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Abstract

Statistical inference for discrete-valued time series has not been developed as systematically as traditional methods

for time series generated by continuous random variables. This Ph.D. dissertation deals with time series models for

discrete-valued processes. In particular, Chapter 2 is devoted to a comprehensive overview of the literature about

observation-driven models for discrete-valued time series. Derivation of stochastic properties for these models is

presented. For the inference, general properties of the quasi maximum likelihood estimator (QMLE) are discussed,

followed by an illustrative application.

In Chapter 3, a general class of observation-driven time series models for discrete-valued processes is introduced.

Stationarity and ergodicity are derived under easy-to-check conditions, which can be directly applied to all the

models encompassed in the framework. Consistency and asymptotic normality of the QMLE are established, with

the focus on the exponential family. Finite sample properties of the estimators are investigated through a Monte

Carlo study and illustrative examples are provided. The framework introduced in the paper provides a self-contained

background that relates different models developed in the literature as well as novel specifications and makes them

fully applicable in practice.

Discrete responses are commonly encountered in real applications and are strongly connected to network data.

The specification of suitable network autoregressive models for count time series is an important aspect which is

not covered by the existing literature. In Chapter 4, we consider network autoregressive models for count data

with a known neighborhood structure. The main methodological contribution is the development of conditions that

guarantee stability and valid statistical inference. We consider both cases of fixed and increasing network dimension

and we show that quasi-likelihood inference provides consistent and asymptotically normally distributed estimators.

The work is complemented by simulation results and a data example.
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Chapter 1

Introduction

In recent years the availability of discrete data coming from several sources have motivated the outset

of a wide literature on models for count time series processes. A growing attention to high dimensional

data sets involving dynamic binary and count data has been object of interest, in different contexts. For

example, the number of clicks or amount of intra-day stock transactions (Davis and Liu, 2016; Ahmad and

Francq, 2016). Besides that, time series analysis for integer valued random variables has not been developed

as the continuous counterpart, which, instead, has a long tradition in time series analysis. The peculiar

discrete nature of the process requires an ad hoc treatment for the development of the asymptotic theory

of the estimators. The same is true for the establishment of probabilistic properties, strict stationarity

and ergodicity, of integer valued processes. Other central aspects are related to the establishment of a

comprehensive inferential theory as well as a robust model selection procedure between several candidate

models, so as to make these model fully applicable in real studies. Moreover, usual concepts of the

continuous time series analysis, such as auto-covariance or the Wold representation, need and adapted

definition or can be meaningless.

Time series models for discrete data can be divided in two families of models: observation driven

models and parameter driven models. This thesis deals focuses on the observation driven models (Cox,

1981); which are described by a discrete time series process and a latent process, the latter is defined

as pure deterministic function of the former’s past history. In the parameter driven models, instead, the

latent process depends on unknown parameters and it is treated as stochastic.

The rest of the PhD dissertation is organized as follow. In Chapter 2 a survey of the most famous

time series models for integer valued processes is presented. Chapter 3 introduces a general modelling

framework on observation driven models for discrete data, as an original scientific article. Then, Chapter

4 regards a new contribution on network autoregression models for Poisson processes. Finally, Chapter 5

hosts some concluding remark on future directions of research.

More precisely, Chapter 2 is devoted to a comprehensive overview of a wide class of observation driven

models for discrete valued time series, with special focus on count and binary data. In particular, technical

and modelling properties are discussed for ARMA-like time series models for integer valued processes

Benjamin et al. (2003); Davis et al. (2003); Startz (2008). The use of these ARMA-like models is illustrated

through the analysis of the daily number of deaths for COVID-19 in Italy from March to December 2020.
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The analysis is performed under the assumption both of a Poisson and of a Negative Binomial distribution

for the data generating process. Finally, model comparison is carried out by using penalized likelihood

criteria.

Recent developments on binary and count times series models, involving several approaches and different

specifications for a wide range of models established a fragmentary literature. There would be a benefit from

the specification of a unified framework able to encompass most of the models available in the literature.

This will enable to study relations among models and to derive an unified approach for the derivation of

stochastic properties holding across all the models. Some authors have provided a remarkable formulation

of a general framework for observation driven models, with specific focus on discrete data, see Douc et al.

(2013). However, this theoretical formulation might be not effective when the aim is to implement models

in real practices. More precisely, the ergodicity conditions established by Douc et al. (2013) are hard to

verify in practice, and they vary for each model and every different distribution.

Then, in Chapter 3, we introduce a general modelling framework aiming to provide a unified specifi-

cation for a general class of integer valued time series. From this general framework we point out some

special cases of particular interest, which are new models not directly presented in the literature yet. Then,

we analyze the relationships among different models belonging to the framework. Furthermore, stochastic

properties which hold simultaneously for the entire class of models are derived (strict stationarity and

ergodicity). For some of them, stability conditions have not been set in the literature yet. Finally, a

quasi-maximum likelihood (QMLE) inference is provided with the asymptotic properties of the estimator.

These results make all the models encompassed in the framework fully applicable in practice.

Further sources of information gaining remarkable importance are constituted by network data, which

are considered of essential importance for many topic of research (social network, epidemics, etc..). In

particular, quantifying the impact of a network structure-like dependence on a time series process raises

critical interest. Discrete variables are usually detected in the practice of network studies. For exam-

ple, several information of interest in social network analysis have an integer nature. Then, binary and

count processes are substantially related with network data. As far as we know, at the present time, no

such models exist for non-continuous responses, even though a flourishing literature for their continuous

counterparts has been set, see Zhu et al. (2017). This is an a crucial open space in the present literature.

The main aim of Chapter 4 is exactly to fill this lack in the literature by specifying a linear and a log-

linear version of the Poisson network autoregression (PNAR) for count processes. We even derive minimal

stability properties of such models. Moreover, in this field two types of asymptotic inference are possible:

with increasing time sample size and fixed network dimension and with both time and network dimension

increasing together. The QMLE is established for the PNAR models under both types of asymptotics.

A further aspect of interest is that all the network time series models presented so far are defined under

the i.i.d. assumption of the error terms. This might be not realistic in many empirical applications. We

overtake this limit by employing the concept of α-mixing (see Doukhan (1994)) which is a measure of

asymptotic independence over a timespan, allowing to relax the i.i.d. assumption. Then, a complex and

flexible dependence structure among variables is specified, among time and among the network, and this

is effected by defining a copula construction for modelling the dependence between variables.
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Abstract

A comprehensive overview of the literature on models for discrete valued time series is provided, with a special

focus on count and binary data. ARMA-like models such as the BARMA, GARMA, M-GARMA, GLARMA and

log-linear Poisson are illustrated in detail and critically compared. Methods for deriving the stochastic properties of

specific models are delineated and likelihood-based inference is discussed. The review is concluded with an empirical

application, concerned with the analysis of the daily number of deaths for COVID-19 in Italy, under the assumption

both of a Poisson and a negative binomial distribution for the data generating process.

2.1 Introduction

Traditionally, time series modelling has been mostly applied to data that are continuously valued. From the early

specifications of Yule (1927) and Walker (1931), to the formalisation by Box and Jenkins (1970, 1976), autoregressive

(AR) and moving average (MA) models have been regularly applied in many fields, from finance to energy and neural

networks, see for example Ho et al. (2002), Wang et al. (2012) and Sen et al. (2016). Non-linear models, such as the

generalized autoregressive conditional heteroskedastic models by (Engle (1982), Bollerslev (1986)) or the threshold

and smooth transition models (Tong and Lim (1980), Teräsvirta (1994)), up to the class of score driven models

(Creal et al. (2013), Harvey (2013)), are essentially grounded on autoregressive dynamics. Though often employed

regardless of the discrete nature of the data generating process, continuous models do not adequately describe the

dynamic trend of count or binary data. Notable examples where ad hoc models for discrete data are required include

the number of clicks on a website and the daily counts of people infected with a rare disease or, as far as binary
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data are concerned, the presence or absence of an edge in a random network system and the success or failure of an

industrial process.

Despite some relevant instances that we aim to discuss in this chapter, ARMA models for discrete valued time

series have not enjoyed the same popularity of linear models for continuous time series. One of the reasons certainly

lies in the fact that linear processes are related to second order stationarity, which fully characterizes Gaussian time

series, while for discrete or count data, the concept of autocovariance needs to be adapted Startz (2008). Moreover,

the Wold representation, which allows every covariance-stationary time series to be written as the sum of two time

series, one deterministic and one stochastic, has no direct interpretation Davis et al. (2016) in the integer-valued

case. As a matter of fact, modelling discrete valued time series entails challenging aspects which are directly related

to the nature of the generating random process.

In recent years, the interest in the analysis of discrete dynamic data has been considerably increasing. An useful

classification of time series models in two main families is due to Cox (1981), who distinguished observation driven

models (see Zeger and Liang (1986)) and parameter driven models (Zeger (1988)). In the parameter driven models

two different time series processes are object of inference: the process of the observed data, say {Yt}t∈Z , and an

unobservable latent time series {µt}t∈Z which presents a dynamic formulation and carry an error term {et}t∈Z . The

observation driven models, instead, are fully described by the time series of the observed process {Yt}t∈Z , since here

the latent process {µt}t∈Z is simply defined as a deterministic function of the past history of Yt.

An early contribution to the development of integer valued time series is constituted by Integer Autoregressive

models (INAR) Al-Osh and Alzaid (1987); Alzaid and Al-Osh (1990), that is categorized as an observation driven

model. Some other examples of observation-driven models for count time series include the works by Davis et al.

(2003), Benjamin et al. (2003) and Ferland et al. (2006), among others. With the focus on the dynamic trend of count

data, recent contributions can be envisaged in the works of Rydberg and Shephard (2003), Kauppi and Saikkonen

(2008), Davis and Liu (2016), Ahmad and Francq (2016) and Clark et al. (2018) and Gorgi (2020).

The aim of this chapter is to provide a comprehensive overview of the literature on observation driven models

for discrete valued time series, with a special focus on count and binary data. In particular, stochastic properties

and estimation are discussed for notable ARMA-like models, such as BARMA Li (1994), GARMA Benjamin et al.

(2003), GLARMA Davis et al. (2003), M-GARMA Zheng et al. (2015) and log-linear Poisson Fokianos et al. (2009)

models. These models are generally referred to ARMA-like models as they are designed to account for the direction

and the magnitude of three relevant effects in the analysis of temporal data. More precisely, ARMA-like models

may include an autoregressive-like effect, a moving average type effect and the dependence with respect to the past

predictions of the random process. The specification for these effects eventually depends on suitable link functions

which are selected according to the probabilistic assumptions for the data generating process.

The stochastic properties of discrete ARMA models can be derived following two different methods based on

the Markov chain theory and the perturbation approach, among others. The perturbation approach developed by

Fokianos et al. (2009) is based on the analysis of a modified version of the discrete process, which allows one to derive

properties of the original processes. An alternative method, based on Markov chain theory without irreducibility

assumptions, has been considered by Matteson et al. (2011) and Douc et al. (2013). This approach leads to obtaining

probabilistic properties of the discrete variable by defining the latent process as a Markov chain of order one. To

illustrate these methods, an example for the GARMA model is given, taken from Matteson et al. (2011). An

application to log-linear Poisson autoregression provided by Douc et al. (2013) is reported, as well.

