ε-orthogonal is upper bounded by

Pr(|ρ| ≥ ε) = Pr(|ω| ≥ √qε) = 2
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(A.3)

To estimate the probability that ε-orthogonality is satis-
fied for a set ofN independent Gaussian random vectors,
let us consider the following quantity

P(ε,N) :=

N−1∏
k=1

[1− kPr(|ρ| ≥ ε)] . (A.4)

The above estimation has clear meaning. Given one
Gaussian random vector X1, the probability that an in-
dependently sampled random vector X2 which is not ε-
orthogonal to X1 is Pr(|ρ| > ε). Similarly, given k
i.i.d. Gaussian random vectors X1, · · · ,Xk, the proba-
bility that an independently drawn Gaussian random vec-
tor Xk+1 which is not ε-orthogonal to X1, · · · ,Xk is
upper bounded by kPr(|ρ| > ε). Therefore, we have the
estimate in Eq. A.4 for N independent random vectors.

Using Eq. A.3, P(ε,N) can be computed as follows
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for sufficiently large N and q satisfying N
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1. If we require P(ε,N) ≥ 1 − ν, then the number of
pairwise ε-orthogonal i.i.d. Gaussian random vectors is
bounded from above by
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Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (A.5)

Proof. Given the g(ρG) in Theorem 1, we have

E[|ρG|] =

∫ 1

−1

|ρ|g(ρ) dρ =
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for large q.

A.2 DISCUSSION ON CONJECTURE 1

In this section, we derive the approximations stated in
Conjecture 1 and verify them with empirical simulations.

According to the central limit theorem, the sum of in-
dependently and identically distributed random variables
with finite variance converges weakly to a normal dis-
tribution as the number of random variables approaches
infinity. Our derivation relies on the generalized central
limit theorem proven by Gnedenko and Kolmogorov in
1954 [Gnedenko et al. 1954].
Theorem A 1. (Generalized Central Limit Theorem
[Gnedenko et al. 1954]) Suppose X1, X2, . . . is a se-
quence of i.i.d random variables drawn from the distribu-
tion with probability density function f(x) with the fol-
lowing asymptotic behaviour

f(x) '

{
c+x

−(α+1) for x→∞
c−|x|−(α+1) for x→ −∞,

(A.6)



where 0 < α < 2, and c+, c− are real positive num-
bers. Define random variable Sn as a superposition of
X1, · · · , Xn

Sn =

n∑
i=1

Xi − Cn

n
1
α

, with

Cn =


0 if 0 < α < 1

n2= ln(φX(1/n)) if α = 1

nE[X] if 1 < α < 2,

where φX is the characteristic function of a random
variable X with probability density function f(x), E[X]
is the expectation value of X , = denotes the imagi-
nary part of a variable. Then as the number of sum-
mands n approaches infinity, the random variables Sn
converge in distribution to a unique stable distribution
S(x;α, β, γ, 0), that is

Sn
d−→ S(α, β, γ, 0), for n→∞,

where, α characterizes the power-law tail of f(x) as de-
fined above, and parameters β and γ are given as:

β =
c+ − c−
c+ + c−

,

γ =

[
π(c+ + c−)

2α sin(πα2 )Γ(α)

] 1
α

. (A.7)

To be self-contained, we give the definition of stable dis-
tributions after [Nolan 2003; Mandelbrot 1960].

Definition A 1. A random variable X follows a stable
distribution if its characteristic function can be expressed
as

φ(t;α, β, γ, µ) = eiµt−|γt|
α(1−iβ sgn(t)Φ(α,t)), (A.8)

with Φ(α, t) defined as

Φ(α, t) =

{
tan(πα2 ) if α 6= 1

− 2
π log |t| if α = 1.

Then the probability density function S(x;α, β, γ, µ) of
the random variable X is given by the Fourier transform
of its characteristic function

S(x;α, β, γ, µ) =
1

2π

∞∫
−∞

φ(t;α, β, γ, µ) e−ixt dx.

