Napier88 Reference Manual

Release 2.2.1
July 1996

Ron Morrison
Fred Brown
Richard Connor
Quintin Cutts
Alan Dearle
Graham Kirby

Dave Munro

University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.
*Department of Computer Science, University of Adelaide,
South Australia 5005, Australia.
TUniversity of Glasgow, Lilybank Gardens, Glasgow G12 8QQ, Scotland.
*University of Stirling, Stirling FK9 4LA, Scotland.

This document should be referenced as:
“Napier88 Reference Manual (Release 2.2.1)".
University of St Andrews (1996).

Contents

1 INTRODUGCTION oot e e e e e e 5
2 CONTEXT FREE SYNTAX SPECIFICATION ...t e 8
3 TYPES AND TYPE RULES. ...ttt e 9
3.1 UNIVERSE OF D IS COURSE . ..ttt ettt ettt ettt ettt et ettt ettt e e e e ettt e et e e e e e aaaeeeeenn 9
R I | | I = A] = 10
G 700 A1 7= 13 1 o 10
3.2.2 RECUISIVE DEfINItIONS. ..o et ettt aaes 10
I T B Y/ o Lo @] o =T = (o) £ PP 11
I B o Yo U 111V =l @ =T = L o] = P 11
B B TYPEEQUIVALENCE.ttt ittt ettt e et et et e e e et et e et et e e et aneans 12
I N =T g o (U | ST T 12
T 1R S IO I NS S O 1 I 17 =1\] o |1 = 13
4 LITERALS oo 14
g I N T I = 7 14
s Y I I 1= I 14
4 3 BOOLEAN LITERALS . ..ottt e e e e e 14
O I] LN L3 I =0 7 14
ST 2 = R I 1 I Y I 15
40 PBCTURE LITERAL ee ettt ettt e e e e e 15
S N I 1= = 15
B HRO CE DUREL LI TE R ALS . . .ttt ttt ettt ettt ettt ettt e e et ettt et s e e e e s e e et e s sa e e eeseannrseeeerrnns 15
4 O IMAGE LITERA L . ..ttt et e e e 16
g 10 T I =)= 16
5 EXPRESSIONS AND OPERATORS ... e e e 17
5.1 BVALUATION ORDER ... ettt ettt e et e s 17
D2 BOOLEAN EX P RESSION S ... ittt ittttt ettt ettt e ettt ettt et e et et ettt et e s te e e e e s eaanaeeeeeranns 17
5.3 O P ARISON OP E R AT O R S . ..ttt ettt et ettt et ettt e s e e ee et saaaeeeseaaraeeeerns 18
5.4 ARITHME T IC EXP RE S SION . . .ottt ittt ettt ettt ettt et e e e 19
5.5 ARITHMETIC PRECEDENCHERULES ... et ittt et ettt e ettt ettt sttt et et et e e e traieeeeees 20
5.6 ST RING EXP RES SION . . .t tttttttittee ettt ettt ettt ettt et s et e e s e et e et s e eesserareeeeerns 20
D7 B CTURE EX P RE S S ION Sttt e a s e s e e e s sa e sa s s s sa s s naaa s sa s sa s nn s nn s nnnnnnnnnnnns 21
LR T = 0 = I o =] =4 =T 1N £ 22
5.0 THE PER SIS TENT ST OREttt ettt et ettt et ettt e et et ettt e s e et et et e et et e e e e eteeteaeaneaneas 23
D10 BRECEDENCET ABLE ...ttt ettt e e e e 23
6 DECLARATION S o e e e 25
LT T 0T I 1= 25
6.2 VARIABLES, CONSTANTS ANDDECLARATION OFDATA OBJIECTS. ... iiviiiiiie e iiee e iieeeenens 25
5.3 DECLARATION OF TY PES. ..t ittttte ettt ettt ettt ettt ettt e et e e ettt et et e e s seaaaeeesrannes 26
8.4 FEQUENCES ... ittt ittt ettt e et ettt ettt et et ettt aeaaeaas 26
8.0 BRA CK E T S ..ttt ettt e 27
(S SIS 9@ =] = U = 27
6.7 RECURSIVEOBIECT DE CLARATION S, .ottt ittt ettt et e ettt et ettt e e st et ee e e e raireeeess 27
6.8 RECURSIVE T TYPE DECLARATIONS. . ettt ettt et ettt et e s 28
T CLAUSE S .o e 29
T AS S GNMENT CLAUSE . ..t tttt ettt ettt et ettt ettt et e st a et e s e et e et s e eesseaabeeeeerns 29
T2 F CLAUSEt e e e 29
QAR T 0N = O I 1 30
T AREPEAT...WHILE ... DO CLAUSE. ...ttt ittt ettt et ettt e e et e et e et ea e e e e enaraeeees 30
O FOR CLAUSEottt e e 31
8 PROCEDURES .. o e e 32
8.1 DECLARATIONS AND CALLS .ottt ettt e e ettt ettt e e e et a et e st e e eeeserareeees 32
8.2 RECURSIVE D E CLARATIONS. . . .ottt e e e 33
LSRG I =]IV (0] = =1 11 33
8.4 EFQUALITY AND EQUIVALENCE ...ttt ittt et et e e e a et ettt e e et e e e ateaeeaneanes 34

O AG G RE G AT ES. e 35

0.0 MECT ORS¢ttt ettt et ettt e ettt et et et e 35
9.1.1 Creation Of VECIOISttt et 35
9.1.2 UPb aNd W, ... 36
1S 00 I 1 o = o 37
9.1.4 Equality and EQUIVAIENCE.cuitit e e 37

LS T2 I UL 1T 37
9.2.1 Creation Of SIIUCTUIES.ttt et es 37
9.2, 2 INUEXING .ttt ettt 38
9.2.3 Equality and EQUIVAIENCE.ot 38

.3 IMAGES. . .ttt e 39
0.3.1 Creation Of IMaAgES. ..ot 39
0.3.2 RASIEN OPEIALIONSttt ettt ettt ettt ettt et et et e a e e e e e aaaas 39
LS RS IRC 1 o 1= 4] o PR 41
0.3.4 DEPth SEIECHON. ... et e 41
9.3.5 Equality and EQUIVAIENCE. ettt 42

L0 VARIAN T S e e e e s 43

0 0 2 g N = 43

B0 Y N Y N B 43

L0.31S AND ISNT ... ettt et et e et e e e e e e e e e e e e 43

10.4 FROJECTION OUT ORV/ AR AN T S L.ttt ettt et et ettt et e et et ettt e st e et e e e eneaaeaaans 44

ORI o A NV T Y 45

10.6 FQUALITY AND EQUIVALENCE ...ttt e et et st et e e e et e et r et e rt ettt e eeaenes 45

11 ABSTRACT DATA TYPES .. e e e 46

11.1 ABSTRACTDATA TYPEDEFINITIONttt ittt tteste et et et e et e s e e et e e e e e aae e e aaenes 46

11.2 GREATION OFABSTRACTDATA OBJIECTS .. it ittittittitesteate et et et e e et te e eeaaens 46

11.3 USE OFABSTRACT DATA OBJIECT S .. tiitiittt et ettt et et ettt et et e te et ettt e ae e e e e eeanees 47

11.4 BQUALITY AND EQUIVALENCE ...ttt ettt et et et et e st e st e e et e e et e et et et e e e e eaeees 48

L2 I E S o e e 49

Nt o I I 1 49

12.2 FQUALITY AND EQUIVALENCE ...ttt et et e e et et e st e e e e e e et et et e a et e e e eaees 49

L8 T PE AN ot e e e 50

13.1 NJIECTION INTOTYPE ANY ..ttt ittt e e et et et e et et et e e e et et e e et e et e et et e e e e eeeneanes 50

13.2 FROJECTION FROMIYPE ANY....uuitiittieeeetiit e e e e et e e e e et e e e e et e e e e e s e e e e e st eeeeaaaanas 50

13.3 FQUALITY AND EQUIVALENCE ...ttt et et e e st r e e et et e ettt e a it et et e eeaees 51

14 ENVIRONMENT T S . e e e e e e e 52

14.1 (REATING ANEW ENVIRONMENTt ttittittttete e et et eeate e e s e ae e e e e e e et et et aaeaaeaaenaenes 52

14.2 ADDING BINDINGS TO ANENVIRONMENTeunetieee ittt 52

14.3 USING BINDINGS IN ENVIRONMENT S, .. .1t ttt ettt ittt te et et et e e e et te e e e te e e e e e e e e eaeateaaenaanean 53

14.4 REMOVING BINDINGS FROMENVIRONMENTS. ...ttt iteite e et et et eevtesteatanaanaeeeenneanes 54

T1A4.5 THE CONTAINSCLAUSE ...ttt et ettt ettt ettt et et e e e et et r e e e e aees 54

14.6 BEQUALITY AND EQUIVALENCE ...ttt ittt et e e et et et et e e e et e e et et e aa e et et e e e e enees 54

15 REFEREN CES ... e e e e e e e 55

AP P EN D X | e e 60

AP P EN D X Il o e 66

AP P EN DX e e e 71

AP P ENDD I X IV o 72

John Napier (1550-1617)

John Napier was born in Merchiston, Edinburgh ih550. He matriculated at
St Salvator'sCollege, University ofSt Andrews in 1563Very little is known about
him during this period although he did study in Paris taanxkl in Italy and Germany
before returning to Scotland to marry in 1571.

This was the period of the Scottish Reformation and Nayasr verycommitted to the
Protestant cause. 1694, hewrote hisPlaine Discovery ofthe whole Revelation of
Saint Johrwhich he addressed to King James VI in a letter. Thisthefrst Scottish
book onthe interpretation of scripture ars asignificant place in thehistory of
theology in Scotland.

John Napier is best known as the inventor of Logaritiimisile importantsteps in the
theory had been taken in the sixteecdéimtury,notably byBurgi, it was Napier who

first brought the subject, in any large way, to the attention of mathematicians. This was
in his Mirifici logarithmorum canonis descript¢1614), the first importantwork on
mathematicgroduced in Great Britain, and one which inspiB¥eygs, the professor

of geometry at Greshartollege, London, todevelop thesystem of common
logarithms with the decimal base. Napier also invented Napier rods or bones for use in
multiplication, a development of aell-known Oriental method, and a number of
formulae in trigonometry relating to circulgrarts. His other mathematicalworks
include De arte logistica (1573 but not publisheduntil 1839), Rabdoligee seu
numerationis per vigulas libri du@l617), in which the rods adescribed, aniirifici
logarithmorum canonis constructipublished two years after his death.

Napier was also a great advocate of the decimal fraction system invented by Stevinus in
1585. Indeed, iappearghat Napier introduced thdecimalpoint into common usage
and eliminated the use of notation to indicate fractional position.

1 Introduction
The Napier88 persistent programming system provides the following facilities:

. Orthogonal persistence
— models of data independent of longevity

. Type completeness
— no restrictions on constructing types

. Higher-order procedures
— procedures are data objects

. Parametric polymorphism
— generic forms which may be specialised for use

. Abstract (existential) data types
— for sophisticated protection and viewing

. Collections of bindings _ _
— for name space control, incremental system construction and
system evolution

. A strongly typed stable store
— apopulated environment of typed data objects that may be updated
atomically
. Graphical data types

— for line drawings and raster images

. Concurrent execution and data access _
— using threads, semaphores and transactions

. Support for reflective programming
— for system evolution

The Napier88 system consists tfe language and its persistetvironment. The
persistent store is populatadd, indeedthe system usesbjects within the persistent
store to support itseliThe implication oforthogonal persistence ilat theuserneed
never write code to move or convert data for long or short term storage [ABC+83]. The
model of persistence in Napier88 tisat of reachabilityfrom a root object. The
persistent store is also stabileatis, it is transformed from one consistent state to the
next. Stabilisation must be invokeskplicitly by theuser to preserveata except that
programs which terminate normally generate an autostatidiseoperation. Execution
against the persistent store is always restarted from the last stabilised state.

Concurrency is provided by threads and semaphores [Mun93lcdaperative
concurrency and by th€ACS system [SM92] forcompetitive concurrency and
designer transactions. Thifse notions ofstability and visibility incommitment are
orthogonal [Kra85], [MBB+89], [AMP86]The entire computation including the state

of the programs, threads and transactions is stable and recoverable after a system crash.

The Napier88 language is ithe algol tradition aswvere its predecessors S-algol
[Mor79] and PS-algo]PS88]. Following the work of Strachey [Str67] andennent
[Ten77] the languagesbey the principles ofcorrespondence, abstraction atype
completeness. This makeesr languages with few defining rules allowing no
exceptions. It ighe belief of thedesignerghatsuch an approach tanguage design
yields more powerful and less complex languages.

5

The Napier88 type systerwas evolving at the saméime as Cardelli and Wegner
[CW85] publishedheir work. Many of the ideas are related tteeirs and soméave
beenborrowed from themThe philosophy isthat types are sets of values from the
value space.The typesystem is mostlystatically checkable, a property we wish to
retainwherever possibledowever,some dynamic projection out ahions for types
anyandenv[Dea89], as well as variant selection, allayws dynamic binding required
for orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system is polymorphic, like ML [Mil78], [MTH89], Russell [DD79] and Poly
[Mat85] andusesthe existentially quantifiedypes of Mitchell & Plotkin [MP88],
[CMM91] for abstractdatatypes.There is deliberately no typeference, to allow for
explicit specialisation of polymorphic forms from the persisgtate. Aunique design
feature of the implementation of the typed objects is that steiage format may be
non-uniform [MDC+91]. The type system also includes graphical typks line
drawing in an infinite two-dimensional real space and for manipulating raster images.

