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Abstract

A cluster-based server consists of a front-end dispatcher and multiple back-end servers. The dispatcher receives incoming jobs,
and then decides how to assign them to back-end servers, which in turn serve the jobs according to some discipline. Cluster-based
servers have been widely deployed, as they combine good performance with low costs.

Several assignment policies have been proposed for cluster-based servers, most of which aim to balance the load among back-
end servers. There are two main strategies for load balancing: The first aims to balance the amount of workload at back-end servers,
while the second aims to balance the number of jobs assigned to back-end servers. Examples of policies using these strategies are
Dynamic and LC (Least Connected), respectively.

In this paper we propose a policy, called LC*, which combines the two aforementioned strategies. The paper shows
experimentally that when preemption is admitted (i.e., when jobs execute concurrently on back-end servers), LC* substantially
outperforms both Dynamic and LC in terms of response-time metrics. This improved performance is achieved by using only
information readily available to the dispatcher, rendering LC* a practical policy to implement. Finally, we study a refinement,
called ALC* (Adaptive LC*), which further improves on the response-time performance of LC* by adapting its actions to incoming
traffic rates.
Published by Elsevier B.V.
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1. Introduction

Web servers are becoming increasingly important as the Internet assumes an ever more central role in the
telecommunications infrastructure. Applications that handle heavy loads commonly use a cluster-based architecture
for Web servers because it combines low costs with good performance. A cluster-based server consists of a front-end
dispatcher and several back-end servers (see Fig. 1). The dispatcher receives incoming jobs and then decides how to
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(IEEE NCA04).
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Fig. 1. Architecture of a cluster-based server.

assign them to back-end servers, which in turn process the jobs according to some discipline. The dispatcher is also
responsible for passing incoming data pertaining to a job from a client to a back-end server. Accordingly, for each job
in progress at a back-end server there is an open connection between the dispatcher and that server.

Several dispatcher assignment policies have been proposed for this type of architecture (see, e.g., [3,16,18,21]).
Generally, these policies attempt to balance the load among back-end servers according to two main strategies:
balancing the amount of workload at back-end servers, and balancing the number of jobs being processed by back-end
servers.

Policies balancing the amount of workload. Well-known policies that fall into this category include Dynamic [20]
and Size-Range [10,5,17]. Under Dynamic, the dispatcher assigns an incoming job to the back-end server with the
smallest amount of residual workload, i.e., the sum of service demands of all jobs in the server queue plus the residual
workload of the jobs currently being served. This policy is optimal from the standpoint of an individual task [10],
provided that the following assumptions hold: (a) jobs arrive at the dispatcher according to a Poisson process; (b) job
sizes follow an exponential distribution; and (c) jobs are served FCFS (first-come first-served) at each server queue.
However, the optimality of Dynamic comes with several caveats. First, Dynamic requires the dispatcher to know
the status of all back-end servers at all times. This type of information is difficult, if at all possible, to acquire, and
consequently, Dynamic has not been used by commercial products [15,19]. Second, there is considerable evidence
that the sizes of files traveling on the Internet do not follow an exponential-type distribution. Rather, file sizes appear
to follow power-law (heavy-tailed) distributions [2,7,9] of the form P[X > x] ∼

c
xα , where X is the random file size,

c > 0, and 1 ≤ α ≤ 2. For power-law job-size distributions, a relatively small fraction of jobs accounts for a relatively
large fraction of the overall load.

In contrast with Dynamic, Size-Range policies were designed for heavy-tailed distributions. Examples of this type
of policy include SITA-E [10], EquiLoad [5], and AdaptLoad [17]. These policies are motivated by the observation
that when “small” jobs are stuck behind “large” jobs, then response-time performance suffers degradation. Such
situations can be avoided if any back-end server is assigned only jobs of similar sizes. Specifically, if a cluster consists
of n back-end servers, then n size ranges, [s0, s1), [s1, s2), . . . , [sn−1, sn), are determined so that each range contains
approximately the same amount of workload. Accordingly, when a request in the range [s j , s j+1) is received, the
dispatcher assigns it to back-end server j . It was shown experimentally that when the sizes of requested files follow a
heavy-tailed distribution, then Size-Range performs similarly to or better than Dynamic [17].

Policies balancing the number of jobs. A well-known policy that falls into this category is Least-Connected (LC).
Under LC, the dispatcher assigns a job to the back-end server currently processing the smallest number of jobs, i.e., the
one having the least number of open connections with the dispatcher. Implementing this policy requires the dispatcher
to obtain little information; moreover, this information is easy to acquire.

On the performance of assignment policies. Numerous performance studies compare assignment policies
experimentally. To the best of our knowledge, all of these studies show that balancing the amount of workload is
a better strategy than balancing the number of jobs. Indeed, these results reinforce the intuition that using more
information leads to better assignments, and hence, to better performance. However, these studies preclude job
preemption, i.e., they assume that jobs execute to completion, in FCFS order.