As far as inference is concerned, the properties of the maximum likelihood estimator (MLE) and Quasi MLE

(QMLE) have been widely studied for discrete-valued models; see Douc et al. (2013), Davis and Liu (2016) and

Ahmad and Francq (2016), among others. Specifically, the use of the generalized linear model (GLM) of McCullagh

and Nelder (1989) for dynamic discrete data provides a natural extension of continuous-valued time series to integer-

valued processes. Then, theory for likelihood inference can be acquired directly from the GLM framework as well as
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principles for hypothesis testing and model diagnostics. For the case of misspecified models, results related to quasi

likelihood inference are also illustrated, together with the conditions required for strong consistent and asymptotically

normal QMLE, based on the work of Douc et al. (2013) and Douc et al. (2017). Clearly, the exact likelihood inference

and the asymptotic properties of the MLE are obtained as a special case.

To conclude the review, an application of the ARMA-like models is illustrated through the analysis of the recent

time series related to the daily number of deaths for COVID-19 in Italy from March to December 2020. The analysis

is performed under the assumption of a Poisson and a negative binomial distribution for the data generating process.

Model comparison is carried out by using penalized likelihood criteria.

2.2 General overview

Let us consider a stochastic process {Yt}t∈N, the information set of past observations of the process Ft−1 =

σ {(Xs+1, Ys), s ≤ t− 1} up to the time t − 1 and a vector of covariates Xt up to time t, where σ {X} refers to

the sigma-field generated by the random variable X, and it is defined as the smallest sigma-field with respect to

which it is measurable. For the definition of sigma-field see (Billingsley, 1995, p. 19-20). The corresponding realiza-

tions are denoted with the lower-case counterparts, yt and xt, respectively. The focus, throughout the chapter, is

on the case when {Yt}t∈N is discrete-valued. Suppose that the distribution of the process lies in the general class of

one-parameter exponential family:

q(Yt |Ft−1 ) = exp {Yt f(ηt)−A(ηt) + d(Yt)} , (2.1)

where the conditional expected value is defined as

µt = E(Yt |Ft−1 ) = A
′
(ηt)

and ηt = g(µt) with g(·) a twice-differentiable, one-to-one monotonic function, which is called link function, see

McCullagh and Nelder (1989).

In equation (2.1) it is assumed that the dynamics of the density (or mass) function q(Yt|Ft−1) are captured by

the parameter µt, or equivalently ηt, called linear predictor. The function A(·) (log-partition) and d(·) are specific

functions which define the particular distribution of interest. In the framework of the exponential family of McCullagh

and Nelder (1989), f(ηt) is the canonical parameter. The mapping f(·) is a twice-differentiable bijective function,

chosen accordingly to the model of interest. The conditional variance is

σ2
t = V(Yt |Ft−1 ) = A

′′
(ηt) = υ(µt) .

Example 1. In equation (2.1), the Poisson distribution is obtained by setting f(ηt) = ηt, ηt = g(µt) = log(µt),

A(ηt) = exp(ηt) = µt and d(Yt) = log(1/Yt!). The conditional expectation is then E(Yt|Ft−1) = V(Yt|Ft−1) =

exp(η) = µt.

Clearly, since for the Poisson distribution the canonical parameter is ηt = log(µ), see McCullagh and Nelder

(1989), one has f(ηt) = ηt.

Example 2. The Gaussian distribution (with known variance) is obtained by setting f(ηt) = ηt, g(µt) = µt
σ2
t

,

A [g(µt)] =
µ2
t

2σ2
t

and d(Yt) = log

[
− 1√

2πσ2
t

exp
(
− Y 2

t

2σ2
t

)]
. One can verify that µt = σ2

t ηt, so A(ηt) = σ2
t η

2
t /2, whose

first and second derivatives are respectively µt and σ2
t .

It can be convenient to consider the following dynamic representation for the time varying conditional mean,

g(µt) = ηt = xTt β + zt , (2.2)
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zt =

p∑
j=1

φj
[
h(Yt−j)− xTt−jβ

]
+

k∑
j=1

γj(zt−j + εt−j) +

q∑
j=1

θjεt−j , (2.3)

where p, k adn q are integers representing the maximum lag order of their respective additive terms, and εt, generally

called prediction error, is defined in the following way:

εt =
h(Yt)− ḡ(µt)

νt
(2.4)

and νt is some scaling sequence, for example:

• νt = σt, Pearson residuals

• νt = σ2
t , Score-type residuals

• νt = 1, No scaling

• νt = V[h(yt) |Ft−1 ]

where V[h(yt) |Ft−1 ] is the variance of the function h(Yt), conditional to the past information Ft−1.

Furthermore, the function h(Yt) is called “data-link function” because it is applied to the observation process

Yt whereas ḡ(µt) is said “mean-link function” because it is applied only to the conditional mean, unlike the link

function g(·) which, in principle, can be applied to any parameter or moment of the probability distribution. Both

the functions h(Yt) and ḡ(µt) are twice-differentiable, one-to-one monotonic; their shape depends on the specific

model (2.2)-(2.3) and the distribution of interest in equation (2.1). Note that the terminology link function is

generally referred to the specification of a function g(·) for modelling the dependence between a transformation ηt

of the conditional expected value µt and a linear predictor including information related to past values zt or to a

covariate set xt. The same terminology is here adopted for the specification of functions h(·) and ḡ(·) since, in some

instances belonging to the exponential family distribution, convenient choices for these functions correspond to the

canonical link function. Nevertheless, h(·) and ḡ(·) might be different from g(·), so that the model (2.2)-(2.3) is able

to encompass a wide range of existing models developed in the literature, as its special cases. Some examples are

presented in the next section.

Despite the fact that it is not constrained to assume a specific formulation, in general, it is useful to choose the

mean-link function as follows:

ḡ(µt) = E[h(Yt) |Ft−1 ] , (2.5)

in order to obtain εt ∼MDS (Martingale Difference Sequence), i.e. the difference E[h(Yt)− ḡ(µt)|Ft−1] = 0. In fact,

a MDS process has conditional expectation E[εt |Ft−1 ] = 0 and unconditional expectation E(εt) = 0. Moreover it is

uncorrelated, i.e. E(εtεt−s) = 0, with s 6= 0. This is a really useful construct in probability theory because it does

not require the usual assumption of independence of the errors. Furthermore, most limit theorems that hold for an

independent sequence will also hold for a MDS.

Moreover, if νt =
√

V[h(Yt) |Ft−1 ], then the residuals in equation (2.4) form a white noise (WN) sequence,

with unit variance. In practical situations, an explicit formula for the conditional moments E [h(Yt)|Ft−1] and

V [h(Yt)|Ft−1] is not always available. In this cases, it seems reasonable to use an approximation constructed from

their Taylor expansions; for example, the second order expansions are: ḡ(µt) = E [h(Yt)|Ft−1] ≈ h(µt) + 1
2h
′′(µt)σ

2
t ,

V [h(Yt)|Ft−1] = E
[
h(Yt)

2|Ft−1

]
− E [h(Yt)|Ft−1]

2 ≈ m(µt) + 1
2m
′′(µt)σ

2
t − ḡ(µt)

2, where m(·) = h(·)2.

Note that the process {Yt}t∈N is observed whereas {µt}t∈N is not. However, it can be shown by backward

substitutions in (2.2)-(2.3), that the process {µt}t∈N is a deterministic function of the past Ft−1. This is the reason

why equations (2.2)-(2.3) belong to the class of “observation-driven models”, see Cox (1981).

The parameters φ, θ and γ in equation (2.3) model the direction and the magnitude of three relevant effects

in the analysis of temporal data. Firstly, the autoregressive-like effect which represents the dependence on the
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past observations; then, the effect of the moving average part is considered for modelling the dependence between

prediction error terms over time; finally, the effect of the past memory dependence accounts for the dependence with

respect to the past prediction rather than on the past observations. The latter can be seen as the dependence of the

process from its whole past (since µt depends on all the past observations Yt−1, Yt−2, . . . ). In principle, any effect

can be specified in the model through different link functions. Typically, these functions are tailored to the nature

of the data generating process.

2.3 Some relevant models

This section describes the most relevant models developed in the literature of ARMA-like time series for binary and

count observations generated from probability distributions mainly belonging to the exponential family.

2.3.1 GARMA

A well-known specification for discrete-valued time series is the generalized Autoregressive Moving Average model,

GARMA, Benjamin et al. (2003). Here, the distribution of the process is defined to be the one-parameter exponential

family (2.1). From equation (2.2)-(2.3) the GARMA model is obtained when k = 0, by setting g ≡ ḡ ≡ h and νt = 1,

so that, the three link functions are equivalent and no scaling is applied:

ηt = xTt β +

p∑
j=1

φj
[
g(Yt−j)− xTt−jβ

]
+

q∑
j=1

θj [g(Yt−j)− ηt−j ] . (2.6)

The model includes the autoregressive and the moving average effects by using the same link function g. The

dependence with the past memory is not considered directly by a specific factor. This means that model (2.6) would

be employed when the immediate past values of the observed process Yt−j , j = 1, . . . ,max(p, q) may be considered

influential. In general, εt is not a martingale difference sequence then the mean-link function ḡ here does not follows

(2.5), instead, it is just set to be equivalent to g. However, there still is a special case in which εt ∼ MDS, such as

g ≡ h : identity (see the M-GARMA model below).

Although this model is suitably applicable in practice to every distribution encompassed in (2.1), it has been

mainly used for count data following a Negative Binomial (NB) distribution like equation (12) in Benjamin et al.

(2003).

2.3.2 M-GARMA

A suitable extension of the GARMA model in (2.6) has recently been introduced by Zheng et al. (2015); it allows the

residuals εt to be a martingale difference sequence (MDS), for this reason it has been called martinagalised GARMA

(M-GARMA). It is obtained from (2.2)-(2.3) for k = 0, g(µt) = E[h(yt) |Ft−1 ] = ḡ(µt) and νt = 1:

ḡ(µt) = xTt β +

p∑
j=1

φj
[
h(Yt−j)− xTt−jβ

]
+

q∑
j=1

θj [h(Yt−j)− ḡ(µt−j)] . (2.7)

For its particular construction, in this model the crucial choice is on the data-link function h which would entirely

determine the mean-link function. The usefulness of this model is on the possibility to write h(Yt) as a standard

ARMA model simply by adding h(Yt)− ḡ(µt) in both sides of (2.7) and rearranging the covariates:

h(Yt) = xTt α+

p∑
j=1

φjh(Yt−j) + εt +

q∑
j=1

θjεt−j ,

11



where α =
(

1−
∑p
j=1 φB

j
)
β andB is the lag operator, such asBjxt = xt−j . Note that when ḡ(µt) = E[h(yt) |Ft−1 ] =

h(µt), a GARMA model with the linear predictor ηt = E[h(yt) |Ft−1 ] is obtained. Also, the use of the first-order

Taylor approximation for ḡ(·) around µt provides

ḡ(µt) = E[h(Yt) |Ft−1 ] ≈ h(µt) .

Then, the standard GARMA model has been found as a particular case of the M-GARMA model when linear

approximation of ḡ is used. This leads to consider the application of model (2.7), instead of the usual GARMA

model (2.6), in all the cases when the expression ḡ(µt) = E[h(Yt) |Ft−1 ] has a closed-form. This happens only

under certain distributions, (such as Lognormal, Gamma and Beta, among others) and suitable choices the data-link

function h(·). The interested reader can find an exhaustive treatment of such particular cases under (Zheng et al.,

2015, Tab. 1).