The type equivalence rule iNapier88 is by structure and both recursive and
parameterised typeare allowed in the typelgebra, which ingeneral leads to
undecidable typehecking. This isdealtwith in Napier88 by a syntactic convention
which allows the type checking to be sound, complete and co-complete [Con90].

The Napier88 system is designed asagered architectur¢gBro89] consisting of a
compiler [Con90], [Cut92], [Dea88], [Kir92}he PersistenAbstract Machine (PAM)
[BCC+88], [CBC+90] and persistent storagehitecturgBro89], [BM92], [Mun93].

All the Napier88 architectural layers are virtual in that, in any implementation, they may
be implemented separately or together as efficiency dictetes, they are definitional
rather than concrete. the current release the stable storagpravided by an after-
look shadowpaging mechanisnjBro89], [BM92], [Mun93]. The architecture is

shown below:

Distribution

Concurrency User Transactions

\C Persistent Abstract Machine)

Local Heap)
Protection Mechanism
Stable Heap of Persistent Objects
(Stable Storage]
[Non Volatile Storage j

Napier88 programare executed in a strict left tght, top to bottom manneexcept

where the flow of control is altered by one of the language clauses. On encountering an
error state, the PAM generates a call to a standard error procedure held in the persistent
store.These error proceduresay be redefined by theser. The PersistentAbstract

6

Machine also monitors interaction with the operating system in which Napier88 resides.
When an asynchronous interrupt occursRAé/ records it and causéise appropriate
procedure call to a standard event procedure in the persistent store. Again, the user may
redefine the procedures used to intercept asynchronous interrupts.

There may be many incarnations of the stable persisterg# and many activations of
the PAM. However,only onePAM incarnation maywork on one persistent store at
any one time.

This version ofthe reference manuabrresponds taelease2.2.1 of the Napier88
system.The languagédias only a few changes tbat of releasel.0 [MBC+89a],
[MBC+89b] butthe persistent environmetias been significantly enriched and re-
organised. The changes to the language are:

. a dynamic abstract witness model for abstract types, and
. type operators

A separate manuakthe Napier88 Standard Library Referenddanual [KBC+96]
describes the persistent environment of the release. The main changespan®isinen

of a browser, @ompilerfor reflective programming, threads and semaphores, a new
organisation of the objedtore to provide a navigation fretore, distributed stores
with remote scan and copy, and a hyper-programming system.

A third manual,the Napier88 tothe PersistentAbstract Machine CompilatioRules
Manual[BBC+94] describeshe formal definition ofNapier88 together witkthe rules
to generate code for the Persistent Abstract Machine.

The Napier88 persistent programming systeras originally planned as part of the
PISA project [AMP86] andwas intended as a testbddr our experiments in type
systems, programming environments, concurrency, bulk daibject stores and
persistence. The form die Napier88 languagevas firstconceived byrRon Morrison
and Malcolm Atkinson but the main design and fingblementationvas done by Fred
Brown, RichardConnor,Alan Dearleand RonMorrison. Release2.2.1 constitutes a
major re-engineering, re-organisation and enhancement of the dygtemaddition to
the above, Quintin Cutts, Graham Kirby and Dave Munro.

Many people have contributed to thepier88 designMalcolm Atkinson played a
major role[AM88], [MBC+87], [MBB+89], asdid his research assistarf&chard

Cooper, FrancisVai & Paul Philborow. At STCTechnologyLtd., John Scott, John
Robinson, Dave Sparks and Michael Guy aided, abetted and often criticised
constructively the early designs.

Our Visiting Fellows atSt Andrews, John Hurst, Chris Barter, ChrMarlin, John
Rosenberg,Dave Stemple and Robin Stanton also contributed and influenced the
design and the research undertaken in the context of Napier88.

Ron Morrison

2 Context Free Syntax Specification

The formal definition of a programming language/es programmers a precise
description from which tavork aswell as providing implementors with r@ference
model. There argwo levels of definition, syntactic and semantic. This section deals
with the formal syntacticules used talefine the context fregyntax ofthe language.
Later, informalsemantic descriptions dhe syntactic categories will bgiven. The
formal rules definghe set ofall syntactically legalNapier88 programsiemembering
that the meaning of any one of these programs is defined by the semantics.

To define thesyntax of a language another notation is required whichllisd ameta
language and in this case a variation of Backus-Naur form is used.

The syntax of Napier88 is specified by a set of rutzdled productions Each
production specifies the manner in whicpaticular syntactic categofg.g. aclause)
can be formed. Syntactic categories have names vangased in productions and are
distinguished from names and reserved words in the langliagesyntactic categories
can be mixed improductions withterminal symbols whichare actuakymbols of the
language itself. Thus, by following the productions until terminal symémelseached,
the set of legal programs can be derived.

The metasymbols,that isthose symbols ithe metalanguageused to describe the
grammar of the language, includehich allows achoice in gproduction.The square
brackets [and] are used in pairs to denote that an term is optional. When used with a *,
a zero or many times repetition is indicated. The reableuld not confus¢he meta
symbols |, *, [and] with the actual symbols and resewents in Napier88. Thelp

with this reservedwvords will appear inbold and actual symbols will appear in
outline bold. The names of the productions will appeartatics.

For example,
identifier ::= letter [letter | digit |]*

indicates that an identifier can b@med as a letter, optionally followed by zero or
many letters, digits or underbars.

The productions for Napier8@re recursivewhich meansthat there are an infinite
number of legal Napier88 programsHowever, the syntax of Napier88can be
described in about 80 productions.

The full context-free syntax of Napier88 is giverfippendix |

3 Types and Type Rules

The Napier88 type system is basedthe notion oftypes as a set structure imposed
over the valuespace.Membership of the typsets isdefined in terms of common
attributespossessed by values, suchths operations definedver them. In the
absence of polymorphism thesets or typegartition the value space; polymorphic
forms, which inNapier88are polymorphigrocedures and abstragatatypes, allow
values to belong to more than a single type. The sets may be predefinedegke or
they may be formed by using one of the predefined type constructorsylikrire

The constructors obey tirinciple of Data Type CompletendS§ir67], [Mor79]. That

is, where a type may be used in a constructor, any type is legal without exception. This
has two benefits. Firstly, since #fie rulesarevery general and withowgxceptions, a

very rich type systermay be describedsing asmall number of definingules. This
reduces the complexity of the definimgles. The secondbenefit is that the type
constructorsare aspowerful as is possible sindbere are no restrictions aheir
domain.

3.1 Universe of Discourse
The following base types are defined in Napier88:
1. The scalar data types amg real, bool, pixel, file andnull.

2. Typestring is the type of a character string; this type embraces the empty
string and single characters.

3. Typepic is the type of a conceptual line drawing, modelled in an infinite
2-D real space; this type embraces single points.

4. Typeimageis the type of a value consisting of a rectangular matrix of
pixels.

5. Typeenvis the type of an environment; values of this type consist of a

collection of bindings.

6. Typeanyis an infinite union type; values of this type consist of a value of
any type together with a representation of that type.

The following type constructors are defined in Napier88:

7. For any type tt is the type of a vector with elements of type t.

8. For identifiers {,...,I, and typesit....t,, structure (L: tq,...,15: t,) is the
type of a structure with fields &nd corresponding typesfori=1..n
and n= 0.

9. For identifiers {,...,I, and typesit...,t,, variant (I1: tq,...,I,: ty) is the
type of a variant with identifiers &nd corresponding typgsfori=1..n
and n= 0.

10. For any typest...,t, and t,proc (t,...,t; — t) is the type of a procedure
with parameter types, for i = 1..n, where & 0, and result type t. The
type of a resultless procedurepi®c (t,....t).

11. proc [Tq,..., Tyl (t1,...,4, - t), where the definitions of types,t.,t,
and t may include the use of the type variablgs.TT,,, is the type of a

procedure which is universally quantified over these type variables for m
> 0 and r= 0. These are polymorphic procedures.

12. abstype [W,...,.W,] (11 t1,....I4: t,y), where the definitions of types
t1,....1 may include the use of the type variableg \WW,,,, is the type

of a structure which is existentially quantified over these type variables for
m > 0 and re 0. These are abstract data types.

The world of datavalues is defined by the closurerofes 1 to 6 undethe recursive
application of rules 7 to 12.

In addition to the above, clauses which yield no value are ofvtyipe

3.2 The Type Algebra

Napier88 provides a simple tydgebrawhich allowsthe succinct definition ofypes
within programs. As well athe base types and constructaiseadyintroduced, types
may be defined with the use of

. aliasing

. recursive definitions

. type operators
3.2.1Aliasing

Any legal typedescription may be aliased by an identifier to providgharthand or
conceptually meaningful representation for that type. For example

type ronisint
type manis structure (age :int ; size :real)
type eitheris variant (first : ron ; second : man)

After its introduction an alias may be used in place of the full type description.
3.2.2Recursive Definitions

Further expressibilitymay be achieved in the type algebra by the introduction of
recursivetypes.Recursive types allowhe definition ofuser-defined types fovalues

with regularstructuresThe reserved wordec introduced before a type aliatlows
instances of that alias to appear in the type definition. Mutually recursive types may also
be defined by thegrouping of aliases wittampersands. In thigase binding of
identifiers within the mutualecursion grougakes precedence over identifieiseady

in scope.

rec type intList is variant (cons : intNode ; tip null)
& intNodeis structure (head int ; tail : intList)

10

3.2.3Type Operators

Type operators alloiamilies oftypes to be defined; operatarsaay be specialised to
provide particular types. These operators are simple functions over types; note however
that they canalways be statically resolved. Type operatorsare defined by an
overloading of thesyntax fortype aliasing, withformal parameters being provided in
square brackets after the alias. For example,

type heteroPair [a, b structure (first : a ; second : b)
type homoPair [t]is structure (first, second : t)

Operators are applied by these ofthe identifierfollowed by specialising types in
square brackets. For example,

type intRealPairs heteroPaiript, real]
type intPairis homoPair int]

Notice that operator identifiers may not appear without being fully specialised.

Sometimes it is convenient to define higher-order operators:

type pairOperApplint [oper [t]]s structure (first, second : opeiirjt])

Notice that inthis casethe t in the inner brackets may not hsed as aormal
parameter, and is simply an indication of the arity of the formal pararoptr
Identifiers used in such contexts have no extent.

3.2.4Recursive Operators
Napier88 does not distinguistyntactically between recursive tymgerators and

operators over recursigpes. Forexample thdollowing is a generic description of
the family of list types:

rec type list [s] is variant (cons : node [s] ; tipnull)
& node [t]is structure (head : t; tail : list [t])

The uncontrolled introduction of recursive type operators leads tbtlity to describe
types over which naecidable structural equivalence algorithmkieown. There is a
restriction in Napier88 on the definition of recursive operators as follows:

The specialisation of a recursiveperator onthe right handside of itsown definition
may not include any types which are constructed over its own formal parameters.

This rule extends through dependenciesets ofmutually recursive definitions; for
examplelist [#t] would not beallowed on the righbhand side inthe aboveexample
because of the way the definitionlist depends upothe definition ofnode Thisrule
precludes the description sbme useful type operators and typfes; example the
following may not be used to describe the type of an array of any dimension:

11

rec type array [t]is variant (simple : t ; higherOrder : array [*t])

The restrictiorhasbeen introduced to allow fully decidable typechecking in Napier88
while less restrictive schemes are under investigation.

3.3 Type Equivalence

Type equivalence in Napier88 is basgmbnthe meaning ofypes,and is independent

of theway the type isexpressed withithe typealgebra. Thus any aliases, recursion

variables, and operataspplications are fully factored out before equivalence is
assessed.This style of type equivalence is normally referred to as structural
equivalence.

The structural equivalence rules are as follows:

. Every base type is equivalent only to itself.

. For two constructed types to be equivalent, they must have the same
constructor and be constructed over equivalent types.

. The bounds of a vector are not significant for type equivalence.

. For structure, variant and abstype constructors the labels are a significant

part of the type, but their ordering is not.

. For procedure and polymorphic procedure types, the parameter ordering is
a significant part of the type construction.

The definition of type equivalenc®r types whichinvolve the type variables of
polymorphic procedures and abstraleta types is somewhat morsubtle, and is
defined in the appropriate sections of this manual.

Napier88 has no subtyping onplicit coercionrules. Values may be substituted by
assignment or parametpassing only whertheir types are known statically to be
equivalent.

The types of all expressions in Napie@® inferred. There is no other type inference
mechanism; in particulathe types ofall procedure parameters and results must be
explicitly stated by the programmer.

3.4 Type Rules
The type rules form a second set of rules to be used in conjunction with the teetext
syntax to define well-formegrograms.The generictypesthat arerequired for the
formal definition of Napier88 can be described by the following:

type arith is int |

type ordered is arith | string

type literal s ordered | ool | pixel |pic |mull | proec |file | image

type nonvoid is literal | structure [wariant | @nv | any |
abstype | parameterised | moly | *nonvaoid

12

type type is nonvoid | void

In the above,the generic typerith can be either amnt or areal, representing the
types integer and real in the language. In the types, the concreteypes andyeneric
types are written ish@dow face todistinguishthemfrom the reservedwvords, meta—
symbols andactualsymbols.Each of the type categories given abaeeresponds to
one of the type construction rules and will be described later in this manual.

To check that a syntactic category is corretfyed, the context fresyntax is used in
conjunction with a type rule. For example, the type rule for the two-aifnatalise is

t : type, if clause: bool then clause: t elseclause: t => &

This rule may be interpreted as folloviss given as &ype from the table above. It can
be any type including void. Following the comma, the type rule stiaé¢shereserved
wordif must be followed by a clause which must be of type boolean. Thdicsted
by : bool. Thethen andelse alternatives must have clausestttd sametype t for
anyft The resultant type, indicated &i,7of this production is alsd, the same as the
alternatives.