The parameter α satisfying 0 < α ≤ 2 characterizes
the power-law asymptotic limit of the stable distribution,
β ∈ [−1, 1] measures the skewness, γ > 0 is the scale
parameter, and µ ∈ R is the shift parameter. Note that the

normal distribution is a typical stable distribution. Other
examples with analytical expression include the Cauchy
distribution and the Lévy distribution. For the later use,
we give the analytical form of the Lévy distribution.

Remark A 1. The probability density function of the
Lévy distribution is given by

f(x; γ, µ) =

√
γ

2π

e−
γ

2(x−µ)

(x− µ)
3
2

, x ≥ µ, (A.9)

where µ is the shift parameter and γ is the scale param-
eter. The Lévy distribution is a special case of the stable
distribution S(x;α, β, γ, µ) with α = 1

2 and β = 1. This
can be seen from its characteristic function, which can
be written as

φ(t; γ, µ) = eiµt−|γt|
1/2(1−i sgn(t))

To derive g(ρC) for Cauchy random vectors, we first
need the distribution function of X2 given that the ran-
dom variable X has a Cauchy distribution.

Lemma A 1. Let X be a Cauchy random variable hav-
ing the probability density function fX(x) = 1

π
ζ

x2+ζ2 ,
where ζ > 0 is the scale parameter. Then the squared
variable Y := X2 has the pdf:

fY (y) =

{
1
π

ζ√
y(ζ2+y) for y ≥ 0,

0 otherwise.
(A.10)

Proof. fY (y) can be derived from fX(x) by a simple
variable transformation y = g(x) = x2. In particular,
utilizing the symmetry of fX(x), we have

fY (y) = 2

∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ fX(g−1(y))

=
1

π

ζ
√
y(ζ2 + y)

.

In the following Lemma we derive the probability den-
sity function for zX,Y, which is defined as zX,Y :=
1
q2
X2

2+···X2
q

X2
1

.

Lemma A 2. Let X1, · · · , Xq be a sequence of i.i.d.
random variables drawn from C(0, 1). Then the random

variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges in distribution
to

f(z) = − 1

π2

1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.11)

as q →∞, where Ei(x) denotes the exponential integral.



Proof. The numerator in Zq can be regarded as a sum
of independent random variables with density function
fY :=X2(y) = 1

π
1√

y(1+y) , see Eq. A.10 with ζ = 1.
Thus, we can use the generalized central limit theorem
to obtain the density function g( 1

q2

∑q
i=2X

2
i ) for the nu-

merator, as q →∞.

Note that fY (y) ∼ 1
πy
− 3

2 as y → +∞. From this
asymptotic behaviour we can extract that c+ = 1

π , c− =
0, and α = 1

2 . Moreover, Eq. A.7 with β = 1 yields

γ =
[

1
sin(π4 ) Γ( 1

2 )

]2
= 2

π . In summary, g( 1
q2

∑q
i=2X

2
i )

converges to a unique stable distribution S(α = 1
2 , β =

1, γ = 2
π , µ = 0), which is exactly the Lévy distribution

shown in Remark A 1. Hence, we have

g(
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1

2
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π
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,

as q →∞. (A.12)

Next, we consider the quotient distribution of two ran-
dom variables in order to derive the pdf of Zq . To be
more specific, let X and Y be independent non-negative
random variables with corresponding probability density
function fX(x) and fY (y) over the domains x ≥ 0 and
y ≥ 0, respectively. Then the cumulative distribution
function FZ(z) of Z := Y

X can be computed by

FZ(z) = Pr(
Y

X
≤ z) = Pr(Y ≤ zX)

=

∫ ∞
0

[∫ y=zx

0

fY (y)dy

]
fX(x)dx.

Differentiating the cumulative distribution function
yields

fZ(z) =
d

dz
FZ(z) =

∫ ∞
0

x fY (zx) fX(x) dx.

