
The Napier88 Persistent Programming
Language and Environment

Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Munro, D.S. &

Atkinson, M.P.§

School of Mathematical and Computational Sciences, University of St Andrews,
North Haugh, St Andrews KY16 9SS, Scotland

§Department of Computer Science, University of Glasgow,
Glasgow G12 8QQ, Scotland

Abstract. Persistent programming systems are designed as an implementation
technology for long lived, concurrently accessed and potentially large bodies of
data and programs, known here as persistent application systems (PASs). Within a
PAS the persistence concept is used to abstract over the physical properties of data
such as where it is kept, how long it is kept and in what form it is kept. As such it
is seen as having a number of benefits in simplifying the task of PAS
programming. Here, we describe the integrated design of the Napier88 persistent
programming system and how Napier88 may be used to develop PASs.

1 Introduction

The Napier88 persistent programming system was originally planned as part of
the PISA project [1] with the major goal of constructing a self contained,
orthogonally persistent system. The system was also intended as, or turned out to
be, a testbed for experiments in: type systems for data modelling [2-7], bulk data
[8, 9] and protection [10, 11]; programming language implementation [12, 13];
binding mechanisms [14-17]; programming environments [17-20]; system
evolution [21-23]; concurrency control and transactions [24-27]; object stores [26,
28-35] and software engineering tools [36-39].

The Napier88 system consists of the Napier88 language [40] and its persistent
environment [41]. The persistent store comes pre-populated, rather like the
SMALLTALK Virtual Image [42], and indeed the system uses values within the
persistent store to support itself. The programmer is able to operate entirely within
the persistent environment which provides editors, window managers, compilers
etc.

Unlike its predecessor, PS-algol [43], which took the approach of extending an
existing programming language, S-algol [44], with persistence, Napier88 was
designed as an integrated persistent programming system [45]. As such some of
the decisions as to what is built into the language and what is supported by the
environment are somewhat arbitrary and would justify re-evaluation in future

2

designs. For example, bulk types and concurrency control are supported by values
and procedures in the environment whereas graphics facilities, both raster [46] and
line drawing [47], are supported in the base language. In particular, there was no
attempt to define a minimal language with support facilities being supplied by the
persistent environment; rather the design attempted to separate the concepts
required for persistent programming and to provide a powerful composition
mechanism that allowed these concepts to be freely combined.

The Napier88 system is designed as a layered architecture [34] as shown in
Figure 1. All the architectural layers are virtual in that, in any implementation,
they may be implemented separately or together as efficiency dictates. Thus, they
are definitional rather than concrete.

Stable Heap of Persistent Objects

Stable Storage

Non Volatile Storage

Protection Mechanism

Distribution

Concurrency User Transactions

Persistent Abstract Machine

Local Heap

Fig. 1. The Napier88 layered architecture

The success of the Napier88 architecture is highlighted by the fact that it was also
used in the implementations of Galileo [48], P-Quest [49] and Staple [50].

The Flask architecture [26] was developed from the above to accommodate
concurrency control and distribution [51]. This architecture is shown in Figure 2
as a “V-shaped” layered architecture to signify the minimal functionality built-in
at the lower layers. At the top layer the specifications of the model are
independent of the algorithms used to enforce them and can take advantage of the
semantics of these algorithms to exploit potential concurrency [52]. The
information gleaned from the specifications is fed down to the lower layers to aid
their efficiency. More importantly such an approach is flexible enough to
accommodate different models of concurrency control and distribution. This is
just one example of how the closed persistent world can use its high-level
semantics to guide the execution of systems.

3

Specifications

Programs

Data Visibility

Resilience

Atomicity

Fig. 2. The Flask Architecture

A large body of technology such as compilers, browsers, object stores, abstract
machines, garbage collectors and hyper-programming facilities underlies the
implementation of the Napier88 system. These are described elsewhere. Here we
concentrate of the design philosophy of the system and the techniques for
persistent programming. This is done through the following areas: controlling
complexity, the provision of orthogonal persistence, data modelling, the
protection of data, controlled system evolution, concurrency control and
transactions, and programming within the persistent environment, including
hyper-programming.

The justification of the persistence design decisions is given in [53] and the
advantages of the abstraction outlined in [4, 11, 15, 18, 34, 54-63].

2 Controlling Complexity

2.1 Language Design

McCarthy [64], van Wijngaarden [65], Strachey [66] and Tennent [67] all
observed that expressive power in programming languages could be gained by
separating the underlying concepts and allowing them to be combined by
powerful composition rules. Strachey and later Tennent distilled these ideas into
three principles for use in the design of programming languages:

• the principle of correspondence,

• the principle of abstraction and

• the principle of data type completeness.

4

The principle of correspondence states that the rules governing the use of names
and bindings in a programming language should be consistent. In particular the
rules for introducing names and bindings in declarations should have a
corresponding mechanism for abstraction parameters. This ensures that formal
parameters behave consistently with local declarations. In Napier88 there is only
one parameter passing technique, call by value, and there is a 1-1 correspondence
between declarations and parameter passing modes.

The principle of abstraction states that for all significant syntactic categories in
the language there should be an abstraction mechanism. This allows essential
details to be ignored by concentrating on the general structure. An abstraction
consists of naming the syntactic category and allowing it to be parameterised. The
Napier88 forms of abstractions are procedures and abstract data types in the value
space and parameterised types in the type space.

The principle of data type completeness states that any combination or
construction of data should be allowed for all types. As a consequence all data
objects in a language should have the same “civil rights”. More of this shortly.

The overall goal of the above principles is to design languages that are both
simple and powerful. They are simple in that there are a minimum of defining
rules with no exceptions, since for every exception to a rule the language becomes
more complicated in terms of understandability and implementation. The
minimisation of defining rules without exceptions also contributes to the power of
the language since every exception makes the language less powerful in that it
introduces a restriction. The expressive power therefore comes from ensuring that
the composition rules are complete and minimal with no exceptions.

As an example of the application of the above principles, we highlight the
design of the Napier88 type system which defines the Universe of Discourse of
the language.

The Napier88 type system is based on the notion of types as a set structure
imposed over the value space. Membership of the type sets is defined in terms of
common attributes possessed by values, such as the operations defined over them.
In the absence of polymorphism these sets or types partition the value space;
polymorphic forms, which in Napier88 are polymorphic procedures and abstract
data types, allow values to belong to more than a single type [68]. The sets may be
predefined, like integer, or they may be formed by using one of the predefined
type constructors, like structure. The Universe of Discourse of Napier88 is
defined by the following rules and is discussed later in the section on data
modelling:

1. The scalar data types are int, real, bool, pixel, file and null.

2. Type string is the type of a sequence of characters; this type embraces the
empty string and single characters.

5

3. Type pic is the type of a conceptual line drawing, modelled in an infinite 2-D
real space; this type embraces single points.

4. Type image is the type of a value consisting of a rectangular matrix of pixels.

5. Type env is the type of an environment; a value of this type consists of a
collection of bindings.

6. Type any is an infinite union type; a value of this type consists of a value of
any type together with a representation of that type.

The following type constructors are defined in Napier88:

7. For any type t, * t is the type of a vector with elements of type t.

8. For labels I1,...,In and types t1,...,tn, structure (I1: t1,...,In: tn) is the type of a

structure with fields Ii and corresponding types ti, for i = 1..n and n ≥ 0.

9. For labels I1,...,In and types t1,...,tn, variant (I1: t1,...,In: tn) is the type of a

variant with labels Ii and corresponding types ti, for i = 1..n and n ≥ 0.

10. For any types t1,...,tn and t, proc (t1,...,tn → t) is the type of a procedure with

parameter types ti, for i = 1..n, where n ≥ 0, and result type t. The type of a

resultless procedure is proc (t1,...,tn).

11. proc [T1,...,Tm] (t1,...,tn → t), where the definitions of types t1,...,tn and t

may include the use of the type variables T1,...,Tm, is the type of a procedure

which is universally quantified over these type variables for m > 0 and n ≥ 0.
These are polymorphic procedures. The type of a resultless polymorphic
procedure is proc [T1,...,Tm] (t1,...,tn).

12. abstype [W1,...,Wm] (I 1: t1,...,In: tn), where the definitions of types t1,...,tn
may include the use of the type variables W1,...,Wm, is the type of a structure

which is existentially quantified over these type variables for m > 0 and n ≥ 0.
These are abstract data types.

The world of data values is defined by the closure of rules 1 to 6 under the
recursive application of rules 7 to 12.

An essential element for controlling complexity is that there should be a high
degree of abstraction. Thus, in the above type rules, vectors and structures are
regarded as store abstractions over all data types, procedures as abstractions over
expressions and statements, abstract data types as abstractions over declarations,

6

and polymorphism and type parameterisation as abstractions over type. The
infinite unions env and any are used to support persistence, as well as being a
general modelling technique; they are dynamically checked.

The type constructors of Napier88 obey the Principle of Data Type
Completeness, in that, where a type may be used in a constructor, any type is legal
without exception. Thus all data values are first class.

2.2 Orthogonal Persistence

The implication of orthogonal persistence is that the user need never write code to
move or convert data for long or short term storage [53]. There are three design
principles that may be used to achieve orthogonal persistence. They are:

The Principle of Persistence Independence

The form of a program is independent of the longevity of the data that it
manipulates. Programs look the same whether they manipulate short-term or
long-term data.

The Principle of Data Type Orthogonality

All data objects should be allowed the full range of persistence irrespective of
their type. There are no special cases where objects are not allowed to be
long-lived or are not allowed to be transient.

The Principle of Persistence Identification

The choice of how to identify and provide persistent objects is orthogonal to
the universe of discourse of the system. The mechanism for identifying
persistent objects is not related to the type system.

The application of these three principles yields Orthogonal Persistence.

Persistence independence frees the programmer from the burden of having to
explicitly program the movement of data among the hierarchy of storage devices
and from coding translations between long-term and short-term representations;
this is performed automatically by the system. The mechanical cost of performing
the movement of data does not disappear but the intellectual cost does. That is, the
programmer need not specifically write code for it, making the application code
smaller and more intellectually manageable. However, the implementor of the
support system now has the challenge of automating that data movement and any
translation efficiently.

Data type orthogonality is an aid to data modelling in that it ensures that the
data model can be complete and independent of the persistence of the data being
modelled. For example, bulk data types abstract over size and are therefore
commonly used in persistent programming languages to aid the manipulation of
massive collections of data such as scanned data from satellites or insurance

7

policies sold by a company. Where such data is only considered long-term then
the data model has to allow explicit conversion between long and short-term
forms to facilitate creation of new bulk data and the manipulation of extracts from
the long-term bulk data as short-term data.

Persistence identification may be satisfied by identifying the persistent data
automatically. In a natural extension of the garbage collection technique, where
only useful data survives, the persistent data of a program can be found by
computing the transitive closure of all the data from a number of distinguished
roots. This technique is called identification by reachability and is the one now
most commonly used in orthogonally persistent systems. Such conversions are a
distraction when the PAS programmer has to code them.

The Napier88 system obeys all three of the above principles of persistence.
Programs operate on long and short term data identically, all data types may
persist and the useful data is identified by reachability.

3 Using Persistent Data

Napier88 programs may access their home persistent environment by calling the
only pre-defined procedure in the language, PS. Other persistent stores may also
be accessed and values from those stores copied into the home environment. Each
persistent store is organised as a graph of objects but the topology of the graphs
may vary from store to store. The PS procedure is specified as follows:

PS: proc (→ any)

That is, PS is a procedure that takes no parameters and yields a value, the root of
persistence, of type any. The root of persistence is constant and may not be altered
after the store has been created. However the values reachable from the root may
be updated if they are variable.

Type any is the infinite union of all types into which values may be injected
(coerced) dynamically. Stores are initialised by a standard procedure that takes a
parameter of type any which will have the initial store value injected into it. The
mechanism for creating stores is contained in [41].

To retrieve values from the persistent store, a projection operation (coercion),
from type any, is required. So, for example, if a persistent store consisted of one
value which was a structure with a name and address in it, both of type string,
then the following program fragment could be used to retrieve the value:

8

type person is structure (name, address : string)
! This declares a type, person, as a structure (labelled cross product)
! with two fields (name and address) of type string

let ps = PS () ! Calling the PS predefined procedure yields
! the root of persistence.
! It is then declared as the constant ps.
! Constancy is denoted by the =
! variables are declared using :=

project ps as X onto
person : ! The value X may be used here with type person
default : {} ! This is the catch all and ps has type any here

Fig. 3. Using Persistent Data

The project clause takes a value, ps in this case, and either coerces the type to one
in the list of types that follows or executes the default option. The value is also
given a constant identifier, X in this case, to avoid side effects. This identifier is in
scope on the right hand side of the colon and has the type on the left hand side. In
practice, the persistent stores will be much more complicated, often forming
cyclic structures.