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules, talescribe thdanguage. Acompleteset of type rulegor Napier88 is
given inAppendix 1.

3.5 First Class Citizenship

The application of thé@rinciple of Data Type CompletenegStr67], [Mor79] ensures
that all dataypesmay beused in anycombination in thdanguage. For example, a
value of any data type may be a parameter to or returned fpyoceadure. Iraddition
to this, there are a number of propertgsssessed ball values ofall datatypes that
constitute their civil rights inhe language and defiriiest class citizenshipAll values
of data types in Napier88 have first class citizenship.

The additional civil rights that define first class citizenship are:

. the right to be declared,

. the right to be assigned to and to be assigned,

. the right to have equality defined over them, and,
. the right to persist.

13

4 Literals

Literals are the basic buildinglocks of Napier88 progranthat allow values to be
introduced. A literal is defined by:

literal = int_literal | real_literal | bool_literal | string_literal | pixel_literal |
picture_literal| null_literal | proc_literal |image_literal| file_literal

4.1 Integer Literals

These are of type integer and are defined by:

int_literal = [add_op digit [digit]
add_op = + |-
int_literal => int

An integer literal is one or more digits optionally preceded by a sign. For example,

1 0 1256 -8797

4.2 Real Literals

These are of type real and are defined by
real_literal = int_literal.[digit] *[eint_literal]
real_literal => [esl

Thus, there are a number of ways of writing a real literal. For example,

1.2 3.1e2 5.e5

1. 3.4e-2 3.4e+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)

4.3 Boolean Literals

There are two literals of type booledrue andfalse They are defined by
bool_literal = true |false
bool literal => [pool

4.4 String Literals

A string literal is asequence of characters in the characte(A8CIl) enclosed by
double quotes. The syntax is

string_literal
char
special_character

oo [Char* oo

any ASCII character except special_character
'special_followj

" if not followed by aspecial_follow
niploltib]"|”

special_follow

14

string_literal => siring
The empty string is denoted by ™. Examples of other string literals are:

"This is a string literal", and,

"l am a string"
The programmer mawish to have a double quote itself inside a string literal. This
requires using a single quote as an escape character and so if a single or double quote is
required inside a string literal it must be preceded by a single quote. For example,

"a™" has the value a", and,

"a'"" has the value a'.

There are a number of other special characters which magdukinside string literals.
They are:

'b backspace ASCII code 8
"t horizontal tab ASCII code 9
n newline ASCII code 10
P newpage ASCII code 12
0 carriage return ASCII code 13

4.5 Pixel Literals

There are two literals of type pix&n andoff. They are defined by
pixel_literal = on | off
pixel_literal => pixel

4.6 Picture Literal

There is only one picture literal. It is used to define a picture with no points.
picture_literal = nilpic
nilpic => pic

4.7 Null Literal

There is only one literal of the typeill. It is used to ground recursion in variant types.
null_literal = nil
nil => null

4.8 Procedure Literals

A procedure is introduced into a program by its literal value. They are defined by:

15

proc_literal .= proc [type_parameter_li${[named_param_lit
[-> type_id); clause
type_parameter_list ;= [identifier_lis{
named_param_list ::= [constan{ identifier_list: type_id[;
named_param_lit

t : type, proc [type_parameter_li$t[named_param_ligt
[-> type_identifier: t]): clause: t

For example,

procftf(n:t-1t);n

is a procedure literal.
The meaning and use of procedures is described in Chapter 8.
4.9 Image Literal

There is only onémageliteral. It is used tadefine the imagevith no pixels. It has
dimensions 0 by 0 and depth O.

image_literal = nilimage
nilimage => image
4.10 File Literal

There is only one file literal. It is used to denote a file value that is not bouriddara
the file system.

file_literal = nilfile

nilfile => file

16

5 Expressions and Operators
5.1 Evaluation Order

The order of execution of a Napier88 program is strictly fieftto right and top to
bottom except where the flow of control is altered by one of the langlaggesThis
rule becomes important in understanding side-effectshénstore. Parentheses in
expressions can be used to override the precedence of operators.

When an error occurs in the system, a standard error procedaléeds automatically.
The standard error procedurese stored inthe standard environment aray be
altered by the user using the Napier88 facilities for updating environments.

An event mayalso occur duringhe execution of &lapier88 program. Arevent acts
like an unexpected procedure call. Eventsadse defined irthe standard environment
and may be manipulated in the same mannesrass. Furthedetails of events and
errors may be found in the Napier88 Standard Library Reference Manual [KBC+96].

5.2 Boolean Expressions

Objects of type boolean in Napier88 can have the value true or false. There are only two
boolean literalsfrue andfalse, and threeoperators.There is one boolean unary
operator, ~, and twboolean binarpoperatorsand andor. They are defined by the

truth table below:

a b ~a arb aandb
true false false true false
false true true true false
true true false true true
false false true false false

The precedence of the operators is important and is defined in descending order as:

and
or

Thus,

~aor bandc

is equivalent to

(~a)or (bandc)

This is reflected in the syntax rules which are:

expression = explf[or expl*
expl = exp2[and exp3*
exp2 = [~] exp3 ...

17

expl: bool or expl: bool => hool
exp2: bool and exp2: ool => bhool
[~] exp3: bool => hool
The evaluation of a boolean expression in Napier88 is non-dthatis, inthe left to
right evaluation of the expression, no more computation is performed on the expression
than is necessary. For example,
true or expression
gives the valuérue without evaluatingexpressiorand
falseand expression
gives the valuéalse without evaluatingexpression
5.3 Comparison Operators
Expressions ofype boolean canlso be formed by some other binagyerators. For

example, a = b igithertrue or false and is thereforéoolean.These operators are
called the comparison operators and are:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

~= not equal to

is is a particular member of a variant

isnt is not a particular member of a variant
contains IS present in an environment (see 14.5)

The syntactic rules for the comparison operators are:

exp2 = [~] exp3[rel_opexp3
rel_op = eg_op| co_op| variant_op
eqg_op = = =

co_op = <|<=|>]| ==
variant_op = is |isnt

t : monvoid, exp3: teq_ opexp3 Tt=~> hool
Wh@[r@eq op:: | —=

t : ordered, exp3: t co_opexp3: t => hoal
whereco_op:= < | <=|>]| ==

18

expression variant variant_opidentifier => hool
wherevariant_ op = is |isnt

Note that theoperators <<=, > and >= are defined omtegers,reals andstrings
whereas = and ~are defined orall Napier88datatypes. The interpretation of these
operations is given with each data type as it is introduced. The opésatodssnt are
for testing a variant identifier and are defined in Chapter 10.

Equality for types other than scalar types and strings is defined as identity.

5.4 Arithmetic Expressions

Arithmetic may beperformed ordata objects of type integand real. The syntax of
arithmetic expressions is:

exp3 = exp4 pdd_opexp4*

exp4 = exp5 mult_opexpg*

exp5 = [add_op exp6

mult_op = int_mult_op|real_mult_op| ...
exp6 =

t : arith, exp4: t add_opexp4: t=>t
t : arith, add_opexp6: t => t

expb5: int int_mult_opexp5: int => int
whereint_mult_op == * |div |rem

expb: ezl real_mult_opexp5: real => resl
wherereal_mult_ op ::= *|/

The operators mean:

+ addition

- subtraction

* multiplication

/ real division

div integer division throwing away the remainder
rem remainder after integer division

In both div andrem the result is negativenly if exactly one of theoperands is
negative.

Some examples of arithmetic expressions are

a+b 3+2 1.2+ 05 21+al20

The language deliberately does not provide automatic coercion from integad,tbut
the transfer may be explicitly invoked by thiandard procedurfioat and the standard
proceduretruncateis provided to transfer fromeal tointeger. Thesare described in
the Napier88 Standard Library Reference Manual [KBC+96].

19

The evaluation of an arithmetexpressionrmay cause thstandard error procedures
unarylnt Int, unaryRealandRealto be called.

5.5 Arithmetic Precedence Rules

The order of evaluation of an expression in Napier88 is fedtrto rightand based on
the precedence table:

* / div rem

+ -

That is, the operations *,djv, rem are always evaluated before + and -. However, if
the operators are of the same precedence thezxfiression i®valuated left taight.
For example,

6 div4rem 2 gives the value 1

Brackets may baised to overridehe precedence of the operator or to clarify an
expression. For example,

3*(2-1) yields 3 not 5
5.6 String Expressions

The string operator#++, concatenatesvo operand strings to form a nestring. For
example,

"abc" ++ "def"
results in the string
"abcdef"
The syntax rule is:
exp4 = exp5[string_mult_opexp3*

exp5: string string_mult_opexp5: siring => string
where string_mult_op::= ++

A new stringmay be formed by selecting substring of an existingstring. For
example, if s is the string "abcdef" then s (3 | 2) is the string "cd". That is, a new string
is formed by selecting 2 elements from s starting at character 3. The syntax rule is:
exp6 = expressioriclause| clausg
expression siring (clause: int | clause: int) => string

For the purposes of substring selection the first character in a string is numbered 1. The
selection values are the start position and the length respectively.

To compargwo strings,the characters are comparedpiairs, one fromeachstring,

from left to right. Two stringsare considered equalnly if they havethe same
characters in the same order and are of the same length, otherwise they are not equal.

20

The characters in a string are ordered according to the ASCII character code. Thus,
Ilall < IIZII
is true.

Thenull string is less than any other string. Thing less-tharrelation can be resolved

by taking the characters pair by pair in the two strings until one is found to hbdess

the other. When the strings are not of equal length then they are compared as above and
then the shorter one is considered to be less than the longer. Thus,

"abc" < "abcd"
The other relations can be defined by using = and <.

The evaluation of astring expressiormay cause thestandard error procedures
concatenat@andsubStringo be called.

5.7 Picture Expressions

The picturedrawing facilities of Napier88 allowthe user to producédine drawings in
two dimensions. The system providesiimite two dimensional reaspace Altering

the relationship between differeparts ofthe picture is performed bynathematical
transformations, which means that pictuaes usuallycomposed of a number stib-
pictures.

In a line drawing system, the simplest picture is a point. For example, the expression,
[0.1, 2.0]
defines the point (0.1, 2.0).

Points in picturesare implicitly ordered. Abinary operation on pictures operates
between the last point of the first picture and the first point ob#t®nd.The resulting
picture has as its firspoint, the first point of the first picture, and as itlst, the last
point of the second.

There are two infix picture operators. They are ”, which forms a new picture by joining
the first picture to the second by a straight line fittvan last point of thdirst picture to

the first point of the second. ++ also forms a nepicture by includingall the
subpictures of botthe operangictures.The othertransformations and operations on
pictures are:

shift The new picture consists tfe points obtained by addintpe x
and y shift values anthhe x and y co-ordinates of tip®ints in
the old picture. The ordering of the points is preserved.

scale The new picture consists othe points obtained bynultiplying
the x and y scale valuesith the x and y co-ordinates of the
points in the old picture, respectively. The orderinghefpoints
IS preserved.

rotate The new picture consists of the points obtained by rotating the x
and y co-ordinates of thpoints inthe old picture clockwise
about the origin by the angle indicateddiegreesThe ordering
of the points is preserved.

21

colour The new picture is the old one in a new colour.

text The new picture consists of the text string convertedpictare
representationThe two points representhe baseline of the
string, which will be scaled to fit.

A text expressiormay cause thetandard error procedufi@xtto be calledwhile the
picture is being drawn.

The full syntax of picture expressions is:

exp4
pic_mult_op

exp5[pic_mult_opexp3*
A+

expressiort pic pic_mult_opexpression pic => pic

value_constructor:
picture_constr
picture_op

picture_consty picture_op| ...

[clause clausé

shift clauseby clause clause|

scaleclauseby clause clause|

rotate clauseby clause|

colour clausein clause|

text clausefrom clause clauseto clause clause

[clause: real , clause: real] => pic
shift clause: pic¢ by clause: real, clause: real => pic
scaleclause: pic by clause: real, clause: real => pic
rotate clause: pic by clause: real => pic
colour clause: pic in clause: pixel => pic
text clause: string from clause: real , clause: resl

to clause: real, clause: real => pic

5.8 Pixel Expressions

Pixels may be concatenated to produce another pixel of a greater a&pth the
operator ++.

exp4 = exp5[++exp5]*
exp5: pixel ++ exp5: pixel => pixel

For example,

let b =on ++ off ++ off ++ on

A pixel hasdepth representing the number of planes in ghel. The planes are
numbered from 0 and new pixedan be formedrom subpixels of othersThe syntax
is

exp6 = expressioriclause| clausg

expressior pixel (clause: int | clause: int) => pixel

For example, assuming the declaratiob above,

22

b(@]|2) is the pixebff ++ off

This lastexpression isnterpreted as the pixel formed by starting at plane &b and
selecting 2 planes.

The evaluation of a pixekexpressionmay cause thestandard error procedures
pixelOverflowandsubPixelto be called.

Two pixels are equal if they have the same depth and the corresponding planes have the
same value.

5.9 The Persistent Store

There is one predefined procedure in Napier88 amdlatvs access tthe persistent
store. It is defined by

exp6 :=PS ()
PS () => any

The structure of the persistestore is described ithe Napier88 Standard Library
Reference Manual [KBC+96].

5.10 Precedence Table

The full precedence table for operators in Napier88 is:

/ * div rem n

+ - ++

= ~ < <= > >= is isnt
and

or

23

24

6 Declarations

6.1 Identifiers

In Napier88, andentifier may bebound to adataobject, a procedure parameter, a
structure field, a variant label, an abstract data type label or a type. An identifier may be
formed according to the syntactic rule

identifier::= letter [id_follow]
id_follow = letter [id_follow] | digit [id_follow] | _ [id_follow]

That is, an identifier consists of a letter followed by any numbendérscoredgetters
or digits. The following are legal Napier88 identifiers:

x1 ronsObject look_for_Recordl Ron

Note that case is significant in identifiers.