Following the above procedure, we can obtain the pdf
for Zq as q → ∞ in case the density functions of the
numerator and the denominator are given by Eq. A.12
and Eq. A.10, respectively. That yields

f(z) =
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In the following we discuss why the density function
g(ρC) can only be approximated by taking the limit as
q →∞.

Suppose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq)
are Gaussian random variables. To derive g(ρX,Y) in
Lemma 1, [Cai et al. 2012; Muirhead 2009] compute the
density function of αᵀ·X

||X|| instead, where αᵀ · α = 1,
and α := Y

||Y|| . In particular, without loss of generality,
they assume α = (1, 0, · · · , 0). The justification for this
assumption is that the random variable X

′
:= X

||X|| is
uniformly distributed on the (q − 1)-dimensional sphere
(see Theorem 1.5.6 in [Muirhead 2009]).

In our case, the distributional uniformity of X
||X|| is not

superficial, since the density function of X
′

doesn’t de-
pend on X

′
only through the value of X

′ᵀX
′
. To see

this, in the following Lemma, we discuss the distribution
function of the normalization X

||X|| .

Lemma A 3. Consider a q-dimensional random vector
X = (X1, · · · , Xq), where X1, · · · , Xq are indepen-
dently and identically drawn from a Cauchy distribution
C(0, 1). Then, as q → ∞, the normalized random vec-
tor X

||X|| = (X
′

1, · · · , X
′

q) has a joint density function,

in which the random variables X
′

1, · · · , X
′

q are all inde-
pendent from each other.

Proof. Without loss of generality, we study the pdf of
X
′

1 = X1√
X2

1+···+X2
q

. Similar to the proof of Lemma

A 2, the random variable Zq := 1
q2
X2

2+···+X2
q

X2
1

converges
weakly to the distribution with pdf given by Eq. A.11
as q → ∞, which is independent of the other random
variables due to the generalized central limit theorem.
Hence,X

′

1 can be treated as an independent random vari-
able as q → ∞. In addition, we obtain the pdf of X

′

1

given by

fX′1
(x′1) = − 2

π2q2x
′3
1

1

z
3
2
1

[
e

1
πz1 Ei

(
− 1

πz1

)]
,

(A.13)
where z1 is defined as z1 := 1

q2

(
1
x
′2
1

− 1
)

. The argu-

ments can be easily generalized to X
′

2, · · · , X
′

q .

The pdf of the joint distribution fX′ (x
′
1, · · · , x′q) can be

written as a product of marginals, that is

fX′ (x
′
1, · · · , x′q) =

q∏
i=1

fX′i
(x′i),

as q → ∞. The density function of X
′

is not invari-
ant under an arbitrary rotation. Thus, it is not uniformly
distributed on Sq−1.

The above density function of normalized Cauchy ran-
dom vectors leads to the following Remark.



Remark A 2. The normalized Cauchy random vector
X
′

= X
||X|| is sparse in the sense that the density function

of its elements can be approximated by a δ-function.

Fig. 1 shows the empirical elements distribution of 1000
normalized Cauchy random vectors. This indicates that
in sufficiently high-dimensional spaces the density func-
tion of the normalized entries converges to a δ-function.
To explain this, recall the Laurent expansion of the den-
sity function given in Eq. A.13,

fX′1
(x′1) =

2

πqx′21
− 2

q3x′41
+

4π

q5x′61
+O

(
1

q7x′81

)
.

(A.14)
This expansion converges to zero almost everywhere ex-
pect for x′1 = 0 as q →∞.

Figure 1: Empirical distributions of 10000 normalized
Cauchy random vectors with dimensions q = 100, 500,
1000, 5000.

In the following, we provide a full derivation of g(ρC)
proposed in the Conjecture 1.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from a Cauchy distri-
bution C(0, 1). Let Θij be the angle between Xi and
Xj . Then, as q → ∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with density func-
tion approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (A.15)

where z := 1
q2

(
1
ρ2C
− 1
)

.

