Multitasking: Efficient Optimal Planning for Bandit Superprocesses

Dylan Hadfield-Menell and Stuart Russell

Abstract

A bandit superprocess is a decision problem
composed from multiple independent Markov
decision processes (MDPs), coupled only by the
constraint that, at each time step, the agent may
act in only one of the MDPs. Multitasking prob-
lems of this kind are ubiquitous in the real world,
yet very little is known about them from a com-
putational viewpoint, beyond the observation that
optimal policies for the superprocess may pre-
scribe actions that would be suboptimal for an
MDP considered in isolation. (This observation
implies that many applications of sequential de-
cision analysis in practice are technically incor-
rect, since the decision problem being solved
is often part of a larger, unstated bandit super-
process.) The paper summarizes the state-of-the-
art in the theory of bandit superprocesses and
contributes a novel upper bound on the global
value function of a bandit superprocess, defined
in terms of a direct relaxation of the arms. The
bound is equivalent to an existing bound (the
Whittle integral), but is defined constructively,
as the value of a related multi-armed bandit. We
provide a new method to compute this bound and
derive the first practical algorithm to select opti-
mal actions in bandit superprocesses. The algo-
rithm operates by repeatedly establishing domi-
nance relations between actions using upper and
lower bounds on action values. Experiments indi-
cate that the algorithm’s run-time compares very
favorably to other possible algorithms designed
for more general factored MDPs.

1 INTRODUCTION

Multitasking is no doubt an activity familiar to the reader:
one faces several decision problems but can act on only
one (or perhaps a bounded number) at a time. Such prob-

lems are ubiquitous for individuals, corporations, armies,
and governments.

Multitasking problems are expressed by the class of ban-
dit superprocesses [Nash, 1973] or BSPs. A k-armed BSP
M consists of k independent Markov decision processes
My, ..., My; the MDPs are coupled by a common discount
factor and by the constraint that at each time step the agent
can act in only one MDP.

Since the MDPs are independent of each other, one might
imagine that the optimal policy for M is obtained by
solving each MDP—turning the BSP into a multi-armed
bandit—and then using Gittins indices to choose a se-
quence of arms. In fact, the optimal policy for a BSP may
include actions that are suboptimal from the point of view
of the constituent MDP in which they are taken. The reason
for this is that the availability of other MDPs in which to
act changes the balance between short-term and long-term
rewards in a component MDP; in fact, it tends to lead to
greedier behavior in each MDP because aiming for long-
term reward in one MDP would delay rewards in all the
other MDPs. The globally and locally optimal policies nec-
essarily coincide only when the discount factor is 1.

Hence, in addition to their general importance in the real
world, a second reason to study multitasking problems is
that they undermine an assumption implicit in practical ap-
plications of sequential decision analysis: the assumption
that an optimal solution for the user’s decision problem is
optimal for a user who faces multiple decision problems.

Despite these considerations, there has been remarkably lit-
tle research on bandit superprocesses and almost none in
Al Section 2 summarizes what is known. Obviously, there
are connections to multi-armed bandits (MABs), which are
a special case of BSPs in which each arm only allows
one choice of action rather than several. Unfortunately,
the index theorems that simplify the computation of opti-
mal MAB policies are not valid for BSPs. There are also
strong connections—hitherto unexplored—between BSPs
and sums of games as studied in combinatorial game the-
ory [Conway, 2000]. The principal question we address in

this paper is whether an algorithm exists that is substan-
tially more efficient than applying a standard MDP solver
to the “cross-product” MDP obtained by combining the
states spaces of the constituent MDPs.

The sole known case where planning for a BSP is provably
more efficient is the case where a dominating policy exists:
if a single policy is optimal across the family of retirement
processes associated with each arm then a BSP can be re-
duced to an equivalent MAB [Whittle, 1980]. (Retirement
processes provide a measure of how the optimal policy de-
pends on context and are defined in Section 3.) However,
this condition is seldom satisfied in practice.

This paper provides three contributions. First, we give a
concise survey of the bandit superprocess literature tailored
to the AI community. Second, we provide a novel upper
bound on the global value function of a BSP. For a BSP,
M, with arms {M, ..., M} we relax each arm to obtain
an MAB M’ = {M{,..., M/} by adding actions to en-
sure that dominating policies exists. We show that this up-
per bound is equivalent to the Whittle integral, an existing
upper bound for BSPs [Brown and Smith, 2013]. Because
our bound is defined in terms of an explicit relaxation, it
provides insight into the nature of the bound and opens
an avenue to extend this work to more general MDPs. Fi-
nally, we describe a practical computational approach for
solving BSPs: we derive a simple method for computing
the Whittle integral upper bound that can use an arbitrary
MDP solver as a black box; then we combine this upper
bound with a lower bound to derive an efficient algorithm
for e-optimal decision making in a BSP. We present em-
pirical results to show that it substantially improves over
more general optimal factored MDP algorithms; we use it
to compute provably optimal actions for problems with up-
wards of 103 states in the full state space.