In contrast, this paper studies the performance of the aforementioned policies, with and without job preemption at
back-end servers. The incorporation of preemption is motivated by the fact that in practice, most, if not all, back-end
servers use preemption to process jobs concurrently (see Section 2.1 for further details). This paper shows empirically
that preemption affects dramatically the performance of the policies considered: the performance of policies balancing
the number of jobs improves, while the performance of policies balancing the workload amount worsens. More
specifically, we found the following:
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• When preemption is precluded, Size-Range outperforms LC. However, when preemption is allowed, LC
outperforms Size-Range substantially.

• When preemption is precluded, Dynamic outperforms LC as expected. However, when preemption is allowed,
LC outperforms Dynamic by a factor of two. Moreover, LC with preemption still outperforms Dynamic without
preemption by a substantial margin. This suggests that deploying LC with preemptive back-end servers is not only
a practical choice, but also yields better performance.

The results of the aforementioned study suggest that if jobs can be preempted, then balancing the number of jobs
at back-end servers is a better strategy than balancing the amount of workload there. On the face of it, this contention
appears to be counter-intuitive, because the latter strategy uses more information than the former. However, our results
lend support to the contention that this apparently more detailed information is not as relevant as intuition would lead
us to believe. We will elaborate on this point in Section 2.
LC*—a policy combining the two load balancing strategies. An interesting question in this context is whether
combining the two strategies would further improve the performance of a server cluster employing preemption. In this
vein, we propose a new policy, called LC*, which aims to balance the number of jobs at back-end servers in a manner
that avoids creating large disparities in the amount of workload at them. In a nutshell, LC* operates as follows: The
dispatcher uses a threshold parameter to classify incoming jobs into small and large, and then small jobs are assigned
to the least connected back-end server, while large jobs are assigned to a back-end server, not currently processing a
large job. In particular, if all back-end server-queues contain a large job, then the assignment of an incoming large job
is deferred until a back-end server completes its large job.

The proposed LC* policy does not achieve perfect balancing of the number of jobs nor the amount of workload.
However, we argue heuristically that LC* tends to give rise to only relatively minor disparities in these metrics across
back-end servers. First, there are no large disparities in the amount of workload, because a back-end server queue may
contain at most one large job at any given time. Second, there are only minor disparities in the number of jobs: at any
given time, the maximal possible difference in the number of jobs assigned to any two back-end server is 2. To see
that, note that under LC, the maximal possible difference is 1. However, because, LC* does not require a large job to
be assigned to the least connected server, the maximal possible difference may increase, but the increase is limited to
2, since only one long job may be processed by a back-end server at any given time.

To gauge the response-time performance of the LC* policy, we exercised it on empirical data traces measured at
Internet sites serving the 1998 World Cup. We mention that Arlitt and Jin [2] show that job sizes from these traces
do indeed follow a power-law distribution with α = 1.37. In particular, for the trace considered in this paper, files
with sizes greater than 30 kB make up less than 3% of the files requested, but account for over 50% of the overall
workload. We show that when files in excess of 30 kB are classified as large, LC* outperforms substantially the other
policies considered (LC, Dynamic and Size-Range). Thus, the study demonstrates that a careful assignment of a
small number of jobs can have a profound impact on overall response-time performance. It is worth pointing out that
the observed improvement in performance is achieved by using only information readily available to the dispatcher.
Consequently, LC* is a practical policy with regard to implementation.

The rest of the paper is organized as follows. Section 2 discusses the effects of preemption on the performance of
the aforementioned policies by presenting a performance study based on World Cup data traces. Section 3 presents in
detail the LC* policy and illustrates its performance. Section 4 presents an adaptive version of LC*, called ALC*, and
discusses its performance using various data traces. Finally, Section 5 concludes the paper.

2. The impact of preemption on the performance of assignment policies

This section presents a simulation study driven by real-life data traces, which shows that when back-end servers
admit preemption (i.e., jobs execute concurrently), the strategy of balancing the number of jobs at back-end servers
outperforms the strategy of balancing the amount of workload.

The study compares Dynamic, Size-Range and LC. To compare the performance of assignment policies, we
simulated a cluster of four back-end servers, driven by a World Cup trace to be described below. The experiments
were subject to the following assumptions: communication times between the dispatcher and back-end servers and
the overhead incurred by the dispatcher to select (job, server) pairs are negligible, and all requests are static and served
from cache. We will relax these assumptions in Section 4, which studies the effect of the dispatcher overhead, cache
misses and dynamic requests on the performance of these policies.
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2.1. Back-end server scheduling policies

The study compares the performance of assignment policies under two scenarios:

• Back-end servers employ the non-preemptive scheduling discipline FCFS. Under this policy, a back-end server
processes to completion jobs assigned to it in the order of their arrival. We mention that this policy is rarely, if at
all, used in practice. (Possibly the only realistic scenario where it can be assumed that jobs are executed in FCFS
order is when back-end servers are multi-threaded and use non-preemptive scheduling for threads [6]).