6.2 Variables, Constants and Declaration of Data Objects

Before an identifier can based in Napier88, it must be declar@te action of
declaring a data objeetssociates an identifier with a typed locatwhich can hold
values. In Napier8&he programmer may specify whether the location is constant or
variable. A constanimay be manipulated in exactly the same manner as a variable
except that it may not be updated.

When introducing an identifier, the programmer must indicate the identifeetype of

the data objectvhich is usually deduced, whether itvariable orconstant, and its
initial value. Identifiers are declared using the following syntax:

let identifierinit_op clause
init_op = =|:=

let identifier init_op clause: nonveid => void
A variable is declared by
let identifier :=clause

For example,

leta:=1

introduces an integer variable withitial value 1. Notice that the compildeduces the
type.

A constant is declared by
let identifier =clause

For example,

25

letdiscrim=b*b-40*a*c

introduces aeal constanwith the calculatedrialue. The language implementation will
detect and flag as an error any attempt to assign to a constant.

6.3 Declaration of Types

Type names may be declared by the usétapier88.The name isised to represent a
set of objects drawn from the value space and may be used wherever a type identifier is
legal. The syntax of type declarations is:

type_decl ;.= type type_init| rec type type_init[& type_ini*
type_init .= identifier [type_operator_ligtis type_id
type_operator_list ::= [type_operatof, type_operatdj
type_operator .= identifier | identifier [type_operatar

type_id = int |real | bool | string | pixel | pic | null |

any |env |image |file |
identifier [parameterisatioh| type_constructor

parameterisation:= [type_lisi

type_list = type_id[, type_list

type_constructar= *type_id| structure_typd variant_type|
proc_type| abstype

structure ([named_param_li$}
constan{ identifier_list: type_id[;
named_param_lit

structure_type
named_param_list i

variant_type ;.= variant ([variant_fieldg)

variant_fields .= identifier_list: type_id[; variant_field$

proc_type .= proc [type_parameter_lit[parameter_lisft
[-> type_id)

parameter_list :=type_id[, parameter_ligt

abstype .= abstypetype_parameter_lis{tnhamed_param_li$t
type_parameter_list ::=[identifier_lis{

Thus,

type alis bool

is a type declaration aliasing the identif@mwith the booleartype. They are the same
type and may besed interchangeablizxamples of type declarations will be given in
later chapters.

6.4 Sequences
A sequence is composed of any combination, in any order, of declarationkases.

The type of the sequence is the type of the last clause isetipgenceWhere the
sequence ends with a declaration, which by definition is of vgp& the sequence is

26

of typevoid. If there is more than one clause in a sequenceathént the lasmust be
of typevoid.

sequence= declaration[; sequencf clause[; sequence
sequence void ? => void
t : type, declaration: void ; sequencet => t
t ; type, clause: void ; sequencet => t
t : type clause: t=> 1
6.5 Brackets

Brackets are used tmake asequence of clauses and declarations into a sttglese.
There are two forms, which are:

begin
sequence
end
and
{sequencp

t . type, begin sequencetend => t
t : type {sequencef} =>t

{and } allow a sequence to be written clearly on one line as a clause. For example,

leti:=2
for j=1to 5do{i:=i*i; writelnt (i)}

However, ifthe sequence is longer than dmee, the first alternativegives greater
clarity. Nonvoid sequences are sometimes called block expressions.

6.6 Scope Rules

The scope of anidentifier is limited to therest of the sequencdollowing the
declaration. This meanthat the scope of andentifier startsimmediately after the
declaration and continues up to the next unmatchedegnalr If the same identifier is
declared in an innesequencethen while the inner name is stopethe outer one is
not.

6.7 Recursive Object Declarations

It is sometimes necessary to define valussursively. For examplethe following
defines a recursive version of the factorial procedure:

rec let factorial = proc (n :int - int)
If n = Othen 1 elsen * factorial (n - 1)

The effect of the recursive declaration is to allow the identifier to estepe
immediately. That is, after theit_op and not after thevhole declarationclause, as is
the case with non-recursive declarations. Thus, the iderfafitarial used inthe literal

27

is the samas, and refers tdhe same locatiomas, the one beinglefined. Chapter 8
gives an example of mutually recursive procedures.

Where there is more than one identifier being declaatdhe identifiers come into

scope at the same time. That is, all the names are declared first and then are available for
the clauses after theit_op.

The initialising clauses for recursive declarations are restricted to literal values.

The full syntax of object declarations is:

object_decl = let object_init|
rec let rec_object_inifé& rec_object_inif*
object_init = identifierinit_op clause
rec_object_init ::= identifierinit_op literal
init_op = =|:=

declaration=> void

where object_decl := let object_init| rec let rec_object_init
[& rec_object_ini¢

identifier init_op clause: nonvoid
identifierinit_op literal : nonvoid

6.8 Recursive Type Declarations

where object_init
where rec_object_init :
where init_op

The full syntax of type declarations is:

type_decl ;.= type type_init| rec type type_init[& type_ini{*
type_init |dent|f|er[type operator_ligtis type_id
type_operator_llst = [type_operatof, type_operatd
type_operator = identifier | identifier [type_operator_ligt

For example, the following

rec type intList is variant (cons : intNode ; tip null)
& intNode s structure (head int ; tail : intList)

defines a type for a list of integers.

28

7 Clauses
The expressions described @hapter 5 are clausasghich allow the operators in the
language to beaused to producelata objects. There are othekinds of clauses in
Napier88 which allowthe data objects to be manipulated which provide control
over the flow of the program.
7.1 Assignment Clause
The assignment clause has the following syntax:

Clause ::= name:= clause

t : nonveid, name: t ;= clause: t => vaid

For example,

discriminant:=b*b-4.0*a*c

givesdiscriminantthe value of theexpression orthe right. Of coursethe identifier
must have been declared as a variable and ocohstant.The clause alters the value
denoted by the identifier. Assignments may alsen€ele to vector elemendsd fields
of structures and abstract data types.

The semantics of assignment is defined in terms of equality. The clause,

a=>b
wherea andb are both identifiers, implies that after execution b will be true. Thus,
as will be seen later, assignmdat scalar types meangalue assignment and for
constructed types it means pointer assignment.
7.2 if Clause
There are two forms of the clause defined by:

if clausedo clause|
if clausethen clauseelseclause

if clause: bool do clause: void => void
t : type, if clause: ool then clause: t elseclause: t => t

In the single armed version, if the condition afterithe true,then the clause after the
do is executed. For example, in the clause

ifa<bdoa:=3

the value 3 will be assigneddoif a is smaller that before thef clause is executed.

The second version allows a choice between two actions ritatle. Ifthe first clause
is true, then thesecond clause is executed, othervitse third clause iexecuted.
Notice that thesecond and third clausese of the same type and the result ighait
type. The following contains two examplesfoflauses:

29

if x=0theny:=1elsex:=y-1
let temp =if a < bthen 1 else5

7.3 case Clause

Thecaseclause is a generalisation of tiieclause which allowshe selection of one
item from a number of possible ones. The syntax is:

casecl_auseof case__lisujefault : clause
case_list::= clause_list clause; [case_lisk

t: type ; tl : nonveoid, caseclause: tl of case_list

default : clause: ft =>
wihere case_list:= clause_list clause: t ; [case_list
wihere clause_list = clause: tl [, clause_list

An example of the use of tltaseclause is

casenext_car_colouof

6,4 : "green”
3-2: "red"
default : "any"

During the execution ofhis clausethe valuenext car_colouris compared in strict
order, i.e left to right, top to bottom, withe expressions othe lefthand side of the
colon. When a match is found the clause on the hght side is executed. Control is
then transferred to the next clause afterdhse clause. If namatch isfound then the
default clause is executed. The aboaseclause has result typstring.

7.4 repeat ... while ... do Clause
There are three forms of this clause which allow loops to be constructethevitbst at
the start, the end or the middle of the loop. The three farm&ncapsulated in the two
production alternatives:

repeat clausewhile clause[do clausé | while clausedo clause

repeat clause: void while clause: bool [do clause: void] => vaoid
while clause: bool do clause: void => void

In each of the thretormstheloop is executed untthe boolean clause false. The
while do version is used tperform a loop zero or martymes, whereathe repeat
while is used for one or many times.

An example of theepeat ... while ... do clause is

30

let factorial := 1 jJeti:=0

repeat

begin
writeString ("Factorial ") ; writelnt (i)
writeString (" is ") ; writelnt (factorial)
writeString ("'n")

end

while i<8do{i:=i + 1 ; factorial := factorial * i}

7.5 for Clause

Thefor clause is included in the language as syntattigar whereghere is a fixed
number of iterations defined at the initialisation of the loop. It is defined by:

for identifier = clauseto clause[by clausé do clause

for identifier= clause: int to clause: int])
[by clause: int] do clause: void => void

in which the clauseare: the initialvalue, the limit, the increment and the clause to be
repeated, respectively. The first three are of ipp@nd arecalculatedonly once at the
start. Theby clause may be omitted where the increment Ehé&.identifier, known as
the controlconstant, is in scope withithe void clausetaking on the range of values
successively defined byitial value,increment and limitThatis, the control constant
is considered to be declared at the start of the repetitse.The repetition clause is
executed as many times ascessary t@omplete thdoop andeach time itis, the
control constant is initialised to mew value, starting withthe initial loop value,
changing by the increment until the limit is reached. An exampldaf@ause is:

let factorial ;=1 Jletn =8
for i = 1to ndo factorial := factorial * i

With a positive increment, théor loop terminateswhen the control constant is
initialised to a value greater than the limMi¥ith a negativeincrement, thefor loop
terminates when the control constant is initialised to a value less than the limit.

31

8 Procedures
8.1 Declarations and Calls

Procedures in Napier88 constitute abstractions over expressions, if they realue,a
and clauses of type void if they doot. In accordance withthe Principle of

CorrespondencgStr67], any method of introducing mame in a declarationas an
equivalent form as a parameter.

Thus, indeclarations of databjects, giving aname an initial value is equivalent to
assigning the actual parameter value to the formal parameter. Sincethieisnty type

of declaratiorfor data objects in théanguage, it is alsthe only parametetpassing
mode and is commonly known eall by value

Like declarations, the formal parameters representatg objectsnust have amame, a

type and an indication of whether they are variablearstant. A procedure which
returns a value must also specify its return tylree scope ofthe formal parameters is
from their declaration tahe end of the proceduause. Proceduremre defined as
literals with the following syntax:

proc_literal ;.= proc [type_parameter_li${[named_param_lit
[->type_id); clause
type_parameter_list ::=[identifier_lis{

named_param_list ::=[constan{ identifier_list: type_id[;

named_param_lit

t : type, proc [type_parameter_lit[named_param_ligt
[->type_id: t]); clause: t

Thus, the integer identity procedure, calleidid, may be declared by:

letint_id =proc (n:int - int) ; n

The syntax of a procedure call is:

expression([applicatior])
application = clause_list

t : type, expression proc ([clause_lis}) => t _
where clause_list:= clause: nonvoid [,clause_lisk

There must be a one-to-one correspondence betiheeactuabnd formal parameters
and their types. Thus, all theinteger identity procedure givabove,the following
could be used,

int_id (42)

which will evaluate to the integer 42.
The type ofint_id is writtenproc (int - int).

To complete thdrinciple of Correspondencdor proceduresthe parameters may be
made constant.Variable parameters may lassigned tobut since they ardocal

32

variables this onhjhaslocal effect. Constant parametersay not beassigned to. For
example,the parameten in int_id is not assigned to and mmore appropriately a
constant. Therefore, the declaration should be:

let int_id =proc (constantn :int - int) ; n

Note that the constancy of the parameter is not part of tyyge, anotion that is
important when deciding type equivalence.

8.2 Recursive Declarations

Recursive and mutually recursive declarationproiceduresare allowed inNapier88.
For example,

rec lettak =proc (X, y, z :int - int)
if x <=ythenzelsetak (tak (x-1,y, z),
tak (y - 1, z, x),
tak (z-1, x,y))

declares the recursive Takeuchi procedure.

Mutually recursive procedures may also be defined. For example,

rec let expression $roc () ; repeatexpl ()while have ("or")
& expl =proc () ; repeat exp2 ()while have ("and")
& exp2 =proc ()
casesymbof
"identifier" : next_symbol ()
default : {mustbe ("(") ; expression () ; mustbe ("))}

declares three mutually recursive procedures.

8.3 Polymorphism

Polymorphism permits abstraction over type. For example,

let id = proc [t] (constantx : t - t); X

declares a procedutbkat is the identityprocedure forall types. The square brackets
signify that the procedure type is universally quantified by a typ@d that once given
that type, the procedure is from typt t. To callthis proceduréhe programmer may
write,

id [int] (3) which yields 3, or,
id [real] (4.2) which yields 4.2

or the type parameter may be used by itself. For example,

33

id [int] which yields a procedure equivalentind id above.

Thus, one procedurd, is in fact, annfinite number of identityprocedurespne for

each type as it is specialised. The square bracketgutotifier type variables aresed

to signify that types are not part of the value space of the language, but are based on the
philosophy that types are sets of values.

The type ofd is written as
proc [t] (t - t)

in Napier88. Procedures of these polymorphic tygredirst class andnay bestored,
passed as parameters and returned as results, etc.

The advantage of the polymorphic abstracstiould be obvious ithe context of
software reuse. Faxample, a procedure to sorvector of integers may be written
and another procedure ®ort a vector of reals. By usingthe polymorphism in
Napier88, one procedure for all types, instead of a differenfaneachtype, may be
written. Thisgreatly reduces the amount of cotfat has to bewritten in a large
system.