2 RELATED WORK

Robbins [1952] provided the first formulation of multi-
armed bandits (MABs) in their modern form. The famous
Gittins index theorem [Gittins, 1979] showed that optimal
MAB policies are obtained by ranking the arms according
to an index function defined on each seperately. An imme-
diate corollary is that optimal decision making in an MAB
is linear in the number of arms. Problems with this prop-
erty are said to be indexable.

Bandit superprocesses (BSPs) were introduced by Nash
[1973] as a generalization of multi-armed bandits to study
allocation of resources among research projects. Whittle
[1980] provided an alternate proof of the Gittins index the-
orem that extends to bandit superprocesses with dominat-
ing policies. His proof utilized a construction called the
Whittle integral, which allows one to compute the value
of a composite state in an MAB. Glazebrook [1982] pro-
vides a proof that bandit superprocesses are not indexable

in general. Glazebrook [1993] considers bandit superpro-
cesses where the arms can exert limited influence on each
other and shows a result analogous to Whittle’s.

Brown and Smith [2013] were the first to identify the sig-
nifigance of the Whittle integral for sequential decision
making. They developed a version of policy iteration to
compute it, and recognized that it upper bounds the value
function of a BSP,! but did not derive an algorithm for solv-
ing BSPs. Our work provides two further contributions re-
garding the Whittle integral: a short proof that it is an upper
bound and a simpler algorithm to compute it.

Within the AI community, there has been limited study
of loosely coupled Markov decision processes. Singh and
Cohn [1998] consider optimal solutions to simultaneous
MDPs, where an agent can take actions in a number of
MDPs. Their formulation is more general than ours, as it
is possible to act in multiple MDPs at once. They derive
bounds for this problem and give an algorithm that com-
bines a form of real-time dynamic programming with prun-
ing steps to remove provably suboptimal actions. However,
their bounds are substantially looser than ours, and our ex-
periments show that the corresponding algorithm can be
impractical for simple BSPs with many arms.

Meuleau et al. [1998] examine MDPs that are coupled by
constraints on the use of shared resources. BSPs fit within
this class if we view the restriction to a single MDP at a
time as a constraint on the agent’s attention. Interestingly,
their heuristics are also defined in terms of a parameter-
ized value function for the component MDPs—it would be
interesting to attempt to generalize the approaches consid-
ered here to their problem domain. In this work, we lever-
age the particular structure of our resource to compute op-
timal solutions; Meuleau et al. construct a heuristic policy.

3 TECHNICAL BACKGROUND

MARKOYV DECISION PROCESSES

Definition 1. (Markov Decision Process [Puterman,
2009]) A (finite-state, discounted) MDP, M, is a tuple
M = (§,A,T,R,). S is a set of states. A is a set of
actions. T : § x A x § — [0,1] is a function that assigns
probability to state transitions for each state—action pair.
R is a (bounded) reward function that maps state—action
pairs to (positive) rewards R : S x A — R*. vy € [0,1) is
a discount factor.

A solution to M is a policy, 7, that maps states to actions.
The value of a state, s, under 7 is the sum of expected dis-
counted rewards received by starting in s and selecting ac-

IThis result first appears in the literature as an intermediate
step in a larger proof from Whittle [1980]. It went unnoticed or
unappreciated in the intervening 30+ years.

tions according to 7:

oo
VT(s)=E lz Y R(s¢)|s0 = S,ﬂ'] .
t=0

The optimal policy, 7*, maximizes this value. In the above
definition, and the ones that follow, we use superscripts to
indicate dependence on the agent’s policy. To simplify no-
tation, we will omit these superscripts when the policy re-
ferred to is the optimal policy (e.g., V(s) = V™ (s)). The
Q-function for the state—action pair, (s, a), is the value of
taking a in s and selecting future actions according to 7*.

RETIREMENT PROCESSES

Given an MDP, Whittle defines a family of optimal stop-
ping problems:

Definition 2. (Retirement Process [Whittle, 1980]) Let M
be an MDP. For p > 0, the retirement process for M with
retirement reward, p, is an MDP, M, with a single addi-
tional state, sg, and action, ar. ag transitions determinis-
tically to sr and receives reward p. sg is a sink state that
accrues zero reward.

We refer to a decision to select ar as a decision to retire.
We denote the retirement process value function as a func-
tion of a state and retirement reward, V (s, p). We let the op-
timal policy for retirement reward p be 7. We write the set
of states where the policy, , retires as 7. We use p_(7)
and p4(7) to denote the interval of retirement rewards so
that 7 is optimal:

p' € lps(m), pr(m)] = V7 (s,p) = V(s,p).

We adopt the convention from the MAB/BSP literature
and abuse notation to denote the (random) number of
steps prior to retirement as 7, (s). For s € 77 we let
Protire(8']s, p,) be the probability that s’ is the first state
in 77 the agent will reach given that it is in state s and
executes policy m. We denote the expected discounted re-
ward accrued prior to retirement, starting in s, as R (s).
In regions of retirement reward where the optimal policy
and stopping rule do not change, %—‘;(s, p) is defined and
is equal to the expected value of the discount parameter at
retirement. This allows us to write the following expression
for the retirement process value function:

V(s,p) = Ry(s) + E[y)]p. (1)

V (s, p) is piecewise linear in p. Figure 1 shows V (s, p) for
the example BSP in Ex. 1. A policy that is optimal for every
setting of p is called a dominating policy.