• Back-end servers employ the preemptive scheduling discipline Round-Robin. Under the Round-Robin discipline,
tasks assigned to a back-end server are processed in turn for an equal pre-defined time interval, or quota. When a
task finishes its quota, it is suspended and the next task is allowed to execute (for the same pre-defined quota).

It is worth mentioning that there are other preemptive scheduling policies, most notably SRPT (Shortest Remaining
Processing Time). Under SRPT, a back-end server selects for execution the task with the shortest remaining processing
time. It was shown experimentally in [11] that SRPT has excellent performance. Moreover, it was shown in [8]
that multi-layered Round-Robin at the dispatcher followed by SRPT at back-end servers is optimal under certain
assumptions.1 However, SRPT is rarely used outside of specialized environments because it requires accurate estimates
of the runtime of all processes waiting to execute. In contrast, Round-Robin is very simple to implement and
commonly used in practice.

2.2. Simulation data

Our study used trace data from Internet sites serving the 1998 World Cup. The data used are available from
the Internet Traffic Archive (see [2] and http://ita.ee.lbl.gov/html/traces.html). This repository provides detailed
information about the 1.3 billion requests received by World Cup sites over 92 days—from April 26, 1998, to July 26,
1998.

We mention again that Arlitt and Jin [2] have shown that job sizes from these traces follow a heavy-tailed distribu-
tion. To further highlight the power-law distribution of job sizes, we point out the following aspects of this trace:

• Approximately 75% of the files requested have sizes less than 2 kB, which account for less than 12% of the
transferred data.

• Files with sizes greater than 30 kB, which make up less than 3% of the files requested, account for over 50% of
the transferred data. Even more striking, files in excess of 100 kB, which make up less than 0.04% of all files
requested, account for 7% of the transferred data.

From this repository, we selected a trace covering 1 hour from the June 26 data, containing approximately 6 million
requests. The relevant statistics of this trace are described next. Fig. 2(a) depicts the number of requests received by
the World Cup cluster in successive one-second intervals, while Fig. 2(b) plots the number of bytes requested from
the same cluster in successive one-second intervals.

The selection of the particular data trace was motivated by the fact that it exhibits arrival-rate fluctuations
corresponding to light, medium and heavy loadings in this temporal order, as evidenced by Fig. 2. More specifically,
the trace allows us to study policy performance under various loading conditions, as follows:

• Light loading. In the time interval [0, 1200], the arrival rate is relatively low (below 1200 requests/s), and the
resultant utilization coefficient is also low (≈40%).

• Medium loading. In the time interval (1200, 2400], the arrival rate is between 1200 and 1800 requests/s, and the
resultant utilization coefficient is intermediate.

• Heavy loading. In the time interval (2400, 3600], the arrival rate often exceeds 2000 requests/s, and the
corresponding utilization coefficient is high (≈75%).

From each trace record, we extracted only the request arrival time and the name and size of the requested file.
We mention that the recorded time stamps are in integer seconds, with arrivals on the order of several hundreds of
requests per second. Consequently, we have distributed request arrivals uniformly over each second. Since no service

1 Jobs arrive according to a Poisson process, and their processing times follow a discrete distribution with finite support.

http://ita.ee.lbl.gov/html/traces.html
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(a) Number of request arrivals per second. (b) Total bytes requested per second.

Fig. 2. Empirical request time series from a World Cup trace.

Fig. 3. Successive average slowdowns of Dynamic, LC and Size-Range on a cluster with four back-end servers, when jobs are not preempted.

time information was recorded, the simulation estimates the service time as the sum of the (constant) time to establish
and close a connection and the (variable, size-dependent) time required to retrieve and transfer a file. The justification
for this estimation method may be found in [15,17,19].

2.3. Simulation experiments

The performance metric used to compare assignment policies is slowdown, defined as the ratio of a job’s response
time (the time interval from the moment a job arrives at the dispatcher and up until it ends processing at the
corresponding back-end server) and its service time.

2.3.1. Job processing without preemption
Fig. 3 displays average slowdowns in successive one-second intervals for the three assignment policies considered,

under the assumption that jobs are not preempted (i.e., back-end servers use the FCFS scheduling discipline). The
figure shows that Dynamic outperforms LC over all time intervals, and therefore, under all simulated loading regimes.
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Fig. 4. Server queues under (a) Dynamic and Size-Range, and (b) under LC.

Size-Range performs very well under low and medium loadings: it outperforms LC in all intervals, and it even
outperforms Dynamic in several time intervals. However, its performance degrades as the load increases: for high
loading, Size-Range still outperforms LC most of the time, but there are a few time intervals where LC performs
slightly better.

These observations can be explained by the fact that if preemption is precluded, then performance degrades
considerably when small jobs are stuck after a large job, as small jobs cannot start before the large one finishes.
This situation is best avoided by Dynamic and Size-Range, which attempt to balance the amount of workload at
back-end servers. In contrast, this situation occurs more often under LC, which balances the number of jobs.