Given two Cauchy random vectors X = (X1, · · · , Xq)
and Y = (Y1, · · · , Yq), ρX,Y is approximated by
ρX,Y ≈ X1√

X2
1 ···+X2

q

.

Furthermore, we introduce the new variable zX,Y :=
1
q2 ( 1

ρX,Y
− 1). From Lemma A 2 we have the den-

sity function ĝ(zX,Y). Then, g(ρX,Y) can be directly
obtained from ĝ(zX,Y) by a variable transform, that is

g(ρX,Y) =

∣∣∣∣dzdρ

∣∣∣∣ ĝ(zX,Y). With
∣∣∣∣dzdρ

∣∣∣∣ = 2
q2ρ3 we imme-

diately get Eq. A.15 as the density function for ρX,Y.

Assume that Eq. A.15 is valid as q → ∞. In the follow-
ing we show that {ρij |1 ≤ i < j ≤ n} are i.i.d random
variables. First, notice that ρij and ρkl are independent
if {i, j} ∩ {k, l} = ∅. It is left to prove that ρX,Y and
ρX,Z are independent, given that X, Y, Z are indepen-
dent random variables.

To prove the independence, consider
E[h1(ρX,Y)h2(ρX,Z)], where h1 and h2 are arbi-
trary bounded functions. Since X, Y, and Z are
independent,

E[h1(ρX,Y)·h2(ρX,Z)]

= E [ E[h1(ρX,Y) · h2(ρX,Z)|X] ]

= E [ E[h1(ρX,Y)|X] · E[h2(ρX,Z)|X] ] .

Given X, the probability density function of ρX,Y
is independent of X. Thus, E[h1(ρX,Y)|X] =∫ 1

−1
h1(ρX,Y)g(ρX,Y) dρ = E[h1(ρX,Y)], and simi-

larly E[h2(ρX,Z)|X] = E[h2(ρX,Z)]. It gives,

E[h1(ρX,Y) · h2(ρX,Z)] = E[h1(ρX,Y)] · E[h2(ρX,Z)],

This concludes that ρX,Y and ρX,Z are also independent.

Recall that the derivation of Eq. A.15 uses the gener-
alized central limit theorem which requires the limiting
condition q →∞. Therefore it is important to check how
the dimensionality q effects the quality of the prediction.

Fig. 2 displays the empirical distribution of ρ, that is
g(ρ) =

∑
1≤i<j≤n

δρij , and the theoretical prediction in

Eq. A.15 for various dimensions q. For the simulation,
n = 10000 random vectors are drawn independently
from C(0, 1). We use the leading orders of the Laurent
series of Eq. A.15 to represent the theoretical predictions.

It can be seen that for a sufficiently high-dimensional
space, say q = 2000, the theoretical prediction fits the
simulation very well. Moreover, the pairwise angles
among Cauchy random vectors converge to π

2 as the di-
mensionality increases.

It implies that in high-dimensional spaces the distribu-
tional uniformity of normalized Cauchy random vectors
could be tenable. We explain this in an intuitive way.
According to Remark A 2, each element in the normal-
ized variable converges independently in distribution to
a Dirac δ-function, which can be constructed as the limit
of a sequence of zero-centered normal distribution

fX′i
(x′i) =

1

a
√
π

e−
x′2i
a2 for a→ 0+.



Figure 2: Comparisons between empirical distributions
and theoretical predictions of ρC for various dimensions,
q = 50, 100, 500, 2000.

Thus, following Lemma A 3, the density function of
fX′ (x

′
1, · · · , x′q) can be approximated by

fX′ (x
′
1, · · · , x′q) =

(
1

a
√
π

)q
e−

x′ᵀx′
a2 for a→ 0+.

This joint distribution is invariant under an arbitrary or-
thogonal rotation. Thus, it is a spherical distribution, as
well as a uniform distribution on Sq−1. A rigorous proof
of this result is still necessary. However, it is beyond the
scope of this work.