Definition 3. (Dominating Policy) Let 7 be a policy for an
MDP, M. m is a dominating policy iff

Vp>0Vs ¢ 1, m(s)=m,(s).

MULTI-ARMED BANDITS AND BANDIT
SUPERPROCESSES

Multi-armed bandits (MAB) are a restricted class of MDPs
that have received extensive study. Of particular interest are
the form of the optimal policy and its utility in modelling
“exploration vs exploitation” trade-offs.

An MAB consists of a set of Markov reward processes
(MRPs), where an MRP is an MDP with a single action.
Each MRP is referred to as an arm of the problem. At each
time-step, the agent selects an arm, that arm transitions ac-
cording to its transition distribution, and the agent receives
the corresponding reward. We adopt a summation notation
to indicate the combination of several MRPs into an MAB.
For example, if X and Y are MRPs and Z is the MAB with
arms X and Y, we will write 7 = X + Y.

A famous result is that the optimal policy for any MAB
is an index policy [Gittins, 1979]. Each state, s;, in the
individual arms is assigned an index, I,,. In joint state
s = {s1,...,8;}, the optimal action is to select
argmax; Is,. For MAB arm M in state s;, the index is de-
fined as the value of retirement reward such that the agent
is indifferent between immediate retirement and following
the optimal stopping policy [Whittle, 1980]:

This means that, in a sense, context for a multi-armed ban-
dit can always be summarized by a single number.

To model a multi-tasking problem, we consider a gen-
eralization of multi-armed bandits: bandit superprocesses
(BSPs). Bandit superprocesses allow arms that are arbitrary
MDPs (and so are a generalization of MABs); at each time
step, the agent selects both an arm and an action to take
within that arm.

Definition 4. (Bandit Superprocess [Nash, 1973]) Given k
MDPs, {M; = (S;, A;,T;, Ri,7)}, we define

M=% M = (S AT R 7)

10 be the bandit superprocess with arms {M;}. S = x §;
and A =

1
ary for arms that are not selected and follows the identical
reward and transition distributions for the selected arm.

U Aj;. The transition distribution is station-

Naturally, this makes planning more difficult. To see how,
consider the following proposal:

Conjecture 1. Ler X = (Sx,Ax,Tx,Rx,7) be an
MDP. Define Y similarly and let Z = X + Y be the
bandit superprocess that is their sum. Let a € Ay,
sx € Sx be a state-action pair from X. Suppose that
this transition is suboptimal in every retirement process:
Vp > 0, Vx(sx, p) > Qx((sx, a), p). Then a is

suboptimal for any state in Z with sx as one of the compo-
nents:

Vsy € Sy, Vz({SX,Sy}) > Qz({SX,Sy},a).

This conjecture essentially proposes that state—action pairs
can be safely ignored if they are suboptimal for all settings
of a constant alternative. Unfortunately, as the following
example illustrates, this is not the case.

Example 1. Define X to be a deterministic reward chain
and 'Y to be an initial choice between three reward chains
(Yo, Y1, Y2) defined as follows:

X = 28,28,28,28,28,28,0,0...

yo = 100,100,100,0,0,0...
Y={ yi= 99,99,99,1.4,1.4,1.4...
ys = 28,28,28,...

The retirement process value function for each reward
chain can be computed by simulating the Gittins index pol-
)
icy:

2
V(yo, p) = max {100 (Z 7t> +7°p, p}

t=0

2
1.4
V(y,p) = maX{99 (7t> +73maX{M,p} 7p}
t=0

2
V(y2, p) = max {187,p} :

If we let v = .9, then we have

V280 > p > 0max{V(yo, p), V(y2, p)} > V(y1, p).
Thus, any policy for a retirement process retirement process
derived from Y that initially selects y, is suboptimal. We

can apply the same strategy to compute the value of each
combination of reward streams:

2 5
V(yo + X) =100 (Z ’yt> + 93 (28 > %)
t’'=0

t=0
2 5 1.4
Vi +X)=99 (> 4" +4° 282#—#761%
t=0 =0 -7
28
1% X)= "
(y2 + X) 1—~

From this we can see that the optimal policy for the BSP
that combines these MDPs, Z = X + Y, initially collects
reward from y1. This contradicts Conjecture 1.

Here we use the fact that the Gittins index of a non-increasing
reward sequence is equal to the instantaneous reward.

4 AN UPPER BOUND FOR BANDIT
SUPERPROCESSES

In this section we show a bound on the value function of
a bandit superprocess. We derive this bound by adding ac-
tions to a BSP so that it is equivalent to an MAB. The value
function of our relaxed BSP is equivalent to the Whittle in-
tegral bound derived in Brown and Smith [2013] and so it
yields insight into that computation. We begin by defining
the Whittle integral and show some basic results in order to
motivate our relaxation.