2.3.3 GLARMA

A promising class has been developed by Rydberg and Shephard (2003) and Davis et al. (2003) under the name

of generalized Linear Autoregressive Moving Average (GLARMA) models; here, again, the distribution belongs to

the exponential family (2.1). GLARMA models can be written based on equations (2.2)-(2.3) by setting p = 0 and

h : identity:

ηt = xTt β + zt,

zt =

k∑
j=1

γj(zt−j + εt−j) +

q∑
j=1

θjεt−j , (2.8)

εt =
Yt − µt
νt

.

In this models, the error component and the past lag of the latent process are considered. However, the effect of

past lags of the discrete process Yt are not directly specified in the model. Notice that this model is equivalent to an

ARMA model on the linear predictor (minus the constants and covariates):

ηt − xTt β = zt =

k∑
j=1

γjzt−j +

q̃∑
j=1

τjεt−j ,

where q̃ = max(k, q) and τj = γj + θj . Or alternatively, in terms of ηt, we have

ηt = xTt α+

k∑
j=1

γjηt−j +

q̃∑
j=1

τjεt−j , (2.9)

where α =
(

1−
∑k
j=1 γjB

j
)
β.

2.3.4 Log-linear Poisson autoregression

Poisson autoregression, henceforth Pois AR, introduced by Fokianos et al. (2009), is obtained when (2.1) is Pois(µt),

with f(ηt) = log(ηt), and in equation (2.2)-(2.3), one has q = 0 and g ≡ h : identity:

µt = xTt α+

k∑
j=1

γjµt−j +

p∑
j=1

φjYt−j . (2.10)
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Obviously, the parameters in equation (2.10) are constrained in the positive real line. A variant of (2.10) is the

log-linear Poisson autoregression, henceforth Pois log-AR, Fokianos and Tjøstheim (2011) which is obtained when

q = 0, f(ηt) = ηt, g(µt) = log(µt) and h(Yt) = log(Yt + 1):

log(µt) = xTt α+

k∑
j=1

γj log(µt−j) +

p∑
j=1

φj log(Yt−j + 1) . (2.11)

The models (2.10) and (2.11) consider lagged effects for the discrete variable and the mean process explicitly and

do not include an error component. However, note that, for Poisson data, the GARMA model (2.6) with identity or

log links can be considered as a constrained Poisson autoregression where γj = −θj and φj is replaced by φj + θj , in

equations (2.10) or (2.11). So that the Poisson autoregression model can be rewritten in ARMA form.

The model in (2.11) could be used also for Negative Binomial data, by rewriting the distribution in terms of the

expected value parameter µt, see Christou and Fokianos (2014):

q (Yt|Ft−1) =
Γ(ν + Yt)

Γ(Yt + 1)Γ(ν)

(
ν

ν + µt

)v (
µt

ν + µt

)Yt
(2.12)

where ν is the dispersion parameter (if integer, it is also known as the number of failures) and the usual probability

parameter would be pt = ν
ν+µt

. The distribution (2.12) with model (2.11) is obtained from the distribution (2.1),

by setting the non-canonical link g(µt) = log(µt) and f(ηt) = ηt − log(ν + eηt), with A(ηt) = −ν log
(

ν
ν+eηt

)
and

d(Yt) = log Γ(ν+Yt)
Γ(Yt+1)Γ(ν) .

2.3.5 BARMA

In case of dynamic binary data, a relevant model is the Binomial ARMA (BARMA) model (Li (1994), Startz (2008))

which is obtained when (2.1) is Bin(a, µt), where the number of trials a is known and the probability parameter is

pt = µt/a. By setting k = 0, h : identity and νt = 1 in (2.2)-(2.3), we have

ηt = xTt β +

p∑
j=1

φj
[
Yt−j − xTt−jβ

]
+

q∑
j=1

θj [Yt−j − µt−j ] .

Note that, when h : identity, the mean-link function in (2.5) automatically reduces to E(Yt |Ft−1 ) = µt. Instead, the

link function g can be any suitable function, typically logit or probit. This model is thought for Binomial distribution

in (2.1). BARMA model includes the autoregressive effect and the moving average part. The model could be also

generalized to consider the dependence with respect to the long memory term with a suitable link function.

Models for binary time series have not enjoyed the same developments as models for count data. However,

enhancements in this direction could provide useful insights in several fields. The generalization for the non-binary

case could be also interesting for the analysis of temporal categorical data. To the best of our knowledge this part

of the literature seems to be barely explored; see Fokianos et al. (2003) and Moysiadis and Fokianos (2014) for an

introduction to these models.

2.4 Weak stationarity

We now pass to examine stationarity and ergodicity for some of the models highlighted in the previous section.

Specifically, we consider weak stationarity conditions for GARMA, M-GARMA and GLARMA models, in this section.

For the BARMA model, no direct results on weak stationarity are available in the literature so far. However, strong

stationarity is proved for BARMA, see Moysiadis and Fokianos (2014), that we shall consider in Section 2.5 along

with the Poisson autoregression, derived by Fokianos et al. (2009) and Fokianos and Tjøstheim (2011).
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2.4.1 GARMA

For the GARMA model in (2.6) for g ≡ h : identity, one has εt = Yt − µt, with zero conditional and unconditional

mean value. Moreover the process εt is uncorrelated. The observation process can now be expressed in the form

Yt = µt + εt. (2.13)

By setting wt = Yt − xTt β and by replacing the expression of (2.6) in (2.13), a standard ARMA model is obtained:

wt =

p∑
j=1

φj wt−j +

q∑
j=1

θj εt−j + εt. (2.14)

Of course (2.14) can be easily rearranged via polynomial notation in:

wt = Ψ(B) εt

where Ψ(B) = 1 + ψ1B + ψ2B
2 + · · · = Φ(B)−1 Θ(B), Φ(B) = 1− φ1B − · · · − φpBp, Θ(B) = 1 + θ1B − · · · − θpBq

and B is the lag operator; provided that Φ(B) is invertible. Indeed, look that E(wt) = Ψ(B), E(εt) = 0 and then

E(Yt) = β in the case where xTt β = β. The autocovariance does not depend on time t because of the uncorrelated

εt. Concerning the variance the situation is more complex:

V(Yt) = V(xTβ + wt)

= V(wt) = E(ε2t )

= E [Ψ(B) εt Ψ(B) εt]

=

∞∑
i=0

∞∑
j=0

ψi ψjE(εt−i εt−j)

=

∞∑
i=0

ψ2
iE(ε2t−i)

= ϕE
[
Ψ(2)(B) υ(µt)

]
, (2.15)

where 1 + ψ2
1B + ψ2

2B
2 + · · · = Ψ(2)(B). Expression (2.15) is obtained remembering that E(ε2t ) = V(εt) =

E
[
E(ε2t | Ft−1)

]
= E [υ(µt)]. The expression of the unconditional variance for the mean can be found as follows:V(Yt) =

V(µt) + V(εt) since εt and µt are uncorrelated. So,

V(µt) = E
{[

Ψ(2)(B)− 1
]
υ(µt)

}
.

The particular expression for υ(µt) in (2.15) depends on the distribution under investigation from (2.1). For example,

in case of Poisson distribution, υ(µt) = µt so that

V(Yt) = Ψ(2)(B) E(µt) = Ψ(2)(B)β = Ψ(2)(1)β,

where Ψ(2)(1) = 1 + ψ2
1 + ψ2

2 + · · · =
∑∞
j=1 ψ

2
j ; it can be seen that the variance is constant over t and no additional

conditions are required for weak stationarity apart from the usual invertibility of Φ(B). For other distributions,

further invertibility conditions could be required; for example, in the Bernoulli case, even Ψ(2)(B) needs to be

invertible to assure stationarity. This proof is due to Benjamin et al. (2003).

We remark that these conditions do not work for other link functions different from the identity; the reason is that,

in general, the prediction error in (2.6) εt = h(Yt)− ηt is not a MDS (apart from the special case g ≡ h : identity).

In order to develop an asymptotic theory for the maximum likelihood estimator (MLE) much more attention has

been put in assessing strict stationarity and ergodicity for the GARMA model than proving weak stationarity. For

this reason, we will deal with these results in the following section.
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2.4.2 M-GARMA

The M-GARMA model (2.7) allows the prediction error to be a MDS. However, the distribution of εt does depend

on Ft−1; for this reason, Zheng et al. (2015) pointed out that, in general, the classical condition of invertibility for

Φ(B) is not sufficient for the existence of a stationary distribution of the process {g(Yt)}t∈N. By using the theory

of Markov chains, the authors showed that the standard invertibility condition holds only for the special cases in

which the link function ḡ(µt) = g(µt) + c where c is some function which is constant with respect to µt; they call

these special cases the canonical link functions (a survey of this link function is presented in Zheng et al. (2015));

for the other cases they provided only strict stationarity conditions. However, the authors required q(y | Ft−1) to

be positive everywhere (R+); this condition is not satisfied for discrete-valued observation process yt. Thus, their

results are valid only for continuous distributions; indeed, in the paper, the attention of the authors is focused on

Beta and Gamma distributions.

2.4.3 GLARMA

For the GLARMA models, weak stationarity conditions follow immediately by rewriting (2.8) as a MA(∞):

zt = Ψ(B) εt =

∞∑
j=1

ψj εt−j ,

where the model is initialized by zt = 0 and εt = 0 for t ≤ 0. In general, here the process {εt} is a MDS and in the

special case in which Pearson residuals are chosen, it is stationary WN(0,1) and automatically zt will be (weakly)

stationary (and Yt as well) under usual stationarity and invertibility conditions (roots of Φ(B) and Θ(B) lie all

outside the unit circle on the complex plan). See Dunsmuir and Scott (2015) for details. Nevertheless, no results are

available for strict stationarity apart from the simplest case when k = 0, q = 1; see Davis et al. (2003), Dunsmuir

and Scott (2015), Davis and Liu (2016).

2.5 Strong stationarity

Strong stationarity and ergodicity for models discussed so far are based on several approaches, see Fokianos et al.

(2020) for a comprehensive introduction. Here we mainly consider two of them. One is is the perturbation approach

introduced by Fokianos et al. (2009) and Fokianos and Tjøstheim (2011), for the linear and log-linear Poisson au-

toregression models, respectively. The other is the Markov chain theory without irreducibility assumption developed

by Matteson et al. (2011), by extending the perturbation argument with Feller properties. These authors showed an

application of their approach to the GARMA model as well, see Section 2.5.1. An alternative approach to Markov

chain theory without irreducibility assumption is presented by Douc et al. (2013). In this latter paper, an application

to the log-linear Poisson autoregression is available, see Section 2.5.2. Similar results are established on the BARMA

model, see Moysiadis and Fokianos (2014). For the M-GARMA model only results for continuous variables are

available by Zheng et al. (2015). For the GLARMA model, no direct strict-stationarity results have been developed

in the literature.