8.4 Equality and Equivalence

Two proceduresire equal ifNapier88 if and only if their valuesre derivedrom the
same evaluation of the same procedure expression. For the cognoscenti, thihaiteans
they have the same closure.

In common with all aggregate objects in Napier88, equality means identity.

Two procedure typeare structurally equivalent if they have the same parartygies
in one-one correspondence and the same regudt For polymorphic procedures,
there is the additional constraint that they have the same number of quamsifiéra a
consistently substitutable manner.

In terms of types as sets, the polymorphic procedanesnfinite intersections di/pes
[CW85].

The declaration of a quantifier type variable acts as if the typaésvabasetype for

type equivalence purposes. Thus quantifier type variables are only equivalent if they are
derived fromthe same instantiation of the same type varididentifier). As a
consequence, a value of a quantifier type varititd@ehasbeen injected into an infinite
union may only be projected onto the same quantifier type variable.

34

9 Aggregates

Napier88 allowshe programmer tgroup together data objects into larger aggregate
objects which may then be treated as single objects. There are three such object types in
Napier88:vectors, structureand images. Ithe constituent objects are of the same
type, a vector may be used and a struottiherwise.Images are collections gixels.

Vectors, structures arithages have the same civights as any othedata object in
Napier88. Bothabstract datéypes (Chapter 11) and environments (Chapter 14) may
also be considered methods of aggregation, but we have chos@ratothem
separately.

All aggregate data objects Mapier88 have pointesemantics.That is, when an
aggregate data object is created, a pointer to the locations that make up the object is also
created. The object is always referred to by the pointer which may be passed around by
assignment and testefdr equality. The location containing the pointer and the
constituent parts of the aggregate data object may be independently constant or variable.

9.1 Vectors

9.1.1Creation of Vectors

A vector provides amethod of grouping together objects of the santgpe. Since
Napier88 does natllow uninitialisedlocations,all the initial values of theelements
must be specified. The syntax is:

vector_constr
vector_element_init

[constan{ vector vector_element_init
rangeof clause| rangeusing clause|
@clauseof [clause[, clauséd*]
clauseto clause

range

t : nonvoid, vector rangeof clause: t => *t

t : nonvoid, vector rangeusing clause: proc (int -> t) => *t

t : nonvaoid, vector @ clause: Int of [clause: t [, clause:]*] => *t
wihere range ::=clause: init to clause: int

For example,

vector @1of[1, 2,3, 4]

is a vector of integers, whos$gpe is written agint, with lower bound land variable
locations initialised to 1, 2, 3 and 4. Similarly,

let abc :=vector @1of [1, 2, 3,4]

introduces a variablabc of type *int and the initial value expressed above.

Multi-dimensionalvectors, whichare not necessarikectangularcanalso be created.
For example,

35

let Pascal =constant vector @1 of |
constant vector @1 of
constant vector @1 of
constant vector @1 of
f
f

[1

[1,1

[1,2,1],
constant vector@lof[1, 3,3, 1],
constant vector@lof[1, 4,6,4,1],
constant vector@1of [1, 5, 10, 10, 5, 1]]

Pascalis of type **int. It is constant, as are all its elements. This is a fixed table.

The use ofthe word constant beforevector indicates that the elements are to be
constant. The checking for constancy will be performed when an assignment is made to
the element. The pointer constancy is determined biyithep, which is = in thiscase

and so indicates that the pointer is also constant.

The aboveform of vectorexpression is sometimes very tedious to wfde large
rectangular vectors with a commanmitial value. Therefore another form of vector
expression is available. For example

vector -1to 3 of -2

produces a five element integer vector with all the elements variable and initialised to -2.
The lower bound of this vector is -1 atia upper bound is 3The element initialising
expression is evaluated only once and the result assigned to each of the elements.

A third form of vector initialisation iprovided to allowthe elements of a vector to be
initialised by a function over the index. For example,

let squares proc (n:int - int) ; n*n
let squares_vector sonstantvector 1to 10using squares

In the initialisation, the procedurguaresis calledfor every index of the vector in
order fromthe lower to upper boundThe correspondingelement is initialised to the
result of itsown index beingpassed tdhe procedure. Inthe abovecase,the vector
squares_vectonas elements initialised to 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.
The initialising procedure must be of type

proc (int - t)

and the resulting vector is of type This style of initialisation is particularlyseful for
vectors with constant elements.

The creation of a vector may call the standard error procethkeVectar
9.1.2upb and Iwb
It is often necessary to interrogate a vector to findbasnds.The standard procedures

upb and Iwb are provided in Napier88 for thipurpose.They are defined in the
Napier88 Standard Library Reference Manual [KBC+96] and are of type

36

proc [t] (*t - int).
9.1.3Indexing

To obtain the elements ofvector, indexing isised. For vectorghe index isalways
an integer value. The syntax is:

exp6
dereference

expressioridereferenc
clause[, dereferencke

t : monvoid, expression *t (clause: int) =>
For example,
a(@3+4)

selects theelement of the vecta which is associated witthe index value 7Multi-
dimension vectors may be indexed by using commas to separate the indices.

Indexing expressionsnay call thestandard error procedureectorindexSubsand
assignment to a vector element may eatitorindexAssigandvectorElementConstant

9.1.4Equality and Equivalence

Two vectorsare equal if they have the sarngentity, that is, the samepointer. Two
vectors are type equivalent if they have equivalent element types. Notice that the bounds
are not part of the type.

9.2 Structures

9.2.1Creation of Structures

Objects of differentypescan begrouped together into structure.The fields of a
structure have identifiers that are unique within that structure. The struatesets of
labelled cross products from the vakgace. Astructure may be created tiwo ways,

the first of which has the following syntax:

structure_constr:= struct ([struct_init_lis{)
struct_init_list = identifierinit_op clause[; struct_init_lis{

struct (struct_init_lis) => structure]
wihere struct_init_list::= identifier init_op clause: nonvoid [; struct_init_lis]

For example,

struct (a=1; b :=true)

creates a structure whose first field is a constant integerthgtidentifiera andwhose
second field is a variable boolean with the identifier

Structures may also be created using a type identifier. The syntax of structure types is:

structure_type ::=structure ([named_param_li}}
named_param_list= [constan{ identifier_list: type_id[; named_param_lit

37

For example, a structure type may be declared as follows:

type personis structure (constant name :string ; age, height int)

This declares a structutgpe, person with three fields of typestring, int and int,
respectively. Th@amefield is constant. It also declares the fieéntifiers,name age
andheight

To create astructure from a type declaratiothe type identifierfollowed by the
initialising values for the fields is used.

structure_creation = identifier [[specialisatiof] ([clause_lisf)

For example,

let ron = person("Ronald Morrison", 42, 175))

creates a structure of typersondefined above. The initialising values must be in one-
one correspondence with the structure type declaration.

9.2.2Indexing

To obtain a field of a structure, the field identifieused as an index. For example, if
ron is declared as above, then,

ron (age)

yields 42. For the indexing operation to be legal, the structure must contain a field with
that identifier. As with vectors, a constancy check is performed on assignment.

Field identifiers, when used as indices, are only in scope whkirtbracketgollowing
a structure expression. Thus these identifiers need only be unique edttirstructure

type.

A comma notation may be used for vectors or structures when the elements or fields are
themselves structures or vectors. The indexing of vectors and struotayebkerefore

be freely mixed. For example, \fis a vector of vectors giersonshenv(i)(j)(hame)
andv(i,j,name)andv(i,j)(hame)are equivalent expressions.

Attemptedassignment to a constant field of a structure will causestdedard error
procedurestructureFieldConstartb be called.

9.2.3Equality and Equivalence
Two structures are equal if they have the same identity (pointer).

The type of a structure is the set of the field identifier-type pairs. feistructuragon
has type:

structure (name string ; age int ; height :int)

38

Two structurehave equivalentypes wherthe types havethe same set of identifier-
type pairs for the fields. Note that the order of the fields is unimportant.

9.3 Images
9.3.1Creation of Images

An image is a rectangular grid of pixels. Images magrbated and manipulatesing
the raster operations provided in the language. The creation of images is defined by

image_constr ’
image_init
subimage_constr i’

constanf image clauseby clauseimage_init
of clause| using clause
limit clause[to clauseby clausg

[at clause clausg

image clause: inft by clause: int of clause: pixel => image
image clause: int by clause: int using clause: image => lmage
limit clause: image [to clause: :int by clause: int]

[at clause: Nt , clause: int] => image

The integer values followingt above must be 0 and are subjected to an upper bound
check.All other integer values must be > 0. If these conditiaresviolated, the
standard error procedungakelmages called.

An image is a two dimensional object made up of a rectangular grid of pixeisafye
may be created as follows:

let c =image5by 100f on

which create€ with 5 pixels inthe X direction and 10 in the direction,all of them
initialised to on. The origin of all images is 0, 0 and in this case the depth is 1.

Multi-plane images may be formed by using multi-plane pixels, such as in,

let a =image 64 by 32 of on ++ off ++ on ++ on

Images ardirst classdata objectsand may beassigned, passed g@srameters or
returned as results. For example,

letb:=a

will assign the existing imageto the new oné. In order tomap the operationssual
on bitmapped screens, the assignment does not make a new edpyt aferely copies
the pointer to it. Thus the image acts like a vector or structure on assignment.
9.3.2Raster Operations

There are eight raster operationkich may beused as described ithe following
syntax.

39

raster
raster_op

=raster_opclauseonto clause
=ror |rand |xor |copy |nand | nor | not | xnor

raster_opclause: image onto clause: image => vaid

thus, the clause

xor bonto a

performs a raster operationtmbntoa usingxor. Notice thata is alteredn situ andb
is unchanged. Both images have origin 0, 0 and automatic clippthg aktremities of
the destination image is performed.

The raster operations are performed by considéhaegmages as bitmaps aaltiering

each bit in the destination image according tostrcebit and theoperation.Multiple

plane raster operations are discussed in 9.3.4. The following gives the meanings of the
operations (D stands for destination and S for source):

Operation Interpretation Result
ror inclusive or SorD
rand and SandD
xor exclusive or S xor D
copy overwrite S
nand not and ~(Sand D
nor not inclusive or ~(S or D)
not not the source ~S
xnor not exclusive or ~Sxor D

Images may also be created by using an initialising image as a background pattern. For
example,

let d =constantimage 64 by 512 using abc

will create the image of size 64 X512 andthen copythe imageabc onto it asmany

times as isnecessary tdill it in both directions, starting at 0, 0. This style of
initialisation is particularly useful for setting up images with constant pixels and images
of regular patterns.

Rastering onto anmage of constant pixels causethe standard error procedure
imagePixelConstartb be called.

40

9.3.3Indexing

Thelimit operation allows the user to set up aliases to parts of images. For example,

let c =limit ato 1by 5at 3, 2

setsc to be that part ad which starts at 3, 2 and has size 1 by Bas an origin of 0,0
in itself and is therefore a window an

Rastering sections of images on to sections of other inmaggde performethy, for
example,

xor limit ato 1by 4at 6, 5onto
limit bto 3by 4at 9, 10

Automatic clipping on the edges of the limited regiopasformed. Ifthe starting point
of the limited region is omitted, then 0,0 is used arttigfsize of the region ismitted
then it is taken as the maximymossible.Thatis, it istaken fromthe starting point to
the edges of the host image. Limited regions of limited regions may also be defined.

If the source and destination imagmserlap,then the raster operation is performed in
such a manner that each pixel is used as a source before it is used as a destination.

The evaluation of thémit operation may cause tiséandard error procedurésiitAt
andlimitAtBy to be called.

9.3.4Depth Selection

All the operations that have already been seen on infeagsr,limit and assignment)
work more generally with depth. Thus the raster operations petf@master function
plane by plane in one - one correspondence between source and destuiimRtic
depth clipping at the destinationperformed, and ithe source has fewer plandsan
the destination, then the extra planes will remaialtered.The limit operationworks
over all the planes of an image.

The depth of the image may be restricted by the depth selection operation. For example,
assuming the earlier definition af

leth=a(1]2)

yieldsb which is an alias for that part afwhich has the two depth planes 1 and 2. 1 is
g;e??g?lrt plane and 2 is the numbeplaines.b hasdepth origin 0 and dimensions 64
The full syntax of the depth selection operation is

exp6 = expressioriclause| clausg

expressiorn image (clause: int | clause: int) => image
This indexing expression may call the standard error procedbimage

41

9.3.5Equality and Equivalence
Two images are equal if they have the same pointer.

All images have equivalent types.

42

10 Variants
10.1 Variant Types

Variants are sets of labelled disjoint sums from the value space. A variant value has one
of these identifier-value pairs. A variant type may be defined by

variant_type ::=variant ([variant_fieldg)
variant_fields ::=identifier_list: type_id[; variant_field$
For example,

type this_variants variant (a :int ; b :real)

declares a typthis_variantwhich may be aa : intor ab : real

10.2 Variant Values

A variant value may be formed by naming the variant type and injecting the identifier-
value pair into it. The syntax is:

variant_creation ::=identifier [[specialisatiof (identifier: clause

For example

let A := this_variant (b : 3.912)

declares a valua of type:

variant (a :int ; b :real)

with the value of value3.912 injectedwith the identifierb. The variant type must
contain the identifier-type pair that is used in the initialisation.

10.3 isand isnt

A variant object can be tested for having a particular identifier. The syntax is:

exp2 = exp3[type_opdentifier]
type_op::= is |isnt
expressiorn variant type_opdentifier => hool
wheretype_op:= is|isnt
Thus,
Aisb

43

is legaland will yield the boolean valugue. A compilationerror will occur if the
variant type does not contain the identifier tag.