Definition 5. (Whittle Integral [Brown and Smith, 2013])

Let M be a BSP. Let t index the arms of M. For any state,
s ={s;}, and p > 0, the Whittle integral of s is defined as

V(s P)—]—/I d:v” Z-(s- x))
’ T=p i 6p e
Where I > max; I,.

When the arms of a BSP admit a dominating policy the
Whittle integral is equal to the value function:

Theorem 1. (Whittle Condition [Whittle, 1980]) Let M be
a k-armed BSP with components {M,} and state space S.
If each M; has a dominating policy, then

Vs € 8,¥p >0,V (s,p) = V(s,p).

MRPs have a single action per state, so the Whittle con-
dition is trivially satisfied for all multi-armed bandits.
V(s,0) = V(s), so V (s, 0) provides an efficient method to
compute the value of an MAB. For BSPs an arm that sat-
isfies the Whittle condition can be replaced with an MRP
that selects actions according to 7*.

The formula in Eq. 2 lends itself to a straightforward im-
plementation, but is very challenging to interpret. We show
below that this is equivalent to evaluating the retirement
process value function for a single arm with a set of re-
wards determined by the other arms®. We refer to this set
of rewards as the critical points of those arms.

Definition 6. (Critical Points of an MDP) Let M be
a Markov decision process. The critical points of M,
C(M) = {p;}, are the values of retirement reward such
that the optimal stopping rule or policy changes.

These are points where there is a discontinuity in %—‘;. We
let

oV,
AM(s,p) = lim a—f(s,pw) -

s, p—20
o (s;p=9)
be the size of the corresponding discontinuities. This is
equivalent to the expected increase in E [y7] under the new
stopping rule. Theorem 2 shows that A and C characterize
the interaction between arms of an MAB.

3Qur result is a small extension on a related result in Brown
and Smith [2013]; it is primarily included to provide intuition.

Theorem 2. Let X,Y be Markov reward processes. Let
7 = X +Y be the 2-armed bandit. Vs = {sx, sy} € Sz,

Vz(s)= Y Vx(sx,p)AY (sy.p). 3)
p€EC(Y)

Proof. (sketch) As a first step, we follow the steps in Whit-
tle [1980] and integrate Equation 2 by parts. This expresses
V' as the following integral:

. Lex 0?Vy (sy, p
Vz(s):/ Vx(sxapl)xla(ig/p)dp/.
p P

V5 is piecewise linear with respect to p so 3;‘/; is a
weighted sum of delta functions centered at Vy’s kinks.
C(Y) and AY respectively characterize these kinks and
weights. Thus, V(s) is equal to the rhs of Eq. 3. X and Y’

are MRPs, so an appeal to Theorem 1 shows the result. [

A similar property holds for arbitrary k-armed bandits. This
shows that we can summarize the context for an arm as
a collection of weighted retirement rewards. Turning to
BSPs, this lends insight into the approximation the Whit-
tle integral introduces.

To see how, we reconsider Ex. 1. Recall that this example
consists of the BSP Z = X + Y and that Y is a choice
between three reward chains, {yo, %1, y2}. Theorem 2 al-
lows us to write the gap between the Whittle integral upper
bound and the value of selecting y; as

> (maxVyu(si,0) = Vin(s1,0)) A¥ (5,)
pEC(X)

Figure 1 shows the retirement process value functions for
this example. While the retirement process value of y; is
always less than that of either yq or ¥, it is close enough
to their maximum that choosing y; essentially achieves
the upper bound. The Whittle integral for Z is a weighted
combination of distinct retirement process value functions
(Vyo, Vo) but, in reality, the agent will be forced to pick a
single policy of the two.

DOMINATED RELAXATION OF AN MDP

In this section, we introduce our primary theoretical result:
a relaxation for the arms of a BSP so that a dominating pol-
icy exists. This reduces the BSP to an MAB whose value
upper bounds the value of states in the BSP. We can show
that the Whittle integral computes the value of states in this
MAB and arrive at a straightforward proof that the Whit-
tle integral is an upper bound. We call the result the dom-
inated relaxation of an MDP. Before providing the details,
we illustrate the main ideas with an example. The relaxed
MDP is actually a Semi-MDP (SMDP): a generalization of
an MDP where each action, a, has a duration, §(a) € R...

Example 2. Let MDP M be an initial choice between

MRPs:
15,0,0,0. ..
M‘{ 10,10,10,3,3,3, ...

Let T (B) be the top (bottom) MRP. Let p (mp) be the
policy that selects T (B) in sg. We can relax M with the ad-
dition of a single durative action, o, that transitions from
the sink state in T to the sink state B. We set §(a’) = 2.
We take p such that V™7 (s, p) = V™8 (s, p) and set the
rewards associated with o’ to be

2
R77(s0) — Ry (s0) = 10) 4" —15=12.1.
0

With this change, at low settings of retirement reward, the
agent is indifferent between a policy that opts for the top
chain then selects a’ and the bottom reward chain. For high
settings of retirement reward, the optimal policy retires im-
mediately or retires after collecting the reward of 15. This
SMDP satisfies the Whittle condition and can be replaced
by an MRP in any bandit superprocess. Fig. 1 (c) shows an
illustration of the state space and the introduced action.

