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Abstract

We study Bayesian optimal control of a general
class of smoothly parameterized Markov deci-
sion problems (MDPs). We propose a lazy ver-
sion of the so-called posterior sampling method,
a method that goes back to Thompson and Strens,
more recently studied by Osband, Russo and van
Roy. While Osband et al. derived a bound on
the (Bayesian) regret of this method for undis-
counted total cost episodic, finite state and ac-
tion problems, we consider the continuing, av-
erage cost setting with no cardinality restric-
tions on the state or action spaces. While in
the episodic setting, it is natural to switch to a
new policy at the episode-ends, in the continu-
ing average cost framework we must introduce
switching points explicitly and in a principled
fashion, or the regret could grow linearly. Our
lazy method introduces these switching points
based on monitoring the uncertainty left about
the unknown parameter. To develop a suitable
and easy-to-compute uncertainty measure, we in-
troduce a new “average local smoothness” con-
dition, which is shown to be satisfied in com-
mon examples. Under this, and some additional
mild conditions, we derive rate-optimal bounds
on the regret of our algorithm. Our general ap-
proach allows us to use a single algorithm and
a single analysis for a wide range of problems,
such as finite MDPs or linear quadratic regula-
tion, both being instances of smoothly parame-
terized MDPs. The effectiveness of our method
is illustrated by means of a simulated example.

1 INTRODUCTION

The topic of this paper is Bayesian optimal control, where
the problem is to design a policy that achieves optimal per-
formance on the average over control problem instances

that are randomly sampled from a given distribution. This
problem naturally arises when the goal is to design a con-
troller for mass-produced systems, where production is im-
perfect but the errors follow a regular pattern and the goal
is to maintain a good average performance over the con-
trolled systems, rather than to achieve good performance
even for the system with the largest errors.

In a Bayesian setting, the optimal policy (which exists
under appropriate regularity conditions) is history depen-
dent. Given the knowledge of the prior, the transition dy-
namics and costs, the problem in a Bayesian setting is to
find an efficient way to calculate the actions that the opti-
mal policy would take given some history. This problem
was studied for finite state and action spaces by Asmuth
et al. (2009) and Kolter and Ng (2009). Both works pro-
pose specific computationally efficient algorithms, which
are shown to be ✏-Bayes-optimal with probability 1 � �
with the exception of O(poly(1/✏)) many steps, where for
both algorithms ✏ and � are both part of the input. While
Kolter and Ng (2009) suggest to add an exploration bonus
to the rewards while using the mean estimates for the tran-
sition probabilities and considers a finite horizon setting,
Asmuth et al. (2009) consider discounted total rewards and
a variant of posterior sampling, originally due to Thompson
(1933) and first adapted to reinforcement learning by Strens
(2000). More recently, the algorithm of Strens (2000) was
revisited by Osband et al. (2013) in the context of episodic,
finite MDPs. An attractive feature of posterior sampling is
that it requires neither the target accuracy ✏, nor the failure
probability � as its inputs. Rather, the guarantee presented
by Osband et al. (2013) is that the algorithm’s (Bayesian)
regret, i.e., the excess cost due to not following the opti-
mal policy, is bounded by eO(

p
T )1 both with high proba-

bility and in expectation. The reader interested in further
algorithms for Bayesian reinforcement learning (including
algorithms for infinite state spaces) may consult the papers
of Araya-López et al. (2012), Vlassis et al. (2012) and Guez
et al. (2013), which together give an excellent overview of
the literature.

1 eO(·) hides poly-logarithmic factors.



The starting point of our paper is the work of Osband et al.
(2013). In particular, just like Osband et al. (2013), we
build on the posterior sampling algorithm of Strens (2000),
which itself was derived from an algorithm of Thompson
(1933) developed for the so-called bandit setting. Unlike
Osband et al. (2013) and Strens (2000), we allow the state-
action space to be infinite (subject to some regularity condi-
tions discussed later) and we consider the infinite horizon,
continuing, average-cost setting. As far as we known, ours
is the first work deriving (Bayesian) regret bounds for any
algorithms of this generality. The major assumption that
we make is that the Markov dynamics is smoothly param-
eterized in some unknown parameters with known (local)
“smoothness” map such that the posterior concentrates in
the metric derived from this map. It is shown that this as-
sumption is met in some common examples, such as finite
MDPs, and also in linearly parameterized systems, which
encompass, systems with linear dynamics.

Following a proposal of Strens (2000) who also considered
the non-episodic setting, the algorithm works in phases: At
the beginning of each phase, a policy is computed based
on solving the optimal control problem for a random pa-
rameter vector drawn from the posterior over the parameter
vectors. The algorithm keeps the policy until the param-
eter uncertainty is reduced by a substantial margin, when
a new phase begins and the process is repeated. The idea
of ending a phase when uncertainty is reduced by a signif-
icant margin goes back at least to the work of Jaksch et al.
(2010).

While in the case of episodic problems the issue of how
long a policy should be kept does not arise, in a contin-
uing problem with no episodic structure, if policies are
changed too often, performance will suffer (see, e.g., Ex-
ample 1 of Guez et al. (2014)). To address this challenge,
for non-episodic problems, Strens (2000) suggested that the
lengths of phases should be adjusted to the “planning hori-
zon” (Strens, 2000), which however, is ill-defined for the
average cost setting that we consider in this paper. A major
contribution of this work is that we show how the smooth-
ness map can be used to derive the length of the phases.