The movement of data for execution is hidden from the user. When the program
accesses a value it is automatically made available, thus the user may abstract over
this physical property of the store. To change values in the persistent store, they
must first be accessed and then updated. At the end of the program execution the
transitive closure of the values from the original root of persistence is calculated
and these values preserved in the persistent store. This action may change the
topology of the store but not the original root which is constant once created.

type person is structure (name, address : string)

let ps = PS ()

project ps as X onto
person : begin

X (name) := "Ronald Morrison”
X (address) := "St Andrews"

end
default : {} ! This is the catch all and ps has type any here

Fig. 4. Changing persistent values

9

In Figure 4, the value that is contained in the persistent store is a structure. Its
fields have been updated, using the indexing X (name) and X (address), to record
the information on a very nice person. At the end of the program, all the
information reachable from the original root is preserved. Thus the changes will
be preserved until, at least, the next activation of the store whereupon they may be
changed again.

Arithmetic
Compiler
Concurrency

Device
Distribution
Environment
Event
FailValues
Font
Format
Graphics
InteractiveEnvironment
InterfaceEditor

IO
Lists
People
Protection
RasterRules
String
System
Tables
Time
Utilities
Vector

Win

Library

Borders
CurrentState
Cursors
Defaults
Generators
Images
Selection
Tools
Utilities

Interactive

EditorTools

Outline
Raster

PrimitiveIO

CurrentBrowser

Arithmetic
Environment
Event
Format
Graphics
IO
String
Structure
Variant
Vector

Error

External

User

Persistent
Root

Fig. 5. The Standard release persistent store structure

Figure 5 outlines the initial structure of the Napier88 standard release system 2.0.
Most of the names represent environment (env) objects which are collections of
bindings. The type env is the infinite union of all labelled cross products but

10

environments differ from structures in that bindings may be added and removed
dynamically. This in turn forces a dynamic type check on the first use of an
environment object to ensure that it contains the bindings assumed in the
programs. Once this has been established, static type checking is restored.

Figure 6 stores a procedure in the User environment for later use. The procedure
is part of a complex number package which may be used or added to later. The in
clause places the value that is declared, add, into the environment, user. At the
end of the program this value will be reachable from the persistent root, via user,
and is therefore preserved. The binding that is placed in the environment is an L-
value binding in that it contains a location.

let ps = PS ()

project ps as X onto
env : use X with User : env in

begin
type complex is structure (rpart, ipart : real)
in User let add = proc (a, b : complex → complex)

complex (a (rpart) + b (rpart), a (ipart) + b (ipart))
end

default : {} ! This is executed if the projection fails

Fig. 6. Placing a procedure in the persistent store

Figure 7 shows how a second procedure may be placed in the same, User,
environment. In this way the package can be built up incrementally.

let ps = PS ()

project ps as X onto
env : use X with User : env in

begin
type complex is structure (rpart, ipart : real)
in User let subtract = proc (a, b : complex → complex)

complex (a (rpart) - b (rpart), a (ipart) - b (ipart))
end

default : {} ! This is executed if the projection fails

Fig. 7. Adding a procedure to the User environment

Figure 8 demonstrates how these procedures may now be accessed in a program.
Notice that the values one, two, three, and minusOne are not preserved when the
program terminates since they are not reachable from the root of persistence.

11

type complex is structure (rpart, ipart : real)

let ps = PS ()

project ps as X onto
env : use X with User : env in

use User with add, subtract : proc (a, b : complex → complex) in
begin

let one = complex (1.0, 1.0) ; let two = complex (2.0, 2.0)
let three = add (one, two)
let minusOne = subtract (one, two)

end
default : {} ! This is executed if the projection fails

Fig. 8. Using the procedures in the User environment

The second use clause projects two procedure values, add and subtract, into the
current scope. The semantics of the clause is the same as declaring these values
within the block except that they are reachable from the root of persistence.

The need for dynamic type checking should now be apparent. The dynamic
check is required to ensure that the given environment has the values of the
correct type. If it does then the values are placed in scope and may be used like
any other value. Otherwise an error condition is raised. All subsequent type
checking is static since the compiler can compile the code against the static
assumption that the dynamic check will work.

The environment mechanism [69] provides a contextual naming scheme that
can be composed dynamically. All values in Napier88 are anonymous. However,
values may be contained in more than one environment with different names. This
allows different name spaces to be placed over the value space enabling
applications to utilise their private persistent name space while sharing values in
the persistent store.

The syntactic noise involved in using the persistent store, through project and
use clauses, may be reduced by hyper-programming [20] which allows values to
be directly linked to source code at composition time. Thus the navigational code
and type specifications need not always be included in the program.

4 Data Modelling

Type systems provide two important facilities within both databases and
programming languages, namely data modelling and data protection. Data
modelling is performed in databases using data models, which have types to
describe the form of the data, and in programming languages by using a classical
type system. In both cases the universe of discourse of the system is defined by

12

the set of allowable types which in turn are denoted by the set of legal expressions
in the language. Data protection is provided by enforcing explicit and implicit
integrity constraints in databases and by type checking in programming languages.
A goal of persistent programming language design is to develop a type system that
will accommodate the structures required for both modelling and protection in less
traditional database applications such as scientific programming, engineering
applications and office automation, whilst also capturing the type description of
more conventional database systems [70].

As a first step in the unification of data models and type systems some
approximate equivalences can be recognised. These are summarised in Table 1.

Table 1. Equivalences between data models and type systems

Databases Programming Languages

data models type systems

schema type expression

database variable

database extent value

The issue of type checking is central to a type system that will provide data
modelling and protection for persistent systems. Generally, data models in
databases are concerned with the manipulation of the data that is consistent with
the constraints imposed by the data model. In some cases these constraints may
depend upon values calculated during the computation. As such they can be
dynamic in nature and require dynamic integrity constraint checking for
enforcement. By contrast classical type systems for programming languages are
concerned with static checking which allows assertions to be made and even
proved about a computation before it is executed. Static checking therefore
provides a level of safety within the system. It also allows more efficient code
since type checking code is not required at run-time.

At first the dichotomy between the checking times in databases and
programming languages appears to be beyond resolution. The Napier88 approach
is to ensure that type system is mostly statically checkable. However, some
dynamic checking on projection out of unions for types any and env, as well as
variant selection, allows the dynamic binding required for orthogonal persistence
[53] and system evolution [23].

For data modelling, Napier88 provides the base types integer, real, boolean,
string, pixel and the trivial type null. The type system also includes graphical
types for line drawing in an infinite two-dimensional real space and for
manipulating raster images which are aggregates of pixels. The general aggregates
are structure (labelled cross product, x) and vector. Variants are available for
labelled disjoint sums (+). For abstraction the type system provides procedures
and abstract data types. The Napier88 type system is polymorphic, like ML [71,

13

72], Russell [73] and Poly [74] and uses the existentially quantified types of
Mitchell & Plotkin [5, 75] for abstract data types.

There is deliberately no type inference, to allow for explicit specialisation of
polymorphic forms from the persistent store. Thus polymorphic forms may be
stored in the persistent store and, when accessed, specialised with their
specialising type.

A unique design feature of the implementation of the typed objects is that their
storage format may be non-uniform [12].

The type equivalence rule in Napier88 is by structure to allow separately
prepared programs and data to be composed without reference to a common
scheme. To accommodate expressive power, type parameterisation is provided
and both recursive and parameterised types are allowed in the type algebra. This
combination with structural equivalence, in general, leads to undecidable type
checking. The solution in Napier88 is a syntactic convention which allows the
type checking to be sound, complete and co-complete [4].

4.1 User Defined Types

Napier88 provides the user with the ability to assign names to type constructions.
For example,

type complex is structure (rpart, ipart : real)

declares a structure (labelled cross product) with two fields rpart and ipart both of
type real. The structure type is given the local name complex which may now be
used as a shorthand for the type expression.

Recursive types provide the ability to define cyclic data types. A binary tree can
be represented by a type definition in which each node has a key field of type int
and a value field of type string. Each node of the binary tree also has a left and a
right field of the tree type, intStrBTree, to point to the descendent sub-trees. The
nodes of the tree are represented by a structure type and the tree itself, with all its
sub-trees, can be either a node or an empty tree represented by the null type. The
following declaration of the type name, intStrBTree, defines such a binary tree.

rec type intStrBTree is variant (node : Node ; tip : null)
& Node is structure (key : int ; value : string ; left, right : intStrBTree)

Expressive power is further increased by type operators which allow types to be
parameterised by others. For example

14

type Pair [t] is structure (first, second : t)

Pair [t] is not strictly a type but a type operator which defines an infinite class of
types. It may be parameterised by a type to produce a specific type definition. For
example:

type intPair is Pair [int] ! This is equivalent to
! structure (first, second : int)

type imagePair is Pair [image] ! This is equivalent to
! structure (first, second : image)

The combination of recursive definition and type parameterisation yields further
expressive power. For example the following type operator defines an infinite
class of binary trees.

rec type binaryTree [Key, Value] is variant (node : Node [Key, Value] ;
tip : null)

& Node [Key, Value] is structure (key : Key ; value : Value ;
left, right : binaryTree [Key, Value])

These may be used as before to define specific binary trees.

type intStringBinaryTree is binaryTree [int , string]

type stringImageBinaryTree is binaryTree [string, image]

The uncontrolled introduction of recursive type operators leads to the ability to
describe types over which no decidable structural equivalence algorithm is known.
Napier88 therefore restricts these definitions by the following rule in order to
retain decidable type checking [3]:

The specialisation of a recursive operator on the right hand side of its own
definition may not include any types which are constructed over its own
formal parameters.

The importance of type declarations is that they allow the programmer to
introduce new and succinct notations and to assign them names that are
meaningful within the application being constructed. It therefore aids the

15

traditional role of Data Description Languages by allowing data to be accurately
described.

4.2 Polymorphism

In [76] and its companion papers, an analysis of what constitutes a persistent type
system is given. For modelling purposes it is generally agreed that some form of
polymorphism is required to capture the expressiveness of data models and to
increase component re-use [18]. The most favoured forms of polymorphism are
universal polymorphism: parametric or inclusion.

Parametric polymorphism describes the polymorphism found in ML [71] and its
derivatives whereas inclusion polymorphism is the style of polymorphism found
in object-oriented languages such as Simula67 [77]. An interesting hybrid may be
found in the database programming language Galileo [48], which is a derivative of
ML but utilises inclusion polymorphism to implement part of the Semantic Data
Model [78]. Cardelli [68] has shown separately how the parametric and inclusion
forms of polymorphism may be integrated, as bounded quantification, to yield
forms of abstraction not available to either one.

Napier88 provides parametric polymorphism in the form of universally
quantified procedures and existentially quantified types (abstract data types). The
utility of these mechanisms will be illustrated with the aid of an example that
implements an index. The index will initially use an integer key and store a string
value. Figure 9 defines a procedure that generates the index and places the index
together with a procedure to enter values into the index and another procedure to
lookup values in the index, in an environment. The generating procedure takes as
parameters a fail value and an environment in which to place the index and the
two procedures. The fail value will be returned by the lookup procedure if the key
is not valid. The index is implemented as a binary tree.

16

let generateIntStringIndex = proc (failValue : string ; envir : env)
begin

rec type index is variant (node : Node ; tip : null)
& Node is structure (key : int ; value : string ; left, right : index)

let nullIndex = index (tip : nil)
! Construct the empty index by injecting the nil value into the variant

in envir let i := nullIndex
! This is the internal index structure initialisation

in envir rec let enter = proc (k : int ; v : string ; i : index → index)
! Enter the value into the binary tree indexed by key 'k'
if i is tip then index (node : Node (k, v, nullIndex, nullIndex)) else
case true of
k < i'node (key) : {i'node (left) := enter (k, v, i'node (left)) ; i}
k = i'node (key) : i ! do nothing
default : {i'node (right) := enter (k, v, i'node (right)) ; i}

in envir let lookup = proc (k : int ; i : index → string)
!lookup the value in the binary tree
begin

let head := i
while head is node and k ≠ head'node (key) do

head := if k < head'node (key))
then head'node (left) else head'node (right)

if head is node then head'node (value) else failValue
end

end

Fig. 9. The procedure to generate the index

Placing the index in the persistent store involves creating a new environment and
making that reachable from the root of persistence. Creating the new environment
entails using the standard procedure to create environments. This is kept in the
Library environment in the persistent store and must be located and called. The
new environment is passed to the procedure to generate the index and then placed
in the User environment with the name intStringIndex. All of this is contained in
Figure 10.