A.3 DERIVATION OF COROLLARY 3

Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise

ε-orthogonal with probability 1− ν. Then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (A.16)

Proof. The derivation of this bound is similar to that
of Corollary 2. The probability, that two random vec-
tors whose elements are independently and identically
Cauchy distributed are not ε-orthogonal, is bounded from
above by

Pr(|ρ| ≥ ε) = 2

∫ 1

ε

2

πqρ2
dρ <

4

πq

1

ε
,

where only the leading order Laurent expansion of
Eq. A.15 is considered. Then the quantity P(ε,N) can
be estimated as follows,

P(ε,N) :=

N−1∏
k=1

[1− kPr(|ρ| ≥ ε)] >
N−1∏
k=1

(1− k 4

πεq
)

> (1−N 4

πεq
)N ∼ e−N

2 4
πεq ,

for sufficiently large N , and q → ∞, with N 4
πεq < 1.

If we require P(ε,N) ≥ 1− ν, then the number of pair-
wise ε-orthogonal i.i.d. Cauchy random vectors is upper
bounded by

e−N
2 4
πεq ≥ 1− ν ⇒ N ≤

√
πεq

4

[
log

(
1

1− ν

)] 1
2

A.4 BINDING WITH CORRELATION OR
CONVOLUTION

The filtered mean rank scores with different binding op-
erations are compared in Fig. 3.

Now we give a heuristic explanation. For the sake of sim-
plicity, consider only one semantic triple (s, p, o). For
the binding with circular correlation the holistic repre-
sentations are given by hcorr

s = rp ? ro + ξrs, hcorr
p =

rs ? ro + ξrp, and hcorr
o = rp ? rs + ξro.

On the other hand, for the binding with convolution, the
holistic representations given by: hconv

s = rp ∗ ro + ξrs,
hconv
p = rs ∗ ro + ξrp, and hconv

o = rp ∗ rs + ξro.

Suppose that the subject needs to be retrieved and re-
called using holistic representations only. To quantify
the retrieval quality, a similarity scorr/conv is introduced
for different binding operators. In particular, for binding
with circular correlation scorr := hcorr ᵀ

s (hcorr
p ∗ hcorr

o ),



(a) (b) (c) (d)

Figure 3: Comparison of the filtered MR scores for binding with convolution and binding with correlation (a) for
FB15k-237 with Cauchy initialization, (b) for FB15k-237 with Gaussian initialization, (c) for GDELT dataset with
Cauchy initialization, (d) for GDELT with Gaussian initialization

while for binding with circular convolution sconv :=
hconv ᵀ
s (hconv

p ? hconv
o ).

Before any further derivations, recall that circular corre-
lation can be computed in log-linear complexity via

a ? b = F−1
(
F(a)�F(b)

)
,

where F(·) denotes the fast Fourier transform and
F−1(·) its inverse, and the bar denotes the complex con-
jugate of a complex-valued vector. Moreover, circular
convolution can also be computed via fast Fourier trans-
forms

a ∗ b = F−1 (F(a)�F(b)) .

First we compute the similarity scorr

scorr = hcorr ᵀ
s (hcorr

p ∗ hcorr
o )

= (rp ? ro + ξrs)
ᵀ[(rs ? ro + ξrp) ∗ (rp ? rs + ξro)]

= (rp ? ro + ξrs)
ᵀ[(rs ? ro) ∗ (rp ? rs)︸ ︷︷ ︸

1©

+

ξ (rs ? ro) ∗ ro︸ ︷︷ ︸
2©

+ ξ rp ∗ (rp ? rs)︸ ︷︷ ︸
3©

+ ξ2rp ∗ ro].

Using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ rp ? ro,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
= Noise,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

yields

scorr ≈ (rp ? ro + ξrs)
ᵀ[rp ? ro + ξrs + Noise]

≈ (1 + ξ2) + Noise.