In this example, we connected the state where 7 retires to
the state where 7 p retires. This lets the agent collect short-
term and long-term rewards with the same policy. To do
this in general, we introduce multiple copies of the state
space, one for each policy that is optimal for some p.

Definition 7. (Dominated Relaxation of an MDP) Let M
be an MDP with discount factor v and state space S. Let
s be a state in M. The dominated relaxation of M for s,
Mp(s), is a semi-Markov decision process that fixes s as
an initial state. Let {m; } be the policies that are optimal for
some p: {my|p € C(M)}. This sequence is ordered so that
p_(m;) is increasing in i*.

For each i, we introduce a copy of the state space, S;, where
the agent is restricted to following ;. Let s, be the ana-
logue of s" in S;. For s; € T,_(x,), we introduce a single
durative action, a;, that takes the agent from S; to S; _1 and
characterize it as follows:

o R(s) =R, (r,_1)(5) = Ry_(n)(5)

. T(S{u as, 5;/71) = Pretire(suhri—l’ p+(7fi_1), S)
3=)] i (s)
e §(a;) =log, E |y log, E |y

For each i, we introduce an action that transitions from s to
s; with 0 = 0. Let Vp(s) represent the value of s in Mp(s).

Theorem 3. Let M be an MDP with state space S. The
following statements are true for s € S and p > 0:

*Recall that [p_(7), p+ ()] is the interval of retirement re-
wards where 7 is optimal.

1. Mp(s) satisfies the Whittle condition.
2. Vp(s,p) = V(s,p).

3. V(s,p) = V(s,p)

Proof. See supplementary materials O

S AN e-OPTIMAL ALGORITHM FOR
BANDIT SUPERPROCESSES

In this section, we present two algorithms related to BSPs.
The first is a novel algorithm to compute V (s, p) that can
use any method to solve the underlying MDP. The second is
an efficient algorithm to compute optimal actions for a BSP.
Our approach, Branch-and-Bound Value Iteration (BBVI),
uses Whittle integrals to compute upper and lower bounds
on value. Then, we apply a modified Branch-and-Bound
search to find provably optimal actions.

COMPUTING A RETIREMENT PROCESS VALUE
FUNCTION

Before we present BBVI, we give a simple algorithm to
compute a retirement process value function that uses an
(arbitrary) MDP solver as a black box. Brown and Smith
[2013] describe an algorithm to compute retirement pro-
cess value functions, but their approach requires custom
implementation of a modified simplex algorithm. Our ap-
proach is simple and based on an algorithm that initially
appeared in the solutions manual for Russell and Norvig
[2010].

Our goal is to identify each component of V (-, p), so our
output will be a list of critical points and the associated
slopes. First, we will need the following result.

Lemma 1. Let M be an MDP with state space S. Let
po < p1. Consider a retirement reward in the interior of
this interval, p € (po, p1). If, Vs € S

Vs, p1) =V (s, p0)
P1 — Po

V(Sap) = V(S,PO) + (p - PO), 4)

then there is at least one policy and stopping rule that is op-
timal for every p' € [po, p1]- The expected value of the dis-
count factor at retirement is the slope between those points:

. V (s, p1) — V(s,po)
T (s) | _
" [fy } B P1 — Po ' ®)

Proof. This follows from the form of Equation 1 and the
fact that V (s, p) is piecewise linear, increasing, and convex.
O

400

380

360

340

/

0 50 100 150 200 250 300
Retirement Reward

(@
290 : .
- V(y() 7)0)
285 — V(yl 7)0)
- V(yQ 7/0)
2
= 280
B
275
2700 5 10 15 20 25 30
Retirement Reward
()

()

Figure 1: (a-b) Retirement process value functions for
the reward chains in Ex. 1. The slope of the lines is the
expected value of the discount parameter at retirement:
E [y7]. Flat sections indicate regions of retirement rewards
where retirement is always suboptimal. The kink in the
green curve at p = 280 indicates that it has become op-
timal to retire immediately. The kink in the black curve at
p = 14 increases the slope to 7% < 1; for p > 14, it is op-
timal to retire after collecting a prefix of the reward stream
from g5. (¢) Dominated relaxation of the MDP in Ex. 2. We
add additional durative actions to the state space to ensure
that a dominating policy exists. Note that the original MDP
does not admit a dominating policy.

This test allows us to implement a binary search over re-
tirement rewards. Our approach relies on a given MDP so-
lution method, SOLVE, that returns the vector of values for
a given MDP. We initialize an interval that contains all criti-
cal points and make a call to SOLVE to compute the retire-
ment process value at each endpoint. Then we call SOLVE
to compute the retirement process value for the midpoint
of our interval and apply the test in Eq. 4. If it succeeds,
we return the lower endpoint and the corresponding slope.
If this does not, we sub-divide our interval and recurse. We
can concatenate the results to get the breakpoints and slopes
for the retirement process value function over this interval.
Algorithm 1 shows pseudocode for this algorithm.