17

let ps = PS ()

project ps as X onto
env : use X with User, Library : env in

use Library with Environment : env in
use Environment with environment : proc (→ env) in
begin

let new = environment ()
generateIntStringIndex ("This is a failure", new)

in User let intStringIndex = new
end
default : {} ! This is executed if the projection fails

Fig. 10. Place the index in the persistent store

Figure 11 demonstrates how the index may now be used from the persistent store.
Notice that the new entry that is entered into the index will be preserved in the
persistent store after the program terminates since it is reachable from the root of
persistence.

let ps = PS ()

rec type index is variant (node : Node ; tip : null)
& Node is structure (key : int ; value : string ; left, right : index)

project ps as X onto
env : use X with User : env in

use User with intStringIndex : env in
use intStringIndex with i : index;

enter : proc (int , string, index → index);
lookup : proc (int , index → string) in

begin
i := enter (49, "Ron", i)

end
default : {} ! This is executed if the projection fails

Fig. 11. Using the index

Thus an index from integers to strings has been created and used. If a second
index, say from strings to integers, is required a new set of programs has to be
written to ensure type compatibility. Alternatively the power of polymorphism can
be used to define a generic procedure that will produce the correct index on

18

application. The polymorphic procedure abstracts over the types of the index key
and the value but requires an extra parameter to provide an ordering on the keys.
This extra parameter, lessThan, is a procedure that compares two keys. Figure 12
defines the polymorphic procedure generateGeneralIndex which will generate a
given index on application. Note that equality is defined over all types in
Napier88.

let generateGeneralIndex = proc [Key, Value] (
lessThan : proc (Key, Key → bool);
failValue : Value;
envir : env)

begin
rec type index is variant (node : Node ; tip : null)
& Node is structure (key : Key ; value : Value ; left, right : index)

let nullIndex = index (tip : nil)
! Construct the empty index by injecting the nil value into the variant

in envir let i := nullIndex
! This is the internal index structure initialisation

in envir rec let enter = proc (k : Key ; v : Value ; i : index → index)
! Enter the value into the binary tree indexed by key 'k'
if i is tip then index (node : Node (k, v, nullIndex, nullIndex)) else
case true of
lessThan (k, i'node (key))

: {i'node (left) := enter (k, v, i'node (left)) ; i}
k = i'node (key) : i
default : {i'node (right) := enter (k, v, i'node (right)) ; i}

in envir let lookup = proc (k : Key ; i : index → Value)
! lookup the value in the binary tree
begin

let head := i
while head is node and k ≠ head'node (key) do

head := if lessThan (k, head'node (key))
then head'node (left) else head'node (right)

if head is node then head'node (value) else failValue
end

end

Fig. 12. A polymorphic generation procedure

It should be noticed how little the polymorphic code changes from the
monomorphic form. This means that there is little extra cost in producing such

19

code. Figure 13 illustrates how the generateGeneralIndex procedure may be used
to create a specific index.

let ps = PS ()

project ps as X onto
env : use X with User, Library : env in

use Library with Environment : env in
use Environment with environment : proc (→ env) in
begin

let new = environment ()

let stringLessThan = proc (a, b : string → bool) ; a < b
generateGeneralIndex [string, int] (stringLessThan , -999, new)

in User let stringIntIndex = new
end
default : {} ! This is executed if the projection fails

Fig. 13. Creating an index from strings to integers

Figure 14 illustrates the final step in using the new index. Notice that a type
operator is used to generate the correct type. This is equivalent to the original type
defined in the polymorphic procedure.

let ps = PS ()

rec type Index [Key, Value] is variant (node : Node [Key, Value] ; tip : null)
& Node [Key, Value] is structure (key : Key ; value : Value ;

left, right : Index [Key, Value])
type index is Index [string, int]

project ps as X onto
env : use X with User : env in

use User with stringIntIndex : env in
use stringIntIndex with i : index;

enter : proc (string, int , index → index);
lookup : proc (string, index → int) in

begin
i := enter ("Ron", 49, i)

end
default : {} ! This is executed if the projection fails

Fig. 14. Using the string to integer index

20

The advantage of the polymorphic abstraction should be obvious in the context of
software reuse. By using the polymorphism in Napier88, one procedure for all
types may be written instead of a different one for each pair of types. This
polymorphic generating procedure may then be used to generate many instances
of the index which can vary by type. In the above examples the indexes are stored
in environments in the persistent store. The generating procedure and all the other
code fragments may also be stored for later reuse in the persistent store but such
details have been omitted here. The major advantage of the combination of
polymorphism and persistence is that it greatly reduces the amount of code that
has to be written in a large system.

There is a second type of abstraction that may be required over indexes. In the
above examples all of the indexes are implemented by binary trees and the data
structure implementing these has to be known for correct use. Further abstraction
can be had by hiding the implementation while still allowing the user to construct
programs that will work for indexes of all implementations. For this, the power of
abstract data types is required.

The implementation of the index may be a binary tree, a B-tree, a B+-tree or a
list etc. The essential element is that they all have the same abstract interface of an
index value, a procedure that will take a key, a value and an index as parameters
and return an index and another procedure that will take a key and an index as
parameters and return a value. Such an interface is defined in Napier88 using
abstract data types. For example, the type of all integer to string indexes
irrespective of their implementation can be written as:

type intStringIndex is abstype [index] (
Index : index;
Enter : proc (int , string, index → index);
Lookup : proc (int , index → string))

The witness type, index, is hidden to the outside of this interface. This is the
implementation type. Thus all values of type intStringIndex have the same type,
no matter which implementation type is used to construct the abstract data type.

Figure 15 illustrates how both kinds of polymorphic abstraction can be
combined. The generateGeneralAbsBtreeIndex procedure is polymorphic in the
key and value types allowing any ordered type to be used as an index key for any
other type. The procedure returns an abstract data type which has the
implementation of the index encapsulated within it. For each different
implementation a different generating procedure is required.

21

type generalAbsIndex [KEY, VALUE] is abstype [index] (
Index : index;
Enter : proc (KEY, VALUE, index → index);
Lookup : proc (KEY, index → VALUE))

let generateGeneralAbsBtreeIndex = proc [Key, Value] (
lessThan : proc (Key, Key → bool) ;
failValue : Value → generalAbsIndex [Key, Value])

begin
rec type index is variant (node : Node ; tip : null)
& Node is structure (key : Key ; value : Value ; left, right : index)

let nullIndex = index (tip : nil)
! Construct the empty index by injecting the nil value into the variant

let i := nullIndex
! This is the internal index structure initialisation

rec let enter = proc (k : Key ; v : Value ; i : index → index)
! Enter the value into the binary tree indexed by key 'k'
if i is tip then index (node : Node (k, v, nullIndex, nullIndex)) else
case true of
lessThan (k, i’node (key))

: {i'node (left) := enter (k, v, i'node (left)) ; i}
k = i'node (key) : i
default : {i'node (right) := enter (k, v, i'node (right)) ; i}

let lookup = proc (k : Key ; i : index → Value)
! lookup the value in the binary tree
begin

let head := i
while head is node and k ≠ head'node (key) do

head := if lessThan (k, head'node (key))
then head'node (left) else head'node (right)

if head is node then head'node (value) else failValue
end

generalAbsIndex [Key, Value] [index] (i, enter, lookup)
end

Fig. 15. Combining universal and existential quantification

Figure 16 illustrates how the abstract data type may be used. Two abstract data
types, this and that, are created, one using the binary tree implementation
generator and the other using an unspecified list implementation generator. Notice
that while the implementation of the abstract data types are incompatible as are

22

the operations over them, a procedure that will operate over both of them may be
constructed.

The use clause is a scoping and renaming device. The abstract data value is
renamed as X in the clause following the in. By giving the object a constant name,
X, the application of the interface procedures can be statically checked. This
ensures that the interface procedures will only be applied to objects of the same
representation. Indeed the rule is even stronger than this since objects named by
fields can only operate on other fields of the same X as they are the only ones that
are known to be of the same representation, whatever it might be.

type intStringAbsIndex is abstype [index] (
Index : index;
Enter : proc (int , string, index → index);
Lookup : proc (int , index → string))

let lessThanInt = proc (a, b → bool) ; a < b

let this = generateGeneralAbsBtreeIndex [int , string] (lessThanInt, "")

let that = generateGeneralAbsListIndex [int , string] (lessThanInt, "")

let updateIntStrIndex = proc (adt : intStringAbsIndex ; k : int ; v : string)
use adt as X in
begin

X (Index) := X (Enter)(k, v, X (Index))
end

updateIntStrIndex (this, 49, "Ron")
updateIntStrIndex (that, 59, "Malcolm")

Fig. 16. Using abstract data types

Again, although not demonstrated here all of this code may be placed in the
persistent store for later reuse. The difference in application between universal and
existential quantification is that in universal quantification abstract polymorphic
form can be written from which special cases can be generated whereas with
existential quantification existing objects are described by a more general type
thereby allowing more general abstraction over that type.

In summary, the power of the Napier88 type system in the context of data
modelling is dependent on the following: the base types and type constructors; the
ability to have user defined types that may be parameterised and recursive; and the
polymorphism facilities, both universal and existential. These facilities combined
with the persistent environment provide for traditional data modelling but can also

23

cater for new applications which require concurrency control, protection and
schema evolution within the modelling framework.

5 Protection of Data

Persistent object systems, such as Napier88, support large collections of data that
have often been constructed incrementally by a community of users [57]. The data
is inherently valuable and requires protection from: system malfunction, such as
hardware failure; misuse of common facilities, such as the operating system; and
finally from users themselves [11]. Hardware malfunction has little to do with
software protection and is best dealt with by techniques such as incremental
dumping or stability strategies [79, 80]. Here the focus is on software methods
designed for the protection of persistent data. Information hiding is one such
software technique in which the access to the data, or the type interface to it, is
restricted. By varying the restriction, a variable degree of protection may be
obtained.

There are three well-known mechanisms which support information hiding
within a strongly typed system. These are subtyping, procedural encapsulation
(1st-order information hiding) and existential data types (2nd-order information
hiding). Subtyping achieves protection by removing type information, causing the
static failure of programs which try to perform undesirable accesses. 1st-order
information hiding prevents the protected data from being named by untrusted
programs allowing access only through a procedural interface. 2nd-order
information hiding is somewhere between these two, allowing access mainly
through procedures, but also allowing the protected data to be named. The data is
viewed through a mechanism which causes type information loss. This ensures
only a limited set of operations may be performed on the hidden data.

Napier88 does not provide subtyping and therefore the focus here is on 1st and
2nd-order information hiding as well as on the use of 2nd-order information
hiding to implement traditional database viewing mechanisms.

5.1 1st-Order Information Hiding

1st-order information hiding is achieved by allowing access only to a procedural
interface that operates over the hidden data. In Napier88, which has first-class
procedure values and block-style scoping, access to the data may be removed
simply by its name becoming unavailable (out of scope).

As an introductory example consider a random number generator for which the
Napier88 code is given in Figure 17. This is written as a generator procedure,
randomGenerator, which takes an integer seed, seed, and returns a procedure
value that will yield a sequence of random numbers when repeatedly called. The
returned procedure uses a value, hiddenValue, that is encapsulated in the closure
of the randomGenerator procedure. This value is out of scope at the outermost
level but still available for use within the inner procedure. Thus the value is

24

hidden, protected and only available for use through the procedural interface. That
means that it can only be manipulated through that interface and not in unintended
ways.

let randomGenerator = proc (seed : int → proc (→ int))
begin
let hiddenValue := seed

proc (→ int)
begin

hiddenValue := (519 * hiddenValue) rem 8192
hiddenValue

end
end

let random = randomGenerator (2111)
let firstRandomNumber = random ()
let secondRandomNumber = random ()

Fig. 17. A random number generator

A more sophisticated example of 1st-order information hiding is that of a bounded
buffer into which users may place and obtain messages. The bounded buffer is
intended to be used by concurrent threads and therefore access to the buffer is
synchronised. Concurrency control in Napier88 will be covered later in this paper
and it is sufficient here to use semaphores, which are provided by standard
procedures in the environment, for synchronisation.

Figure 18 illustrates how the bounded buffer may be implemented in Napier88.
The example is polymorphic in that the generating procedure, bBGen, will
produce buffers of any type. The implementation of the buffer (a vector), the
semaphores and the buffer pointers are hidden in the closure of this generating
procedure. The result of the generating procedure is a structure which contains
one procedure to obtain a value from the buffer, get, and one procedure, put, to
place a value in the buffer. The generating procedure is placed in the User
environment in the persistent store.

25

type boundedBuffer [t] is structure (get : proc (→ t) ; put : proc (t))

type Semaphore is structure (wait, signal : proc ())

project PS() as X onto
env : use X with Library, User : env in

use Library with Concurrency : env in
use Concurrency with semaphoreGen : proc (int → Semaphore) in

begin
in User
let bBGen = proc [t] (bufferSize : int ; initV : t → boundedBuffer [t])
begin

let ringBuffer = vector 1 to bufferSize of initV
let avail = semaphoreGen (bufferSize)
let mutex = semaphoreGen (1)
let empty = semaphoreGen (0)
let getPtr := 1 ; let putPtr := 1

let Get = proc (→ t)
begin

empty (wait) ()
mutex (wait) ()
let result := ringBuffer (getPtr)
getPtr := getPtr rem bufferSize + 1
mutex (signal) ()
avail (signal) ()
result

end

let Put = proc (message : t)
begin

avail (wait) ()
mutex (wait) ()
ringBuffer (putPtr) := message
putPtr := putPtr rem bufferSize + 1
mutex (signal) ()
empty (signal) ()

end
boundedBuffer [t] (Get, Put)

end
end
default : {}

Fig. 18. A synchronised polymorphic ring buffer

26

Figure 19 demonstrates how the polymorphic bounded buffer generator may be
used. First it is identified in the persistent store and then initialised to operate on
strings. The buffer is initialised to 500 elements in size, each containing the null
string. The procedures in the structure are renamed locally for succinctness.
Notice that all the details of the implementation are hidden behind the procedural
interface and not even mentioned in this code.

type boundedBuffer [t] is structure (get : proc (→ t) ; put : proc (t))

project PS () as X onto
env : use X with User : env in

use User with bBGen : proc [t] (int , t → boundedBuffer [t]) in
begin

let thisBuffer = bBGen [string] (500, "")

let get = thisBuffer (get) ; let put = thisBuffer (put)

put ("Ron Morrison") ; put ("Richard Connor")

let first = get ()
...

end
default : {}

Fig. 19. Using the ring buffer

The bounded buffer is designed to operate in the presence of concurrent access.
This has not been shown here as it requires threads which are the subject of a later
section.