The similarity sconv can be computed in a similar way,

sconv = hconv ᵀ
s (hconv

p ? hconv
o )

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro + ξrp) ? (rp ∗ rs + ξro)]

= (rp ∗ ro + ξrs)
ᵀ[(rs ∗ ro) ? (rp ∗ rs)︸ ︷︷ ︸

1©

+

ξ (rs ∗ ro) ? ro︸ ︷︷ ︸
2©

+ ξ rp ? (rp ∗ rs)︸ ︷︷ ︸
3©

+ ξ2rp ? ro].

Moreover, using that

1© = F−1
[
F(rs)�F(ro)�F(rp)�F(rs)

]
≈ ro ? rp,

2© = F−1
[
F(rs)�F(ro)�F(ro)

]
≈ rs,

3© = F−1
[
F(rp)�F(rp)�F(rs)

]
≈ rs,

leads to

sconv ≈ (rp ∗ ro + ξrs)
ᵀ[ro ? rp + 2ξrs + Noise]

≈ 2ξ2 + Noise.

The optimal hyper-parameter requires ξ < 1 which in
turn yields scorr > sconv. From the derivation of scorr,
we have that the subject-object association pair stored in
hcorr
p contributes the most in scorr ≈ 1 + ξ2 via the term

1©.

A.5 APPROXIMATION OF ρr′o,ho

Here we provide a heuristic study on the relations be-
tween hyper-parameter ξ, λG/C, and the average num-
ber of association pairs Na. Recall that ξ was intro-
duced for holistic representations, and λG/C is defined
as λG/C := E[|ρG/C|].

Consider a subject s. The predicate-object pair (p, o)
is stored in the holistic representation hs along with the
other Na − 1 pairs. This means

hs = ξNars + rp ? ro +

Na∑
i=2

rpi ? roi .



Figure 4: Approximations of ρr′o,ho
(ξ,Na) in the case of Gaussian holistic representations with (a): Na = 10 (b):

Na = 20 (c): Na = 30. We use the experiment setting with dimnsionality q = 5200, λG = 0.0111, and optimal
ξ = 0.14.

Suppose that we aim to identify the object in the triple
(s,p, ·) via hs and hp, where hp is the holistic represen-
tation for the predicate p. We further assume that up to
Na subject-object pairs can be stored in hp having high
enough fidelity, then

hp = ξNarp +

Na∑
k=1

rsk ? rok .

To retrieve the object o, the decoding via circular convo-
lution is obtained as follows

r′o = hp ∗ hs

≈ ξNaro + ξ2N2
a (rp ∗ rs) + ξNa

Na∑
i=2

[rp ∗ (rpi ? roi)]

+ ξNa

Na∑
k=1

[(rsk ? rok) ∗ rs] +

Na∑
k=1

[(rsk ? rok) ∗ (rp ? ro)]

+

Na,Na∑
k=1,i=2

[(rsk ? rok) ∗ (rpi ? roi)]

= ξNaro + ξ2N2
ab1 + ξNa

Na∑
i=2

bi + ξNa

Na∑
k=1

ck

+

Na∑
k=1

dk +

Na,Na∑
k=1,i=2

eki,

where bi, ck, dk, and eki with i, k = 1, · · · , Na are ap-
proximately normalized Gaussian/Cauchy random vec-
tors. This is due to the fact that in high-dimensional
spaces both circular correlation and circular convolution
of two normalized Gaussian/Cauchy random vectors is
approximately a normalized Gaussian/Cauchy random
vectors.

After decoding with circular convolutions, the decoded
noisy version of the object needs to be recalled with
ho which is the holistic representation of o. As before,
Na predicate-subject association pairs are assumed to be

stored in the holistic representation of o, with

ho = ξNaro +

Na∑
j=1

rpj ? rsj = ξNaro +

Na∑
j=1

fj ,

where fj , j = 1, · · · , Na are approximately normalized
Gaussian/Cauchy random vectors.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected
absolute angle between two arbitrary vectors, namely
θr′o,ho

< E[|θG/C|]. Given the definition of λ, equiva-
lently, it requires ρr′o,ho

> λG/C.