To gain insight into this explanation, consider the scenario, where a sequence of jobs, J1, . . . , J100, arrives back-
to-back at a cluster consisting of two back-end servers, S1 and S2. Assume that J1 requires a service time of 100
seconds, while all others require a service time of 1 second.

Under Dynamic and Size-Range, S1 is assigned the large job, and S2 is assigned all the small jobs (see Fig. 4(a)).
This way, the amount of workload is evenly distributed among the two back-end servers. Then, the large job will be
completed in 100 seconds, and the small jobs will be completed in 1, 2, . . . , 99 seconds, respectively. It follows that
the slowdown of the large job is 1, while the slowdowns of the small jobs are 1, 2, . . . , 99. Consequently, the average
slowdown is approximately 50.

Under LC one of the back-end servers is assigned the large job and 49 small ones, while the other is assigned 50
small jobs (see Fig. 4(b)). This way both back-end servers are assigned the same number of jobs. Then, the response
times at the first back-end server are 100, 101, . . . , 149 seconds, and those at the second server are 1, 2, . . . , 50
seconds. Therefore the slowdowns incurred by the jobs assigned at the first back-end server are 1, 101, 102, . . . , 149,
while the slowdowns incurred by the jobs assigned to the second server are 1,2, . . . , 50. Consequently, the average
slowdown in this case is approximately 75.

2.3.2. Job processing with preemption
The corresponding experiments with preemption simulate back-end servers that schedule jobs using the Round-

Robin scheduling discipline. Fig. 5 displays average slowdowns in successive 60-second intervals. Interestingly,
under these assumptions, LC outperforms both Dynamic and Size-Range over all time intervals. Moreover, the
relative advantage of LC over Dynamic and Size-Range increases as the loading increases. Under light loading, their
performance is quite close, but under heavy loading, LC outperforms Dynamic by as much as a factor of 3.

These observations can be explained by the fact that performance is primarily affected here by the number of jobs
contending for resources. To gain insight into this explanation, consider the previous scenario, where the sequence
of jobs, J1, . . . , J100, arrives back-to-back at a cluster consisting of two back-end servers, S1 and S2 (see Fig. 4),
and assume that processes are scheduled for execution in Round-Robin manner, with a quota of 0.1 second. Under
Dynamic and Size-Range, the average slowdown incurred is approximately 95 seconds. To see why, note that the
response times (in seconds) for the small jobs are 90, 90.1, 90.2, . . . , 100, respectively, and therefore, their slowdowns
are 90, 90.1, 90.2, . . . , 100, respectively. By contrast, the large job incurs a slowdown of only 1, since it is served in
100 seconds.
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Fig. 5. Successive average slowdowns for Dynamic, LC and Size-Range on a cluster with four back-end servers, when jobs are preempted (note
the logarithmic scale on the vertical axis).

Under LC, the average slowdown is approximately 47 seconds. To see why, note that the response times (in
seconds) of small jobs assigned to S2 are just 45, 45.1, 45.2, . . . , 50. Small jobs assigned to S1 have similar response
times, while the response time of the large job is 150 seconds, and therefore, its slowdown is 1.5. Consequently, the
average slowdown incurred (≈47) is better by a factor of 2 as compared to Dynamic and Size-Range. Intuitively, the
improvement is due to the fact that the average response time is dominated by small jobs, and LC arranges to double
the throughput of small jobs as compared to the other two policies.

This example leads us to contend that the larger the variability in the number of jobs across server queues, the
poorer the performance of Dynamic and Size-Range. This contention is supported by our simulation experiments:
Dynamic performs far worst than LC under heavy loading (where the length of back-end server queues and their
variability tend to be large) than under light loading (where the length of server queues and their variability tend to be
small).

However, this example fails to explain why Size-Range performs so poorly in comparison to Dynamic, especially
under very high loading. The intuitive explanation is that, by design, Size-Range induces variability in server queues,
while Dynamic does not. To see why, recall that Size-Range clusters jobs of similar sizes and assigns them to
dedicated back-end servers. For high loadings, the back-end server that serves the largest jobs will have relatively
few jobs in its queue, while the back-end server that serves the smallest ones will have relatively many jobs. In
contrast, Dynamic simply attempts to balance the number of jobs without segregating them in different servers by
size. Consequently, server queues tend to be less disparate in size.

To motivate this contention consider again that a sequence of jobs, J1, . . . , J100, arrives back-to-back at a cluster
consisting of two back-end servers, S1 and S2. However, their sizes are slightly modified, namely, assume now that
J1 and J2 require a service time of 50 seconds, while all others require a service time of just 1 second. Size-Range
assigns the two large jobs to one server, and the small jobs to the other, thus creating a large disparity in server queue
sizes. In contrast, Dynamic assigns to both servers a large job and 49 small ones, thus balancing both the queue sizes
and the amount of workload there. It is worth mentioning that the same assignment is produced by LC.