In a recent and independent work, Osband and Van Roy
(2014) propose and analyze a similar algorithm for episodic
problems. Also, Gopalan and Mannor (2015) show a fre-
quentist analysis of Thompson sampling for finite MDP
problems.

The continuing setting is very common in practice; this
setting is the most natural for controlled mechanical sys-
tems (e.g., CD/DVD drive control, control of manufactur-
ing robots), or for process optimization (e.g., controlling a
queuing system, resource management), where “resets” are
rare or unnatural.

Under some additional technical conditions, we show that
the expected (Bayesian) regret of our algorithm is ˜O(

p
T +

⌃

T

), where T is the number of time steps and ⌃

T

is con-
trolled by the precision with which the optimal control
problems are solved, thus providing an explicit bound on
the cost of using imprecise calculations. In summary, the
main result of the paper shows that near-optimal Bayesian
optimal control is possible for a wide range of problems as
long as we can efficiently sample from the parameter pos-
teriors, the length of phases for how long the same policy
is followed is carefully controlled and if we can efficiently
solve the arising classical optimal control problems. Due
to the lack of space, the proofs of some of our claims are
given in the supplementary material.

We emphasize two contributions: (1) the invention of a
class of systems which unifies many previous approaches,
and permits an elegant proof. (2) the introduction of a Con-
centrating Posterior assumption which significantly short-
ens our proof compared to previous proofs and improves
the bound, as we avoid the use of measure concentration
arguments which were always used previously.

2 PROBLEM SETTING

We consider problems when the transition dynamics is pa-
rameterized with a matrix ⇥⇤ 2 Rm⇥n, which is randomly
chosen at time 0 (before the interaction with the learner
starts) from a known prior P

0

with support S ⇢ Rm⇥n.
Let P

t

denote the posterior of ⇥⇤ at time t based on
x
1

, a
1

, . . . , a
t�1

, x
t

. Let X ⇢ Rn be the state space and
A ⇢ Rd be the action space, x

t

2 X be the state at time t
and a

t

2 A be the action at time t, which is chosen based
on x

1

, a
t

, . . . , a
t�1

, x
t

. It is assumed that x
1

is sampled
from a fixed distribution (although, it should become clear
later that this assumption is not necessary). For M ⌫ 0

positive semidefinite, define k⇥k2
M

=

�

�

⇥

>M⇥

�

�

2

, where
k·k

2

denotes the spectral norm of matrices (later we will
drop the subindex 2). The set of positive semidefinite
m ⇥ m matrices will be denoted by S+(m). Our main
assumption concerning the transition law is as follows:

Assumption A1 (Smoothly Parameterized Dynamics)
The next state satisfies x

t+1

= f(x
t

, a
t

,⇥⇤, zt+1

), where
z
t+1

⇠ U [0, 1] is independent of the past and ⇥⇤. Further,
there exists a (known) map M : X⇥A! S+(m) such that
for any ⇥,⇥0 2 S , if y = f(x, a,⇥, z), y0 = f(x, a,⇥0, z)
with z ⇠ U [0, 1], then E [ky � y0k]  k⇥�⇥

0k
M(x,a)

.

The first part of the assumption just states that given ⇥⇤, the
dynamics is Markovian with state x

t

, while the second part
demands that small changes in the parameter lead to small
changes in the next state. The assumption that the map M
is “known” makes it possible to use M in the design of our
algorithms.

Our next assumption connects the concentration of the pos-
terior with M :



Assumption A2 (Concentrating Posterior) Let ˜F
t

=

�(x
1

, a
1

, . . . , a
t�1

, x
t

) be the �-algebra generated by ob-
servations up to time t, V

t

= V +

P

t�1

s=1

M(x
s

, a
s

), where
V is an m ⇥m positive definite matrix. Then, there exists
a positive constant C such that for any t � 1, for some ˜F

t

-
measurable random variable b

⇥

t

, letting ⇥

0
t

⇠ P
t

it holds
that max

n

E
h

k⇥0
t

� b

⇥

t

k2
Vt

i

,E
h

k⇥⇤ � b

⇥

t

k2
Vt

io

 C.

The idea here is that b⇥
t

is an estimate of ⇥⇤ based on past
information available at time t, such as a maximum apos-
teriori (MAP) estimate (note that this estimate will not be
needed by our algorithm). Since V

t

is increasing at a lin-
ear rate, the assumption requires that b⇥

t

converges to ⇥

at an O(1/
p
t) rate. When ⇥ = ⇥⇤, this means that b⇥

t

should converge to ⇥⇤ at this rate, which is indeed what
we expect. When ⇥ = ⇥

0
t

, again, we expect this to be true
since ⇥

0
t

is expected to be in the O(1/
p
t) vicinity of ⇥⇤.

Note how this assumption connects M with the behavior
of the posterior. One novelty of our analysis, as compared
to that of Osband et al. (2013), is that while Osband et al.
relies on measure-concentration, we require only the above
(weaker) “variance concentration”. We will show explicit
examples where this variance term is easy to control using a
direct calculation. Since we avoid measure-concentration,
our analysis has the potential to give much tighter regret
bounds for the Bayesian setting than available previously,
though the study of this remains for future work. The ex-
amples we deal with include finite MDPs (where the state
is represented by unit vectors) and systems with linear dy-
namics (i.e., when x

t+1

= Ax
t

+ Ba
t

+ w
t+1

, where
w

t+1

⇠ p
w

(·|x
t

, a
t

)), amongst others. Explicit expres-
sions for the map M will be given in Section 6 for these
systems. In general, for systems with additive noise, find-
ing M essentially reduces to finding a suitable local lin-
earization of the system’s dynamics.