Now we turn to approximate the numerator of ρr′o,ho
, that

is r′ᵀo ho. Recall that, in general, the expectation of the
dot product of two normalized, independent random vec-
tors equals 0 due to the symmetry of the density function
g(ρG/C). Therefore, in the following approximation we
only consider noisy terms which are directly related to ro
as adverse effects to a successful retrieval and treat other
terms as white noisy with zero expectation. This yields,

r′ᵀo ho

≈ ξ2N2
a + ξNa

Na∑
j=1

(rᵀofj) + ξ3N3
a (rᵀob1) + ξ2N2

a

Na∑
i=2

(rᵀobi)

+ ξ2N2
a

Na∑
k=1

(rᵀock) + ξNa

Na∑
k=1

(rᵀodk) + ξNa

Na,Na∑
k=1,i=2

(rᵀoeki)

> ξ2N2
a − (ξN2

a + ξ3N3
a + ξ2N2

a (Na − 1) + ξ2N3
a

+ ξN2
a + ξN2

a (Na − 1))λG/C

= ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C.

Furthermore, the denominator of ρr′o,ho can be approxi-
mated in the same way. More concretely, we have

||r′o|| · ||ho|| < ξ2N2
a +Na + 2ξN2

aλG/C

+Na(Na − 1)λG/C.

Combining these results, a sufficient condition to retrieve



the object correctly is given by

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (A.17)

Consider the experimental setting for the memoriza-
tion task on the FB15k-237 dataset: The dimensional-
ity of the holistic representations is q = 5200, λG(q =
5200) = 0.0111, and λC(q = 5200) = 0.00204. Fig. 4
displays the above approximation of ρr′o,ho

(ξ,Na) for
Gaussian initializations.

After performing grid search, the optimal ξ is found to be
close to the intersection of the curve ρr′o,ho

(ξ,Na = 10)
and the threshold λG. However, for Na > 30, no inter-
section points on ξ > 0 exists. This explains why Gaus-
sian holistic representations have lower memory capacity
compared to Cauchy holistic representations.

More comparisons between Gaussian and Cauchy initial-
izations can be found in Fig. 5.

A.6 HOLISTIC ENCODING ALGORITHM

Algorithm 1 Holistic Encoding

Require: hyper-parameter ξ
1: for i = 1, · · · , Ne do
2: Draw r̃

G/C
ei from Gaussian or Cauchy

3: r
G/C
ei ← Norm(r̃

G/C
ei )

4: for i = 1, · · · , Np do
5: Draw r̃

G/C
pi from Gaussian or Cauchy

6: r
G/C
pi ← Norm(r̃

G/C
pi )

7: for i = 1, · · · , Ne do
8: Extract ∈ Ss(ei), So(ei) from Database
9: hsei ←

∑
(p,o)∈Ss(ei)

[Norm(rp ? ro) + ξrei ]

10: hoei ←
∑

(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ]

11: hei ← hsei + hoei
12: for i = 1, · · · , Np do
13: Extract S(pi) from Database
14: hpi ←

∑
(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ]

Remark:

Normalizing initial random vectors can assist the analy-
sis of memory capacities via different sampling schemes.
For example, for the derivation of retrieval condition
Eq. A.17 we heavily relay on the fact that the dot product
of two random vectors - say ri · rj , where ri and rj are

Figure 5: Comparison of ρr′o,ho(ξ,Na) for Gaussian
(blue) and Cauchy (green) holistic representations with
(a): Na = 10 (b): Na = 20 (c): Na = 30 (d): Na = 40.

randomly sampled and normalized - is just ρij . In the
memorization task, since triples are recalled by compar-
ing the angles (a.k.a cosine similarity) between decoded
noisy vector and all other holistic vectors, normalization
does not effect the recall scores.

A.7 NOTATIONS

In Table 1 and Table 2, we summary important notations
introduced in Section 3 and 4, respectively.