The perturbation approach is an indirect way to establish stability properties of the discrete process {Yt} and it

consists of defining a real valued version of the process, by adding a small real perturbation σ to the original process

and then showing stochastic properties on the new perturbed process
{
Y

(σ)
t

}
. Moreover, it can be proved that,

as σ → 0, the two processes are arbitrarily close, see the Appendix for details. The Markov chain theory without

irreducibility allows to extends results of the perturbation approach to the original process, by exploiting the fact

that {µt} can be seen as a Markov chain. Showing stationarity and ergodicity for such chain allows one to conclude
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for strict stationarity of the integer valued process {Yt}. The difference in this approach between Matteson et al.

(2011) and Douc et al. (2013) lies only in the additional assumptions required.

We first report an application of the perturbation approach and its extension with Feller properties to the

GARMA model in Section 2.5.1. Then, an example of the approach of Douc et al. (2013) to the log-linear Poisson

autoregression is presented in Section 2.5.2. We postpone all the theoretical tools required for the application of the

two methods in the Appendix.

2.5.1 Strict stationarity and ergodicity for the GARMA model

In this section the conditions under which there exists a strict-sense stationary and ergodic version of the observation

process {Yt}t∈N for the GARMA(1,1) model are given. Define

Yt | Y0:t−1 ∼ q(µt), (2.16)

g(µt) = β + φ
[
g(Y ∗t−1)− β

]
+ θ

[
g(Y ∗t−1)− g(µt−1)

]
(2.17)

where Y ∗t is a function which map the value of Yt to the domain of g. The process Y0:t−1 is the set of past values of

Yt from the time 0 until t− 1. q(µt) is a synthetic notation for (2.1). Three separate cases are considered:

1. q(µ) is defined for any µ ∈ R. In this case the domain of g is R and Y ∗t = Yt is taken.

2. q(µ) is defined for only µ ∈ R+(or µ on any one-sided open interval by analogy). In this case the domain of g

is R+ and Y ∗t = max {Yt, c} for some c > 0 is taken.

3. q(µ) is defined for only µ ∈ (0, a) where a > 0 (or any bounded open interval by analogy). In this case the

domain of g is (0, a) and Y ∗t = min {max (Yt, c) , (a− c)} for some c ∈ (0, a/2) is taken.

Valid link functions g are bijective and monotonic. Choices for Case 2 include the log link, which is the most

commonly used, and the link, parametrized by α > 0,

g(µ) = log(eαµ − 1)/α

which has the property that g(µ) ≈ µ for large µ. Examples of valid link functions for Cases 1 and 3 are the identity

and logit functions, respectively. Note that model (2.16) is more general than the class of models developed in (2.1)

in the sense that it is not necessarily assumed that q(·) belongs to the exponential family.

Perturbed model

The perturbation approach consists of adding a small real-valued perturbation to the discrete-valued time series

model in order to obtain a ϕ-irreducible process (see Definition 1 in the Appendix); then the standard tools for

Markov chains could be used to assess stationarity and ergodicity for the perturbed version of the GARMA model.

First, ergodicity and stationarity results for the following perturbed model are obtained:

Y
(σ)
t | Y (σ)

0:t−1 ∼ q(µ
(σ)
t )

g(µ
(σ)
t ) = β + φ

[
g(Y

(σ)∗
t−1 )− β

]
+ θ

[
g(Y

(σ)∗
t−1 )− g(µ

(σ)
t−1)

]
+ σZt−1, (2.18)

where Zt ∼ N(0, 1) are independent, identically distributed random perturbations, for any σ > 0, which is a scale

factor associated with the perturbation. The value µ
(σ)
0 is a fixed constant that is taken to be independent of σ, so

that µ
(σ)
0 = µ0.
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Theorem 1. The process {µ(σ)
t }t∈N specified by the perturbed process (2.18) is an ergodic Markov chain and thus is

stationary for an appropriate initial distribution for µ
(σ)
0 , under the conditions below. This implies that the perturbed

process {Y (σ)
t }t∈N is stationary and ergodic when µ

(σ)
0 is initialized appropriately. The conditions are:

1. E(Y
(σ)
t | µ(σ)

t ) = µ
(σ)
t .

2. (2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative constants d1, d2 such that

E(|Y (σ)
t − µ(σ)

t |2+δ | µ(σ)
t ) ≤ d1|µ(σ)

t |r + d2.

3. g is bijective, increasing, and

3.1. g : R 7→ R is concave on R+ and convex on R−, and |φ| < 1

3.2. g : R+ 7→ R is concave on R+, and |φ| , |θ| < 1

3.3. |θ| < 1; no additional conditions on g : (0, a) 7→ R.

The proof can be found in the appendix of Matteson et al. (2011). This approach yields stationarity and ergodicity

properties for the perturbed model. In order to extend these conclusions to the original unperturbed model the results

of the following section are required.

Unperturbed model

In this section, the existence of a stationary distribution for the observation process {Yt}t∈N of the original (unper-

turbed) class of GARMA models is proved. Since {Yt}t∈N is not itself a Markov chain, the existence of a strict-sense

stationary ergodic process {Yt}t∈N is proved by showing that the Markov chain {µt}t∈N has a unique stationary

distribution. First, existence of a stationary distribution for the Markov chain is shown by using the weak Feller

property. Let Y0(x) denote the random variable Y0 conditioned on µ0 = x. The results of this section are due to

Matteson et al. (2011).

Theorem 2. The process {µt}t∈N specified by the GARMA model (2.17) has a stationary distribution, and thus is

stationary for an appropriate initial distribution for µ0, under the following conditions:

1. Y0(x)⇒ Y0(x′) as x→ x′.

2. E(Yt | µt) = µt.

3. (2 + δ moment condition): There exist δ > 0, r ∈ [0, 1 + δ) and nonnegative constants d1, d2 such that

E(|Yt − µt|2+δ | µt) ≤ d1 |µt|r + d2.

4. g is bijective, increasing, and

4.1. g : R 7→ R is concave on R+ and convex on R−, and |φ| < 1

4.2. g : R+ 7→ R is concave on R+, and |φ| , |θ| < 1

4.3. |θ| < 1; no additional conditions on g : (0, a) 7→ R.

For the proof, Theorem 8 is applied to the chain {g(µt)}t∈N to show that it has a stationary distribution; this

implies the same result for the chain {µt}t∈N. The state space S = R of {g(µt)}t∈N is a locally compact complete

separable metric space with Borel σ-field. A drift condition for {g(µt)}t∈N is given under the conditions of Theorem

1, for the compact set A = [−M,M ] (the drift condition holds when the perturbation σ = 0). All that remains is to
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show that the chain {g(µt)}t∈N is weak Feller. See the Appendix for all the details and definitions. Let Xt = g(µt).

For X0 = x one has that

X1(x) = γ + φ(g(Y ∗0 (g−1(x)))− γ) + θ(g(Y ∗0 (g−1(x)))− x).

Since g−1 is continuous, Y0(g−1(x)) ⇒ Y0(g−1(x′)) as x → x′. Since the ∗ that maps Y0 to the domain of g is

continuous, it follows that Y ∗0 (g−1(x)) ⇒ Y ∗0 (g−1(x′)) as x → x′. Since g is continuous, then g(Y ∗0 (g−1(x))) ⇒
g(Y ∗0 (g−1(x′))). So X1(x)⇒ X1(x′) as x→ x′, showing the weak Feller property.

Then, uniqueness of the stationary distribution for µt is shown, using the asymptotic strong Feller property. It

is further assumed that the distribution πz(·) of g(Yt) conditional on g(µt) = z varies smoothly and not too quickly

as a function of z. This mean that πz(·) has the Lipschitz property

sup
w,z∈R:w 6=z

‖πw(·)− πz(·)‖TV
|w, z|

< B <∞ (2.19)

where ‖·‖TV is the total variation norm (see Meyn et al. (2009), page 315).

Theorem 3. Suppose that the conditions of Theorem 2 and the Lipschitz condition (2.19) hold, and that there is

some x ∈ R that is in the support of Y0 for all values of µ0. Then there is a unique stationary distribution for

{µt}t∈N. This implies that {Yt}t∈N is strictly stationary when µ0 is initialized appropriately.

The proof of the theorem can be found in Matteson et al. (2011) and Proposition 8 in Douc et al. (2013).

A similar procedure can be followed to prove strict stationarity and ergodicity for the GARMA model with more

than one lag. See Matteson et al. (2011) for further discussion.

2.5.2 Strict stationarity and ergodicity for log-linear Poisson autoregression

The work of Douc et al. (2013) is intended to provide an alternative proof on stationarity and ergodicity for the

discrete process Yt by weaken the Lipschitz assumption (2.19), which is not satisfied for widely used observation-

driven models. They specify a wide class of observation-driven model as follows, such as the log-linear Poisson

autoregression. Let (X, d) be a locally compact, complete and separable metric space and denote by X the associated

Borel sigma-field. Let (Y,Y) be a measurable space, H a Markov kernel from (X,X ) to (Y,Y) and (x, y) 7→ fy(x) a

measurable function from (X× Y,X ⊗ Y) to (X,X ).

An observation-driven model on N is a stochastic process {(Xt, Yt), t ∈ N} on its space X × Y satisfying the

following recursions: for all t ∈ N,

Yt+1|Ft ∼ H(Xt; ·), Xt+1 = fYt+1
(Xt) (2.20)

where Ft = σ(Xl, Yl; l ≤ t, l ∈ N) and fYt+1 is a generic function depending on the observation process {Yl, l ≤ t+ 1}
. Similarly {(Xt, Yt), t ∈ Z} is an observation-driven time series model on Z if the previous recursion holds for all

t ∈ Z with Fk = σ(Xl, Yl; l ≤ t, l ∈ Z).

Denote now by Q the transition probability associated to {Xt, t ∈ N} defined implicitly by the recursions (2.20).

See the Appendix for details. Then, general conditions expressed in terms of H and f are derived under which the

processes {Xt, t ∈ N} and {(Xt, Yt), t ∈ N} admit a unique invariant probability distribution.

In the next section we highlight the proof for strict-stationarity and ergodicity for the discrete process. Only

the aspects of the proof which significantly different from those in Section 2.5.1 are showed here. We remind the

interested reader to the Appendix for the details.
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Alternative condition for Markov chain approach without irreducibility

In what follows, if (E, E) a measurable space, ξ a probability distribution on (E, E) and R a Markov kernel on (E, E),

denote by PRξ the probability induced on (EN, E⊗N) by a Markov chain with transition kernel R and initial distribution

ξ. Denote by ERξ the associated expectation. The Lipschitz assumption (2.19) is substituted by

(A3) There exists a kernel Q̄ on (X 2 × {0, 1} ,X⊗2 ⊗ P({0, 1})), a kernel Q] on (X 2,X⊗2) and a measurable

function α : X2 → [1,∞) and real numbers (D, ζ1, ζ2, ρ) ∈ (R+)3 × (0, 1) such that for all (x, x′) ∈ X2,

1− α(x, x′) ≤ d(x, x′)W (x, x′) (2.21)

EQ
]

δx⊗δx′
[d(Xt, X

′

t)] ≤ Dρtd(x, x′) (2.22)

EQ
]

δx⊗δx′
[d(Xt, X

′

t)W (Xt, X
′

t)] ≤ Dρtdζ1(x, x′)W ζ2(x, x′). (2.23)

Moreover, for all x ∈ X, there exists γx > 0 such that

sup
x′∈B(x,γx)

W (x, x′) <∞

Some practical conditions for checking (2.22) and (2.23) in (A3) can be denoted.

Lemma 1. Assume that either (i) or (ii) or (iii) (defined below) holds.