We conclude this section by comparing the average performance of the Dynamic and LC policies with and
without preemption (see Table 1). We make three observations based on the table data. First, Dynamic yields better
performance without preemption than with preemption. Second, LC’s behavior is opposite, namely, it yields better
performance with preemption than without preemption. Finally, LC with preemption outperforms Dynamic without
preemption.
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Table 1
Comparison of statistics for Dynamic and LC

Average slowdown
Policy No job preemption Job preemption

Dynamic 4.09 6.84
LC 4.7 3.53

3. The LC* policy

The experiments and the examples presented in the previous section support the contention that if jobs are executed
concurrently, then aiming to balance the number of jobs assigned to back-end servers is more important than balancing
the amount of workload there. We now proceed to demonstrate experimentally that response-time performance may
be further improved if balancing the number of jobs is combined with balancing the amount of workload.

To support this claim, consider the following motivating example. Suppose that two large jobs and two small jobs
arrive back-to-back at a cluster consisting of two back-end servers. Then, under LC, there are two possible assignments
of these jobs. The first assigns a large job and a small job to each back-end server, while the second assigns the two
large jobs to one back-end server and the two small ones to the other. Note that the first assignment balances the
amount of workload, while the second does not. To gauge how this disparity affects response-time performance,
assume that the service times of large and small jobs are 100 seconds and 1 second, respectively. Assume further that
processes are scheduled for execution in Round-Robin manner, with a quota of 0.1 second. Thus, the response time
of each large job under the first assignment is ≈100 seconds, while under the second assignment, it is ≈200 seconds.
This outcome is due to the large disparity of workload across back-end servers under the second assignment.

This example suggests that balancing both the number of jobs and the amount of workload may lead to improved
performance. It further suggests that assigning multiple large jobs to the same back-end server exacts a large response-
time penalty, and therefore, such assignments should be avoided. These observations motivate the hybrid LC* policy,
defined as follows:

1. The dispatcher classifies incoming jobs into large or small relative to a cutoff parameter C.
2. The dispatcher assigns small jobs to the least connected back-end server.
3. The dispatcher assigns a large job to a back-end server whose queue does not already contain a large job. If there

is no such back-end server, the dispatcher defers the assignment until a back-end server completes its large job.

We draw the reader’s attention to the following points. First, the classification into large and small jobs is based on
the size of requested documents. Although job service time is pro forma a more relevant classification metric, we nev-
ertheless chose job size, because the dispatcher has this type of information readily available. Furthermore, it has been
shown that the time to serve a request is well approximated by the size of the requested file [11]. The actual selection
of the cutoff parameter is made in such a way that requests for files whose sizes are bigger than C represent only a
small percent of incoming requests, but a large fraction of the overall workload (the functional form of a power-law
distribution facilitates that choice). For example, the trace-driven World Cup simulation used 30K as the value of C.

Secondly, the dispatcher can estimate job sizes only for static requests (dynamic files are created on the fly by the
server in response to a request). Consequently, LC* implicitly treats dynamic requests as small jobs. Even though this
classification may be inaccurate for certain dynamic requests, we argue that for web servers that receive mostly static
requests (such as news and e-commerce servers), the errors incurred do not substantially affect the performance of
LC*. This point will be discussed in greater detail in Section 4.3.

Finally, LC* is practical to implement in that the extra information required is readily available to the dispatcher,
and the processing of this information is quite fast.

We next proceed to demonstrate experimentally, via a case study, that LC* outperforms both Dynamic and LC.
The study simulates a cluster of four back-end servers that process the jobs recorded by the trace of Section 2.2. The
simulation sets the value of the cutoff parameter to 30K. Recall that for the trace considered, files with sizes greater
than 30 kB (which make up less than 3% of the files requested) account for over 50% of the overall workload.

Fig. 6 displays average slowdowns of LC and LC* in successive 60-second intervals. Table 2 displays slowdown
averages under various loading regimes (light, medium and heavy), as well as over the entire time horizon.
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Fig. 6. Successive average slowdowns for LC and LC* on a cluster with four back-end servers.

Table 2
Comparative statistics for LC and LC*

Average slowdown
Policy Light loading Medium loading Heavy loading Overall

LC 1.06 1.90 6.17 3.53
LC* 1.06 1.59 3.22 2.16

We next proceed to compare the average slowdowns of LC to those of LC*:

• Light loading. The average slowdowns of both policies in the lightly-loaded interval [0, 1200] is very close to 1,
meaning that jobs are served with almost no delay. These statistics are due to the fact that when the arrival rate is
low, a job is often assigned to an idle back-end server.

• Medium loading. As the arrival rate and subsequent utilization increase in the interval [1200, 2400], LC* slightly
outperforms LC. This is due to the fact that LC* has only few occasions to make better assignments than LC.