The problem we study is to design a controller (also known
as a policy) that at every time step t, based on past states
x
1

, . . . , x
t

and actions a
1

, . . . , a
t�1

, selects an action a
t

so as to minimize the expected long-run average loss
E
⇥

lim sup

n!1
1

n

P

n

t=1

`(x
t

, a
t

)

⇤

. We consider any noise
distribution and any loss function ` as long as a bounded-
ness assumption on the variance and a smoothness assump-
tion on the value function are satisfied (see Assumptions A2
and A3-ii below). It is important to note that we allow ` to
be a nonlinear function of the last state-action pair, i.e., the
framework allows one to go significantly beyond the scope
of linear quadratic control as many nonlinear control prob-
lems can be transformed into a linear form (but with a non-
linear loss function) using the so-called dynamic feedback
linearization techniques (Isidori, 1995).

To measure the performance of an algorithm,
we use the (expected) regret R

T

: R
T

=

E
h

P

T

t=1

(`(x
t

, a
t

)� J(⇥⇤))
i

. Here, (x
t

, a
t

)

T

t=1

de-

notes the state-action trajectory and J(⇥⇤) is the average
loss of the optimal policy given (random) parameter
⇥⇤. The slower the regret grows, the closer is the per-
formance to that of an optimal policy. If the growth
rate of R

T

is sublinear (R
T

= o(T )), the average loss
per time step will converge to the optimal average loss
as T gets large and in this sense we can say that the
algorithm is asymptotically-optimal. Our main result
shows that, under some conditions, the construction of
such asymptotically-optimal policies can be reduced
to the ability of efficiently sampling from the posterior
of ⇥⇤ and being able to solve classical (non-Bayesian)
optimal-control problems. Furthermore, our main result
also implies that R

T

=

eO(

p
T ).

3 THE LAZY PSRL ALGORITHM

Our algorithm is an instance of the posterior sampling re-
inforcement learning (PSRL) (Osband et al., 2013). As ex-
plained beforehand, this algorithm is based on the work on
Thompson (1933) and was proposed by Strens (2000). To
emphasize that the algorithm keeps the current policy for a
while, we call it LAZY PSRL. Our contribution is to sug-
gest a specific schedule for updating the policy. The pseu-
docode of the algorithm is shown in Figure 1.

Recall that P
0

denotes the prior distribution of the pa-
rameter matrix ⇥⇤. Let P

t

denote the posterior of ⇥⇤ at
time t based on x

1

, a
1

, . . . , a
t�1

, x
t

and ⌧
t

< t the last
round when the algorithm chose a new policy. Further, let
V
t

= V +

P

t�1

s=1

M(x
s

, a
s

), where V is some fixed, m⇥m
positive definite matrix. Let G be a constant that controls
the replanning frequency. Then, at time t, Lazy PSRL sets
e

⇥

t

=

e

⇥

t�1

unless det(V
t

) > Gdet(V
⌧t) in which case it

chooses e

⇥

t

from the posterior P
t

: e

⇥

t

⇠ P
t

. The action
taken at time step t is a near-optimal action for the system
whose transition dynamics is specified by e

⇥

t

. We assume
that a subroutine, ⇡⇤, taking the current state x

t

and the
parameter e⇥

t

is available to calculate such an action. The
inexact nature of calculating a near-optimal action will also
be taken in our analysis.

4 RESULTS FOR BOUNDED STATE-
AND FEATURE-SPACES

In this section, we study problems with a bounded state
space. In particular, the number of states might be infinite,
but we assume that the norm of the state vector is bounded
by a constant. Before stating our main result, we state some
extra assumptions.

Our first extra assumption concerns the existence of “reg-
ular” solutions to the average cost optimality equations
(ACOEs), an assumption which is usually thought to be
mild in the context of average-cost problems:



Inputs: P
0

, the prior distribution of ⇥⇤, V , G.
Vlast  V , V

0

 V .
for t 1, 2, . . . do

if det(V
t

) > G det(Vlast) then
Sample e

⇥

t

⇠ P
t

.
Vlast  V

t

.
else
e

⇥

t

 e

⇥

t�1

.
end if
Calculate near-optimal action a

t

 ⇡⇤
(x

t

, e⇥
t

).
Execute action a

t

and observe the new state x
t+1

.
Update P

t

with (x
t

, a
t

, x
t+1

) to obtain P
t+1

.
Update V

t+1

 V
t

+M(x
t

, a
t

).
end for

Figure 1: Lazy PSRL for smoothly parameterized control
problems

Assumption A3 (Existence of Regular ACOE Solutions)
The following hold:

(i) There exists H > 0 such that for any ⇥ 2 S , there
exist a scalar J(⇥) and a function h(·,⇥) : X !
[0, H] that satisfy the average cost optimality equa-
tion (ACOE): for any x 2 X ,

J(⇥) + h(x,⇥) = (1)

min

a2A

⇢

`(x, a) +

Z

h(y,⇥)p(dy |x, a,⇥)

�

,

where p(·|x, a,⇥) is the next-state distribution given
state x, action a and parameter ⇥.

(ii) There exists B > 0 such that for all ⇥ 2 S , and for
all x, x0 2 X , |h(x,⇥)� h(x0,⇥)|  B kx� x0k.

With a slight abuse of the concepts, we will call the quantity
J(⇥) the average loss of the optimal policy, while function
h(·,⇥) will be called the value function (for the system
with parameter ⇥). The review paper by Arapostathis et al.
(1993) gives a number of sufficient (and sometimes nec-
essary) conditions that guarantee that a solution to ACOE
exists. Lipschitz continuity usually follows from that of the
transition dynamics and the losses.