5.2 2nd-order Information Hiding

2nd-order information hiding differs from 1st-order information hiding in that it
does not restrict access to the protected values, but instead abstracts over the type
in order to restrict the operations allowed on the values. Thus the protected values
may be manipulated by some basic operations, such as assignment and perhaps
equality, but their full set of operations are not allowed due to the abstracted type
view. This allows the implementation objects themselves to be safely placed in the
interface with their abstracted type along with the procedures which manipulate
them.

Napier88 provides existentially quantified types (abstract data types) to
implement 2nd-order information hiding. To illustrate their utility, we will use the
example of a banking system, taken from [10], in which customers have access to
their accounts through autoteller machines. The autoteller machines have different

27

styles of access to accounts according to which bank the machine belongs. A
customer's own bank may have full access to an account whereas another bank
may not access the customer’s account balance, but must know if a withdrawal
can be made. The purpose of using 2nd-order information hiding is to allow the
autotellers to manipulate the account through its abstract interface without
knowing its concrete implementation.

The local autoteller machine is operated through the following abstract
interface:

failAc is the value returned by getAc if a password check fails

getAc is a procedure which takes as input an account number, and a
password and provided that the password is correct, returns the
account, otherwise it returns the fail value failAc

withdraw is a procedure which removes the amount specified from the
account. If there are insufficient funds, the procedure returns
false otherwise it returns true

balance is a procedure which returns the balance in the account

olimit is a procedure which returns the account overdraft limit

transfer is a procedure that transfers an amount from one account to
another

This interface is captured in the declaration of the type to represent the local teller.

type localTeller is abstype [account](
failAc : account;
getAc: proc (int , string → account);
withdraw : proc (int , account → bool);
balance : proc (account → int);
olimit: proc (account → int);
transfer : proc(int , account, account))

Notice that the hidden type, account, which is sometimes referred to as the
witness type, is available in the interface of the abstract data type. However all
that is known about the type is that it exists, not how it is implemented.

Figure 20 defines a procedure that returns a value of the localTeller abstract
type. This procedure, createLocalAutoTeller, has to define a concrete
representation for the account and also to define the procedures that operate over
the account. The representation of the account needs to hold the balance, the
overdraft limit and the pin number (password) for the account. This is done using
a structure type, account, with obvious field names. Once the procedures have
been defined then the values are made into the abstract data type to hide the

28

implementation details. For simplicity, details of synchronisation for concurrent
access are omitted.

let createLocalAutoTeller = proc (→ localTeller)
begin

type account is structure (Balance, Limit : int ; Pin : string)
let failAc = account (0, 0,"") ! This is a fail value

let getAc = proc (accNumber : int ; passwd : string → account)
! Look up the account number, check user password and if the
! password matches the password in the database return the account,
! otherwise return a fail value.
begin

let new = lookup (accNumber)
if new (Pin) = passwd then new else failAc

end

let withdraw = proc (debit : int ; ac : account → bool)
! Withdraw debit pounds from ac.
begin

let result = ac (Balance) - debit
if result > ac (Limit) and debit > 0 then
begin

ac (Balance) := result
true

end else false
end

let balance = proc (ac : account → int) ; ac (Balance)
! Return the balance of account ac.

let olimit = proc (ac : account → int) ; ac (Limit)
! Return the credit limit of account ac.

let transfer = proc (amount : int ; from, to : account)
if amount > 0 and from (Balance) - amount > from (Limit) do
begin

from (Balance) := from (Balance) - amount
to (Balance) := to (Balance) + amount

end

! Make the abstract data type
localTeller [account] (failAc, getAc, withdraw, balance, olimit, transfer)

end

Fig. 20. Creating the local autoteller abstract data type

29

The getAc procedure uses a data structure, lookup, which when indexed by the
account number yields the account. For brevity the definition of this data structure
has not been defined here but may be implemented by any standard technique
such as B-trees, hashing etc. This data structure may also be protected by defining
it within the closure of the createLocalAutoTeller procedure. This would,
however, restrict its use to that procedure and a more general solution would be to
encapsulate the data structure in a procedure closure that required a password in
order to obtain it. The technique is demonstrated later.

Figure 21 shows how the abstract data type may be used to retire with one
million pounds.

use createAutoTeller () as X in
begin

let this = X (getAc) (45, "Ronald")
if this ≠ X (failAc) then
begin

let getMoney = X (withdraw) (1000000, this)
! Run off and retire with getMoney

end else ...
...

end

Fig. 21. Using the auto teller

The interface also contains a procedure which allows a customer with two
accounts to transfer money from one to the other via the local autoteller. Figure 22
illustrates how this might be done.

use createAutoTeller () as X in
begin

let mine = X (getAc) (45, "Ronald")
let myOther = X (getAc) (46, "Ann")
if this ≠ X (failAc) and myOther ≠ X (failAc) then
begin

X (transfer) (1000000, myOther, mine)
! Get the wife's money

end else ...
...

end

Fig. 22. Using the auto teller

30

An important difference between the procedure, transfer, and the others is that it
is defined over more than one object of the witness type. Although the witness
type is abstracted over, the values are bound to the same definition, and so are
restricted to being the same implementation type. The procedure is written over
two values of the same type. If it were not, a type checking error would be
detected in the attempt to create the abstract type.

The transfer procedure illustrates a major difference in power between 1st-order
and 2nd-order information hiding. With 2nd-order, a type is abstracted over, and
procedures may be defined over this type. With 1st-order hiding, it is the object
itself which is hidden within its procedural interface. Procedures which operate
over more than one such object may not be defined sensibly within this interface.
Therefore any operations defined over two instances must be written at a higher
level, using the interface. At best this creates syntactic noise and is inefficient at
execution time. It also means that such operations are defined in the module which
uses the abstract objects, rather than the module which creates them. Some
examples, such as this one, are not possible to write without changing the original
interface.

5.3 Viewing mechanisms

Viewing mechanisms are traditionally used to provide security and information
hiding. Indeed, in some relational database systems, such as INGRES [81], a
relational viewing mechanism is the only security mechanism available. A view
relation is one which is defined over others to provide a subset of the database,
usually at the same level of abstraction. A slightly higher level may be achieved
by allowing relations to include derived data, for example, an age field in a view
might abstract over a date of birth field in the schema.

Protection provided by view relations is often restricted to simple information
hiding by means of projection and selection. For example, if a clerk is not
permitted to access a date of birth field, then the projected data may contain all the
attributes with the exception of this one. If the clerk may not access any data about
people under the age of twenty-one, then the view relation will be that formed by
the appropriate selection.

Read-only security may be obtained in some database systems by restricting
updates on view relations. Although this restriction is normally due to conceptual
and implementation problems, rather than being a deliberate feature of a database
system design, it may be used to some effect for this purpose. Some systems, for
example IMS [82], go further than this, and the database programmer can allow or
disallow insertions, deletions, or modifications of data in view relations. This
allows a fine grain of control for data protection purposes.

Views on persistent data may be constructed using abstract data types in
Napier88. The technique stores the raw data in the persistent environment and
allows access by two mechanisms. The first kind of access is by password where
the database administrator may gain access to the raw data on presenting the

31

correct password. The second kind of access is through an abstract data type. The
database administrator prepares these abstract data types by placing the raw data
and the procedures that operate over it in the interface of an abstract data type.
These views may then be stored in the persistent environment for others to use.
Data may appear in more than one view and indeed in bulk data types, such as
images, overlapping views on the same values are possible.

The first step in constructing views is placing the raw data and operations in an
environment. Figure 23 shows how this may be done through the
createAutoTellerEnv procedure which takes an environment as a parameter and
places the interface procedures in that environment. The lookup data structure
could also be safely placed in this environment. A new procedure sufficient
determines whether a given account contains sufficient funds to allow a given
withdrawal.

32

let createAutoTellerEnv = proc (envir : env)
begin

type account is structure (Balance, Limit : int ; Pin : string)

let failAc = account (0, 0,"")
in envir let failAc = failAc

in envir
let getAc = proc (accNumber : int ; passwd : string → account)
begin

let new = lookup (accNumber)
if new (Pin) = passwd then new else failAc

end

in envir let withdraw = proc (debit : int ; ac : account → bool)
begin

let result = ac (Balance) - debit
if result > ac (Limit) and debit > 0 then
begin

ac (Balance) := result
true

end else false
end

in envir let balance = proc (ac : account → int) ; ac (Balance)

in envir let olimit = proc (ac : account → int) ; ac (Limit)

in envir let transfer = proc (amount : int ; from, to : account)
if amount > 0 and from (Balance) - amount > from (Limit) do
begin

from (Balance) := from (Balance) - amount
to (Balance) := to (Balance) + amount

end

in envir let sufficient = proc (debit : int ; ac : account → bool)
! Return whether or not debit pounds
! may be withdrawn from account ac.
ac (Balance) - debit > ac (Limit)

end

Fig. 23. Placing the auto teller values in an environment

The second step in creating views is to place the raw data environment in the
persistent store. This is done by creating a new environment, using the

33

createAutoTellerEnv procedure to place the raw data in it, and encapsulating it in
a procedure that will only yield the data on the presentation of the correct
password. This final procedure is placed in the User environment. The technique
is demonstrated in Figure 24.

let makeProtectedBank = proc (password : string)
begin

let ps = PS ()

project ps as X onto
env : use X with User, Library : env in

use Library with Environment : env in
use Environment with environment : proc (→ env) in
begin

let new = environment () ; let fail = environment ()

createAutoTellerEnv (new)

let this = proc (attempt : string → env)
if attempt = password then new else fail

in User let protectedBank = this
end

default : {} ! This is executed if the projection fails
end

Figure 24. Placing the protected data in the persistent store

To construct a view, the database administrator (the person with the correct
password), accesses the raw data and places it in an abstract data type. Figure 25
shows how this may be done for the local teller view. It leaves the view in the
User environment under the name localTView.

34

type localTeller is abstype [absac](
failAc: absac;
getAc : proc (int , string → absac);
withdraw : proc (int , absac → bool);
balance : proc (absac → int);
olimit : proc (absac → int);
transfer : proc(int , absac, absac))

type account is structure (Balance, Limit : int ; Pin : string)

let createLocalAutoTeller = proc ()
begin

let ps = PS ()

project ps as X onto
env : use X with User : env in

use User with protectedBank : proc (string → env) in
begin

let bank = protectedBank ("Correct Password")
use bank with failAc : account;

getAc : proc (int , string → account);
withdraw : proc (int , account → bool);
balance : proc (account → int);
olimit : proc (account → int);
transfer : proc(int , account, account) in

begin
in User let localTView = localTeller [account]
(failAc, getAc, withdraw, balance, olimit, transfer)

end
end

default : {} ! This is executed if the projection fails
end

Fig. 25. Constructing the local teller abstract view

Other views may be created by the same mechanism. Figure 26 shows how a
remote teller view might be created. Remember that the remote teller cannot
transfer money from one account to another and cannot inspect the balance or
overdraft limit of the account. However it can find out if there are sufficient fund
to make a withdrawal through the sufficient procedure in its interface.

35

type remoteTeller is abstype [absac](
failAc : absac
getAc : proc (int , string → absac)
withdraw : proc (int , absac→ bool)
sufficient : proc (int , absac→ bool))

type account is structure (Balance, Limit : int ; Pin : string)

let createRemoteAutoTeller = proc ()
begin

let ps = PS ()

project ps as X onto
env : use X with User : env in

use User with protectedBank : proc (string → env) in
begin

let bank = protectedBank ("Correct Password")
use bank with failAc : account;

getAc : proc (int , string → account);
withdraw : proc (int , account → bool);
sufficient : proc (int , account → bool) in

begin
in User let remoteTView = remoteTeller [account]

(failAc, getAc, withdraw, sufficient)
end

end
default : {} ! This is executed if the projection fails

end

Fig. 26. Constructing the remote teller view

Figure 27 illustrates the overall software technique for creating views of data. The
raw data and the procedures that operate over the data are stored in the persistent
environment and used to construct views as they are required by applications. The
view construction is performed by the database administrator who has access to
the data through a procedure closure protected by password. Components of the
views may be used to construct other views and thus views of views may be
constructed to any level of abstraction.

It is interesting to compare this style of encapsulation and information hiding
with that of object oriented database systems. In the latter the raw data may only
be viewed through one interface and the information is essentially trapped in the
object once instantiated. In this technique, the data is placed in an object (view)
dynamically when the data modelling requires it. Thus the encapsulation
technique is compliant with, and may respond to, the differing needs of different
applications and not with some fixed data model defined a priori.