• Heavy loading. As the loadings become heavy in the interval [2400, 3600], LC* outperforms LC by a factor of
approximately 2. This behavior is due to the fact that under heavy loading, LC* has many occasions to make better
assignments than LC.

We conclude this section by noting that LC* outperforms Dynamic with and without preemption by a factor of 3
and 2, respectively (see Tables 1 and 2).

4. ALC*—an adaptive version of the LC* policy

The previous experiments made the simplifying assumption that the overhead incurred by the dispatcher to select
(job, server) pairs are negligible. However, this assumption ignores the fact that LC* does incur some overhead beyond
LC, because the dispatcher has to determine the size of a requested file before assigning the request to a back-end
server. Consequently, we need to gauge the trade-off between the additional overhead incurred by LC* and its posited
improved performance.

The results of the previous experiment show that LC* outperforms LC dramatically under heavy loading, while
under light and medium loadings, their performance is quite similar. This behavior is explained by the fact that when
the arrival rate and utilization are low, back-end server queues rarely contain more than one job. Therefore the chance
of two large jobs being assigned to the same back-end server – and, consequently, the chance of unbalancing the
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Fig. 7. Successive average slowdowns for LC, ALC* and LC* on a cluster with four back-end servers.

amount of workload across back-end servers – is very small. In contrast, under heavy loading, back-end servers often
process several jobs simultaneously, and the chances that LC assigns two or more large jobs to the same back-end
server increases.

This observation suggests that the dispatcher should employ an adaptive policy: it should use LC under light
loadings, and switch to LC* under heavy loadings. Thus, under such an adaptive policy, the overhead attendant to
LC* is incurred only when it gives rise to improved performance. There is a direct correspondence between loading
and M, the minimum queue size of back-end servers: under light loading, M tends to be 0, while under medium or heavy
loadings, M tends to exceed 1.

The adaptive version of LC*, which we call ALC*, is defined as follows:

1. If M is 0, then the dispatcher uses the LC policy, i.e. it assigns an incoming request to a back-end server with the
smallest number of jobs.

2. Otherwise, if M exceeds 0, then the dispatcher assigns an incoming request using the LC* policy.

To gauge the performance of ALC* we exercised it on the same World Cup trace, and compared the results with
those obtained for LC* and LC (see Section 3). The experiment used the same parameter value for ALC* as for LC*,
namely, a file was classified as large, if it exceeded 30K. When M exceeded 0, the simulation added an overhead of
19 µs to the processing time of each request (this value was obtained experimentally).

The results of the simulation are displayed in Fig. 7. In the time interval [0, 2000], M is almost always 0, and the
performances of ALC* and LC are identical as expected. In the time interval (2400, 3600], M almost always exceeds 0
and ACL* outperforms LC by almost a factor of 2 (the average slowdown of ALC* is 3.43, while the average slowdown
of LC is 6.28). Note that the job classification overhead incurred by ALC* affects its performance only minimally (the
average slowdown increases from 3.22 to 3.43). Thus, it pays to spend the extra overhead time of searching file sizes
in order to balance the amount of workload at back-end servers.

The remainder of this section studies the effect of various factors on ALC* performance, as well as its scalability.

4.1. The effect of dispatcher overhead on ALC* performance

This section starts with a brief review of common cluster architectures and analyzes the resultant dispatcher
overhead. It then proceeds to analyze the impact of dispatcher overhead on ALC* performance.

From the point of view of how requests are assigned to back-end servers one distinguishes between two types of
architectures:
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Fig. 8. Successive average slowdowns for LC and ALC* on a two-way cluster employing delayed binding.

• Architectures that perform delayed binding (content-aware binding), where the dispatcher examines client requests
before assigning them to back-end servers. In particular, this type of architecture is employed by layer-7 Web
switches.

• Architectures that perform immediate binding (content-blind routing), in which the dispatcher assigns jobs to back-
end servers immediately, without examining their content. In particular, this type of architecture is used by layer-4
Web switches.

From the point of view of how responses are returned to clients, one distinguishes between two architectures:

• One-way architectures, where back-end servers respond directly to clients.
• Two-way architectures, where back-end servers return responses to the dispatcher, which in turn sends them back

to clients.

From this brief presentation2 we conclude that dispatcher overhead is indeed negligible when the cluster employs
immediate binding. However, dispatcher overhead is not negligible in two-way clusters employing delayed binding.

To study the effect of dispatcher overhead on the performance of assignment policies, we ran experiments
simulating two-way clusters employing delayed binding. In these experiments, the dispatcher overhead was estimated
by the formula: c1 + c2 ∗ f ile si ze, where the first term of the sum denotes the (constant) time to perform delayed
binding, and the second term denotes the (variable, size-dependent) time required to transmit a client request via
the dispatcher. The numerical values used by the simulation for the constants c1 and c2 are, respectively, 10 µs
and 5 µs/kB. These values have been derived from the experimental results presented in [22]. As in the previous
experiment, when ALC* behaves like LC*, it incurs an additional overhead of 19 µs, which estimates the time it takes
to determine whether a requested file is large or small.