Let us now discuss the condition that h should have a
bounded range. A uniform lower bound on h follows, for
example if the immediate cost function ` is lower bounded.
Then, if the state space is bounded, uniform boundedness
of the functions h(·,⇥) follows from their uniform Lips-
chitzness:

Proposition 1. Assume that the value function h(·,⇥) is
bounded from below (inf

x

h(x,⇥) > �1) and is B-
Lipschitz. Then, if the diameter of the state space is

bounded by X (i.e., sup
x,x

02X kx� x0k  X) then there
exists a solution h0

(·,⇥) to (1) such that the range of h is
included in [0, BX].

Finally, we assume that the map M : X ⇥A ! S+(m) is
bounded:

Assumption A4 (Boundedness) There exist � > 0 such
that for all x 2 X and a 2 A, trace(M(x, a))  �

2.

This assumption may be strong. In the next section we dis-
cuss an extension of the result of this section to the case
when this assumption is not met.

The main theorem of this section bounds the regret of Lazy
PSRL under the assumptions mentioned so far. In this re-
sult, we allow ⇡⇤ to return a �

t

-suboptimal action, where
�
t

> 0. By this, we mean that the action a
t

satisfies

`(x
t

, a
t

) +

Z

h(y, e⇥
t

)p(dy|x
t

, a
t

, e⇥
t

)  (2)

min

a2A

⇢

`(x
t

, a) +

Z

h(y, e⇥
t

)p(dy|x
t

, a, e⇥
t

)

�

+ �
t

.

One can control the suboptimality error in terms of the error
of an approximate solution to the Bellman equation and the
error of the subroutine that finds an action that minimizes
the obtained approximate action values.
Theorem 2. Assume that A1–A4 hold for some values of
C,B,X,� > 0. Consider Lazy PSRL where in time step
t, the action chosen is �

t

-suboptimal. Then, for any time
T , the regret of Lazy PSRL satisfies R

T

=

eO
⇣p

T
⌘

+⌃

T

,

where ⌃

T

=

P

T

t=1

E [�
t

] and the constant hidden by eO(·)
depends on V,C,B,X,G and �.

In particular, the theorem implies that Lazy PSRL is
asymptotically optimal as long as

P

T

t=1

E [�
t

] = o(T ) and
it is O(✏)-optimal if E [�

t

]  ✏. The fact that the regret
is bounded by the sum of suboptimality factors in solving
Bellman equation is not trivial. Indeed, as actions have long
term effects and we have a closed-loop system, one might
suspect that the regret could blow up as a function of these
errors. In this respect, the significance of our theorem is
that the learner need not worry too much about each plan-
ning subproblem as the overall effect is only additive.

Due to lack of space, the proof, which combines the proof
techniques of Osband et al. (2013) with that of Abbasi-
Yadkori and Szepesvári (2011) in a novel fashion, is pre-
sented in the appendix.

5 FORCEFULLY STABILIZED SYSTEMS

For some applications, such as robotics, where the state can
grow unbounded, the boundedness assumption (Assump-
tion A4) is rather problematic. For such systems, it is com-
mon to use a stabilizing controller ⇡

stab

that is automati-
cally turned on and is kept on as long as the state vector is



“large”. The stabilizing controller, however, is usually ex-
pensive (uses lots of energy), as it is designed to be robust
so that it is guaranteed to drive back the state to the safe
region for all possible systems under consideration. Hence
a good controller should avoid relying on the stabilizing
controller.

In this section, we will replace Assumption A4 with an as-
sumption that a stabilizing controller is available. We will
use this controller to override the actions coming from our
algorithm as soon as the state leaves the (bounded) safe
region R ⇢ Rn until it returns to it. The corresponding
pseudocodeis shown in Figure 2.

Inputs: P
0

, the prior distribution of ⇥⇤, V , the safe
region R ⇢ Rn.
Initialize Lazy PSRL with P

0

and V , x
1

.
for t = 1, 2, . . . do

if x
t

2 R then
Get action a

t

from Lazy PSRL
else

Get action a
t

from ⇡
stab

end if
Execute action a

t

and observe the new state x
t+1

.
Feed a

t

and x
t+1

to Lazy PSRL.
end for

Figure 2: Stabilized Lazy PSRL

We assume that the stabilizing controller is effective in the
following sense:

Assumption A5 (Effective Stabilizing Controller) There
exists � > 0 such that the following holds: Pick any
x 2 R, a 2 A and let x0

1

, a0
1

, x0
2

, a0
2

, . . . be the sequence
of state-action pairs obtained when from time step two the
Markovian stabilizing controller ⇡

stab

is applied to the con-
trolled system whose dynamics is given by ⇥ 2 S: x0

1

= x,
a0
1

= a, x0
t+1

⇠ p(·|x0
t

, a0
t

,⇥), a0
t+1

⇠ ⇡
stab

(·|x0
t

).
Then, E [trace(M(x0

t

, a0
t

))]  �

2 for any t � 1, where
M : X ⇥ A ! S+(m) is the map of Assumption A1 un-
derlying {p(·|x, a,⇥)}.

The assumption is reasonable as it only requires that the
trace of M(x0

t

, a0
t

) is bounded in expectation. Thus, large
spikes, that no controller may prevent, can exist as long as
they happen with a sufficiently low probability.