36

Raw Data

Procedures that operate
over the raw data

Database
Administrator

Password
Protection

local teller
view

remote teller
view

Fig. 27. Views over the persistent store

The final advantage of this style of viewing mechanism is that it is all statically
type checked once the views have been constructed.

6 Controlled System Evolution

Evolution is inevitable in persistent systems since the people who use the data, the
data itself and the uses to which the data is put, all change with time. Systems
which cannot accommodate evolution become obsolete as they can no longer meet
the changing needs of the applications and user community that they support. A
requirement of a persistent system, like Napier88, which contains data, programs
and meta-data, is that the evolution should be controllable from within the system.
Most importantly any alteration to the system should not necessarily require total
rebuilding. That is, evolution should be incremental since the cost of rebuilding
may be prohibitive.

System evolution is caused by changes to the data, the programs which use the
data and the meta-data. Changes to program and data with the invariant of fixed
meta-data are normally handled by updates to the persistent store. This, however,
requires the preparation of new programs, compilation and binding into existing
data before updating the persistent store. This non-trivial task is accommodated in
Napier88 by a technique called Linguistic Reflection [83] which is described later
in this section. A more difficult problem is changes to the meta-data while keeping

37

all the existing programs and data consistent with the semantics of the change
[21]. Changes to the schema fall into the following categories:

• additive extra semantic knowledge is modelled

• subtractive less semantic knowledge is modelled

• descriptive the same semantic knowledge is modelled in a different manner

Napier88 provides a number of mechanisms for controlling the evolution of data,
programs and meta-data. These include structural type equivalence, the infinite
union types any and env, and linguistic reflection.

6.1 Typing Issues

Separately prepared data and programs require a common mechanism for ensuring
that the manner in which they operate is consistent with one another. In a strongly
typed system the mechanism is that of type equivalence checking. Two models of
type equivalence are in common use: name equivalence and structural equivalence
[76]. In name equivalence, the types have the same name defined in a common
schema. In structural equivalence, the types have the same structure when
compared by an equivalence algorithm. The commonality in this case is the
equivalence algorithm. It is shown in [3] that while name equivalence schemes are
easier to implement and are more efficient they still have to use structural checks
to provide important facilities such as schema merging. On the other hand
structural equivalence, generally more flexible and less efficient, can often
achieve the same performance as name equivalence. Napier88 uses structural
equivalence and therefore requires no common schema.

The infinite union types any and env may also be used to control system
evolution. Remember that the persistent store has a most general dynamically
checked type, any. To use the values within the store, the dynamic type must be
projected onto the specific type for the store. This specific type may in turn
contain further instances of any. Descriptive changes to the store may be
performed by injecting new values into these further instances of any. Subsequent
use is through the new type descriptions.

This mechanism occurs implicitly in standard database interfaces. When a
program opens a database it specifies a schema. During the opening operation the
schema used during the program’s compilation is compared with the database’s
current schema. Arbitrary changes may have been made to the database using a
schema editor between the compilation and this execution. If the schema no
longer matches the expectations established at compilation-time then an error is
signalled. Thus, internally the run-time system is able to treat the database as
having a dynamic type and to perform a dynamic verification that the expected
and actual types match.

38

In general the persistent store is a graph of objects that has one root of type any.
However, values of type any are first class and may also be constituent parts of
any other type. Before they can be used with their specific type they also have to
be projected onto that type. This allows programs to specify only the part of the
schema that they require up to a point of dynamic checking. As a consequence a
schema, which is represented by an arbitrarily large collection of mutually
referencing types, may scale well since the schema specification is bounded by the
dynamic types. Incremental schema changes inject new values into an any and the
type of the rest of the specification remains unchanged. In addition, where an any
encapsulates the type, type checking is postponed until required. Hence excessive
type checking costs on start-up are avoided. This is illustrated in Figure 28.

type Address is structure (name : string ; age : int ; extra : any)

let ps = PS ()

project ps as X onto
Address :

begin
let this = X (extra) ! this is of type any
type extraInfo is record (idNo : int ; spouse : Address)
! Programs not using the extra field do not need to specify
! extraInfo
project this as Y onto

! type check using extraInfo only happens when this is
! executed
extraInfo : ...

...
default : ...

end
default : ...

Fig. 28. After an incremental schema change

In Figure 28, where the extra field is used the specification of the extraInfo type is
required. Where programs do not use the extra field the type extraFieldInfo does
not have to be declared. Thus only part of the type structure need be specified, the
part of interest to the program, as shown in Figure 29.

39

type Address is record (name : string ; age : int ; extra : any)

let ps = PS ()

project ps as X onto
Address : ...
default : ...

Fig. 29. A partial use of types

The use of dynamic types allows the data model to evolve without recompiling all
the programs that refer to the data. For example, if the extraInfo type is altered,
then only programs that use that type need be altered. Thus, explicit dynamic
types allow partial specification of the overall structure of the data (schema) and
facilitate the evolution of the data, without having to alter programs that do not
make use of the evolutionary changes.

6.2 Type Safe Linguistic Reflection

Type safe linguistic reflection is defined in [83] as the ability of a running
program to generate new program fragments and to integrate these into its own
execution. This is the basis for system evolution in the Napier88 system.

Napier88 uses run-time linguistic reflection [84-86] which is concerned with the
construction and binding of new components with existing components in an
environment. The technique involves the use of a compiler that can be called
dynamically to compile newly generated program fragments, and a linking
mechanism to bind these new program fragments into the running program. Type
checking occurs in both compilation and binding. The compiler itself is a value in
the persistent store and may be called as a procedure by any program.

Type safe linguistic reflection has been used to attain high levels of genericity
[87, 88] and accommodate changes in systems [84, 89]; two examples of these are
given below. It has also been used to implement data models [62, 63, 90],
optimise implementations [91-93] and validate specifications [94, 95]. The
importance of the technique is that it provides a uniform mechanism for software
production and evolution. A formal description of linguistic reflection is given in
[83].

The example in Figure 30 shows a simple generator which produces code to
write out the value of a named string field of a given record. Although somewhat
contrived in order to keep the example small, this does demonstrate a problem
which requires reflection. The difficulty for non-reflective solutions is that the
record field name is not known until run-time, while for the record dereference
operation the field name must be known at compile-time to allow static type
checking. The reflective approach gets around this by performing compilation

40

once the field name is input, so that the field name is known statically with respect
to that compilation.

The program starts by defining representations for code fragments and for type
representations within the language. For simplicity here string code
representations are used; another possibility would be to use parse trees. Details of
the type representations are omitted here.

The generator writeFieldGen is then defined. It is a procedure that takes as
parameters a record, injected into the infinite union type any, and a representation
of a field name. The result is the representation of a code fragment. The infinite
union type is used for the record parameter so that the generator can accept
records of any type.

Inside the generator the first step is to obtain a representation of the type of the
record, using the standard procedure getTypeRep. The generator then performs a
series of checks: that the first parameter is indeed of a record type; that the record
type contains the required field name; and finally that field has type string. If any
of these checks fails an error is reported and an empty code fragment returned,
otherwise the result code is formed by concatenating together a number of
components. The result represents a procedure which takes a record of the
appropriate type as its parameter and writes out the field. The first part of the
result code is a local definition of the record type so that it can be used in the
procedure header. This involves transforming the type representation into a code
fragment, performed by the procedure typeRepToString. The rest of the result
contains the procedure header and the body which simply dereferences the record
and writes out the field.

41

type CodeRep is string ! For simplicity.
type TypeRep is ...

let nilCodeRep = "" ; let newline = "'n"

let ps = PS ()

project ps as X onto
env : use X with User, Library : env in

use Library with IO, Reflection : env in
use IO with writeString : proc(string) in
use Reflection with getTypeRep : proc (any → TypeRep);

isRecord : proc (TypeRep → bool);
containsField : proc (TypeRep, CodeRep → bool);
fieldType : proc (TypeRep, string → TypeRep);
isString : proc (TypeRep → bool);
typeRepToString :proc (TypeRep → string) in

in User
let writeFieldGen = proc(aRecord : any ; fieldName : CodeRep → CodeRep)
begin

! Get representation of type.
let t = getTypeRep (aRecord)

! Check that the any contains a record.
if isRecord (t) then

! Check that the record type contains the given field.
if containsField (t, fieldName) then

! Check that the field has type string.
if isString (fieldType (t, fieldName)) then

! The source code produced.
"type RecordType is " ++ typeRepToString (t) ++ newline ++
"proc (instance : RecordType)" ++ newline ++
"writeString (instance (" ++ fieldName ++ "))"

else{writeString ("field is not of type string"); nilCodeRep}
else{writeString ("type does not contain given field") ; nilCodeRep}

else{writeString ("not a record type") ; nilCodeRep}
end
default : {}

Fig. 30. A reflective generator

Figure 31 shows an example use of the generator. A particular record type,
Person, and an instance, ron, are defined. The user is then prompted to enter a
field name as a string. The generator is then called, passing it the record instance
and the field name representation. If no errors occur during generation, the

42

generated code is then compiled with the standard procedure compile. Since the
type of the result of a compilation is not known in advance, compile returns an
any. This is then projected onto the expected type which is a procedure that takes
a single parameter of type Person. If the projection matches the compiled
procedure is then available for use as writeAddress. Otherwise the compilation has
either failed or returned a result of a different type: this implies an error in the
definition of the generator.

type Person is structure (name, address : string ; age : int)
type CodeRep is string

let ps = PS ()

project ps as X onto
env : use X with Library, User : env in

use Library with Compiler, IO : env in
use Compiler with compile : proc (CodeRep → any) in
use IO with readString : proc (→ string);

writeString : proc (string) in
use User with writeFieldGen : proc (any, CodeRep → CodeRep) in

begin
let ron = Person ("ron”, “8 trinity place”, 42)

writeString ("which field?")
let theFieldName = readString ()

let writeAddressSource = writeFieldGen (any (ron), theFieldName)

if writeAddress ~= nilCodeRep do
begin

project compile (writeAddressSource) as writeAddress onto
proc (Person) : writeAddress (ron)

default : writeString ("error in generated code")
end

end
default : {}

Fig. 31. Use of a generator

To save space a number of simplifications have been made in this example. The
most significant of these is the omission of details of binding to undefined
identifiers in the generated code, in this case writeString. In reality the generated
code fragment would also contain a specification of its location and type in the
store.

43

Binding to existing values in the persistent store is a particular case of the more
general problem of specifying a program’s execution environment. It might be
desirable, for example, for an identifier in a generated code fragment to be bound
to a local value created by the generator. This might be achieved by generating
code to create a copy of the value, or by storing the value at a location in the
persistent store and generating code to bind to that location. Neither is entirely
satisfactory. Another approach is to allow generators to produce hyper-programs,
so that the generated code representation may contain a direct link to the value
[85].

The detection and reporting of errors in both generators and generated code
poses many challenges, in particular giving the user intelligible reports about
errors which occur in generated code, of whose very existence the user may be
unaware.

The example showed the definition and use of a generator within a single
program. Alternatively a generator may be defined and made available in the
persistent store, from where it is used many times in different environments. In
addition, the compiled result obtained from a particular use of the generator may
itself be stored and used repeatedly. In this way the costs of generation and
compilation are amortised over many uses.

7 Concurrency Control and Transactions

Traditionally the database and programming language communities have taken
different approaches to concurrency control. In programming languages,
concurrency control is based upon the concept of the co-ordination of a set of co-
operating processes by synchronisation. Language constructs such as semaphores
[96], monitors [97], mutual exclusion [98], path expressions [99] and message
passing [100] have been provided to support this concept. By contrast, in
databases, concurrency is viewed as a system efficiency activity which allows
parallel execution and parallel access to the data. However, each database process
may have to suffer the indignity of abortion in order to sustain the illusion of non-
interference. The key concept in databases is that of serialisability [101] which has
led to the notion of atomic transactions [101, 102] supported by locking [101] or
optimistic concurrency control methods [102].

In both cases the user must attempt to understand the computations in terms of
some global cohesion. In programming languages the emphasis is on
synchronisation and the overall cohesion is understood in terms of the conflation
of all the synchronisations. In database systems, global cohesion is understood in
terms of the concept of serialisability [101] but includes failure semantics such as
abortion.

Figure 32, taken from [26], illustrates a spectrum of understandability from the
points of view of programming language and database users.

44

Independent Operation Cooperative Operation

Databases Programming
Languages

Atomic
Transactions

Synchronisation

Fig. 32. A spectrum of understandability

Figure 32 illustrates that databases tend to use atomic transactions to enforce
isolation rather than co-ordinated sharing. Programming languages promote co-
operation. Thus in integrating databases and programming languages, the designer
must unify these established and provenly useful positions. The impetus does not
altogether come from persistence however, since languages that support atomic
transactions and databases that require non-serialisable and designer transactions
[103-105] have been identified as necessary by their respective communities.

Concurrency control facilities have not been built into the Napier88 language.
Instead they are provided by a number of mechanisms in the persistent
environment. This design decision is in line with the V-shape architecture
described earlier in which concurrency control is provided at the highest possible
level in order to promote flexibility. To facilitate co-operative concurrency a
thread abstract data type is provided for concurrent execution and a semaphore
package for synchronisation. For competitive and designer transactions, the
Napier88 system uses CACS specifications [27, 106] which map onto different
store implementations. Thus the implementation technology is tailored to the
application. It is beyond the scope of this paper to describe the CACS
specification method and therefore we concentrate on the use of threads and
semaphores.