Algorithm 1 Computing an MDP’s Critical Points

Define: CRITICALPOINTS(M [, p~, p*, V=,V T])
Input: MDP, M Interval of retirement values, p—, p;
Values at interval endpoints, V—, V+
if p~, p* are not set then

p” <0

p+ “ maxRiviu;d(M)

V™ < SOLVE(M,-)

V+ « p* ## Retirement is initially optimal
end if
p P gﬂ’
V «+ SOLVE(M,)
if |V — (V‘ +(p— p—)v+7\/*) | < e then

pt—p~
V+7V_]

return [p~],

else
pts~, slope™ «—CRITICALPOINTS (M, p~, p, V—,V)
ptsT, slopet <—CRITICALPOINTS(M, p, p*, V, V)
Merge adjacent intervals with the same slope
if slope™[—1] = slope™[0] then
del ptsT[0],del slope™[0]
end if
return pts— U pts™, slopes™ U slopes™
end if

BRANCH-AND-BOUND VALUE ITERATION

Now, we present a practical algorithm to compute optimal
actions in a bandit superprocess. While a BSP is not index-
able, we would like to be able to plan efficiently when the
arms are ‘close’ to indexable—when there are only a few
states where the optimal policy changes in response to the
opportunity cost of delayed rewards in other arms.

Our approach is based on envelope dynamic programming
methods to solve MDPs: we compute value estimates for
a given initial state by solving a dynamic program defined
over a reachable subset of the state space [Gardiol, Natalia
H and Kaelbling, Leslie P, 2003, Hansen and Zilberstein,
2001]. The primary difference between our approach and
standard envelope methods is that we use dynamic pro-

gramming on our envelope to update an upper bound and
a lower bound on the value. This is useful in a BSP be-
cause the Whittle integral allows efficient calculation of
both bounds.

Our goal is to compute the optimal action for a given state
sina BSP, M = (M, ..., Mk). We can obtain an upper
bound on V(s) with a Whittle integral. We use a Whittle
integral for the MAB that solves each arm independently to
compute a lower bound. Our algorithm maintains upper and
lower bounds on the Q-function for each action that could
be executed from s. We write these bounds as Q% (s, a)
and Q~ (s, a) respectively. If there is a pair of actions a, a’
such that Q" (s,a’) < Q™ (s, a) + ¢, then we can conclude
that a’ is at least e-suboptimal. If this test removes all but
a single action, then we have found a e-optimal action and
return it.

In the event that more than one action remains, we do a par-
tial expansion of the state space around s. We keep track of
a set of expanded states, £, and a set of boundary states, 5.
States in the boundary set, B3, are states that some expanded
state can transition to but have not yet been added to &.
We can use these states to update the bounds on Q(s, -) by
solving a related MDP. This is formalized in the following
theorem.

Theorem 4. Let M be an MDP with state space S and
action space A. Let 8’ C S where S = B U & and
Vs € & T(s,a,8) # 0 = s € S Let M be
an MDP with state space S’ U{a}. M ’s transition distri-
bution and rewards are identical for states in £ (expanded
states). Each state s € B transitions deterministically to o
and receives a reward that is an upper bound on Vy;(s). «
is a sink state that accrues 0 reward. Then the value of a
state in M is an upper bound on its value in M :

Var+(s) = Va(s).
Proof. See supplementary materials. O

It is straightforward to show that an updated lower bound
can be computed by fixing boundary states to have value
equal to a lower bound. Our approach alternates between
pruning actions based on dominance relations, adding
states to £, and computing the value of an MDP defined
over £. We interleave value iteration with a branch-and-
bound search, so we call it Branch-and-Bound Value Itera-
tion (BBVI). Algorithm 2 shows pseudocode to implement
this method. At termination, the action we return is guaran-
teed to be at most e-suboptimal.

Theorem 5. Let M be a BSP and let s be a state in M. Let
a be the action returned by BBV I(M, s ¢€).

V(s) — Q(s,a) < e

Proof. See supplementary materials. O

Large regions of the state space are irrelevant to our ob-
jective so we use a heuristic to guide node expansion. Our
heuristic is a measure of the sensitivity of values at the root
to change in the upper and lower bounds of unexpanded
nodes. Similar heuristics have been applied in many set-
tings [Rivest, 1987, Smith and Simmons, 2004]. In BBVI,
these values are the expected discounted visitation rates in
the bounding MDPs and are computed as the dual variables
from a value iteration LP. The backup procedure is slower
than node expansions, so we perform backups in batches. In
between backups and heuristic computations, we approxi-
mate the state space as a tree and push new states onto the
agenda with their parent’s heuristic value weighted by the
transition probability.