The next theorem shows that Stabilized Lazy PSRL is near
Bayes-optimal for the system p0 obtained from p by over-
writing the action a by the action ⇡

stab

(x) if x is outside of
the safe region R ⇢ Rn:

p0(dy|x, a,⇥) =

(

p(dy|x, a,⇥), if x 2 R;

p(dy|x,⇡
stab

(x),⇥), otherwise .

Theorem 3. Consider a parameterized system with the
transition probability kernel family {p(·|x, a,⇥)}

⇥2S and
let ⇡

stab

: X ! A be a deterministic Markovian controller.
Let the smooth parameterization Assumption A1 hold
for {p(·|x, a,⇥)}, the ACOE solution regularity Assump-
tion A3 hold for {p0(·|x, a,⇥)}. Consider running the Sta-
bilized Lazy PSRL algorithm of Figure 2 on p(·|x, a,⇥⇤)
and let the concentration Assumption A2 hold along the
trajectory obtained. Then, if in addition Assumption A5
holds then the regret of Stabilized Lazy PSRL against the
Bayesian optimal controller of {p0(·|x, a,⇥)}

⇥

with prior

P
0

and immediate cost ` satisfies R
T

=

eO
⇣p

T
⌘

+ ⌃

T

,

where ⌃

T

=

P

T

t=1

E [1 {x
t

2 R}�
t

] and �
t

is the subop-
timality of the action computed by Lazy PSRL at time step
t.

If the optimal controller ⇡⇤ for p does not excite the con-
dition that turns on the stabilizing controller, then this con-
troller is also optimal for p0. In this case, Stabilized Lazy
PSRL will have the same regret against ⇡⇤ than what it has
against the optimal controller of p0 and the theorem implies
that it will achieve sublinear regret in the original system,
as long as ⌃

T

is sublinear.

6 EXAMPLES

The purpose of this section is to illustrate the results ob-
tained. In particular, we will consider applying the results
to finite MDPs and linearly parameterized controlled sys-
tems and show that for these cases all the assumptions can
be satisfied and Lazy PSRL can achieve a low expected re-
gret. We believe that our results will be applicable to many
more settings, such as hybrid discrete-continuous systems
where the discrete states control which continuous dynam-
ics is used.

6.1 Finite MDPs

Consider an MDP problem with finite state and action
spaces. Let the state space be X = {1, 2, . . . , n} and
the action space be A = {1, 2, . . . , d}. We represent the
state variable by an n-dimensional binary vector x

t

that
has only one non-zero element at the current state and will
write the dynamics in the form x

t+1

= ⇥⇤'(xt

, a
t

) + ⌘
t

,
where ⇥⇤ will collect the transition matrices into a single
big matrix and ⌘

t

is a “Markov noise”. The feature map,
' : X ⇥A! Rnd and the parameter matrix are defined as
follows: for 1  k  nd,

'
k

(x, a) =

(

1, if k = (a� 1)n+ x ;

0, otherwise ,
⇥⇤ =

0

B

B

B

B

@

⇥

(1)

⇤

⇥

(2)

⇤
...

⇥

(d)

⇤

1

C

C

C

C

A

.



Let s 2 [n] be a state and a 2 [d] be an action. The sth
row of matrix ⇥

(a)

⇤ is a distribution over the state space
that shows the transition probabilities when we take ac-
tion a in state s. Thus, any row of ⇥(a)

⇤ sums to one and
E [x

t+1

|x
t

, a
t

] = ⇥

>
⇤ '(xt

, a
t

).

An appropriate prior for each row is a Dirichlet dis-
tribution. Let ↵

1

, . . . ,↵
n

be positive numbers and let
V 0

= diag(↵
1

, . . . ,↵
n

). Then V = diag(V 0, . . . , V 0
) 2

Rnd⇥nd is our “smoother”. Let the prior for the sth
row of ⇥(a)

⇤ be the Dirichlet distribution with parameters
(↵

1

, . . . ,↵
n

): (P
0

)

s,:

= D(↵
1

, . . . ,↵
n

). At time t, the
posterior has the form

(P
t

)

s,:

= D(↵
1

+ c
t

(s, a, 1), . . . ,↵
n

+ c
t

(s, a, n)),

where c
t

(s, a, s0) is the number of observed transitions to
state s0 after taking action a in state s during the first t
time steps. Matrix V

t

is a diagonal matrix with diagonal
elements depending only on the number of times a state-
action pair is observed. In particular,

(V
t

)

n(a�1)+s,n(a�1)+s

=

X

s

0

(↵
s

0
+ c

t

(s, a, s0)).

Vector b

⇥

t,(:,s

0
)

is an nd-dimensional vector and its ele-
ments show the empirical frequency of transition to state
s0 from different state-action pairs. The mean of distribu-
tion (P

t

)

s,:

is the vector b⇥
t,(n(a�1)+s,:)

where

b

⇥

t,(n(a�1)+s,s

0
)

=

↵
s

0
+ c

t

(s, a, s0)
P

s

00(↵
s

00
+ c

t

(s, a, s00))
.

We now show that matrix-valued map M can be chosen to
be M(x, a) = (

p
2/2)I:

Proposition 4. The above choice makes Assumptions A1
and A2 satisfied.

Proof. Let us first show that Assumption A1 holds. Be-
cause E [y|x, a] = ⇥

>'(x, a), E [y0|x, a] = ⇥

0>'(x, a),
and y and y0 have only one non-zero element,

E [ky � y0k] =
p
2P (y 6= y0) =

p
2 (1� P (y = y0))

=

p
2

⇣

1�⇥

>
(x,a),:

⇥

0
(x,a),:

⌘

=

p
2

2

�

�

�

⇥

(x,a),:

�⇥

0
(x,a),:

�

�

�

2

,

where the last step holds because each row of ⇥ and ⇥

0

sum to one.