(i) There exist (ρ, β) ∈ (0, 1)×R such that for all (x, x′) ∈ X2

d(X1, X
′
1) ≤ ρd(x, x′), PQ

]

δx⊗δx′
− a.s. (2.24)

Q]W ≤W + β (2.25)

(ii) (2.22) holds and W is bounded.

(iii) (2.22) holds and there exist 0 < α < α′ and β ∈ R+ such that for all (x, x′) ∈ X2

d(x, x′) ≤Wα(x, x′)

Q]W 1+α′ ≤W 1+α′ + β

Then, (2.22) and (2.23) hold.

All the proof are in the Section 3 of Douc et al. (2013).

The condition (A3) for the Log-linear Poisson autoregression

We now report here the proof of (A3) for the log-linear Poisson autoregression model with one lag. Consider a

Markov chain {Xt}t∈N with a transition kernel Q given implicitly by the following recursive equations:

Yt+1|X0:t, Y0:t ∼ P(eXt)

Xt+1 = d+ aXt + b ln(Yt+1 + 1)

where P(λ) is the Poisson distribution with parameter λ. Here X = R so d(x, x′) = |x − x′| and the function

fy(x) = d + a x + b ln(1 + y). This model called log-linear Poisson autoregression (for details see Fokianos and

Tjøstheim (2011)).

Lemma 2. If |a+ b| ∨ |a| ∨ |b| < 1, then (A3) holds.
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Proof. Define Q̄ as the transition kernel Markov chain {Zt, t ∈ N} with Zt = (Xt, X
′
t, Ut) in the following way. Given

Zt = (x, x′, u), if x ≤ x′, draw independently Yt+1 ∼ P(ex) and Vt+1 ∼ P(ex
′ − ex) and set Y ′t+1 = Yt+1 + Vt+1.

Otherwise, draw independently Y ′t+1 ∼ P(ex
′
) and Vt+1 ∼ P(ex − ex′) and set Yt+1 = Y ′t+1 + Vt+1.

Xt+1 = d+ a x+ b ln(Yt+1 + 1),

X ′t+1 = d+ a x′ + b ln(Y ′t+1 + 1),

Ut+1 = 1Yt+1=Y ′t+1
= 1Vt+1=0,

Zt+1 = (Xt+1, X
′
t+1, Ut+1)

where Q̄ satisfies the marginal condition (A-9). Moreover, define for all x] = (x, x′) ∈ X2,Q](x], ·) as the law of

(X1, X
′
1) where

X1 = d+ a x+ b ln(Y + 1), Y ∼ P(ex∧x
′
), (2.26)

X ′1 = d+ a x′ + b ln(Y + 1),

and set for all x] = (x, x′) ∈ R2,

α(x]) =
{

exp−ex∨x
′
+ ex∧x

′
}
.

Then, Q̄ and Q] satisfy (A-11). Using twice 1− e−u ≤ u,it follows that

1− α(x]) = 1−
{

exp−ex∨x
′
+ ex∧x

′
}
≤ ex∨x

′
− ex∧x

′

ex∨x
′
(1− e−|x−x

′|) ≤W (x, x′)|x− x′|

with W (x, x′) = e|x|∨|x
′| so that (2.21) holds true. To check (2.22) and (2.23), Lemma 1 is applied, by checking

option (i). Note first that

PQ
]

δx⊗δx′
{|X1 −X ′1| = |a||x− x′|} = 1, (2.27)

so that (2.24) is satisfied. To check (2.25), it can be shown that

lim
|x|∨|x′|→∞

Q]W (x, x′)

W (x, x′)
= 0 (2.28)

and for all M > 0,

sup
|x|∨|x′|≤M

Q]W (x, x′) <∞ (2.29)

Now, without loss of generality, assume x ≤ x′. Using (2.26) provides

Q]W (x, x′) = E
(
e|X1|∨|X′1|

)
≤ E

(
e|X1|

)
+ E

(
e|X

′
1|
)
. (2.30)

First consider the second term of the right-hand side of (2.30),

E
(
e|X

′
1|
)
≤ e|d|E(e|ax

′+b ln(1+Y )). (2.31)

Noting that if u and v have different signs of if v = 0, then |u + v| ≤ |u| ∨ |v|. Otherwise, |u + v| = (u + v)1v>0 ∨
(−u− v)1v<0. This implies that

e|u+v| ≤ e|u| + e|v| + eu+v1v>0 + e−u−v1v<0.

and plugging this into (2.31),

E(e|X
′
1) ≤ e|d|

(
e|a||x

′| + E[(1 + Y )|b|] + eax
′
E[(1 + Y )b]1b>0 + e−ax

′
E[(1 + Y )−b]1b<0

)
.
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Note that for all γ ∈ [0, 1],

E[(1 + Y )γ ] ≤ [E(1 + Y )]γ = (1 + ex)γ ≤ 1 + eγx ≤ 1 + eγx
′
.

Moreover, since |b| ∈ [0, 1], b1b>0 ∈ [0, 1] and −b1b<0 ∈ [0, 1]. Therefore,

E(e|X
′
1) ≤ e|d|

(
e|a||x

′| + 1 + e|b||x| + eax
′
(1 + ebx

′
)1b>0 + e−ax

′
(1 + e−bx

′
)1b<0

)
≤ e|d|

(
e|a||x

′| + 1 + e|b||x| + e|a||x
′| + e|a+b||x′|

)
≤ e|d|

(
1 + 4eγ(|x|∨|x′|)

)
,

where γ = |a| ∨ |b| ∨ |a + b| < 1. The first therm of the right hand side of (2.30) is treated as the second term by

setting x′ = x. So

E(e|X1|) ≤ e|d|
(

1 + 4eγ(|x|∨|x′|)
)
,

so that using (2.30),

Q]W (x, x′) ≤ 2e|d|
(

1 + 4eγ(|x|∨|x′|)
)
.

Since γ ∈ (0, 1) and W (x, x′) = e|x|∨|x
′|, and (2.30) clearly implies (2.28) and (2.29). This proves (A3) and together

with (A1)-(A2) provides stationarity conditions for the process {Yt} of the log-linear Poisson autoregression. For

further details, see the Appendix.

For this method the attention is put on showing stability conditions for the model with only one lag. The

extension to order greater than the first could be challenging. See Douc et al. (2013).

2.6 Inference

The inferential procedures for observation driven models of discrete processes usually rely on maximum likelihood

estimation (MLE). However a misspecified version is available, namely Quasi MLE (QMLE), where the likelihood

function considered for the estimation is not necessarily paired with the conditional distribution assumed as a data

generating process, see Basawa and Prakasa Rao (1980), Zeger and Liang (1986) and Heyde (1997).

For linear and log-linear Poisson autoregressive time series models, Fokianos et al. (2009) and Fokianos and

Tjøstheim (2011) developed maximum likelihood estimation. Quasi-likelihood inference of negative binomial pro-

cesses has been introduced in Christou and Fokianos (2014). Ahmad and Francq (2016) established consistency

and asymptotic normality of the QMLE for the specific case of the Poisson distribution. For the general framework

(2.20), Douc et al. (2013) proved the consistency of MLE and QMLE. Asymptotic normality, in the same setting, is

later discussed by Douc et al. (2017). Comparable results have been derived by Davis and Liu (2016), based on the

approach developed by Neumann (2011). The aim of this section is to give a brief introduction to QMLE for the

framework (2.20).

Let (Θ, d) be a compact metric subspace of Rp. Define the parameter vector θ ∈ Θ and the QMLE

θ̂n,x = arg max
θ∈Θ

Lθn,x〈Y1:n〉 , (2.32)

with corresponding conditional (quasi) log-likelihood function

Lθn,x〈Y1:n〉 = n−1 log

(
n∏
t=1

h(fθ〈y1:t−1〉(x); yt)

)
,

where h(fθ〈y1:t−1〉(x); yt) is the density function coming from the kernel H in (2.20) and the notation fθ〈ys:t〉(x) =

fθyt ◦ f
θ
yt−1
◦ · · · ◦ fθys(x), s ≤ t is the so-called Iterated Random Function (IRF), see Diaconis and Freedman (1999),
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with the convention fθ〈y1:0〉(x) = x. Moreover, let X0 = x be the starting value of the chain Xt in (2.20), then

the likelihood is conditional to the starting point x. Here the dependence on the parameter vector θ is emphasized

fθys(·) = fys(·).
The following results is due to Douc et al. (2013) and Douc et al. (2017). We make the following assumptions.

(B1) {Yt}t∈Z is a strict-sense stationary and ergodic stochastic process.

(B2) ∀(x, y) ∈ X× Y, the functions θ 7→ fθy(x) and v 7→ h(v, y) are continuous.

(B3) There exists a family of finite random variables
{
fθ〈Y−∞:t〉 : (θ, t) ∈ Θ× Z

}
such that for all x ∈ X,

(i) limm→∞ supθ∈Θ d
[
fθ〈Y−m:0〉(x), fθ〈Y−∞:0〉

]
= 0, a.s.

(ii) limt→∞ supθ∈Θ

∣∣log h(fθ〈Y1:t−1〉(x);Yt)− log h(fθ〈Y−∞:t−1〉;Yt)
∣∣ = 0, a.s.

(iii) E
[
supθ∈Θ

(
log h(fθ〈Y−∞:t−1〉;Yt)

)
+

]
<∞, where the notation (·)+ is the positive part.

(B4) The true parameter vector θ? is assumed to be in Θo, the interior of Θ.

(B5) The function
∫
H(x?, dy) log h(x, y) has a unique maximum {x?}.

Conditions (B1)-(B2) are clearly required so that the estimator θn,x is well-defined. Assumption (B3)-(i) assures

that, regardless of the initial value of X−m = x, the chain X0 (and thus Xt) can be approximated by a quantity

involving the infinite past of the observations. Intuitively, (B3)-(ii) allows the conditional log-likelihood function to

be approximated by a stationary sequence involving the infinite past of Yt. (B3)-(iii) is required in order to obtain

a solvable maximization problem and holds for the discrete Yt (see Remark 18 in Douc et al. (2013)). Assumption

(B5) corresponds to an identification condition.

Theorem 4. Assume that (B1)-(B5) hold and fθ
?〈Y−∞:0〉 = fθ〈Y−∞:0〉 implies that θ = θ?. Then, for all x ∈ X,

lim
n→∞

θ̂n,x = θ?, a.s.

These results establish strong consistency of the QMLE. For the proof and other details see Douc et al. (2017).

An example of derivation of Theorem 4 for the one lag log-linear Poisson AR can be found in Douc et al. (2013). See

also Ahmad and Francq (2016), for a similar result.

Finally, the condition under which the QMLE (2.32) is asymptotically normally distributed are investigated.

Define the score function

χθ(xt(θ), yt) = ∇θxt(θ)
∂ log h(xt, yt)

∂xt
,

and the Hessian matrix

Kθ(xt(θ), yt) = ∇2
θxt(θ)

∂ log h(xt, yt)

∂xt
+∇θxt(θ)∇θxt(θ)′

∂2 log h(xt, yt)

∂x2
t

.

Then, define the following notation f•〈Y−∞:t−1〉 : θ 7→ fθ〈Y−∞:t−1〉 and f•〈Y1:t−1〉(x) : θ 7→ fθ〈Y1:t−1(x)〉. A further

assumption is required.