A.8 FURTHER EXPERIMENTAL DETAILS

After searching for the optimal hyper-parameter ξ for
holistic encoding, holistic representations with superior



Table 1: Notations for ε-orthogonality

Symbol Meaning

X
q-dimensional random variable with elements
drawn from Gaussian or Cauchy distribution

Θij
Angle between two random variables Xi and
Xj

ρij
Cosine of the angle between random variables
Xi and Xj

g(ρG)
Asymptotic density function of ρij given an en-
semble of Gaussian random variables Xi, i =
1, · · · , n, with n→∞

g(ρC)
Asymptotic density function of ρij given an en-
semble of Cauchy random variables Xi, i =
1, · · · , n, with n→∞

λG Expectation value of |ρG|
λC Expectation value of |ρC|

memory capacity will be fixed and applied to the next
inference tasks.

The architecture is a simple 2-layered fully-connected
neural network, which map high-dimensional holistic
representations (q = 3600) of subjects, predicates, and
objects to low-dimensional (h2 = 256) representations,
separately. We choose ReLU as the activation func-
tion for faster training, and batch normalization after the
hidden-layer for regularization. In order to reduce the
number of trainable parameters, the network has a bottle-
neck structure with the dimensionality of the hidden-
layer h1 = 64. The extracted low-dimensional features
are then combined via tri-linear dot-product, similar to
DISTMULT.

In summary, given a triple (s,p, o) the scoring function
ηspo takes the following form:

ηspo =〈BN(ReLU(hsW
e
1))We

2,

BN(ReLU(hpW
p
1))Wp

2,

BN(ReLU(hoW
e
1))We

2〉,

where hs, hs are the holistic representations for the sub-
ject s and object o; hp is the holistic representation for
the predicate p. Note that there are two separate net-
works for extracting low-dimensional features of entities
and predicates, respectively. In particular, We

1 ∈ Rq×h1

and We
2 ∈ Rh1×h2 are shared weights for entities, in-

cluding subjects and objects; Wp
1 ∈ Rq×h1 and Wp

2 ∈
Rh1×h2 are shared weights for predicates.

For training the model, we minimize the following binary

Table 2: Notations for holistic representations

Symbol Meaning

∗ Circular convolution

? Circular correlation

Norm Normalization operator, Norm(r) := r
||r||

Ne Number of entities in the KG

Np Number of predicates in the KG

Na
Average number of association pairs encoded in
holistic representations of entities

r
G/C
ei

Random initialization of entity ei with elements
drawn from Gaussian or Cauchy distribution

r
G/C
pi

Random initialization of predicate pi with ele-
ments drawn from Gaussian or Cauchy distribu-
tion

hs
ei

Holistic representation of entity ei as subject

ho
ei

Holistic representation of entity ei as object

hei Overall holistic representation of entity ei

hpi Holistic representation of predicate pi

ξ Hyper-parameter for holistic encoding

cross-entropy loss with l2 regularization:

L = − 1

m

m∑
i=1

(yi · log(σ(ηxi))+

(1− yi) · log(1− σ(ηxi))) + λ||A||22,

where the label vector yi has dimension {0, 1}1×N for
1-N scoring to accelerate the link prediction tasks. To be
more specific, during the training given a triple (s,p, o),
we take the subject-predicate pair (s,p) and and rank it
against all object entities o ∈ E ; take the predicate-object
pair (p, o) and rank it against all subject entities s ∈ E
simultaneously as well.

Hyper-parameters in the HOLNNG and HOLNNC are
optimized via grid search with respect to the mean recip-
rocal rank (MRR). The ranges for grid search are as fol-
lows - learning rate {0.001, 0.003, 0.005}, l2 regulariza-
tion parameter {0., 0.01, 0.05}, decay parameter in the
batch normalization {0.99, 0.9, 0.8, 0.7}, and batch size
{1000, 3000, 5000}.
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