Let us now prove that Assumption A2 holds: Let N =

(⇥⇤ � b

⇥

t

)

>, ↵
s,a,s

0
= ↵

s

0
+ c

t

(s, a, s0) and ↵
s,a

=

P

s

0 ↵
s,a,s

0
= V

t,(n(a�1)+s,n(a�1)+s)

. Let k.k
F

denote the

Frobenius norm. We have that

E


�

�

�

NV 1/2

t

�

�

�

2

�

�

�

�

F
t

�

 E


�

�

�

NV 1/2

t

�

�

�

2

F

�

�

�

�

F
t

�

= E
"

X

s,a

V
t,(n(a�1)+s,n(a�1)+s)

X

s

0

N2

s

0
,n(a�1)+s

�

�

�

�

�

F
t

#

=

X

s,a

↵
s,a

X

s

0

E
h

N2

s

0
,n(a�1)+s

�

�

�

F
t

i

.

Because each row of ⇥⇤ has a Dirichlet distribu-
tion and rows of b

⇥

t

are means of these distributions,
E
h

N2

s

0
,n(a�1)+s

�

�

�

F
t

i

is simply the variance of the corre-
sponding Dirichlet variable. Thus,
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
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�

�

�

F
t

�


X

s,a

X

s

0

↵
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↵
s,a,s

0
(↵

s,a

� ↵
s,a,s

0
)

↵2

s,a

(1 + ↵
s,a

)

 n2d .

An immediate corollary of this is that Lazy PSRL will en-
joy low regret in finite MDPs:
Corollary 5. Consider Lazy PSRL applied to a finite MDP
with n states, d actions with M as above, and a Dirich-
let prior as specified above. Assume that the set S sys-
tem parameters under which Assumption A3 is satisfied is
a measurable set with positive Lebesgue measure. Sup-
pose that at time step t, the action chosen is �

t

-suboptimal.
Then, for any time T , the regret of Lazy PSRL satisfies
R

T

=

eO
⇣p

T
⌘

+ ⌃

T

.

Proof. The boundedness condition (Assumption A4) triv-
ially holds, Assumption A3 holds by assumption, while
Proposition 4 shows that the remaining two assumptions
of Theorem 2 are satisfied.

6.2 Linearly Parametrized Problems with Gaussian
Noise

Next, we consider linearly parametrized problems with
Gaussian noise:

x
t+1

= ⇥

>
⇤ '(xt

, a
t

) + w
t+1

, (3)

where w
t+1

is a zero-mean normal random variable. The
nonlinear dynamics shown in (3) shares similarities to,
but allows significantly greater generality than the Lin-
ear Quadratic (LQ) problem considered by Abbasi-Yadkori
and Szepesvári (2011). In particular, in the LQ problem,
⇥

>
⇤ =

�

A⇤ , B⇤
�

and '(x
t

, a
t

)

>
=

�

x>
t

, a>
t

�

. (How-
ever, Abbasi-Yadkori and Szepesvári (2011) assume only
that the noise is subgaussian.)

Next, we describe a conjugate prior under the assump-
tion that the noise is Gaussian with a known covari-
ance matrix. Without loss of generality, we assume that



E
⇥

w
t+1

w>
t+1

| F
t

⇤

= I . A conjugate prior is appealing as
the posterior has a compact representation that allows for
computationally efficient sampling methods. Assume that
the columns of matrix ⇥⇤ are independently sampled from
the following prior: for i = 1 . . . n,

P
0

�

⇥⇤,(:,i)
�

/ exp

⇣

⇥

>
⇤,(:,i)V⇥⇤,(:,i)

⌘

1
�

⇥⇤,(:,i) 2 S
 

and S is the set of system parameters under which Assump-
tion A3 is satisfied, which is assumed to be a measurable
set with positive Lebesgue measure. Then, by Bayes’ rule,
the posterior for column i of ⇥⇤, P

t

�

⇥⇤,(:,i)
�

, is propor-
tional to

e

⇣
�0.5

(

⇥⇤,(:,i)�b
⇥t,(:,i))

>
Vt(⇥⇤,(:,i)�b

⇥t,(:,i))

⌘

1
�

⇥⇤,(:,i) 2 S
 

.

We now show an appropriate choice for M (which should
not be surprising):
Proposition 6. With the choice M(x, a) =

'(x, a)'(x, a)>, Assumptions A1 and A2 are satis-
fied.

Note that this choice is essentially the same as in Proposi-
tion 4.

Proof. Let us first show that Assumption A1 holds. Be-
cause y = ⇥

>'(x, a)+w, y0 = ⇥

0>'(x, a)+w, we have
ky � y0k2 = k⇥�⇥

0k2
'(x,a)'(x,a)

> , which shows that this
assumption is indeed satisfied with the said choice of M .

Let us now prove that Assumption A2 holds: Let ⇤ be a
random variable with probability distribution function

P (�) / exp

✓
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.

Notice that
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= Z ⇠ N (0, I) has
the standard normal distribution. Hence P (|Z

j
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2
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E
"

�

�

�

�

⇣

⇥⇤,(:,i) � b

⇥

t,(:,i)

⌘>
V 1/2

t

�

�

�

�

2

�

�

�

�

�

F
t

#

= E
h

kZk2
�

�

�

F
t

i

=

Z 1

0

P
⇣

kZk2 > ✏
⌘

 2m3 .