Fig. 8 depicts the average slowdowns of LC and ALC* when the dispatcher overhead is computed as described above.
As expected, the slowdown performance degrades: the average slowdowns of LC and ALC* under heavy loading are
6.53 and 3.56, respectively. However, the performance is not heavily impacted by the dispatcher overhead: recall that
in the previous experiment, where dispatcher overhead was ignored, the average slowdowns of LC and ALC* in the
corresponding regime were 6.28 and 3.56, respectively (see Fig. 7).

It is worth mentioning that the LC policy can be supported by an immediate binding architecture, whereas
ALC* can be supported only by a delayed binding architecture (which incurs higher overhead than immediate
binding architectures). This experiment shows that ALC* achieves better performance even when compared with LC

2 See [4] for more details regarding cluster architectures.
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Fig. 9. (a) Back-end server processing when cache misses occur. (b) Successive average slowdowns of Dynamic, LC and ALC* on a cluster with
four back-end servers, for a cache hit ratio of 99% (note the logarithmic scale on the vertical axis).

implemented on immediate binding architectures. More specifically, the average slowdown of ALC* in periods of
heavy loadings is 3.56. In contrast, when the dispatcher overhead is ignored, the average slowdown incurred by LC in
the corresponding regime is 6.28.

4.2. The effect of cache misses on ALC* performance

All the experiments performed so far assumed that all requests are served from cache. This assumption is motivated
by the fact that cache misses occur relatively infrequently. For example, Arlitt and Jin [2] studied the World Cup trace
and observed that 89% of the total requested data referred to only 10% of the files. Still, it is worthwhile to study the
impact of cache misses on assignment policies. To this end, this section compares the effect of cache misses on the
performance of Dynamic, LC and ALC*. (The performance of Size-Range is not depicted because it is substantially
worse than the performance of all other policies.)

The simulation experiments used the LRU cache replacement policy, where files with sizes in excess of 500 kB
are never cached. The model for back-end server processing used by the study assumes that the CPU and disk times
for distinct requests can overlap, as shown in Fig. 9(a). (For more details regarding the underlining model, see [15].)
The simulation used the following values prescribed in [15]: disk latency was set at 28 ms (two seeks plus a rotational
latency), and disk transfer was set at 410 µs per 4 kB. An additional 14 ms (a seek plus rotational latency) is incurred
for every 44 kB of files larger than 44 kB.

Fig. 9(b) depicts the average slowdowns of Dynamic, LC and ALC* when the cache hit ratio is 99% (i.e., 1% of the
requests are served from disk). Dynamic still has the worst performance, even though it assumes known service times,
and therefore, the dispatcher knows whether a request is served from cache or from disk. Note, however, that this
information is not assumed known in LC and ALC*. Even in the presence of cache misses, ALC* still outperforms LC
significantly under heavy loading. To wit, the average slowdown of ALC* is 4.01, as compared to an average slowdown
of 6.99 for LC. Note that this performance advantage of ALC* over LC is slightly less than the case when cache misses
were precluded (see Fig. 7).

4.3. The effect of dynamic requests on ALC* performance

The experiments performed so far assumed that all requests are static, i.e., requests are for already-created
documents. The assumption is motivated by the fact that most Web servers receive overwhelmingly more static
requests than dynamic ones [1,11,14]. A case in point is the World Cup trace, where only 0.02% of requests were
dynamic. Still, it is important to study the effect of dynamic requests on the performance of assignment policies.
This section shows that when the percentage of dynamic requests is small, then ACL* outperforms all other policies
considered here. However, when the percentage of dynamic requests increases, the gap in performance between ALC*
and LC closes.
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Fig. 10. Successive average slowdowns for Dynamic, LC and ALC* on a cluster with four back-end servers, when 0.02% of requests are dynamic
and the cache hit ratio is 99% (note the logarithmic scale on the vertical axis).

Fig. 10 displays the average slowdowns of Dynamic, LC and ALC* when the cache hit ratio is 99% and 0.02% of
requests are treated as dynamic. Here, the service time of a dynamic request is larger by a factor of 10 than the service
time of a static request of the same size (served from cache). This factor value was estimated empirically in [19].

The results show that Dynamic again exhibits the worst performance, even though this policy assumes precisely
known service times for all requests. And again, ALC* outperforms LC significantly under heavy loading. To wit, the
average slowdown of ALC* is 4.07, while that of LC is 7.52. Note that the performance of ALC* is influenced by the
presence of dynamic requests to a lesser degree than LC. Specifically, ALC* experiences a 1.5% increase in average
slowdown, while LC experiences a 7% increase.