10.4 Projection out of Variants

Variants are particularlyseful when used igonjunction with recursiveypes. For
example, the type definition for a list of integers might be:

rec typeintList is variant (cons : intNode ; tip null)
& intNode s structure (head int ; tail : intList)

The first element of the list is formed by

let first = intList (tip :nil)
let next :=intList (cons struct (hd = 2 ; tl := first))

In order to facilitate static typehecking, avalue injected into a variant rebound to a
constant location by theroject clause. The syntax is:

project clauseasidentifier onto project_listdefault : clause
project_list = . |variant_project_list
variant_project_list = identifier clause; [variant_project _list

t : type, project clause: variant asidentifier onto variant_project_list
default : clause: t =>
where variant_project_list ::=identifier: clause: t ; [variant_project_lisk

The projected value is given a constant binding to the iderfiilerving the as. The

scope ofthe identifier is the clauses on the rigiand side ofthe colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projectivaritime

is compared to each of the labels on theHeftd side othe colons. The first match
causeghe corresponding clause ahe righthand side to be executeWithin the

clause the identifierhasthe type of the projectechlue. Control passes the clause
following the project clause.Within the default clause,the constant identifier is
bound to the original variant value.

For example, a procedure to reverse a list might be:

44

rec typeintList is variant (cons : intNode ; tip null)
& intNodeis structure (hd :int ; tl : intList)

let reverselList fproc (list : intList — intList)
begin
let temp := intList (tip nil) ; let done :=false
while ~donedo
project list as X onto
cons: begin
temp :=intList (cons struct (hd = X (hd); tl := temp))
list := X (tl)
end
default :done :=true
temp
end

10.5 Variant Usage

The value of a variant may be projected using the single quotd’) notation. The
syntax is

expression‘identifier
For example, assuming the definition givenAabove, A'b yieldghe value3.912 of
type real. The scope ofthe variant identifiers isuchthat they mayonly be used in
variant injections and after the symbdsisnt and '.

The above procedure to reverse an integer list might be written as

let reverseList sproc (list : intList — intList)
begin
let temp := intList (tip nil)
while list isnt tip do
begin
temp :=intList (cons struct (hd = list'cons (hd); tl := temp))
list := list'cons (tl)
end
temp
end

The evaluation of the ' operation may causesthadard error proceduvarProjectto
be called.

10.6 Equality and Equivalence
Two variant types are equivalent if they have the same set of identifier-type pairs.

Two variants are equal if they have equivakypies,the same identifietags andequal
values.

45

11 Abstract Data Types

Abstract data types may be used where the data object displays some abstract behaviour
independent of representation type. Thus it is a seowuhanisnfor abstracting over

type.
11.1 Abstract Data Type Definition

Abstract data types may be introduced by the following syntax:
abstype ::= abstypetype_parameter_lisfnamed_param_li$}

Thus,

type TESTis abstype[i] (a: i;constantb :proc (i — i))

declares the typ€ESTas abstractThe type identifiers that aenclosed in thequare
brackets are called the witness type identifiers and are the types that are abstracted over.

A comparison can benade with polymorphic procedures which have universally
guantified types. These abstract tyes existentially quantified and constitudéinite
unions over types [MP88].

The abstract data type interface is declared betweerotimel brackets. Irthe above
case, thaype has two elements, feeld a with typei and a constant proceduvewith

type
proc (i - i).

11.2 Creation of Abstract Data Objects

To create an abstract data object, the following syntax is used:
abstype_creatiori= expressiorispecialisation ([clause_lis})

For example,

letinc_int =proc (a:int — int) ;a+1
let this = TEST int] (3, inc_int)

declares the abstract data obj#us from the type definitionTEST, the concrete (as
opposed toabstract)witness type int, the integer 3 and procedumec_int In the
creation, the values must be in one-one type correspondence with the type definition.

Once theabstract data object isreated,the user can never agairtell how it was
constructed. Thuthis has type:

abstypeli]j(a:i;b:proc (i - i))

and the user can never discover that the witness type is integer.

46

let that = TEST int] (-42, inc_int)

creates another abstract data object. Although it is construsiiegithe same concrete
witness type, this information is abstractacer, thereforethis andthat have the same
type, namely,

abstype[i] (a:i;b:proc (i - i))

as doeslsobelow:

let inc_real =proc (b :real - real) ; b+ 1.0
let also = TESTieal] (-41.99999, inc_real)

Thus a vector of the objects can be formed by:

let abs_ TEST_ vec sonstantvector @1 of [this, that, also]

since they have the same type.

11.3 Use of Abstract Data Objects

Since the internal representation of an abstract data objeictdien, it isinappropriate
to mix operations from one with anotheéfhatis, the abstract data object is totally
enclosed and may only be used with its own operations.

A second requirement in the system is that the type checking on the use of these objects
is static.

To achieve the above aims, theeclause is introduced to define a constant binding for
the abstract data object. This constant binding can then be indexed to refer to the values
in a manner that is statically checkable. The syntax aighelause is

useclauseasidentifier [witness_declsn clause

useclause: @bstype asidentifier [witness_declsin clause: void => void

For example,

useabs_TEST vec (13sX in
begin

X (a) := X (b) (X (a))
end

which will apply the procedureto the valuen, storingthe result ina, for the abstract
data object referred to by abs TEST {&k X is declared as a constant initialised to
abs TEST vec (1).

47

This could be generalised to a procedure to act on any of the elements of the vector. For
example,

let increment = proc (this_one : TEST)
usethis_oneas X in
begin
X (a) := X (b) (X (a))
end

let lower = lwb [TEST] (abs_TEST_vec)
let upper = upb [TEST] (abs_TEST_vec)

for i = lowerto upperdo increment (abs_TEST_vec (i))

The scope ofthe identifiers in the interface is restricted to within the cldolewing
the constant binding identifier.

In theuseclause, the witness types may be named for use. For example,

usethisas X [B] in

begin
let id =proc (x: B - B) ; X
let one := X (a)
one :=id [B] (one)

end

which renames the witness typeBaand allows it to be used as a tygentifier within
theuseclause.

11.4 Equality and Equivalence
An abstract data object is only equal to itself, that is equality means identity.

Two abstract data types are equivalent if they have the same idemtifreequivalent
types inthe interface and the same numbematness types used in substitutable
manner.

Two witness typesre only equivalent if they derive frorthe same instance of the
abstract data type. Thus a value of a witrigge thathasbeen injected into an infinite
union may only be projected ontehe corresponding witness dhe same abstype
instance.

48

12 Files

The file data type isused to accesthe I/O devices that are available to thest
environment in which the Napier88 system is implementefile Anay refer to either a
disk file, a terminal, anouse, aablet, anX-window, a socket, &hell or a raster
graphics display. There are certain operations that are specific to each kiecandl a
range of operationapplicable to alffiles. A value of type file is implemented as a
pointer to an object thatescribeshe /O deviceand its associatedtate. A set of
standard procedures is providedcteateand manipulatdoth file descriptors and the
I/O devices they refeto. The operation of each of ttetandard procedures is fully
described in the Napier88 Standard Library Reference Manual [KBC+96].

12.1 File Literal

There is only one literal of type fil@jlfile . See Section 4.10.

12.2 Equality and Equivalence
Two values of type file are equal if they are the same file.

All values of type file have equivalent types.

49

13 Type any
Type any is the type of thenion ofall values inNapier88.Valuesmust beexplicitly
injected intoand projected from typany. Both of these operationare performed
dynamicallyand, inparticular, the projectionfrom any to another type involves a
dynamic typecheck. Wehave argued elsewhere [ABC+8Bhtsuch atype check is
required to support the binding of independently prepared prograntatna a type
secure persistent object store.
13.1 Injection into Type any
Values may be injected into type any by the following syntax:

any (clausg

t : nonveid, any (clause: t) => any

For example,

let int_any =any (-42)

which declarest_anyto be the integer value -42 injected into type any.

Values of type any may beassed as parameters. For examiple following is an
identity procedure for type any.

let id_any =proc (x : any - any) ; X

Thus polymorphic proceduremay be written byusing type any and injecting the
parameters into any before the call and projecting the results after the call.

13.2 Projection from Type any
Values may be projected from type any by use optbgect clause.

project clauseasidentifier onto project_listdefault : clause
project_list = any_project_lis{ ...
any_project_list::=type_id: clause; [any_project_lisit

t : type, project clause: any asidentifieronto any_project_list
default : clause: t=>t
where any project_list:= type_id: clause: t ; [any_project_list

The projected value is given a constant binding to the iderfiilewving the as. The

scope ofthe identifier is the clauses on the rigiand side ofthe colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projection, the type is
compared to each of the types on the left hand side of the colons. The first match causes
the corresponding clause tre righthand side to be executédlithin the clause, the
identifier hasthe type of the projectedalue. After execution of theproject clause,

control passes to the clause following tineject clause.

An example of projection is:

50

let write_type =proc (x : any - string)
project x as X onto

int : "type is integer”
real: "typeis areal"
default : "type is neither integer nor real"

13.3 Equality and Equivalence

Two values ottype any are equal if anmhly if they can be projectednto equivalent
types and the projected values are equal.

All values of type any are type equivalent.

51

14 Environments

Environments [Dea89] are the infinitenion of all labelled cross products.
Environments differ from structures in that bindings may be added to or removed from
environments dynamically. This mechanisnused in Napier88 to provide raethod

for dynamically composing block structure anihus controlling the namespace.
Environments also provide a method of storing and composing independently prepared
programs and data, and thus control of the persistent object store intidigmguage
resides.

A binding in Napier88 has four components: an identifiety@e, avalue and a

variable/constant location indicator [AM88]. The type environment is writtesnasn

Napier88.

14.1 Creating a New Environment

A new environment is created by using the standard proceduirenmenbf type:
proc (- env)

Calling this procedure creates an environment withindings. The procedure is fully
described in the Napier88 Standard Library Reference Manual [KBC+96].

14.2 Adding Bindings to an Environment
Bindings are added to environments by means of declarations. The syntax is:

env_decl:= in clauselet object_init|
in clauserec let rec_object_inif& rec_object_inif*

object_init = identifierinit_op clause
rec_object_init ::= identifierinit_op literal
init_op = =|:=

Thus the program segment,

let this = environment ()
in thisleta =3

creates an environmethiis. In the environment, it creates the bindwigh identifier a,

value 3, type integer and constant, i.e. {a, 3, int, constant}. The binding is added to the
environment this, but not to thelocal scope. The standard error procedure
envRedeclaratiors called if thebinding to be addedoes nothave a unique identifier
within the environment.

Another binding may be added by writing:

in thisrec let fac :=proc (n :int - int)
if n = Othen 1elsen * fac (n-1)

after which this now hasthe form {a, 3, int, constant} {fac,proc..., proc (int -
int), variable}

52

Non-recursive declarations dfindings are added to environments one atirae.
Recursive declarations are addehultaneously, although ithe above case there is
only one. This corresponds téhe scoping rules for non-recursive and recursive
declarations in blocks.

An example of mutuallyrecursive procedures in an environment is given by the
following:

rec type list [t] is variant (cons : node [t] ; tip null)
& node [s]is structure (hd : s ; tl : list [s])

rec type objectis variant (ron :bool ; fred : list [object])

in thisrec let show =proc (this : object- string)
project thisas X onto
ron :if X then "true" else"false"
fred : "[" ++ showlist (X) ++ "]"
default : ™

& showlist =proc (this : list [object] - string)
if thisis tip then ™
elseshow (this'cons (hd)) ++ "," ++ showlist (this'cons (|I))

Notice that although botshowandshowlistrefer to eaclother, neither appears in the

local scope. It would seethatnone ofthe calls on thesproceduresarebound at all.

To achieve the desired bindings for mutually recursive procedures in environments, the
rule is that the identifiers bind to the environment's objects being declared.

14.3 Using Bindings in Environments

The bindings in an environment are brought into scopeusgelause. The syntax is:

clause ::= useclausewith signaturein clause
signature ::= named_param_list
named_param_list ::= [constan{ identifier_list: type_id[;

named_param_lit
t : type, useclause: env with signaturein clause: t => t

For example, to usac declared earlier, the programmer may write:

usethiswith fac :proc (int - int)in ... fac ...

The effect of theiseclause is to bring the nanfec into scope at the head of the clause
afterin. fac binds to the location in the environment. Therefore, local assignméatt to
will alter the value in the environment.

Notice thatonly apartial match on thsignature of the environment iiecessary. For
every binding, the identifiers in thesemust be the same as in the environment binding
and the types equivalent. The constancy is determined by the original binding although
it may be separately specified as constant irueclause. Noupdate to a constant
value is allowed at run time and the compiler will flag as a syntax error any assignment
to a binding specified as constant. Bindings in the environthahtarenot specified in

53

the signature of theseclause are not in scope time clausdollowing in and may not
be used.

The standard error proceduenvProjectis called if thesignature in theuse clause
cannot be matched by the environment.

14.4 Removing Bindings from Environments

Bindings may be removed from environments byditup clause. The syntax is:
clause ::= drop identifierfrom clause
drop identifier from clause: env => vaid

For example,

drop facfrom this

The effect of the above is that the binding is no longer reacfrabiethe environment.

It does notimply the destruction of any object or any danglmederence, since other
bindings tothe value in thedropped binding willstill be valid. The standard error
procedureenvDropis called if the dropped identifier does not exist in the environment.

14.5 The contains Clause

An environment may be tested by the infix operatortainsto determine if it contains
a binding with certain characteristics. The syntax is

expé6 = clausecontains[constan{ identifier [: type_id|
clause: env contains [constan{ identifier [: type_id => hoaol
There are sever&ébrms of this whichallow testing of an identifier in an environment

binding, anidentifier-type pair, an identifier constancy binding and an identifier
constancy type binding. Thus, using the environrttf@agiven earlier:

this contains a true
this containsa :int true
this containsconstanta true
this containsconstanta :int true
this contains a :string false
this contains b false

14.6 Equality and Equivalence

Two values ottype environment are equal if they refer to the samaronment. All
environments have equivalent types.