Thus,

E


�

�

�

(⇥⇤ � b

⇥

t

)

>V 1/2

t

�

�

�

2

�

�

�

�

F
t

�

 E


�

�

�

(⇥⇤ � b

⇥

t

)

>V 1/2

t

�

�

�

2

F

�

�

�

�

F
t

�

=

n

X

i=1

E
"

�

�

�

�

⇣

⇥⇤,(:,i) � b

⇥

t,(:,i)

⌘>
V 1/2

t

�

�

�

�

2

�

�

�

�

�

F
t

#

 2nm3 .

This shows that Assumption A2 is satisfied, thus finishing
the proof.

An immediate corollary of this is that Lazy PSRL will en-
joy low regret when applied to linearly parametrized prob-
lems with Gaussian noise. We assume an effective stabiliz-
ing controller is available. This is necessary, as the noise
may make the state arbitrarily large.

Corollary 7. Consider Stabilized Lazy PSRL applied to a
linearly parametrized problem with Gaussian noise with M
as in Proposition 6. Let the underlying MDP satisfy As-
sumption A3. Suppose in time step t, the action chosen is
�
t

-suboptimal. Then, for any time T , the regret of Stabi-
lized Lazy PSRL satisfies R

T

=

eO
⇣p

T
⌘

+ ⌃

T

.

Proof. The claim follows immediately from Proposition 6
and Theorem 3.

7 EXPERIMENTS

In this section we illustrate the behavior of LAZY PSRL on
a queueing and a web server control application.

7.1 Queuing Control Application

The queueing problem is described in (de Farias and Van
Roy, 2003). The queue has a buffer size of 99. For time
t, let x

t

2 {0, 1, . . . , 99} be the state. The action a
t

is the
departure probability or service rate and is chosen from the
set {0.1625, 0.325, 0.4875, 0.65}. Let p be the (unknown)
arrival rate. The dynamics is defined as follows

x
t+1

=

8

>

<

>

:

x
t

� 1 with probability a
t

;

x
t

+ 1 with probability p ;

x
t

otherwise .

From state x
t

= 0, transitions to states 1 and 0 happen with
probabilities p and 1 � p. From state x

t

= 99, transitions
to states 98 and 99 happen with probabilities a

t

and 1� a
t

.
The loss function is `(x

t

, a
t

) = x2

t

+ 500p2.

7.1.1 Numerical Results

The purpose of this experiment is to show how the LAZY
PSRL algorithm can take advantage of the problem struc-
ture to obtain better performance. We compare the LAZY
PSRL algorithm with UCRL (Jaksch et al., 2010). For
the LAZY PSRL algorithm, we use the Beta distribution
Beta(1, 1) as the prior for the unknown parameter p (the
conditions of our theorem can be seen to be satisfied along
the lines of the previous section with M(x, a) = const).
The constant G in Figure 1 is chosen to be G = 2. The
UCRL algorithm is an optimistic algorithm that maintains
a confidence interval around each transition probability



P (x0|x, a) and, in each round, finds the transition dynamics
and the corresponding policy that attains the smallest aver-
age loss. Specifically, the algorithm solves the optimization
problem eP = argmin

P

J(P ), where J(P ) is the average
loss of the optimal policy when the system dynamics is P .
Then, the algorithm plays the optimal controller given the
parameter eP . As we show next, the LAZY PSRL algorithm
achieves lower average cost.

The time horizon in these experiments is T = 1, 000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 3 shows
average cost vs. number of rounds. Details of the imple-
mentation of the UCRL algorithm are in (Jaksch et al.,
2010).

Figure 3 show the average cost of the algorithms. The
LAZY PSRL algorithm outperforms the UCRL algorithm.
We explain this observation by noting that the UCRL al-
gorithm is learning components of the transition dynamics
independently (400 components in total), while the LAZY
PSRL algorithm takes advantage of the problem structure
to speed up the learning.

7.2 Web Server Control Application

In this section we illustrate the behavior of LAZY PSRL on
a simple LQR control problem. We choose an LQR control
problem because it is a continuous state-action problem.
Equally important is that this allowed us to compare the
performance of LAZY PSRL to a competing method, the
OFULQ algorithm of Abbasi-Yadkori (2012). The exper-
iments go beyond the scope of the theory, as we did not
use a stabilizing controller, though the control problem it-
self is such that the zero-dynamics (i.e., the dynamics under
zero control) is stable, making it less likely that a stabiliz-
ing controller would be necessary for the method to work.
In the next section we describe the control problem, which
will be followed by the description of our results.

The problem is taken from Section 7.8.1 of the book by
Hellerstein et al. (2004) (this example is also used in Sec-
tion 3.4 of the book by Aström and Murray (2008)). An
Apache HTTP web server processes the incoming connec-
tions that arrive on a queue. Each connection is assigned
to an available process. A process drops the connection if
no requests have been received in the last KEEPALIVE sec-
onds. At any given time, there are at most MAXCLIENTS
active processes. The values of the KEEPALIVE and MAX-
CLIENTS parameters, denoted by a

ka

and a
mc

respectively,
are chosen by a control algorithm. Increasing a

mc

and a
ka

results in faster and longer services to the connections, but
also increases the CPU and memory usage of the server.
The state of the server is determined by the average pro-
cessor load x

cpu

and the relative memory usage x
mem

.
An operating point of interest of the system is given by
x
cpu

= 0.58 , a
ka

= 11s , x
mem

= 0.55 , a
mc

= 600. A

linear model around the operating point is assumed, result-
ing in a model of the form
✓

x�

cpu

(t+ 1)

x�

mem

(t+ 1)

◆

=

✓

A
11

A
12

A
21

A
21

◆ ✓

x�

cpu

(t)
x�

mem

(t)

◆

+

✓

B
11

B
12

B
21

B
21

◆ ✓

a�
ka

(t)
a�
mc

(t)

◆

+

✓

w
1

(t+ 1)

w
2

(t+ 1)

◆

,

where (w
1

(t+1), w
2

(t+1))

t

is an i.i.d. sequence of Gaus-
sian random variables, with a diagonal covariance matrix
E
⇥

w(t+ 1)

>w(t+ 1)

⇤

= �2I . Note that these state and
action variables are in fact the deviations from the operat-
ing point. We test � = 0.1 and � = 1.0 in our experiments.
The matrices A,B,Q,R are included in the appendix.