The thread package is contained in the Concurrency environment and has the
following type.

type ThreadPack is abstype [thread] (start : proc (proc () → thread) ;
getCurrentThread : proc (→ thread);
getAllThreads : proc (→ *thread);
kill, restart, suspend : proc (thread);
getStatus : proc (thread → string);
getParent : proc (thread → variant (present : thread ; absent : nil))

The package contains procedures to start a thread, to find the identity of the
executing thread, to kill, restart and suspend threads. To start a thread, the start
procedure is given as a parameter a second procedure that will execute as the

45

thread. The start procedure returns the identity of the started thread. Control of the
thread may be performed through this identity.

The Concurrency environment also provides a procedure that takes an integer
parameter which is the initial value of the semaphore and returns two procedures,
wait and signal, within a structure that operate over the semaphore.

The use of threads and semaphores is illustrated by a solution to the Dining
philosophers problem. There are five philosophers each requiring two forks to eat.
The action of obtaining a fork is atomic and therefore protected by a binary
semaphore. To avoid deadlock a philosopher must first enter the dining room
which is protected by a semaphore with an initial value of four, thereby ensuring
that no more than four philosophers may enter at the same time. This is the Butler
solution.

The forks are modelled by a vector of semaphore packages where each element
of a vector contains a structure containing two synchronisation procedures. The
vector is initialised using the forkSemaphore procedure. For each element of the
vector the procedure is called with the index of the element as a parameter. The
result of the procedure is used to initialise the element. Thus the following code
segment would initialise each element of the forks procedure to a structure
containing two procedures implementing a binary semaphore.

let forkSemaphore = proc (i : int → Semaphore)
semaphoreGen (1)

let forks = vector 0 to 4 using forkSemaphore

Figure 33 gives the total solution. The solution uses a number of formatting and
I/O procedures from the persistent environment.

46

type ThreadPack is abstype [thread] (start : proc (proc () → thread) ;
getCurrentThread : proc (→ thread);
getAllThreads : proc (→ *thread);
kill, restart, suspend : proc (thread);
getStatus : proc (thread → string);
getParent : proc (thread → variant (present : thread ; absent : nil))

type Semaphore is structure (wait, signal : proc ())

project PS() as X onto
env : use X with Library : env in

use Library with Concurrency, Format, IO : env in
use Format with iformat : proc (int → string) in
use IO with writeString : proc (string) in
use Concurrency with threadPackage : ThreadPack ;

semaphoreGen : proc (int → Semaphore) in
begin

use threadPackage as X [thread] in
begin

let room := semaphoreGen (4)
let forkSemaphore = proc (i : int → Semaphore) ; semaphoreGen (1)
let forks = vector 0 to 4 using forkSemaphore
let philosopherGenerator = proc (i : int → thread)
begin

let this = "Philosopher " ++ iformat (i)
let philosopher = proc ()
while true do
begin

writeString (this ++ " is thinking'n") ! Think
room (wait) () ; writeString (this++ " has entered the room'n")

forks (i, wait) () ; writeString (this ++ " has one fork'n")
forks ((i + 1) rem 5, wait) ()
writeString (this ++ " has two forks and is eating'n")
forks (i, signal) ()
writeString (this ++ " has put down one fork'n")
forks ((i + 1) rem 5, signal) ()
writeString (this ++ " has put down the second fork'n")

room (signal) () ; writeString (this ++ " has left the room'n")
end
let t = X (start) (philosopher) ; writeString (this ++ " is born'n")

end
let philosophers = vector 0 to 4 using philosopherGenerator

end
end
default : {}

Fig. 33. The dining philosophers with annotation

47

The method of storing threads in the persistent store is the same as for any other
data value. That is the thread must be reachable from the root of persistence.

8 Programming within the Persistent Environment

Napier88 is a complete self-contained persistent programming system. As such it
supports the use of software throughout its life cycle. For this the system provides
an interactive programming environment which is implemented in Napier88 itself,
together with facilities for composing, executing and storing persistent programs.

8.1 The Standard Library

In common with many programming systems, Napier88 is supplied with a library
of pre-written code and values. Since it is an orthogonally persistent system, this
library is supplied as a populated persistent store, as a collection of persistent
procedures [41]. The programmer uses the library facilities by writing programs
which bind to the appropriate components and manipulate them. Other
components in the populated store are used by the system to support its own
activities and are not directly accessible by users.

The persistent store may be accessed from Napier88 programs by calling the
procedure PS as described in Section 3. In the standard release store the persistent
root is an environment initially containing the following environments:

Table 2. Standard store contents

name environment contents

Error error handling procedures which are called when errors occur during the
execution of Napier88 programs

External facilities provided by other sites

Library standard procedures and other data which may be used in Napier88
programs

User available for user data

The initial structure of Error and Library is standardised, whereas the contents of
User and External are specific to a particular installation. The items in the library
include procedures for:

• compiling Napier88 programs;
• browsing the persistent store;

48

• performing I/O and arithmetic;
• constructing graphical user interfaces;
• controlling concurrent threads;
• accessing other Napier88 stores; and
• other utilities.

The library also includes data values which may be updated in order to modify the
default behaviour of certain procedures. The initial environment structure of the
standard library was shown in Figure 5.

The names of most of the environments in the standard library should be self-
explanatory. Some of the more significant are:

Compiler: this environment contains procedures which provide various interfaces
to the Napier88 compiler. The simplest is a procedure which takes a string
representing a Napier88 program and returns either an error message or a
procedure which will execute that program.

Concurrency: this environment contains procedures to manipulate light-weight
threads and semaphores [35].

Distribution: this environment contains procedures which can be used to scan the
contents of other Napier88 stores and to copy values from them to the local store.
A low-level socket based communication protocol between stores is also
supported [35].

InteractiveEnvironment: this environment contains procedures which provide the
interactive programming system described in Section 8.3.

Win: this environment contains procedures for building user interfaces, including
window managers, text editors and standard user interface widgets.

8.2 Hyper-Programming

One way for a Napier88 program to use a library component is for the program to
contain a textual specification of the component’s expected type and location in
the persistent store, as described in Section 3. This specification is then checked
against the actual state of the store when the program is executed; a run-time error
occurs if the two do not match. The activities required of the programmer are thus
firstly to discover the type and location of the required library component, and
secondly to write down textual descriptions of these in the program.

Since program representations may be held in the persistent store together with
the rest of the persistent data, an alternative programming style called hyper-
programming is possible. With this style the textual descriptions of library
components are replaced by direct links to the components themselves embedded

49

within the program representations [20]. The example in Figure 34 shows the code
of Figure 24 as a hyper-program.

persistent store

hyper-program

procedure

let makeProtectedBank = proc (password : string)

begin

 let new = environment() ; let fail = environment()

 createAutoTellerEnv (new)

 let this = proc (attempt : string -> env)

 if attempt = password then new else fail

 in User let protectedBank = this

end

procedure

environment

environment

createAutoTellerEnv

User

Fig. 34. A hyper-program

The links embedded in the hyper-program are represented by non-textual tokens
to allow them to be distinguished from the surrounding text. Note that names for
the linked components are no longer necessary. For clarity the components are
labelled in the diagram, but these names are not part of the semantics of the hyper-
program.

Hyper-programming facilities are used in the persistent programming
environment to reduce the need for the programmer to supply textual descriptions
of library components. Instead the programmer identifies a component, by means
to be described, and then links it into the program under construction. This can
lead to a significant reduction in the amount of code written. A hyper-program
editor which displays links as light-buttons embedded in the text is supplied.

The hyper-program notation also provides a convenient user-interface
representation for procedures which contain free variables: each free variable is
denoted by a light-button in the same way as a linked library component. This
enables the system to display the source code of any procedure, even if it has
encapsulated state. A flag in the Napier88 compiler specifies whether to retain the
source code for a procedure being compiled: if so, the hyper-program source
representation is linked to the procedure object, from which it may be later
retrieved and displayed. By default this flag is on, so all the library components
have their source code attached automatically.

8.3 The Napier88 Programming Environment

The programming environment provides several varieties of window:

• hyper-program editor windows;
• a compilation error display window;
• a browser window; and
• declaration set windows.

50

8.3.1 Editing Hyper-Programs

Hyper-program windows may be created by selecting New Editor from the
background menu. Each window contains a hyper-program text editing area, a
scroll bar and a row of light-buttons. An example of a hyper-program window is
shown in Figure 35:

Fig. 35. A hyper-program window

The editor operations include the usual editing functions together with those
described in Table 3:

51

Table 3. Light-button operations in hyper-program window

operation action

Link This inserts a hyper-program link to the currently selected value,
location or type. A light-button representing it is inserted into the hyper-
program text. The label is the name, if any, associated with the
selection. The value, location or type associated with a button can be
displayed in the browser window by clicking on the button.

Evaluate This attempts to compile the currently selected hyper-program text,
executes the result if successful, and displays any result in the browser
window. If a compilation error occurs the compilation error window is
displayed.

Source Sets This displays a dialogue allowing the source declaration sets to be set .

Declare Types This attempts to compile the currently selected hyper-program text and
adds any type declarations in scope at the end of the compilation to a
selected declaration set.

Components to be linked into a hyper-program are identified by traversing links in
the browser window, to be described more fully in Section 8.3.2. This relies on
the programmer having some prior knowledge of the library structure. Further
development of tools to assist the programmer in finding components is needed
[107, 108].

The compilation error window is displayed when compilation errors are
encountered in a hyper-program. One sub-window shows the source code with the
region of the first error highlighted. The second sub-window shows a message
describing the error. When multiple errors are detected the Next and Previous
buttons can be used to scroll through the errors. An example is shown in Figure
36:

52

Fig. 36. The compilation error window

8.3.2 The Browser

The browser window is used to display representations of values produced by the
evaluation of hyper-programs. The root of the persistent store can be displayed by
selecting Show PS from the background menu. The form in which a value is rep-
resented depends on the type of the value. Integers, reals, strings and booleans are
written to the output window.

Each window displayed in the browser window can be selected or deselected by
clicking on the border. If the window is not already selected it becomes selected
and any other selected windows are deselected. When a window is selected the
corresponding value is also considered to be selected: this is of relevance when
inserting links into hyper-programs.

To show an environment the browser displays a menu window containing an
entry for each binding in the environment. For base type values the corresponding
entry shows the type while for instances of constructed types only the type
constructor is shown. An example is shown in Figure 37:

53

Fig. 37. An environment menu

An environment menu entry may be either selected or displayed, depending on the
mouse button used to click on it. Displaying an entry results in the value of the
corresponding environment binding being displayed in the browser. If the value is
of such a type that a new window is displayed for it, an arrow is drawn from the
menu entry to the new window as shown in Figure 38.

Fig. 38. Link from environment location to value

Structures are displayed in the same way as environments, with a menu entry for
each field, as illustrated in Figure 39:

Fig. 39. A structure menu

To show a procedure the browser displays a menu with a single entry source.
When this entry is clicked on the browser displays a hyper-program window

54

containing the source code for the procedure. The source code may be copied but
not altered. An example is shown in Figure 40:

Fig. 40. A procedure window

A representation of the type of a value in the browser window may be obtained by
selecting the corresponding window and selecting Show Type from the
background menu. The browser displays a window containing a canonical string
representation of the value’s type. An example is shown in Figure 41:

Fig. 41. A type representation

The browser also displays a representation of a type linked into a hyper-program
when the corresponding light-button in the hyper-program window is pressed. In
this case the representation may be a canonical string as above or, where type
constructor information is available, the original source code is displayed as a

55

hyper-program fragment. An example of a type constructor source representation,
with a hyper-program link to a component type S, is shown in Figure 42:

Fig. 42. A type constructor representation

8.3.3 Declaration Sets

For convenience the user may create declaration sets containing named values,
locations and types to use in future program evaluation. Each declaration set has a
unique name and may be thought of as forming an additional outer scope for a
program. Free identifiers in a program are resolved by scanning the declaration
sets associated with the program.

A type entry in a declaration set may represent either a type only, or a type
constructor. Which is obtained depends on the method used to create the entry.
Both type and type constructor names may be used as type denotations in
programs, but only type constructor names may be used to construct instances of
types.

The declaration sets model is based on a number of earlier systems: Napier88
Release 1.0 [109]; ABERDEEN [110]; and a previous version of the Napier88
programming environment [111].

The operations on declaration sets are:

• create a new declaration set;
• delete a declaration set;
• add a value, location or type to a declaration set;
• display the contents of a declaration set; and
• choose an ordered list of declaration sets to use for compilation.

The contents of a particular declaration set may be displayed by pressing the Show
button in the main declaration sets menu. An example is shown in Figure 43:

56

Fig. 43. A declaration set menu

Each menu contains a list of the entries in that declaration set. An entry may be
displayed by clicking on Show or linked into a hyper-program by selected it and
clicking on Link in the editor.