54

15 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott,W.P. &
Morrison, R.“An Approach to Persisterffrogramming”. Computer
Journal 26, 4 (1983) pp 360-363JRL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1983.html#approach.persistence

[AM88] Atkinson, M.P. & Morrison, R. “Types, Bindingand Parameters in a
Persistent Environment”. InData Types and Persistence
Atkinson, M.P., Buneman, O.P. & Morrison, R. (ed)$pringer-
Verlag, Proc. 1st International Workshop on Persisiect Systems,
Appin, Scotland, In Series: Topics in Informati@ystems, Brodie,
M.L., Mylopoulos, J. & SchmidtJ.W. (series ed), ISBN 3-540-
18785-5 (1988) pp 3-20. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1988.html#types.bindings

[AMP86] Atkinson, M.P., Morrison, R. & Pratten, G.DDesigning a Persistent
Information Space Architecture”. IRroc. 10th IFIP World Congress,
Dublin (1986) pp 115-120. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1986.html#designing.pisa

[BBC+94] Balasubramaniam, D., Brown, A.L., Connor, R.C.H., Cutts,
Q.l., Dearle, A., Kirby, G.N.C., Morrison, R., Munro, D.S. &

Scheuerl, S. “The Napier88 tothe PersistentAbstract Machine
Compilation Rules”. University of St AndrewsTechnical Report
CS/94/9 (1994).

[BCC+88] Brown, A.L., Carrick,R., Connor,R.C.H., Dearle, A. &Morrison,
R. “The PersistenfAbstract Machine”. Universities dblasgowand St
Andrews Technical Report PPRR-59-88 (1988).

[BM92] Brown, A.L. & Morrison, R. “A Generic PersistenDbject Store”.
Software Engineering Journal 7, £1992) pp 161-168.URL:
http://www-ppg.dcs.st-and.ac.uk/Publications/1992.html#generic.store

[Bro89] Brown, A.L. “Persistent Object Stores”. Ph.D. Thesis, University of St
Andrews (1989). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1989.html#thesis.ab

[CBC+90] Connor,R.C.H., Brown, A.L., Carrick,R., Dearle, A. &Morrison,
R. “The Persistent Abstract Machine”. In Persistent Object
Systems Rosenberg, J. & Koch, D.M. (edgpringer-Verlag,Proc.
3rd InternationalWorkshop on Persister@bject Systems, Newcastle,
Australia, In Series: Workshops in Computingn RijsbergenC.J.
(series ed) (1990) pp353-366. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1990.html#pam

[CMMO91] Connor, R.C.H., McNally, D.J. & Morrison, R.“Subtyping and
Assignment in Databas®rogramming Languages”. IbDatabase
Programming Languages: Bulk Types and Persistent Data
Kanelakis, P. & Schmidt).W. (ed), Morgan Kaufmann, Proc. 3rd
International Workshop on Database Programming Languages,
Nafplion, Greece, In Series: (1991) Bpf3-382.URL.: http://www-
ppg.dcs.st-and.ac.uk/Publications/1991.html#subtyping.ass

55

[Con90]

[Cut92]

[CW85]

[DD79]

[Dea88]

[Dea89]

[KBC+96]

[Kir92]

[Kra85]

[Mat85]
[MBB+89]

[MBC+87]

Connor, R.C.H. “Types and Polymorphism in Persideeogramming
Systems”. Ph.D. ThesidJniversity of St Andrews (1990)URL:
http://www-ppg.dcs.st-and.ac.uk/Publications/1990.html#thesis.rc

Cutts, Q.l. “Delivering the Benefits of Persistence to System
Construction and ExecutionPh.D. ThesisUniversity of St Andrews
(1992). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#thesis.qc

Cardelli, L. & Wegner, P‘On Understanding Type$)ata Abstraction
and Polymorphism”ACM ComputingSurveys 17, 4 (1985) pp 471-
523.

Demers, A. & Donahue, J. “Revised Report Bassell”. Cornell
University Technical Report TR79-389 (1979).

Dearle, A. “On the Construction of Persistent Programming
Environments”. Ph.D. Thesis, University of St Andrews (19883L:
http://www-ppg.dcs.st-and.ac.uk/Publications/1988.html#thesis.ad

Dearle, A. “Environments: A flexible binding mechanismstgpport
system evolution”. IrProc. 22ndnternational Conference dBystems
Sciences, Hawaii (1989) p@6-55. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1989.html#environments

Kirby, G.N.C., Brown, A.L., Connor,R.C.H., Cutts, Q.l., Dearle,
A., DunstanV.S., Morrison, R. & Munro, D.S.“Napier88 Standard
Library ReferenceManual (Releas@.2.1)”. University of St Andrews
(1996). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1996.html#napier.lib.man.221

Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems™Ph.D. Thesis,University of St Andrews
(1992). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#thesis.gk

Krablin, G.L. “Building Flexible Multilevel Transactions in a
Distributed Persistent Environment”. IfProc. 2nd International
Workshop on Persistent Object Systems, Appin, Scotland (1987) pp 86-
117, Technical Report Universities ofGlasgow and St Andrews
Technical Report PPRR-44-87.

Matthews, D.C.J. “Poly Manual”. University of Cambridge (1985).

Morrison, R., Barter, C.J., Brown, A.L., Carrick, R., Connor,
R.C.H., Dearle,A., Hurst, A.J. & Livesey, M.J'Language Design
Issues in SupportingProcess-Oriented Computation in Persistent
Environments”. In Proc. 22ndnternational Conference on System
Sciences, Hawaii (1989) pp36-744.URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1989.html#processes.design.issues

Morrison, R., Brown, A.L., CarrickR., Connor,R.C.H., Dearle, A.

& Atkinson, M.P. “Polymorphism, Persistence and Software Reuse in a
Strongly TypedObject OrientedEnvironment”. SoftwareEngineering
Journal,December(1987) pp 199-204URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1987.html#polymorphism.reuse

56

[MBC+89a]

[MBC+89b]

[MCC+93]

[MDC+91]

[Mil78]

[Mor79]

[MP88]

[MTHS9]

[Mun93]

[PS88]

[SM92]

[Str67]

[Ten77]

Morrison, R., Brown, A.L., Connor,R.C.H. & Dearle, A. “The
Napier88 Reference Manual”. Universities of Glasgowl St Andrews
TechnicalReport PPRR-77-89 (1989)URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1989.html#napier.reference.manual

Morrison, R., Brown, A.L., Connor, R.CH. & Dearle, A.
“Napier88 Release 1.0”. University of St Andrews (1989).

Morrison, R., Connor, R.C.H., Cutts, Q.l., Kirby, G.N.C. &

Stemple, D. “Mechanisms for Controlling Evolution in Persis@ipject

Systems”. Journal of Microprocessarad Microprogrammingl7, 3

(1993) pp 173-181. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1993.html#evolution.mechanisms

Morrison, R., Dearle,A., Connor,R.C.H. & Brown, A.L. “An Ad-
Hoc Approach to the Implementation oPolymorphism”. ACM
Transactions on Programming Languages and Syst8mS3 (1991) pp
342-371. URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1991.html#poly.implementation

Milner, R. “A Theory of Type Polymorphism in Programming”. Journal
of Computer and System Sciences 17, 3 (1978) pp 348-375.

Morrison, R. “On the Development of Algol”. Ph.Dhesis, University
of St Andrews (1979). URL: http://www-ppg.dcs.st-
and.ac.uk/Publications/1979.html#thesis.rm

Mitchell, J.C. & Plotkin, G.D. “Abstract Typdsave Existentiallype”.
ACM Transactions on Programming Languages and SystEmns3
(1988) pp 470-502.

Milner, R., Tofte, M. & Harper, R.The Definition of Standard
ML . MIT Press, Cambridge, Massachusetts (1989).

Munro, D.S. “On the Integration of Concurrency,Distribution and
Persistence’Ph.D. ThesisUniversity of St Andrews (1993)URL.:
http://www-ppg.dcs.st-and.ac.uk/Publications/1993.html#thesis.dm

PS-algol “PS-algolReference Manual, 4th edition”. Universities of
Glasgow and St Andrews Technical Report PPRR-12-88 (1988).

Stemple, D. & Morrison, R. “Specifyinglexible Concurrency Control
Schemes: An Abstract Operatiomgbproach”. InProc. 15th Australian
Computer Scienc€onference, HobarfTasmania(1992) pp873-891,
TechnicalReport ESPRITBRA Project3070 FIDE FIDE/92/35. URL.:
http://www-ppg.dcs.st-
and.ac.uk/Publications/1992.html#flexible.concurrency

Strachey, C. Fundamental Concepts in Programming
Languages Oxford University Press, Oxford (1967).

Tennent,R.D. “Language Design Methods Based ddemantic
Principles”. Acta Informatica 8 (1977) pp 97-112.

Those references marked * are availabldtpi&rom:

57

ftp://ftp-ppg.dcs.st-andrews.ac.uk/pub/persistence.papers/
or viahttp from:

http://www-ppg.dcs.st-andrews.ac.uk/Publications/

58

59

Appendix |

Context Free Syntax

Session:
session 1:= sequence
sequence= declaration[; sequencf clause[; sequence
declaration .:=type_dec| object_decl

Type declarations:

type_decl ;.= type type_init| rec type type_init[& type_ini{*
type_init .= identifier [type_operator_ligtis type_id
type_operator_list .= [type_operatof, type_operatdj]
type_operator ::= identifier | identifier [type_operator_ligt

Type descriptors:
type_id = int |real | bool | string | pixel | pic [null |any |
env|image|file |identifier [parameterisatioh|
type_constructor
parameterisation:= [type_lis]
type_list = type_id[, type_lisi

type_constructar=*type_id| structure_typd variant_type|
proc_type| abstype

structure_type ::=structure ([named_param_li$}

named_param_list= [constan{ identifier_list: type_id[; named_param_lit

variant_type ::=variant ([variant_fieldg)
variant_fields ::=identifier_list: type_id[; variant_field$
proc_type ::= proc [type_parameter_ligt([parameter_list[-> type_id)

parameter_list ::=type_id[, parameter_ligt
abstype ::= abstypetype_parameter_lisfnamed_param_li$}

type_parameter_list ::=[identifier_lis{

60

Object declarations:

object_decl = let object_init|
rec let rec_object_inifé& rec_object_inif
object_init = identifierinit_op clause

identifierinit_op literal

rec_object_init ::

init_op

I
1
1

Clauses:

clause::= env_dec|

if clausedo clause|
if clausethen clauseelseclause|
repeat clausewhile clause[do clausg |
while clausedo clause|
for identifier = clauseto clause[by clausé do clausé
useclausewith signaturein clause|
useclauseasidentifier [witness_decl]sn clause|
caseclauseof case_listdefault : clause |
raster|
drop identifierfrom clause|
project clauseasidentifier

onto project_listdefault : clause|
name:= clause|
expression

env_decl:= in clauselet object_init|
in clauserec let rec_object_inif& rec_object_inif*

signature:= named_param_list
witness_decls ::=type_parameter_list

case_list::= clause_list clause; [case_list

raster ::= raster_opclauseonto clause
raster_op :=ror |rand | xor |copy|nand | nor | not | xnor
project_list :=any_project_lis{variant_project_list

any_project_list::=type_id: clause; [any_project_lisit
variant_project_list ::=identifier: clause; [variant_project_list

EXxpressions:

expression = expl[or expq*
expl = exp2[and expg*
exp2 = [~] exp3[rel_opexp3d

exp3 exp4[add_opexp4*

61

exp4

exps

exp6

dereference
specialisation
application
name
clause_list
Value constructors:

value_constructor

vector_constr

vector_element_init

range
structure_constr:=
struct_init_list
image_constr
image_init

subimage_constr

picture_constr

picture_op

exp5[mult_opexpg*

[add_op exp6

literal | value_constructof(clauseg |

begin sequencend | {sequencg|
expressioriclause| clause |
expressioridereferenci|

expressiondentifier |

expressiorispecialisatiol |
expressior{[application]) |

clausecontains [constan{ identifier [: type_id|
any (clauseg |

PS ()|

name

clause[, dereferenck

type_parameter_list

clause_list

identifier | expressior(clause_lis} [(clause_lis]]*

clause], clause_list

= vector_constj structure_constfimage_constf
subimage_constpicture_consti picture_op|
structure_creatiorjvariant_creation
abstype_creatiof

= [constan{ vector vector_element_init

= rangeof clause| rangeusing clause|
@clauseof [clause[, clauséd*]

= clauseto clause

struct ([struct_init_lis{)

= identifierinit_op clause[; struct_init_lis{

= [constanf image clauseby clauseimage_init
= of clause| using clause

= limit clause[to clauseby clauség
[at clauseclauség

= [clause clausg

= shift clauseby clause clause|
scaleclauseby clause clause|
rotate clauseby clause|
colour clausein clause|

text clausefrom clause clauseto clause clause

62

structure_creation = identifier [[specialisatiof] ([clause_lisf)

variant_creation = identifier [[specialisatiof] (identifier: claus¢
abstype_creation = expressiorispecialisation ([clause_lis})
Literals:
literal = int_literal | real_literal | bool_literal | string_literal | pixel_literal |
picture_literal| null_literal | proc_literal |image_literal| file_literal
int_literal w= [add_op digit [digit]*
real_literal = int_literal.[digit] *[eint_literal]
bool_literal = true |false
string_literal = " [char*”
char = any ASCII character except special_character
special_character = 'special_followj
" if not followed by aspecial_follow
special_follow = niplolt|b]|"|"
pixel_literal = on | off
null_literal = nil
proc_literal = proc [type_parameter_li§t{[named_param_lit
[->type_id); clause
picture_literal = nilpic
image_literal = nilimage
file_literal = nilfile