Algorithm 2 Branch-and-Bound Value Iteration
Define:BBVI((My, ..., Mk), S0, €)
Input: BSP arms, M} ; Initial state, sq; Tolerance, €
Lower bound M by fixing a policy for each arm
LBy, (—tOMRP(Mk)
Compute critical points for My, LBy,
Compute bounds on Q(sg,-) with Whittle integrals for
M and LB.
Keep track of expanded region of state space
E«0
Keep track of states at boundary of M, M~
B« {80}
a* + argmaxQ~ (sp,a)

while Ja’ # a* s.t QT (s0,a’) > Q (s0,a*) do
s <—pop(B)
E+— EU{s}
fora € Ado
for s’ € successors(s) do
Compute upper and lower bounds for Q(s’,)
B+ Bu{s'}
end for
end for
Q" + SOLVE(BOUNDMDP(E, B,QT))
()~ < SOLVE(BOUNDMDP(E,B,Q7))
a* + argmax@Q~ (sg,a)

end while
return e-optimal action a*

6 EMPRIRICAL EVALUATION

We implemented BBVI in Python and use the linear pro-
gramming solver Gurobi to compute value functions. Our
experiments were run on an Intel i7 with 16 GB of RAM. In
our first experiments, we compare the scalability of BBVI
with that of standard MDP algorithms. In particular we
compare the following algorithms:

e SPUDD: the baseline factored MDP algorithm in the
2011 IPPC [Hoey et al., 1999].

0.5

Risky
Research

Failed
Product

Working
Product

Safe
Research

0.9

(a) State Space for R & D BSP

10

10%

10!
wn L]
B 10°
o
Q.
10

g +—+ SPUDD
10” =— LRTDP(MERGE)
10° —— LRTDP(WI)
— BBVI
4
107 770" 10° 10™ 10 10 102 102 102 107
State Space Size
(b) Runtime vs. Problem Size
10°
+— # of Rewards = 2

° s == # of Rewards = 5

10°
; — # of Rewards = 10
Q
x
]
g
=]
=1
(]
O
2
A

10" 3 5 : 5 : .
8 1012 1016 1020 1024 1028 32

State Space Size

(c) Solution Quality vs. Problem Size

Figure 2: (a) the state space for an arm of a R & D BSP.
All states accrue 0 reward except for the ‘Working Prod-
uct’ state, which collects a fixed reward per time step. (b)
shows runtime (log-scale) vs problem size for BBVI and
several alternatives on an R & D BSP. SPUDD [Hoey et al.,
1999] and LRTDP (with the heuristic from Singh and Cohn
[1998]) scale poorly compared with algorithms that lever-
age the Whittle integral. BBVI’s additional improvement
over LRTDP stems from the use of an efficient, exact lower
bound to check convergence. (c) BBVI’s bound on sub-
optimality after 10,000 node expasions (measured in units
of discounted reward). Changing the number of rewards
in each arm allows us to measure BBVI’s performance as
arms become more sensitive to context.

e LRTDP(Merge): Labeled Real-Time Dynamic Pro-
gramming [Bonet and Geffner, 2003] with the upper
bound from Singh and Cohn [1998] as a heuristic.

e LRTDP(WI): LRTDP with the Whittle integral as an
upper bound.

e BBVI: Branch-and-Bound Value Iteration.

We evaluate performance on a simple BSP designed to
model allocation of research resources to product research
and development. Each arm in this problem corresponds to
a potential product that our agent could sell in the market.
However, before we sell a product we must devote effort to
R&D. This can be done in one of two ways, a safe research
approach that is slow but reliable, and a risky approach that
is fast, but runs a risk of producing a defective product.

After at least one product has been researched, the agent
can opt to spend a round to produce and sell that product or
continue research on a different project. Because taking a
product to market does not change the state of the BSP, it is
straightforward to show that any stationary policy (includ-
ing 7*) will only ever produce a single product. We define
a distribution over these problems by selecting a random
market value for each product uniformly from [0, 1] and
random durations for the safe and risky research strategies
(although we ensure that safe research is at least 3x as slow
as risky research). Figure 2 (a) shows the state space for an
example arm with typical parameters.

Figure 2 (b) shows the results of our comparison. We used
a timeout of 1000s and set a memory limit of 4 GB. We ran
our experiments in an online setting and running times re-
flect the amount of time to select an optimal action from
scratch. While this is a natural setting for LRTDP and
BBVI, it is admittedly a little unfair to SPUDD (which
computes a full policy). This is mitigated by the fact that
BBVTI’s improvement over SPUDD, which is a little under
5 orders of magnitude with 102 states, is such that an agent
would need to be planning over an immense horizon before
SPUDD presents a reasonable alternative.

The factored MDP bounds from Singh and Cohn [1998]
are quite ill-suited to this problem. This is because its up-
per bound (the sum of the independent value for each arm)
is very loose and it essentially forces LRTDP to enumer-
ate the state space. In contrast, LRTDP performs quite well
when it has good heuristic information. However, its per-
formance degrades faster than that of BBVI, because it does
not effectively leverage a lower bound on value. Even for
very large problem instances, BBVI computes optimal so-
lutions in well under a second.