The user may associate a particular combination of declaration sets with a
hyper-program editor. These declaration sets are then used in evaluating program
fragments in that editor. Declaration sets may be added to an editor’s list by
clicking on Source Sets. This displays a dialogue as shown in Figure 44:

Fig. 44. Dialogue for setting source declaration sets

The Available list on the left shows all the existing declaration sets. The Use list
on the right shows those currently associated with the editor, scope level
increasing down the list. If two declaration sets associated with an editor both
contain an entry with the same name, the one in the declaration set nearer the top
of the list will mask the other. This is analogous to normal scoping rules.

57

8.3.4 Multiple Users

More than one programming environment session may be active simultaneously.
The name of the initial sessions can be specified as parameters to the system
startup command. Thus multiple users may operate in a given persistent store
simultaneously.

Programming environment windows persist between sessions of the
programming environment. When a session is shut down the positions and sizes of
the windows are recorded and restored when it is next started up. Each session
contains its own browser, output window, compilation error window, hyper-
program windows etc. No particular concurrency control scheme is enforced: for
flexibility this is left to applications as described in Section 7. Thus by default an
update to the persistent store by one user is immediately visible to others.

Figure 45 shows an example programming environment session. The two
windows at the top-left and top-right (when viewed side-on) are hyper-program
editors. Currently the editor at the top-right happens to contain only text. The
menu between the two hyper-program editors shows the contents of the
declaration set win: a set of types used for user interface programming. One of the
types, Window, has been selected and displayed in the browser window in the
lower half of the screen. Since this type has source information attached the
browser is able to display the original source code from which the type derives.
The source contains hyper-program links to other types used in the definition. The
user could click on one of the links to display that component type. The menus on
the left of the browser window show a series of environments accessible from the
persistent root.

58

Fig. 45. A programming environment session

8.4 Implementation Issues

The programming environment is entirely implemented in Napier88, except for a
very few components (such as parts of the compiler) which need to perform
operations below the type system level. The implementation relies heavily on the

59

provision of orthogonal persistence to store the procedure components which
make up the system. Much use is also made of the graphics facilities provided by
Napier88, which allow the manipulation of graphical data as first class values
[46].

Since not all the components present in the standard populated store are
designed to be accessible to users, protection mechanisms are necessary. Both 1st-
order and 2nd-order information hiding are used. Some components are hidden in
the closures of the procedures which use them, and have no direct access path
from the root of persistence. This prevents users from linking to them (although it
may be necessary to restrict access to the hyper-program source code of the
procedures in which they are encapsulated). 2nd-order information hiding is used
to allow users restricted access to components. For example the user may obtain a
reference to a representation of the type of a given value in the browser, but is
prevented from discovering any information about its internal structure since the
representation is a witness of an abstract data type. All the user can do with the
representation is pass it to some library procedure which operates on type
representations. Password protection is used to restrict access to the raw type
representations which can only be accessed by system components.

9 Acknowledgements

This work was supported by the Alvey funded SERC grant GR/D 43266, a grant
from International Computers Ltd (ICL), SERC grant GR/F 02953, ESPRIT II
Basic Research Action 3070 –– Fide1 and ESPRIT III Basic Research Action
6309 — FIDE2. Richard Connor is supported by EPSRC Advanced Fellowship

B/94/AF/1921.

10 References

1. Atkinson MP, Morrison R, Pratten GD. Designing a Persistent Information
Space Architecture. In: Proc. 10th IFIP World Congress, Dublin, 1986, pp
115-120

2. Connor RCH. The Napier Type-Checking Module. Universities of
Glasgow and St Andrews Report PPRR-58-88, 1988

3. Connor RCH, Brown AB, Cutts QI, Dearle A, Morrison R, Rosenberg J.
Type Equivalence Checking in Persistent Object Systems. In: Dearle A,
Shaw GM, Zdonik SB (ed) Implementing Persistent Object Bases, Principles
and Practice, Proc. 4th International Workshop on Persistent Object
Systems, Martha’s Vineyard, USA. Morgan Kaufmann, 1990, pp 151-164

4. Connor RCH. Types and Polymorphism in Persistent Programming
Systems. Ph.D. thesis, University of St Andrews, 1990

60

5. Connor RCH, McNally DJ, Morrison R. Subtyping and Assignment in
Database Programming Languages. In: Kanelakis P, Schmidt JW (ed)
Database Programming Languages: Bulk Types and Persistent Data, Proc.
3rd International Workshop on Database Programming Languages,
Nafplion, Greece. Morgan Kaufmann, 1991, pp 363-382

6. Connor RCH, Morrison R. Subtyping Without Tears. In: Proc. 15th
Australian Computer Science Conference, Hobart, Tasmania, 1992, pp 209-
225

7. Morrison R, Brown AL, Carrick R, Connor RCH, Dearle A, Atkinson MP.
The Napier Type System. In: Rosenberg J, Koch DM (ed) Persistent Object
Systems, Proc. 3rd International Workshop on Persistent Object Systems,
Newcastle, Australia. Springer-Verlag, 1990, pp 3-18

8. Atkinson MP, Lécluse C, Philbrow P, Richard P. Design Issues in a Map
Language. In: Kanellakis P, Schmidt JW (ed) Bulk Types & Persistent
Data. Morgan Kaufmann, 1991, pp 20-32

9. Connor RCH, Atkinson MP, Berman S, Cutts QI, Kirby GNC, Morrison R.
The Joy of Sets. In: Beeri C, Ohori A, Shasha DE (ed) Database
Programming Languages, Proc. 4th International Conference on Database
Programming Languages (DBPL4), New York City. Springer-Verlag, 1993,
pp 417-433

10. Connor RCH, Dearle A, Morrison R, Brown AL. Existentially Quantified
Types as a Database Viewing Mechanism. In: Bancilhon F, Thanos C,
Tsichritzis D (ed) Lecture Notes in Computer Science 416, Proc. 2nd
International Conference on Extending Database Technology, Venice, Italy.
Springer-Verlag, 1990, pp 301-315

11. Morrison R, Brown AL, Connor RCH et al. Protection in Persistent Object
Systems. In: Rosenberg J, Keedy JL (ed) Security and Persistence, Proc.
International Workshop on Security and Persistence, Bremen. Springer-
Verlag, 1990, pp 48-66

12. Morrison R, Dearle A, Connor RCH, Brown AL. An Ad-Hoc Approach to
the Implementation of Polymorphism. ACM Transactions on Programming
Languages and Systems 1991; 13,3:342-371

13. Connor RCH, Dearle A, Morrison R, Brown AL. An Object Addressing
Mechanism for Statically Typed Languages with Multiple Inheritance. In:
Proc. OOPSLA'89, New Orleans, Louisiana, 1989

14. Atkinson MP, Buneman OP, Morrison R. Binding and Type Checking in
Database Programming Languages. Computer Journal 1988; 31,2:99-109

15. Atkinson MP, Morrison R. Types, Bindings and Parameters in a Persistent
Environment. In: Atkinson MP, Buneman OP, Morrison R (ed) Data Types

61

and Persistence, Proc. 1st International Workshop on Persistent Object
Systems, Appin, Scotland. Springer-Verlag, 1988, pp 3-20

16. Morrison R, Brown AL, Dearle A, Atkinson MP. On the Classification of
Binding Mechanisms. Information Processing Letters 1990; 34:51-55

17. Morrison R, Connor RCH, Cutts QI, Dunstan VS, Kirby GNC. Exploiting
Persistent Linkage in Software Engineering Environments. Computer
Journal 1995; 38,1:1-16

18. Morrison R, Brown AL, Carrick R, Connor RCH, Dearle A, Atkinson MP.
Polymorphism, Persistence and Software Reuse in a Strongly Typed Object
Oriented Environment. Software Engineering Journal 1987;
,December:199-204

19. Morrison R, Connor RCH, Cutts QI, Kirby GNC. Persistent Possibilities for
Software Environments. In: The Intersection between Databases and
Software Engineering, Proc. ICSE-16 Workshop on the Intersection between
Databases and Software Engineering, Sorrento, Italy. IEEE Computer
Society Press, 1994, pp 78-87

20. Kirby GNC, Connor RCH, Cutts QI, Dearle A, Farkas AM, Morrison R.
Persistent Hyper-Programs. In: Albano A, Morrison R (ed) Persistent
Object Systems, Proc. 5th International Workshop on Persistent Object
Systems (POS5), San Miniato, Italy. Springer-Verlag, 1992, pp 86-106

21. Connor RCH, Cutts QI, Kirby GNC, Morrison R. Using Persistence
Technology to Control Schema Evolution. In: Proc. 9th ACM Symposium
on Applied Computing, Phoenix, Arizona, 1994, pp 441-446

22. Atkinson MP, Sjøberg DIK, Morrison R. Managing Change in Persistent
Object Systems. In: Proc. JSSST International Symposium on Object
Technologies for Advanced Software, Kanazawa, Japan, 1993, pp 315-338

23. Morrison R, Connor RCH, Cutts QI, Kirby GNC, Stemple D. Mechanisms
for Controlling Evolution in Persistent Object Systems. Journal of
Microprocessors and Microprogramming 1993; 17,3:173-181

24. Morrison R, Brown AL, Carrick R, Connor RCH, Dearle A. On the
Integration of Object-Oriented and Process-Oriented Computation in
Persistent Environments. In: Dittrich KR (ed) Lecture Notes in Computer
Science 334, Proc. 2nd International Workshop on Object-Oriented
Database Systems, Bad Münster am Stein-Ebernburg, Germany. Springer-
Verlag, 1988, pp 334-339

25. Morrison R, Barter CJ, Brown AL et al. Language Design Issues in
Supporting Process-Oriented Computation in Persistent Environments. In:
Proc. 22nd International Conference on System Sciences, Hawaii, 1989, pp
736-744

62

26. Munro DS, Connor RCH, Morrison R, Scheuerl S, Stemple D. Concurrent
Shadow Paging in the Flask Architecture. In: Atkinson MP, Maier D,
Benzaken V (ed) Persistent Object Systems, Proc. 6th International
Workshop on Persistent Object Systems, Tarascon, France. Springer-Verlag,
1994, pp 16-42

27. Stemple D, Morrison R. Specifying Flexible Concurrency Control Schemes:
An Abstract Operational Approach. In: Proc. 15th Australian Computer
Science Conference, Hobart, Tasmania, 1992, pp 873-891

28. Brown AL, Rosenberg J. Persistent Object Stores: An Implementation
Technique. In: Dearle A, Shaw GM, Zdonik SB (ed) Implementing
Persistent Object Bases, Principles and Practice, Proc. 4th International
Workshop on Persistent Object Systems, Martha’s Vineyard, USA. Morgan
Kaufmann, 1990, pp 199-212

29. Brown AL, Cockshott WP. The CPOMS Persistent Object Management
System. Universities of Glasgow and St Andrews Report PPRR-13-85,
1985

30. Brown AL, Morrison R. A Generic Persistent Object Store. Software
Engineering Journal 1992; 7,2:161-168

31. Brown AL, Mainetto G, Matthes F, Müller R, McNally DJ. An Open
System Architecture for a Persistent Object Store. In: Proc. 25th
International Conference on Systems Sciences, Hawaii, 1992, pp 766-776

32. Vaughan F, Schunke T, Koch B, Dearle A, Marlin C, Barter C. A Persistent
Distributed Architecture Supported by the Mach Operating System. In:
Proc. Proceedings of the 1st USENIX Conference on the Mach Operating
System, 1990, pp 123-140

33. Koch B, Schunke T, Dearle A et al. Cache Coherence and Storage
Management in a Persistent Object System. In: Dearle A, Shaw G, Zdonik
SB (ed) Implementing Persistent Object Bases. Morgan Kaufmann, 1990, pp
103-113

34. Brown AL. Persistent Object Stores. Ph.D. thesis, University of St
Andrews, 1989

35. Munro DS. On the Integration of Concurrency, Distribution and
Persistence. Ph.D. thesis, University of St Andrews, 1993

36. Sjøberg DIK. Thesaurus-Based Methodologies and Tools for Maintaining
Persistent Application Systems. Ph.D. thesis, University of Glasgow, 1993

37. Sjøberg DIK, Atkinson MP, Lopes JC, Trinder PW. Building an Integrated
Persistent Application. In: Beeri C, Ohori A, Shasha DE (ed) Database
Programming Languages, Proc. 4th International Conference on Database

63

Programming Languages, New York City. Springer-Verlag, 1993, pp 359-
375

38. Sjøberg DIK, Cutts QI, Welland R, Atkinson MP. Analysing Persistent
Language Applications. In: Atkinson MP, Maier D, Benzaken V (ed)
Persistent Object Systems, Proc. 6th International Workshop on Persistent
Object Systems, Tarascon, France. Springer-Verlag, 1994, pp 235-255

39. Connor RCH, Cutts QI, Kirby GNC, Moore VS, Morrison R. Unifying
Interaction with Persistent Data and Program. In: Sawyer P (ed) Interfaces
to Database Systems, Proc. 2nd International Workshop on User Interfaces
to Databases, Ambleside, Cumbria, 1994. Springer-Verlag, 1994, pp 197-
212

40. Morrison R, Brown AL, Connor RCH et al. The Napier88 Reference
Manual (Release 2.0). University of St Andrews Report CS/94/8, 1994