Miscellaneous and microsyntax:

add_ op = <+ |-

mult_op::= int_mult_op| real_mult_op| string_mult_op pic_mult_op|
pixel_mult_op

int_mult_ op = *|div [rem

real_mult_ op := |/

string_mult_op ::= + +

pic_mult_op = A E+

pixel_mult_op ::= + +

63

rel_op
eq_op
co_op
variant_op
identifier_list
identifier::=

id_follow

letter

digit

= eg_op| co_op| variant_op

= < | <=|=] ==

= is |isnt

= identifier [, identifier_lis{

letter [id_followj

= letter[id_follow] | digit [id_follow] | _[id_follow]

al|lblecldlelflglh[i]]]lk]I]m]
nljolplalr|s|tlulv]iw]|x]|y]|z]
A|B|C|D|E|IE|G|IH|I|I|KIL]|M |
NJOIPIQIRIS|TIU|IV|IWI|X]|Y]|Z
0]1112|3|4|5|6]|7|8]9

64

65

Appendix 1l
Type Rules
type arith is init |
type ordered is arith | string
type literal is ordered | ool | mixel |mic |mll |proc |file |limage

type nonvoid is literal | structure [wariant | @nv | any |
abstype | parameterised | poly | *nonvaoid
type type is nonvoid | void
Session :

sequence void ? => void
t : type, declaration: void ; sequence t => t
t ; type, clause: void ; sequence it =>
t: type clause:t =>t
Object Declarations :

declaration=> void
where object_decl

let object_init| rec let rec_object_init
[& rec_object_inif

identifier init_op clause: nonvoid
identifierinit_op literal : nonvoid

where object_init
wihere rec_object_init ::
where init_op >

Clausses :

in clause: env letobject_init| => void]
in clause: @nvrec let rec_object_init=> void

clause: env contains[constan{ identifier [: type_id => boal

if clause: bool do clause: void => void

t : type, if clause: boal then clause: t elseclause: t =>

repeat clause: void while clause: bool [do clause: void] => vaid
while clause: bool do clause: void => vaoid

for identifier = clause: inft to clause: int]]
[by clause: int] do clause: void => vaid

t : type, useclause: env with signaturein clause: t => t
useclause: abstype asidentifier [witness_declsin clause: void => void

t : ftype ; tl : nonvaoid, caseclause: &l of case_list
default : clause: ft =>

66

where case_list:= clause_list clause: t ; [case_lisk
where clause_list = clause: tl [, clause_list

raster_opclause: image onto clause: image => vaid

drop identifierfrom clause: @nv => void

t : type, project clause: any asidentifieronto any_project_list
default : clause: t => t

where any project_list:= type_id: clause: t ; [any_project_list

t : tyjpe, project clause: variant asidentifier onto variant_project_list
default : clause: t => t

wherevariant_project_list ::=identifier: clause: t ; [variant_project_lisk

t : nonveid, name: t := clause: t => void

Expressions :

expl: bool or expl: boaol => hool

exp2: ool and exp2: bool => bhool

[~] exp3: bool => hool

t : monveid, exp3: Tleq opexp3 ft=> bool
whereeq_op = | ~=

t : ordered, exp3: t co_opexp3: t=> bhool
whereco_op = < |<=]|>]| ==

expression variant variant_opidentifier => hool
where variant_op = Is |isnt

t : nonveid, any (clause : t => any

expressiort @nv contains[constan{ identifier [; type_id => bool
t : arith, exp4: t add_opexp4: t=>t

t 2 arith, add_opexp6: t =>t

expb5: int int_mult_opexp5: int => int
whereint_mult_ op = * |div [rem

expb: real real_mult_opexp5: real => real
wherereal_mult op = *|/

expb5: string string_mult_opexp5: string => string
wherestring_mult_op::= + +

exp5: Pi¢ pic_mult_opexp5: [pﬂ@ => [p)ﬂ@
where pic_mult_op A4+

exp5: pixel pixel muIt opexp5 pixel => pixel
where pixel_mult_op :

PS () => any

67

t: literal, literal : t=>t
t : nonveoid, value_constructor t => t
t : type, (clause: i) => 1
t . type, begin sequencetend => t
t : type {sequencef} =>t
expressior siring (clause: int | clause: int) => string
expression image (clause: int | clause: int) => image
expressiort pixel (clause: int | clause: int) => pixel
t : monvoid, expression *t (clause: int) =>
Velue constructors:
t : nonvoid, vector rangeof clause: t => *t
t : nonvoid, vector rangeusing clause: proc (int -> t) => *t

t : nonveid, vector @ clause: int of [clause: t [, clause: T]*] => *t
wihere range ::=clause: init to clause: init

image clause: int by clause: int of clause: pixel => image
image clause: int by clause: int using clause: image => image

limit clause: image [to clause: inft by clause: int]]
[at clause: Int , clause: Int] => IMmage

struct (struct_init_lis) => structure]
wihere struct_init_list::= identifier init_op clause: nonvoid [; struct_init_lis]

[clause: real , clause: real] => pic

shift clause: pic by clause: real , clause: regl => pic
scaleclause: pi¢ by clause: rezl , clause: resl => pic
rotate clause: pic by clause: real => pic

colour clause: [pic in clause: pixel => pic

text clause: string from clause: real , clause: real “
to clause: real , clause: real => pic

literals :
[add_op digit [digit]” == int
int_literal.[digit] "[eint_literal] => rezl

true |false => hoaol

68

" [chal* " => siring
on | off => pixel
nil => null

t : type, proc [type_parameter_li$t[named_param_ligt
[-> type_identifier: t]): clause: t

nilpic => pic
nilimage => image

nilfile => file

69

70

Appendix Il

Program Layout

Semi-Colons

As a lexical rule inNapier88, asemi-colon may be omitteethenever it is used as a
separator and it coincides withnawline. This allowsmany of thesemi-colons in a

program to bdeft out. However, tdhelp the compiler deducehere the semi-colons
should be, it is a rule that a line may not begin with a binary operator. For example,

a*
b

is valid but,

iS not.

This rule also applies to the invisible operator between a vector, structurager and
its index list and between a procedure and its parameters. For example,

letb=a(1,2)
is valid but,
letb=a
(1)

will be misinterpreted since vectors can be assigned.
Comments

Comments may be placed in a program by usingsyinebol !. Anything betweethe !
and the end of the line is regarded by the compiler as a comment. For example,

a+b laddaandb

71

Appendix 1V

Reserved Words

abstype and
begin bool
case colour
default div
else end
false file
if in
let limit
nand nil
of off
pic pixel
real rec
scale shift
text then
use using
variant vector
while with
xnor xor

any as
by
constant contains
do drop
env
for from
int image
nilfile nilimage
on onto
proc project
rem repeat
string struct
to true

72

at

copy

is isnt

nor not nilpic
or

ror rand rotate

structure

type

null

Index

Abstract Data Types
abstract data type creation, 46
abstract data type definition, 46
equality and equivalence, 48
using abstract data types, 47
Any
equivalence and equality, 51
injection, 50
projection, 50
arithmetic precedence rules. (see Expressions)
assignment clause. (see Clauses)

Backus-Naur form, 8
brackets, 27

case clause. (see Clauses)
Clauses

assignment, 29

case, 30

for, 31

if, 29

repeat, 30

while, 30
comments. (see Program layout)
comparison operators. (see Expressions)
constancy, 25
context free syntax, 60

context free syntax specification, 8

Declarations
data objects, 25
procedures. (see Procedures)
recursive objects, 27
recursive types, 28
type declarations, 26

Environments
adding bindings, 52
contains clause, 54
creation, 52
equality and equivalence, 54
removing bindings, 54
using bindings, 53
Expressions
arithmetic, 19
arithmetic precedence rules, 20
boolean, 17
comparison operators, 18
evaluation order, 17
expressions and operators, 17
operator precedence table, 23
picture, 21
pixel, 22
string, 20

73

expressions and operators. (see Expressions)

Files, 49
equality and equivalence, 49
for clause. (see Clauses)

hyper-programming, 7

identifiers, 25
if clause. (see Clauses)
Images
creation, 39
depth selection, 41
equality and equivalence, 42
indexing, 41
raster operations, 39
is and isnt, 43

Literals
boolean, 14
file, 16
image, 16
integer, 14
null, 15
picture, 15
pixel, 15
procedure, 15
real, 14
string, 14

lwb, 36

Napier
John, 4
Napier88
concurrency, 5
layered architecture, 6
semaphores, 5
Standard Library Reference Manual, 7, 17, 19, 23, 36, 49, 52
The Napier88 to the Persistent Abstract Machine Compilation Rules, 7
threads, 5
transactions, 5

operator precedence table. (see Expressions)

Persistent Abstract Machine, 7
Persistent store, 23
PISA project, 7
polymorphism, 33
principle of data type completeness, 13. (see Types)
Procedures
call, 32
declaration, 32
equality and equivalence, 34
polymorphic procedures, 33
recursive declarations, 33
Program layout
comments, 71
semi-colons, 71

74

raster operations. (see Images)
repeat clause. (see Clauses)
Reserved words, 72

scope rules, 27
separators, 71
sequences, 26
Structures
creation, 37, 38
equality and equivalence, 38

type rules, 66. (see Types)
Types
declarations. (see Declarations)
first class citizenship, 13
principle of data type completeness, 9
recursive definitions, 10
recursive operators, 11
recursive type declarations. (see Declarations)
structural equivalence, 12
type algebra, 10
type aliasing, 10
type equivalence, 12
type operators, 11
type rules, 12
universe of discourse, 9

universe of discourse. (see types)
upb, 36

variables, 25

Variants
equality and equivalence, 45
is and isnt, 43
projection, 44

types, 43
variant values, 43
Vectors
creation, 35
equality and equivalence, 37
indexing, 37
Iwb, 36
upb, 36

while clause. (see Clauses)

75

	Contents
	John Napier
	1 Introduction
	2 Context Free Syntax Specification
	3 Types and Type Rules
	3 . 1 Universe of Discourse
	3 . 2 The Type Algebra
	3 .2 .1 Aliasing
	3 .2 .2 Recursive Definitions
	3 .2 .3 Type Operators
	3 .2 .4 Recursive Operators

	3 . 3 Type Equivalence
	3 . 4 Type Rules
	3 . 5 First Class Citizenship

	4 Literals
	4 . 1 Integer Literals
	4 . 2 Real Literals
	4 . 3 Boolean Literals
	4 . 4 String Literals
	4 . 5 Pixel Literals
	4 . 6 Picture Literal
	4 . 7 Null Literal
	4 . 8 Procedure Literals
	4 . 9 Image Literal
	4 .1 0 File Literal

	5 Expressions and Operators
	5 . 1 Evaluation Order
	5 . 2 Boolean Expressions
	5 . 3 Comparison Operators
	5 . 4 Arithmetic Expressions
	5 . 5 Arithmetic Precedence Rules
	5 . 6 String Expressions
	5 . 7 Picture Expressions
	5 . 8 Pixel Expressions
	5 . 9 The Persistent Store
	5 .1 0 Precedence Table

	6 Declarations
	6 . 1 Identifiers
	6 . 2 Variables, Constants and Declaration of Data Objects
	6 . 3 Declaration of Types
	6 . 4 Sequences
	6 . 5 Brackets
	6 . 6 Scope Rules
	6 . 7 Recursive Object Declarations
	6 . 8 Recursive Type Declarations

	7 Clauses
	7 . 1 Assignment Clause
	7 . 2 if Clause
	7 . 3 case Clause
	7 . 4 repeat ... while ... do Clause
	7 . 5 for Clause

	8 Procedures
	8 . 1 Declarations and Calls
	8 . 2 Recursive Declarations
	8 . 3 Polymorphism
	8 . 4 Equality and Equivalence

	9 Aggregates
	9 . 1 Vectors
	9 .1 .1 Creation of Vectors
	9 .1 .2 upb and lwb
	9 .1 .3 Indexing
	9 .1 .4 Equality and Equivalence

	9 . 2 Structures
	9 .2 .1 Creation of Structures
	9 .2 .2 Indexing
	9 .2 .3 Equality and Equivalence

	9 . 3 Images
	9 .3 .1 Creation of Images
	9 .3 .2 Raster Operations
	9 .3 .3 Indexing
	9 .3 .4 Depth Selection
	9 .3 .5 Equality and Equivalence

	1 0 Variants
	1 0 .1 Variant Types
	1 0 .2 Variant Values
	1 0 .3 is and isnt
	1 0 .4 Projection out of Variants
	1 0 .5 Variant Usage
	1 0 .6 Equality and Equivalence

	1 1 Abstract Data Types
	1 1 .1 Abstract Data Type Definition
	1 1 .2 Creation of Abstract Data Objects
	1 1 .3 Use of Abstract Data Objects
	1 1 .4 Equality and Equivalence

	1 2 Files
	1 2 .1 File Literal
	1 2 .2 Equality and Equivalence

	1 3 Type any
	1 3 .1 Injection into Type any
	1 3 .2 Projection from Type any
	1 3 .3 Equality and Equivalence

	1 4 Environments
	1 4 .1 Creating a New Environment
	1 4 .2 Adding Bindings to an Environment
	1 4 .3 Using Bindings in Environments
	1 4 .4 Removing Bindings from Environments
	1 4 .5 The contains Clause
	1 4 .6 Equality and Equivalence

	1 5 References
	Context Free Syntax
	Type Rules
	Program Layout
	Reserved Words
	Index