The rather negligible effect of dynamic requests on ALC* performance can be explained by analyzing the nature of
disparities created by such requests. First, since the dispatcher does not know the size of dynamic requests (which are
created on the fly by back-end servers), it follows that large disparities in the amount of workload assigned to back-end
servers can occur when a large static job and a dynamic job are assigned to the same back-end server. However, such
disparities do not affect performance considerably, because the corresponding jobs rarely compete for resources (a
large file is likely not cached, so the corresponding job is disk-intensive, while a dynamic request is CPU-intensive).

Second, disparities may occur when two or more dynamic requests are assigned to the same back-end server.
However, if the percentage of dynamic requests is small, then this situation occurs only rarely.

Next, we consider the case where dynamic requests are a substantial part of the workload. Accordingly, Fig. 11
displays the average slowdowns of Dynamic, LC and ALC* when 10% of requests are treated as dynamic. Note that
in this experiment the cluster has eight back-end servers; this is because the substantial increase in dynamic requests
leads to a substantial increase in the cluster workload, which basically brings a four back-end cluster to a standstill
(average slowdowns well in excess of 5000).

The results show that the performances of LC and ALC* are essentially indistinguishable. Specifically, the average
slowdown over the entire time horizon of ALC* and LC is 2.589 and 2.588, respectively. This result can be explained
by the fact that dynamic requests, which now constitute the bulk of large requests, are treated similarly under ALC*
and LC. By definition, the sizes of dynamic requests are not known a priori, and, therefore, ALC* treats them as
small jobs, and thus cannot make better assignments than LC. In effect, ALC* makes better assignments just for large
static requests, which is barely enough to compensate for the overhead incurred. In conclusion, this last experiment
supports the contention that ALC* should be used only for clusters that receive overwhelmingly more static requests
than dynamic ones.
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Fig. 11. Successive average slowdowns for Dynamic, LC and ALC* on a cluster of eight back-end servers, when 10% of requests are dynamic and
the cache hit ratio is 99%.

Fig. 12. Successive average slowdowns for LC, ALC* and LC* on a cluster of six back-end servers, when 10% of requests are dynamic and the
cache hit ratio is 99%.

4.4. Scalability of ALC*

The study presented in this section compares the performance of Dynamic, LC and ALC* as the cluster size grows
larger. The first experiment, depicted in Fig. 12, considered a cluster with six back-end servers and used the same
World Cup trace. As can be seen, the performances of LC and ALC* are practically indistinguishable: the average
slowdown over the entire time horizon is 1.19 for both of them. The explanation is that the loading on individual
back-end servers decreases as their number increases. In effect, under LC and ALC*, there is often an idle back-end
server, so that M is 0 most of the time. Consequently, ALC* largely behaves like LC.
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(a) Number of request arrivals per second. (b) Total bytes requested per second.

Fig. 13. Empirical time series of the synthetic trace.

Fig. 14. Successive average slowdowns of Dynamic, LC and ALC* in a cluster of eight back-end servers (note the logarithmic scale on the vertical
axis).

Since studying the scalability of ALC* using the World Cup trace proved inconclusive because the loading was too
low, we generated a power-law synthetic trace which could stress a bigger cluster. The synthetic trace was generated
using a traffic generator, called Geist, designed at Intel [12,13]. The relevant statistics of this trace are described next.

Simulation data. The aforementioned trace consists of over 4.6 million requests received over a time interval of
approximately 400 seconds. This trace offered the cluster both medium and high loadings, with utilization exceeding
50%. Fig. 13(a) depicts the number of requests received by the cluster in successive one-second intervals, while
Fig. 13(b) plots the number of bytes due to file requests in successive one-second intervals.

Simulation experiments. Fig. 14 displays the average slowdowns of Dynamic, LC and ALC* in successive 10-second
intervals for a cluster of eight back-end servers. Observe that ALC* outperforms both Dynamic and LC in all time
intervals. Moreover, the performance advantage of ALC* over Dynamic and LC in a cluster of eight back-end servers
is comparable to that in a cluster of four back-end servers. This suggests that ALC* scales well.
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5. Conclusion

Several conclusions can be drawn from the studies presented in this paper. First, the architecture of back-end servers
affects profoundly the slowdown performance of assignment policies. Specifically, the paper shows experimentally
that the slowdown performance of Dynamic and Size-Range is far better when preemption is precluded than when
it is admitted.

The second conclusion is that if jobs can be preempted, then balancing the number of jobs at back-end servers
is a better strategy than balancing the amount of workload there. In particular, the paper shows experimentally
that LC (which uses the former strategy) performs far better than Dynamic and Size-Range (which use the latter
strategy).

Finally, the study supports the contention that combining the two balancing strategies yields slowdown performance
superior to that of each strategy alone. Specifically, the paper proposes two new policies, LC* and ALC*, which improve
over LC, Dynamic and Size-Range, especially under heavy loading regimes. A notable feature of the proposed
policies is that they have only modest informational and computational requirements, and this renders them practical
candidates for real-life implementation.
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