BBVTI’s performance in the R&D domain is largely ex-
plained by the structure of the arms and the short horizon
within each arm. Although there may be a large number
of arms, BBVI reduces each individual arm to an equiva-
lent MRP after a small number of node expansions. This

means that running time is essentially linear in the number
of arms. Note that, in this domain, the solution that solves
each MDP independently and executes the corresponding
index policy will just opt for conservative research on the
most valuable option. This policy is essentially always sub-
optimal: as long as there are reasonable alternatives it is
usually a good idea to try some risky projects.

Our next experiment uses a synthetic domain to explore the
performance of BBVI as the structure and number of arms
changes. In this BSP, each arm is a 20x20 grid world. The
actions in this world correspond to moving in the 4 car-
dinal directions. Rewards are 0 everywhere except at ran-
domly chosen locations and after receiving a reward, the
agent transitions to a random location.

In this experiment we vary the number of rewards that are
available in each arm. Adding rewards will typically cause
the optimal policy for an arm to be more sensitive to con-
text. This means that the dominated relaxation will produce
a looser upper bound, because it will need to add more ac-
tions. We evaluate this difficultly by measuring the con-
vergence criterion of BBVI after 10,000 node expansions.
Figure 2 (c) shows the results of this experiment. We can
see that BBVT’s solution quality decreases with the number
of states, but the primary variation comes from changes in
the properties of the arms.

7 CONCLUSION AND FUTURE WORK

In summary, we presented a model of highly decoupled de-
cision making: bandit superprocesses. A BSP presents an
agent with the opportunity to act in one of several Markov
decision processes. The key constraint is that the agent can
only act in a single process at a time. We provided a sum-
mary of BSP research, including an upper bound for the
value function of a BSP in the form of the Whittle integral.
We derived an equivalent relaxation and thus gave a novel
proof that the Whittle integral is an upper bound. Finally
we presented and evaluated algorithmic solutions for this
class of decision problems.

In future work, we plan to extend these ideas in three direc-
tions. The first is algorithmic improvements for BSPs. A
potential direction here is to leverage factored dynamics in
the bounding MDPs themselves. A search over sequences
of MDPs that only consider states where the current pol-
icy stops could be more efficient. Next, also plan to explore
generalizations of the bounds used for BSPs to more gen-
eral cases of global resource constraints (e.g., those con-
sidered in Meuleau et al. [1998]). Finally, the similarity to
sums of games studied in Conway [2000] suggests an unex-
plored connection between BSPs and combinatorial game
theory.

References

Blai Bonet and Hector Geffner. Labeled RTDP: Improving
the convergence of real-time dynamic programming. In
IEEE Conference on Automated Planning and Schedul-
ing, pages 12-21, 2003.

David B. Brown and James E. Smith. Optimal sequential
exploration: Bandits, clairvoyants, and wildcats. Opera-
tions Research, 61(3):644-665, 2013.

John H. Conway. On Numbers and Games. CRC Press,
2000.

Gardiol, Natalia H and Kaelbling, Leslie P. Envelope-
based planning in relational MDPs. In Advances in Neu-
ral Information Processing Systems, page None, 2003.

John C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series
B (Methodological), pages 148—177, 1979.

Kevin D. Glazebrook. On a sufficient condition for super-
processes due to Whittle. Journal of Applied Probability,
pages 99-110, 1982.

Kevin D. Glazebrook. Indices for families of competing
Markov decision processes with influence. The Annals
of Applied Probability, pages 1013-1032, 1993.

Eric A Hansen and Shlomo Zilberstein. Lao: A heuristic
search algorithm that finds solutions with loops. Artifi-
cial Intelligence, 129(1):35-62, 2001.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Fifteenth Conference on Uncertainty in Artificial In-
telligence, pages 279-288. Morgan Kaufmann Publish-
ers Inc., 1999.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim,
Leonid Peshkin, Leslie Pack Kaelbling, Thomas L Dean,
and Craig Boutilier. Solving very large weakly coupled
Markov decision processes. In Fifteenth National Con-
ference on Artificial Intelligence, pages 165-172, 1998.

Peter Nash. Optimal allocation of Resources Between Re-
search Projects. PhD thesis, University of Cambridge,
1973.

Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
20009.

Ronald L. Rivest. Game tree searching by min/max ap-
proximation. Artificial Intelligence, 34(1):77-96, 1987.

Herbert Robbins. Some aspects of the sequential design of
experiments. In Herbert Robbins Selected Papers, pages
169-177. Springer, 1952.

Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. 3 edition, 2010. Excercise 17.5.

Satinder Singh and David Cohn. How to dynamically
merge Markov decision processes. Advances in Neural
Information Processing Systems, (10):1057-1063, 1998.

Trey Smith and Reid Simmons. Heuristic search value it-
eration for POMDPs. In Proceedings of the 20th Con-
ference on Uncertainty in Artificial Intelligence, pages
520-527. AUAI Press, 2004.

Peter Whittle. Multi-armed bandits and the Gittins in-
dex. Journal of the Royal Statistical Society. Series B
(Methodological), pages 143—-149, 1980.