(B6) : For all y ∈ Y, the function v 7→ h(v, y) is twice continuously differentiable. Moreover, there exist ε > 0

and a family of a.s. finite random variables{
fθ〈Y−∞:t〉 : (θ, t) ∈ θ × Z

}
such that fθ

?〈Y−∞:0〉 is in the interior of X, the function θ 7→ fθ〈Y−∞:0〉 is twice continuously differentiable

on some ball B(θ?, ε) and for all x ∈ X,
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(i) a.s.,

lim
t→∞

∥∥∥χθ? (f•〈Y1:t−1〉(x), Yt)− χθ
?

(f•〈Y−∞:t−1〉, Yt)
∥∥∥ = 0

where ‖·‖ is any norm on Rp.

(ii) a.s.,

lim
t→∞

sup
θ∈B(θ?,ε)

∥∥Kθ (f•〈Y1:t−1〉(x), Yt)−Kθ (f•〈Y−∞:t−1〉, Yt)
∥∥ = 0

where ‖·‖ denote here any norm on p× p-matrices with real entries.

(iii)

E

[∥∥∥χθ? (f•〈Y−∞:0〉, Y1)
∥∥∥2
]
<∞, E

[
sup

θ∈B(θ?,ε)

∥∥Kθ (f•〈Y−∞:0〉, Y1)
∥∥] <∞

Moreover, the matrix

J (θ?) = E

[(
∇θgθ?〈Y−∞:0〉

) (
∇θfθ?〈Y−∞:0〉

)′ ∂2

∂x2
log h

(
fθ?〈Y−∞:0〉, Y1

)]
is non singular.

Intuitively, (B6) assumes that the score function and the information matrix of the data can be approximated by

the their counterpart with infinite past of the process. In addition, all of these quantities are assumed to exist.

Theorem 5. Assume (B1)-(B6) hold and θ̂n,x
p−→ θ?. Then,

√
n(θ̂n,x − θ?)

d−→ N(0,J (θ?)−1I(θ?)J (θ?)−1) ,

where

I(θ?) = E

[(
∇θfθ

?

〈Y−∞:0〉
)(
∇θfθ

?

〈Y−∞:0〉
)′( ∂

∂x
log h

(
fθ

?

〈Y−∞:0〉, Y1

))2
]
.

The proof relies on the argument of Douc et al. (2017).

Note that, for correctly specified MLE, equation (2.32) is the exact MLE and J (θ?) = I(θ?) in Theorem 5,

providing the standard ML inference. For further details see Douc et al. (2017). When the quasi-likelihood come

from Poisson distribution Ahmad and Francq (2016) proved a similar result for Theorem 5. An analogous conclusion

can be found in Christou and Fokianos (2014) for the Negative Binomial distribution.

2.7 Application

The recent outbreak of the new coronavirus called COVID-19 lends itself to a current illustration of the model

(2.1, 2.3). The time series we consider is related to the daily number of deaths for COVID-19 in Italy from 21st

February 2020 to 20th December 2020. The data can be downloaded by the GitHub repository of the 2019 Novel

Coronavirus Visual Dashboard operated by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University (JHU), https://github.com/CSSEGISandData/COVID-19. The time series has a sample size equal to

n = 304 and is plotted in Figure 2.1, along with its autocorrelation function. The latter shows a temporal correlation

spread over several lags in the past. We argue that observation driven models for discrete time series data may be

effective in this case. The long time dependence suggests the use of a feedback mechanism, captured by the latent

process.
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Figure 2.1: Top-left: daily count for COVID-19 deaths in Italy. Top-right: ACF. Bottom-left: ACF

standardized residuals for log-AR Poisson model. Bottom-right: ACF standardized residuals for log-AR

NB model.

We fit models coming from two different distributions; the Poisson distribution:

P (Yt = y|Ft−1) =
exp(−µt)µyt

y!
, y = 0, 1, 2, . . .

and the Negative binomial distribution (NB, henceforth):

P (Yt = y|Ft−1) =
Γ(ν + y)

Γ(y + 1)Γ(ν)

(
ν

ν + µt

)v (
µt

ν + µt

)y
, y = 0, 1, 2, . . . (2.33)

where ν > 0 is the dispersion parameter and µt is the conditional expectation; the latter is the same for both

distributions. Indeed, equation (2.33) is defined in terms of mean rather than of the probability parameter pt = ν
ν+µt

and it accounts for overdispersion in the data as, in (2.33), V(Yt|Ft−1) = µt (1 + µt/ν) ≥ µt. In the Poisson

distribution, the mean and variance are the same.

In order to set a model selection procedure we have estimated the following one-lag models, the log-linear Poisson

autoregression (2.11)

log(µt) = α+ φ log(yt−1 + 1) + γ log(µt−1) ,

the GARMA model (2.6)

log(µt) = α+ φ log(y?t−1) + θ
[
log(y?t−1)− log(µt−1)

]
,

where y?t−1 = max {yt, c} with c = 0.1 and α = (1− φ)β and the GLARMA model (2.7)

log(µt) = α+ γ log(µt−1) + θ

(
yt−1 − µt−1

st−1

)
,
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where st =
√
µt for the Poisson distribution and st =

√
µt (1 + µt/ν) for the NB.

QMLE has been carried out. The log-likelihood function of the Poisson and NB distributions is maximized by

using a standard optimizer of R based on the BFGS algorithm. The score functions written in terms of predictor

xt = logµt are:

χn(θ) =
1

n

n∑
t=1

(
yt − expxt(θ)

)∂xt(θ)
∂θ

,

χn(θ) =
1

n

n∑
t=1

(
yt −

(yt + ν) expxt(θ)

expxt(θ) + ν

)
∂xt(θ)

∂θ
.

The solution of the system of non-linear equations χn(θ) = 0, if it exists, provides the QMLE of θ (denoted by θ̂).

See Section 2.6 for details on the inference. In NB models, the estimation of ν is required. We used the moment

estimator, as in Christou and Fokianos (2015):

ν̂ =

{
1/n

n∑
t=1

[
(yt − µ̂t)2 − µ̂t

]
/µ̂2

t

}−1

,

where µ̂t = µt(θ̂) from the Poisson model. Clearly, we replace each quantity with the sample counterparts computed

at θ̂.

The results of the analysis are summarized in Table 2.1. In the likelihood-based framework, model selection is

based on information criteria, such as the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). All the coefficients of the estimation are significant at the usual 5% level. Both AIC and BIC select the NB

log-AR model as the best, in the goodness-of-fit sense.

Table 2.1: MLE results for COVID-19 death counts (standard errors in brackets).

Models α̂ φ̂ γ̂ θ̂ ν̂ AIC BIC

Pois log-AR
0.154 0.619 0.357 -

- 24.204 35.355
(0.035) (0.060) (0.062) -

Pois GARMA
0.211 0.976 - -0.360

- 24.163 35.314
(0.036) (0.006) - (0.061)

Pois GLARMA
0.187 - 0.961 0.038

- 28.047 39.198
(0.031) - (0.008) (0.003)

NB log-AR
0.061 0.569 0.424 -

10.733 15.227 26.378
(0.023) (0.036) (0.035) -

NB GARMA
0.157 0.976 - -0.441

9.123 15.262 26.413
(0.022) (0.004) - (0.034)

NB GLARMA
0.712 - 0.822 0.177

4.756 16.636 27.787
(0.072) - (0.016) (0.011)

We then assess the adequacy of fit. We check the behaviour of the standardized Pearson residuals et =

[Yt − E(Yt|Ft−1)] /
√

V(Yt|Ft−1) which is done by taking the empirical version êt from the estimated quantities.

If the model is correctly specified, the residuals should be white noise sequence with constant variance. The ACF in

our case appears quite uncorrelated for the NB case (see Figure 2.1, for log-AR models).

Another check comes from the probability calibrations, as defined in Gneiting et al. (2007). In particular Czado

et al. (2009) introduced a non-randomized version of Probability Integral Transform (PIT) for discrete data. It can
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be build by defining the following conditional distribution function

F (u|yt) =


0, u ≤ Pt(yt − 1)
u−Pt(yt−1)

Pt(yt)−Pt(yt−1) , Pt(yt) ≤ u ≤ Pt(yt − 1)

1, u ≥ Pt(yt)

(2.34)

where Pt(·) is the cumulative distribution function at time t (in our case Poisson or NB). If the model is correct,

u ∼ Uniform(0, 1) and the PIT (2.34) will appear to be the cumulative distribution function of a Uniform(0, 1).

The PIT (2.34) is computed for each realisation of the time series yt, t = 1 . . . , n and for values u = j/J, j = 1, . . . , J ,

where J is the number of bins (usually equal to 10 or 20); then its mean F̄ (j/J) = 1/n
∑n
t=1 F (j/J |yt) is taken.

The outcomes are probability mass functions, which are obtained in terms of differences F̄ ( jJ ) − F̄ ( j−1
J ) plotted in

Figure 2.2. The NB PIT’s appear to be closer to Uniform(0, 1), especially for log-linear autoregression and GARMA

models.

In order to assess the power of prediction we refer to the concept of sharpness of the predictive distribution defined

in Gneiting et al. (2007). It can be measured by some average quantities related to the predictive distribution, which

take the form 1/n
∑n
t=1 d[Pt(yt)], where d(·) is some function called scoring rule. We used some of the usual scoring

rules employed in the literature: the logarithmic score (logs) − log pt(yt), where pt(·) is the probability mass at the

time t; the quadratic score (qs) −2pt(yt) + ‖p‖2, where ‖p‖2 =
∑∞
k=0 p

2
t (k); the spherical score (sphs ) −pt(yt)/‖p‖;

the ranked probability score (rps)
∑∞
k=0[Pt(k)− 1(yt ≤ k)] and the Dawid–Sebastiani score (dss) (yt−µtσt

)2 + 2 log σt,

where µt and σt are the mean and variance of Pt(yt). These scores are applied to different models and distributions.

The results are summarized in Table 2.2. The NB log-AR model is chosen as the best model, as it has the best

predictive performance for all the scoring rules, this confirms the result of the goodness of fit analysis.
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Figure 2.2: Top: PIT’s for the Poisson models. Bottom: PIT’s for the NB models.
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Table 2.2: Predictive performance for COVID-19 death counts (smallest values in bold).

Models Distribution logs qs sphs rps dss

log-AR
Poisson 9.1054 -0.0205 -0.1260 32.6055 21.1890

NB 4.6168 -0.0324 -0.1458 29.3324 14.0354

GARMA
Poisson 9.0849 -0.0212 -0.1274 32.5241 21.1019

NB 4.6345 -0.0320 -0.1448 29.7812 14.1704

GLARMA
Poisson 11.0270 0.0009 -0.0822 36.5751 26.0447

NB 5.3215 -0.0176 -0.1033 74.0710 16.1614

2.8 Concluding remarks

The most notable observation-driven models for discrete data have been reviewed. The basic stochastic properties

required to guarantee their correct use have been presented, as well as the technical tools for their practical applica-

tion. Increased availability and interest in discrete data encourage the use of these time series models, which will be

promising key tools in future works on binary and count data.