41. Kirby GNC, Brown AL, Connor RCH et al. The Napier88 Standard Library
Reference Manual (Release 2.0). University of St Andrews Report CS/94/7,
1994

42. Goldberg A, Robson D. Smalltalk-80: The Language and its
Implementation. Addison Wesley, Reading, Massachusetts, 1983

43. PS-algol Reference Manual, 4th edition. Universities of Glasgow and St
Andrews Report PPRR-12-88, 1988

44. Morrison R. S-algol Language Reference Manual. University of St
Andrews Report CS/79/1, 1979

45. Atkinson MP, Morrison R. Orthogonally Persistent Object Systems. VLDB
Journal 1995; 4,3:319-401

46. Morrison R, Brown AL, Dearle A, Atkinson MP. An Integrated Graphics
Programming Environment. Computer Graphics Forum 1986; 5,2:147-157

47. Morrison R, Brown AL, Bailey PJ, Davie AJT, Dearle A. A Persistent
Graphics Facility for the ICL PERQ Computer. Software—Practice and
Experience 1986; 16,4:351-367

48. Albano A, Cardelli L, Orsini R. Galileo: a Strongly Typed, Interactive
Conceptual Language. ACM Transactions on Database Systems 1985;
10,2:230-260

49. Matthes F, Müller R, Schmidt JW. Object Stores as Servers in Persistent
Programming Environments—The P-Quest Experience. ESPRIT BRA
Project 3070 FIDE Report FIDE/92/48, 1992

50. Davie AJT, McNally DJ. Statically Typed Applicative Persistent Language
Environment (STAPLE) Reference Manual. University of St
Andrews Report CS/90/14, 1990

64

51. Kirby GNC, Connor RCH, Cutts QI, Morrison R, Munro DS, Scheuerl S.
Using the Flask Architecture to Build Distributed Applications. ESPRIT
BRA Project 6309 FIDE2 Report FIDE/95/127, 1995

52. Garcia-Molina H. Using Semantic Knowledge for Transaction Processing in
a Distributed Database. ACM Transactions on Database Systems 1983;
8,2:186-213

53. Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R. An
Approach to Persistent Programming. Computer Journal 1983; 26,4:360-
365

54. Atkinson MP, Bailey PJ, Chisholm KJ, Cockshott WP, Morrison R.
Progress with Persistent Programming. In: Stocker PM, Atkinson MP, Gray
PM (ed) Database, Role and Structure. Cambridge University Press, 1984,
pp 245-310

55. Atkinson MP, Buneman OP. Types and Persistence in Database
Programming Languages. ACM Computing Surveys 1987; 19,2:105-190

56. Atkinson MP, Chisholm KJ, Cockshott WP. PS-algol: An Algol with a
Persistent Heap. ACM SIGPLAN Notices 1982; 17,7:24-31

57. Atkinson MP, Morrison R. Procedures as Persistent Data Objects. ACM
Transactions on Programming Languages and Systems 1985; 7,4:539-559

58. Atkinson MP, Morrison R, Pratten GD. A Persistent Information Space
Architecture. In: Proc. 9th Australian Computing Science Conference,
Australia, 1986

59. Dearle A. Constructing Compilers in a Persistent Environment. In: Proc.
2nd International Workshop on Persistent Object Systems, Appin, Scotland,
1987

60. Dearle A. On the Construction of Persistent Programming Environments.
Ph.D. thesis, University of St Andrews, 1988

61. Wai F. Distribution and Persistence. In: Proc. 2nd International Workshop
on Persistent Object Systems, Appin, Scotland, 1987, pp 207-225

62. Cooper RL. Configurable Data Modelling Systems. In: Proc. 9th
International Conference on the Entity Relationship Approach, Lausanne,
Switzerland, 1990, pp 35-52

63. Cooper RL. On The Utilisation of Persistent Programming Environments.
Ph.D. thesis, University of Glasgow, 1990

64. McCarthy J, Abrahams PW, Edwards DJ, Hart TP, Levin MI. The Lisp
Programmers’ Manual. M.I.T. Press, Cambridge, Massachusetts, 1962

65

65. van Wijngaarden A, Mailloux BJ, Peck JEL, Koster CHA. Report on the
Algorithmic Language ALGOL 68. Numerische Mathematik 1969; 14:79-
218

66. Strachey C. Fundamental Concepts in Programming Languages. Oxford
University Press, Oxford, 1967

67. Tennent RD. Language Design Methods Based on Semantic Principles.
Acta Informatica 1977; 8:97-112

68. Cardelli L, Wegner P. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys 1985; 17,4:471-523

69. Dearle A. Environments: A flexible binding mechanism to support system
evolution. In: Proc. 22nd International Conference on Systems Sciences,
Hawaii, 1989, pp 46-55

70. Atkinson MP, Morrison R. Integrated Persistent Programming Systems. In:
Proc. 19th International Conference on Systems Sciences, Hawaii, 1986, pp
842-854

71. Milner R. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences 1978; 17,3:348-375

72. Milner R, Tofte M, Harper R. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1989

73. Demers A, Donahue J. Revised Report on Russell. Cornell
University Report TR79-389, 1979

74. Matthews DCJ. Poly Manual. University of Cambridge, 1985

75. Mitchell JC, Plotkin GD. Abstract Types have Existential Type. ACM
Transactions on Programming Languages and Systems 1988; 10,3:470-502

76. Albano A, Dearle A, Ghelli G et al. A Framework for Comparing Type
Systems for Database Programming Languages. In: Hull R, Morrison R,
Stemple D (ed) Database Programming Languages. Morgan Kaufmann,
1989, pp 170-178

77. Dahl O, Nygaard K. Simula, an Algol-Based Simulation Language.
Communications of the ACM 1966; 9,9:671-678

78. Hammer M, McLeod D. Database Description with SDM: A Semantic
Database Model. ACM Transactions on Database Systems 1981; 6,3:351-
386

79. Lorie RA. Physical Integrity in a Large Segmented Database. ACM
Transactions on Database Systems 1977; 2,1:91-104

80. Rosenberg J, Henskens F, Brown AL, Morrison R, Munro D. Stability in a
Persistent Store Based on a Large Virtual Memory. In: Rosenberg J, Keedy

66

JL (ed) Security and Persistence, Proc. International Workshop on Security
and Persistence, Bremen, 1990. Springer-Verlag, 1990, pp 229-245

81. Stonebraker M, Wong E, Kreps P, Held G. The Design and Implementation
of INGRES. ACM Transactions on Database Systems 1976; 1,3:189-222

82. Davies CT. Data Processing Spheres of Control. IBM Systems Journal
1978; 17,2:179-198

83. Stemple D, Stanton RB, Sheard T et al. Type-Safe Linguistic Reflection: A
Generator Technology. ESPRIT BRA Project 3070 FIDE Report
FIDE/92/49, 1992

84. Dearle A, Brown AL. Safe Browsing in a Strongly Typed Persistent
Environment. Computer Journal 1988; 31,6:540-544

85. Kirby GNC, Connor RCH, Morrison R. START: A Linguistic Reflection
Tool Using Hyper-Program Technology. In: Atkinson MP, Maier D,
Benzaken V (ed) Persistent Object Systems, Proc. 6th International
Workshop on Persistent Object Systems (POS6), Tarascon, France.
Springer-Verlag, 1994, pp 355-373

86. Kirby GNC. Persistent Programming with Strongly Typed Linguistic
Reflection. In: Proc. 25th International Conference on Systems Sciences,
Hawaii, 1992, pp 820-831

87. Stemple D, Fegaras L, Sheard T, Socorro A. Exceeding the Limits of
Polymorphism in Database Programming Languages. In: Bancilhon F,
Thanos C, Tsichritzis D (ed) Lecture Notes in Computer Science 416.
Springer-Verlag, 1990, pp 269-285

88. Sheard T. Automatic Generation and Use of Abstract Structure Operators.
ACM Transactions on Programming Languages and Systems 1991;
19,4:531-557

89. Dearle A, Cutts QI, Kirby GNC. Browsing, Grazing and Nibbling Persistent
Data Structures. In: Rosenberg J, Koch DM (ed) Persistent Object Systems,
Proc. 3rd International Workshop on Persistent Object Systems (POS3),
Newcastle, Australia. Springer-Verlag, 1990, pp 56-69

90. Cooper RL, Qin Z. A Graphical Data Modelling Program With Constraint
Specification and Management. In: Proc. 10th British National Conference
on Databases, Aberdeen, 1992, pp 192-208

91. Cooper RL, Atkinson MP, Dearle A, Abderrahmane D. Constructing
Database Systems in a Persistent Environment. In: Proc. 13th International
Conference on Very Large Data Bases, 1987, pp 117-125

92. Fegaras L, Stemple D. Using Type Transformation in Database System
Implementation. In: Kanelakis P, Schmidt JW (ed) 3rd International

67

Conference on Database Programming Languages. Morgan Kaufmann,
1991, pp 337-353

93. Cutts QI, Connor RCH, Kirby GNC, Morrison R. An Execution Driven
Approach to Code Optimisation. In: Proc. 17th Australasian Computer
Science Conference (ACSC'94), Christchurch, New Zealand, 1994, pp 83-92

94. Stemple D, Sheard T, Fegaras L. Linguistic Reflection: A Bridge from
Programming to Database Languages. In: Proc. 25th International
Conference on Systems Sciences, Hawaii, 1992, pp 844-855

95. Fegaras L, Sheard T, Stemple D. Uniform Traversal Combinators:
Definition, Use and Properties. In: Proc. 11th International Conference on
Automated Deduction (CADE-11), Saratoga Springs, New York, 1992

96. Dijkstra EW. The Structure of the T.H.E. Multiprogramming System.
Communications of the ACM 1968; 11,5:341-346

97. Hoare CAR. Monitors: An Operating System Structuring Concept.
Communications of the ACM 1974; 17,10:549-557

98. Dijkstra EW. Cooperating Sequential Processes. In: Genuys F (ed)
Programming Languages. Academic Press, 1968, pp 43-112

99. Campbell RH, Haberman AN. The Specification of Process
Synchronisation by Path Expressions. In: Lecture Notes in Computer
Science 16. Springer-Verlag, 1974

100. Brookes SD, Hoare C, Roscoe A. A Theory of Communicating Sequential
Processes. Carnegie-Mellon University Report CMU-CS-83-153, 1980

101. Eswaran KP, Gray JN, Lorie RA, Traiger IL. The Notions of Consistency
and Predicate Locks in a Database System. Communications of the ACM
1976; 19,11:624-633

102. Kung HT, Robinson JT. On Optimistic Methods for Concurrency Control.
ACM Transactions on Database Systems 1982; 6,2:213-226

103. Nodine MH, Zdonik SB. Co-operative Transaction Hierarchies: Transaction
Support for Design Applications. VLDB Journal 1992; 1,1:41-80

104. Sutton S. A Flexible Consistency Model for Persistent Data in Software-
Process Programming. In: Dearle A, Shaw GM, Zdonik SB (ed)
Implementing Persistent Object Bases, Principles and Practice, Proc. 4th
International Workshop on Persistent Object Systems, Martha’s Vineyard,
USA. Morgan Kaufmann, 1990, pp 305-319

105. Ellis CA, Gibbs SJ. Concurrency Control in Groupware Systems. In: Proc.
ACM-SIGMOD International Conference on Management of Data, Portland,
Oregon, 1989, pp 399-407

68

106. Morrison R, Barter CJ, Connor RCH et al. Concurrency Control in Process
Models. IOPENER 1993; 2,1:11-12

107. Brown JC. A Library Explorer for the Napier88 Glasgow Libraries. M.Sc.
thesis, University of Glasgow, 1993

108. Glasgow Workshop. The Glasgow Persistent Workshop: User
Documentation. ESPRIT BRA Project 6309 FIDE2 Report FIDE/95/125,

1995

109. Morrison R, Brown AL, Connor RCH, Dearle A. The Napier88 Reference
Manual. Universities of Glasgow and St Andrews Report PPRR-77-89,
1989

110. Farkas AM. ABERDEEN: A Browser allowing intERactive DEclarations
and Expressions in Napier88. University of Adelaide, 1991

111. Kirby GNC, Cutts QI, Connor RCH, Dearle A, Morrison R. Programmers’
Guide to the Napier88 Standard Library, Edition 2.1. University of St
Andrews, 1992

	Title
	Abstract
	1 Introduction
	2 Controlling Complexity
	2.1 Language Design
	2.2 Orthogonal Persistence

	3 Using Persistent Data
	4 Data Modelling
	4.1 User Defined Types
	4.2 Polymorphism

	5 Protection of Data
	5.1 1st-Order Information Hiding
	5.2 2nd-order Information Hiding
	5.3 Viewing mechanisms

	6 Controlled System Evolution
	6.1 Typing Issues
	6.2 Type Safe Linguistic Reflection

	7 Concurrency Control and Transactions
	8 Programming within the Persistent Environment
	8.1 The Standard Library
	8.2 Hyper-Programming
	8.3 The Napier88 Programming Environment
	8.3.1 Editing Hyper-Programs
	8.3.2 The Browser
	8.3.3 Declaration Sets
	8.3.4 Multiple Users

	8.4 Implementation Issues

	9 Acknowledgements
	10 References