7.2.1 Numerical Results

We compare the LAZY PSRL algorithm with
OFULQ (Abbasi-Yadkori, 2012). For the LAZY
PSRL algorithm, we use the standard normal distribution
as the prior. The OFULQ algorithm is an optimistic
algorithm that maintains a confidence ellipsoid D around
the unknown parameter and, in each round, finds the
parameter and the corresponding policy that attains the
smallest average loss. Specifically, the algorithm solves
the optimization problem

(

eA, eB) = argmin

(A,B)2D

J(A,B) , (4)

where J(A,B) is the average loss of the optimal policy
when the system dynamics is (A,B). Then, the algorithm
plays the optimal controller given the parameter (

eA, eB).
The objective function J is not convex and thus, solving the
optimistic optimization can be very time consuming. As
we show next, the LAZY PSRL algorithm can have lower
regret while avoiding the high computational costs of the
OFULQ algorithm.

The time horizon in these experiments is T = 1, 000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 4 shows
regret vs. computation time. The horizontal axis shows the
amount of time (in seconds) that the algorithm spends to
process T = 1, 000 rounds. We change the computation
time by changing constant G in Figure 1, i.e. by chang-
ing how frequent an algorithm updates its policy.2 De-
tails of the implementation of the OFULQ algorithm are
in (Abbasi-Yadkori, 2012).

The first two subfigures of Figure 4 show the regret of
the algorithms when the standard deviation of the noise
is � = 0.1. The regret of the LAZY PSRL algorithm
is slightly worse than what we get for the OFULQ algo-
rithm in this case. The LAZY PSRL algorithm outperforms

2For example, in Figure 4-(d), the average number of policy
changes are (33.4, 45.2, 88, 127.1). In Figure 4-(c) the average
number of policy changes are (5.6, 14.3, 30.8, 73.2, 140.2, 163).
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(a) Average cost of UCRL
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(b) Average cost of LAZY PSRL

Figure 3: Average cost for a queueing problem.
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(a) Regret of OFULQ, � = 0.1
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(b) Regret of LAZY PSRL, � = 0.1
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(c) Regret of OFULQ, � = 1.0
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(d) Regret of LAZY PSRL, � = 1.0
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(e) Regret of OFULQ, � = 1.0
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(f) Regret of LAZY PSRL, � = 1.0
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(g) Regret of LAZY PSRL with zero
mean Gaussians, changing standard de-
viation

Figure 4: Regret for a web server control problem.

the OFULQ algorithm when the noise variance is larger
(next two subfigures). We explain this observation by not-
ing that a larger noise variance implies larger confidence
ellipsoids, which results in more difficult optimistic opti-

mization problems (4). Finally, we performed experiments
with different prior distributions. Figure 4-(e) shows regret
of the LAZY PSRL algorithm when we change the prior.
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M. Araya-López, V. Thomas, and O. Buffet. Near-optimal
BRL using optimistic local transitions. In ICML, 2012.

J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate.
A Bayesian sampling approach to exploration in rein-
forcement learning. In UAI, pages 19–26, 2009.

Karl J. Aström and Richard M. Murray. Feedback Systems:
An Introduction for Scientists and Engineers. Princeton
University Press, 2008.

D. P. de Farias and B. Van Roy. Approximate linear pro-
gramming for average-cost dynamic programming. In
NIPS, 2003.

A. Gopalan and S. Mannor. Thompson sampling for learn-
ing parameterized markov decision processes. In COLT,
2015.

A. Guez, D. Silver, and P. Dayan. Scalable and efficient
Bayes-adaptive reinforcement learning based on Monte-
Carlo tree search. Journal of Artificial Intelligence Re-
search, 48:841–883, 2013.

A. Guez, D. Silver, and P. Dayan. Better optimism by
Bayes: Adaptive planning with rich models. CoRR,
abs/1402.1958, 2014.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing Sys-
tems. John Wiley & Sons, Inc., 2004.

A. Isidori. Nonlinear Control Systems. Springer Verlag,
London, 3 edition, 1995.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563—1600, 2010.

J. Z. Kolter and A. Y Ng. Near-Bayesian exploration in
polynomial time. In ICML, 2009.

I. Osband and B. Van Roy. Model-based reinforcement
learning and the eluder dimension. In NIPS, 2014.

I. Osband, D. Russo, and B. Van Roy. (More) efficient
reinforcement learning via posterior sampling. In NIPS,
2013.

M. Strens. A Bayesian framework for reinforcement learn-
ing. In ICML, 2000.

W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25:285–294, 1933.

N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart.
Bayesian reinforcement learning. In Marco Wieiring and
Martijn van Otterlo, editors, Reinforcement Learning:
State-of-the-Art, chapter 11, pages 359–386. Springer,
2012.