For theoretical and substantive reasons, the analysis of discrete-valued times series would benefit from the spec-

ification of a unified framework able to encompass most of the models available in the literature. As a matter of

fact, it is not trivial to explore whether the models that we have discussed are nested, and, consequently, to de-

rive stochastic properties that simultaneously hold across models. In addition, model comparison becomes crucial

when direct relationships among different models are unknown. Furthermore, novel models not yet specified in the

literature could be analyzed in order to obtain better performances in practical applications.

Concerning probabilistic properties, up to the present time, the strict stationarity and ergodicity properties have

not been established explicitly for some of the models revised in this chapter (GLARMA and M-GARMA for discrete

variables, for example). In principle, the theoretical tools presented in the Appendix would be sufficient to show

stability conditions for such models as well as any general framework encompassed in (2.1, 2.3), but the derivations of

such stationarity conditions might not be immediate and far from obvious, as shown in Section 2.5 for the GARMA

and log-AR models. Then, this would be a useful step further of the literature.

Another aspect which may be interesting to consider is related to the inferential assumptions reported in Section

2.6, which could be generalized to distributions other than Poisson and Negative Binomial and for several different

models encompassed in (2.1, 2.3). Lastly, model selection procedures could also be further investigated. We view

these aspects as promising topics for future research.

Appendix

Markov chain specification

In order to derive strict stationarity and ergodicity conditions, the problem is rewritten in terms of Markov chain

theory. Define an observation-driven model in the most general form:

Yt | Ft−1 ∼ q(·;µt) (A-1)

µt = cδ(Y0:t−1) (A-2)

where, henceforth, Yt indicates the process and yt its realization. The function q is simply the density function which

comes from (2.1) whereas cδ is some function which describes the form of the dependence from the observation. In
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general, Ys:t = (Ys, Ys+1, . . . , Yt) where s ≤ t. The symbol δ is the vector of parameter of the model. Of course, the

initial values µ0:p−1 are supposed to be known. The model in (A-2) can be rewritten as:

µt = gδ(Yt−p:t−1, µt−p:t−1).

This way of writing the observation-driven model (Cox (1981)) gives a Markov p-structure for µt and then implies

that the vector µt−p:t−1 forms the state of a Markov chain indexed by t. In this case it is possible to prove stationarity

and ergodicity of {Yt}t∈N by first showing these properties for the multivariate Markov chain {µt−p:t−1}t≥p, then

“lifting” the results back to the time series model {Yt}t∈N.

Some useful definition for Markov theorems asserted throughout the paper is introduced here. Define a general

Markov chain X = {Xt}t∈N on state space S with σ-algebra F and define P t(x,A) = P(Xt ∈ A | X0 = x) for A ∈ F
to be the t-step transition probability starting from state X0 = x.

Definition 1. A Markov chain X is ϕ-irreducible if there exists a non-trivial measure ϕ on F such that, whenever

ϕ(A) > 0, P t(x,A) > 0 for some t = t(x,A), for all x ∈ S.

Also, the definition of “aperiodicity” as stated in Meyn et al. (2009) is needed. Define a “period” d(α) =

gcd {t ≥ 1 : P t(α, α) > 0}

Definition 2. An irreducible Markov chain X is aperiodic if d(x) ≡ 1, x ∈ X.

Definition 3. A set A ∈ F is called a small set if there exists an m > 1, a non-trivial measure v on F , and a λ > 0

such that for all x ∈ A and all C ∈ F , Pm(x,C) ≥ λ v(C).

Now let Ex(·) denote the expectation under the probability Px(·) induced on the path space of the chain defined

by Ω =
∏∞
t=0Xt with respect to F∞ =

∨∞
t=0 B(Xt) when the initial state X0 = x; where B(Xt) is the Borel σ-field

on Xt.

Theorem 6. (Drift Conditions). Suppose that X = {Xt}t∈N is ϕ-irreducible on S. Let A ⊂ S be small, and suppose

that there exist b ∈ (0,∞), ε > 0, and a function V : S → [0,∞) such that for all x ∈ S,

Ex [V (X1)] ≤ V (x)− ε+ b1{x∈A}, (A-3)

then X is positive Harris recurrent.

The function V is called “Lyapunov function” or “energy function”.

Positive Harris recurrent chains possess a unique stationary probability distribution π. Moreover, if X0 is

distributed according to π then the chain X is a stationary process. If the chain is also aperiodic then X is ergodic,

in which case if the chain is initialized according to some other distribution, then the distribution of Xt will converge

to π as t→∞.

A stronger form of ergodicity, called “geometric ergodicity”, arises if (A-3) is replaced by the condition

Ex [V (X1)] ≤ βV (x) + b1{x∈A} (A-4)

for some β ∈ (0, 1) and some V : S → [1,∞). Indeed, (A-4) implies (A-3). Eventually, stationarity and ergodicity

for the GARMA model would be accomplished if at least one of the sufficient condition (A-3),(A-4) above is fulfilled.

Unfortunately, a problem can occur when the distribution in (A-1) is not continuous (Bernoulli, Poisson,. . . ). In

fact, in these cases the Markov chain {µt−p:t−1}n≥p may not be ϕ-irreducible. This occurs whenever Yt can only

take a countable set of values and the state space µt−p:t−1 is Rp. Then, given a particular initial vector µ0:p−1 the

set of possible values for µt is countable. Then, Definition 1 is not satisfied. For this reason other theoretical tools

are required to solve the problem:

• Perturbation approach

• Feller conditions.
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Perturbation approach

First, define the perturbed form of an observation-driven time series model:

Y
(σ)
t | Y (σ)

0:t−1 ∼ q(·;µ
(σ)
t ) (A-5)

µ
(σ)
t = gδ,t(Y

(σ)
0:t−1, σZ0:t−1), (A-6)

where Zt ∼ φ are independent, identically distributed random perturbations having density function φ, σ > 0

is a scale factor associated with the perturbation and gδ,t(·, σZ0:t−1) is a continuous function of Z0:t−1 such that

gδ,t(y, 0) = gδ,t(y) for any y. The value µ
(σ)
0 is a fixed constant that is taken to be independent of σ, so that µ

(σ)
0 = µ0.

The perturbed model is constructed to be ϕ-irreducible, so that one can apply usual drift conditions to prove its

stationarity.

Then, it can be proved that the likelihood of the parameter vector δ calculated using (A-6) converges uniformly to

the likelihood calculated using the unperturbed model as σ → 0. More precisely, the joint density of the observations

Y = Y
(σ)
0:t and first t perturbations Z = Z0:t−1, conditional on the parameter vector δ, the perturbation scale σ, and

the initial value µ0, is:

f(Y, Z | δ, σ, µ0) = f(Z | δ, σ, µ0)× f(Y | Z, δ, σ, µ0)

=

[
t−1∏
k=0

φ(Zk)

]
t∏

k=0

f
(
Y

(σ)
k ;µk(σZ)

)
where µk(σZ) is the value of µ

(σ)
k induced by the perturbation vector σZ through (A-6), with µ0(σZ) = µ0. The

likelihood function for the parameter vector δ implied by the perturbed model is the marginal density of Y integrating

over Z, i.e.,

Lσ(δ) = f(Y | δ, σ, µ0) =

∫
f(Y,Z | δ, σ, µ0)dZ.

Let the likelihood function without the perturbations be denoted by L, so that

L(δ) =

t∏
k=0

f
(
Y

(σ)
k ;µk(0)

)
.

Theorem 7. Under regularity conditions 1 and 2 below, the likelihood function Lσ based on the perturbed model

(A-5)-(A-6) converges uniformly on any compact set K to the likelihood function L based on the original model, i.e.,

sup
δ∈K
|Lσ(δ)− L(δ)| σ→0−−−→ 0

for any fixed sequence of observations y0:t and conditional on the initial value µ0.

So if L is continuous in δ and has a finite number of local maxima and a unique global maximum on K, the

maximum-likelihood estimate of δ based on Lσ converges to that based on L. The proof is in Matteson et al. (2011).

Regularity Conditions:

1. For any fixed y the function q(y;µ) is bounded and Lipschitz continuous in µ, uniformly in δ ∈ K.

2. For each t, µt(σZ) is Lipschitz in some bounded neighbourhood of zero, uniformly in δ ∈ K.

Regularity condition 1 holds, e.g., for q(y;µ) equal to a Poisson or binomial density with mean µ, or a negative

binomial density with mean µ and precision parameter ϕ. µt(σZ) can easily be constructed to satisfy condition 2.

One can choose to use the perturbed model (with fixed and sufficiently small perturbation scale σ) instead of the

original model, without significantly affecting finite-sample parameter estimates, in order to get the strong theoretical

properties associated with stationarity and ergodicity.
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Although, it has been shown that the perturbed and original models are closely related, and although one can

use drift conditions to show stationarity and ergodicity properties of the perturbed model, this approach does not

yield stationarity and ergodicity properties for the original model. In fact, this approach addresses consistency of

parameter estimation for the perturbed model when t → ∞ for fixed σ and then shows that as σ → 0 the finite

sample estimates (for a fixed number of observations t) of the perturbed model approach those of the original one.

In order to show real proprieties of the original model one should consider both limits t → ∞ together with σ → 0

in which a substantial technical difficulty associated with interchanging the limits arises. For this reason, the Feller

properties introduced in the next section are needed.

Feller conditions

To deal with the lack of ϕ-irreducibility condition, the Feller properties can be used instead.

Definition 4. A chain evolving on a complete separable metric space S is said to be “weak Feller” if P (x, ·) satisfies

P (x, ·)⇒ P (y, ·) as x→ y, for any y ∈ S and where ⇒ indicates convergence in distribution.

In the absence of ϕ-irreducibility, the “weak Feller” condition can be combined with a drift condition (A-3) or

(A-4) to show existence of a stationary distribution (see Tweedie (1988)):

Theorem 8. Suppose that S is a locally compact complete separable metric space with F the Borel σ-field on S, and

the Markov chain {Xt}t∈N with transition kernel P is weak Feller. Let A ∈ F be compact, and suppose that there

exist b ∈ (0,∞), ε > 0, and a function V : S → [0,∞) such that for all x ∈ S, the drift condition (A-3) holds. Then

there exists a stationary distribution for P .

Uniqueness of the stationary distribution can be established using the “asymptotic strong Feller” property, defined

in Hairer and Mattingly (2006). Before doing it, further definitions are required:

Definition 5. Let S be a Polish (complete, separable, metrizable) space. A “totally separating system of metrics”

{dt}t∈N for S is a set of metrics such that for any x, y ∈ S with x 6= y, the value dt(x, y) is nondecreasing in t and

limt→∞ dt(x, y) = 1.

Definition 6. A metric d on S implies the following distance between probability measures µ1 and µ2:

‖µ1 − µ2‖d = sup
Lipdφ=1

(∫
φ(x)µ1(dx)−

∫
φ(x)µ2(dx)

)
(A-7)

where

Lipdφ = sup
x,y∈S:x6=y

|φ(x)− φ(y)|
d(x, y)

is the minimal Lipschitz constant for φ with respect to d.

Definition 7. A chain is “asymptotically strong Feller” if, for every fixed x ∈ S, there is a totally separating system

of metric {dt} for S and a sequence tn > 0 such that

lim
δ→∞

lim sup
t→∞

sup
y∈B(x,δ)

∥∥P tn(x, ·)− P tn(y, ·)
∥∥
dt

= 0

where B(x, δ) is the open ball of radius δ centred at x, as measured using some metric defining the topology of S.

Definition 8. A “reachable” point x ∈ S means that for all open sets A containing x,
∑∞
t=1 P

t(y,A) > 0 for all

y ∈ S.
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Theorem 9. Suppose that S is a Polish space and the Markov chain {Xt}t∈N with transition kernel P is asymp-

totically strong Feller. If there is a reachable point x ∈ S then P can have at most one stationary distribution.

This is an extension of Hairer and Mattingly (2006). The results of this section lay the foundation for showing

convergence and asymptotic properties of maximum likelihood estimators for the discrete-valued observation-driven

models.

Coupling construction

Introduce a kernel H̄ from (X2,X⊗2) to (Y2,Y⊗2) satisfying the following conditions on the marginals: for all

(x, x′) ∈ X2 and A ∈ Y,

H̄((x, x′);A× Y) = H(x,A), H̄((x, x′);Y ×A) = H(x′, A). (A-8)

Let C ∈ Y⊗2 such that H̄((x, x′);C) 6= 0 and the chain
{
Zt = (Xt, X

′

t , Ut), t ∈ N
}

on the“extended” space (X2 ×
0, 1,X⊗2 ⊗ P(0, 1)) with transition kernel Q̄ implicitly defined as follows. Given Zt = (x, x′, u) ∈ X2 × {0, 1}, draw

(Yt+1, Y
′

t+1) according to H̄((x, x′); ·) and set

Xt+1 = fYt+1
(x), X

′

t+1 = fY ′t+1
(x′),

Ut+1 = 1C(Yt+1, Y
′

t+1),

Zt+1 = (Xt+1, X
′

t+1, Ut+1).

The conditions on the marginals of H̄, given by (A-8) also imply conditions on the marginals of Q̄: for all A ∈ X
and z = (x, x′, u) ∈ X2 × {0, 1},

Q̄(z;A× X× {0, 1}) = Q(x,A), Q̄(z;X×A× {0, 1}) = Q(x′, A). (A-9)

For z = (x, x′, u) ∈ X2 × {0, 1}, write

α(x, x′) = Q̄(z;X2 × {1}) = H̄((x, x′);C) 6= 0. (A-10)

The quantity α(x, x′) is thus the probability of the event {U1 = 1} conditionally on Z0, taken on Z0 = z. Denote by

Q] the kernel on (X2,X⊗2) defined by: for all z = (x, x′, u) ∈ X2 × {0, 1} and A ∈ X⊗2,

Q]((x, x′);A) =
Q̄(z;A× {1})
Q̄(z;X2 × {1})

so that using (A-10),

Q̄(z;A× {1}) = α(x, x′)Q]((x, x′);A). (A-11)

This shows that Q]((x, x′); ·) is the distribution of (X1, X
′

1) conditionally on (X0, X
′

0, U1) = (x, x′, 1).

Assumptions and results of the alternative Markov chain approach

Consider the following assumptions.

(A1) The Markov kernel Q is weak Feller. Moreover, there exist a compact set C ∈ X ,(b, ε) ∈ R+
∗ × R+

∗ and a

function V : X→ R+ such that

QV ≤ V − ε+ b1C .
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(A2) The Markov kernel Q has reachable point.

Assumption (A1) implies, by Tweedie (1988), that the Markov kernel Q admits at least one stationary distribu-

tion. Assumptions (A2)-(A3) are then used to show that this stationary distribution is unique.

Note that assumptions (A1)-(A2) are the same of Theorem 8 and 9 and they can be proved for each observation

driven model as has been done for the GARMA model; assumption (A3) weakens the Lipschitz condition (2.19) by

introducing a function W in (2.21). This allows to treat models which do not satisfy the Lipschitz condition (2.19);

for example the log-linear Poisson autoregression (see Section below).

Theorem 10. Assume that (A1)-(A3) hold. Then, the Markov kernel Q admits a unique invariant probability

measure.

Proposition 1. Assume that the Markov kernel Q admits a unique invariant probability measure. Then, there exists

a strict-sense stationary ergodic process on Z, {Yt}t∈Z, the solution to the recursion (2.20).

These results can be found in Douc et al. (2013).

Computational aspects

The replication code for the application in Section 2.7 is available at https://github.com/mirkoarmillotta/covid_

code. First, a function for the log-likelihood and the gradient of the log-linear Poisson autoregression is provided.

The code for the other models works in a similar way and it is available upon request. Then, a function to perform

the QMLE is presented. Finally, we give the code for the COVID-19 example and the relative plots. The code to

perform the PIT is due to Czado et al. (2009) and it is available in the reference therein.
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Abstract

Statistical inference for discrete-valued time series has not been developed as traditional methods for time series

generated by continuous random variables. Some relevant models exist, but the lack of a homogenous framework

raises some critical issues. For instance, it is not trivial to explore whether models are nested, it is quite arduous

to derive stochastic properties which simultaneously hold across different specifications. In this paper, inference for

a general class of observation-driven models for discrete-valued processes is developed. Stochastic properties such

as stationarity and ergodicity are derived under easy-to-check conditions, which can be directly applied to all the

models encompassed in the unified framework and for every distribution which satisfies mild moment conditions.

Consistency and asymptotic normality of quasi maximum likelihood estimators are established, with the focus on the

exponential family. Finite sample properties and the use of information criteria for model selection are investigated

throughout Monte Carlo studies. Two empirical applications are also discussed, for count data. The first application

is a novel application to hurricane data in the North Atlantic Basin; the second concerns time series on the spread

of an infection.

Keywords: count data, generalized ARMA models, likelihood inference, link function.

3.1 Introduction

The analysis of time series that are generated by continuous random variables has a long tradition in statistics and

dates back, in the parametric setting, to Yule (1927) and Walker (1931), who introduced the concept of autoregression,

a dynamic model for the conditional mean of a stochastic process. In the same years, Slutsky (1927, 1937) defined
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moving average processes as linear combinations of uncorrelated random variables capable of capturing cyclical

fluctuations. It was only in the seventies, with the formalization by Box and Jenkins (1970, 1976) of the class of ARMA

models, that autoregressive (AR) and moving average (MA) processes found their popularity and became massively

fitted to real data. The merit of Box and Jenkins was the specification of a unified class of processes, generalizing

ARMA models to account for non-stationarity, seasonality, exogenous regressors, as well as the systematic treatment

of all the sub-models belonging to the class, which led to the development of well established inferential procedures.

The development of parametric models for count and binary data has not enjoyed the same popularity, partly

since linear processes are related to second order stationarity, which fully characterizes Gaussian time series. For

discrete data, the concept of autocovariance needs to be adapted (Startz, 2008) and the Wold representation has no

direct interpretation, see the discussion in the recent handbook edited by Davis et al. (2016). Since the AR- and MA-

like models first introduced by Zeger and Qaqish (1988) and Li (1994), there have been some relevant specifications,

such as the generalized ARMA (GARMA) by Benjamin et al. (2003) and their martingalised version, the M-GARMA

by Zheng et al. (2015), as well as the generalized linear ARMA (GLARMA) by Davis et al. (2003). An interesting

class of autoregression models for count data has been proposed by Fokianos et al. (2009) and Fokianos and Tjøstheim

(2011), inspired to the generalized linear transformation of McCullagh and Nelder (1989). Integer-valued time series

with extreme observations have been recently dealt with by Gorgi (2020), based on the beta-negative binomial

distribution.

The analysis of discrete-valued time series would benefit from the specification of a unified framework able to

encompass most of the models available in the literature and even to include further new specifications. As a matter

of fact, it is not trivial to explore whether models are nested, and, consequently, to derive stochastic properties that

simultaneously hold across models. In addition, model comparison becomes crucial when direct relationships among

different models are unknown. The lack of a unified framework is also in contrast with the growing attention, in

recent years, to high dimensional data sets involving dynamic binary and count data, in different contexts, such as

the number of clicks or amount of intra-day stock transactions (Davis and Liu, 2016; Ahmad and Francq, 2016).

Attempts in this direction have been made by Douc et al. (2013) who provide a theoretical formulation which is

useful in principle but less effective when the aim is to implement and adapt models for real applications. Indeed,

the quite general framework developed by Douc et al. (2013) encompasses several models for which stochastic and

inferential properties have been previously derived in the literature, but at the price of conditions that are extremely

complicated to verify in practice for each model and distribution.

If we were like to summarise the main results developed in the literature, on the side of the stochastic properties,

Matteson et al. (2011) develop notable results about strict stationarity and ergodicity for the specific case of GARMA

and Poisson Threshold autoregressive models, using the theory of Markov chains. Conversely, conditions holding

for several models but requiring restrictive assumptions are discussed in Neumann (2011), based on contraction

conditions, and in Doukhan et al. (2012), based on the weak dependence approach. Fokianos et al. (2009) and

Fokianos and Tjøstheim (2011) develop results on ergodicity employing a perturbation approach which is necessarily

suited for the case of count data following a Poisson distribution. Similar results are discussed in Christou and

Fokianos (2014) under the assumption of a Negative Binomial distribution as the data generating process.

As far as inference is concerned, the properties of the maximum likelihood estimator (MLE) and Quasi MLE

(QMLE) have been studied for some subsets of discrete-valued models. Douc et al. (2013) prove the consistency

of MLE and QMLE for the general framework they proposed. Asymptotic normality, in the same setting, is later

discussed by Douc et al. (2017). Comparable results have been derived by Davis and Liu (2016), based on the

approach developed by Neumann (2011), and by Ahmad and Francq (2016) for the specific case of the Poisson

distribution. However, the conditions needed to verify the properties of MLE and QMLE are far from immediate.

This paper introduces a general observation driven model for discrete-valued stochastic processes that encom-

passes the existing models in literature and includes novel specifications. In the terminology of Cox (1981), observa-
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tion driven models are designed for time varying parameters whose dynamics are functions of the past observations

only and are not driven by an idiosyncratic noise term. Essentially, we specify a class of dynamic model for the

conditional mean of a density, or mass function for discrete-valued time series, which does not necessarily belong to

the exponential family. This generality allows one to estimate alternative models designed to capture the past effects

of the conditional mean itself, of the lagged discrete-valued process and error-type components.

The methodological contribution of the paper consists in the development of the stochastic theory and the

likelihood inference holding for all the models in the class, through a non-trivial extension of the theory of Matteson

et al. (2011) as far as stationarity and ergodicity are concerned, and of the theory of Douc et al. (2013) and Douc

et al. (2017) for the asymptotic properties of likelihood estimators. In addition to the results that apply to novel

models, we derive several new methodological results for existing models, that were not yet proved in the literature,

such as strict-stationarity and ergodicity of first order GLARMA models and ergodicity of M-GARMA models for

discrete distributions.

In summary, we introduce a general modelling framework which aims (i) to provide a unified specification for

a broad class of discrete-valued time series where relevant instances represent special cases, (ii) to provide direct

relationships among different models which belong to the framework but are not necessarily nested within each other,

(iii) to derive the stochastic properties which hold simultaneously for the entire class of models (strict stationarity

and ergodicity), (iv) to implement quasi-maximum likelihood (QMLE) inference which also allows us to define model

selection criteria across different, and not nested, models, (v) to derive the asymptotic properties of QMLE, (vi) to

make all the models encompassed in the framework fully applicable in practice.

On the side of applications, the analysis of two real datasets is performed, for count time series. The first is a

novel application to hurricane data in the North Atlantic Basin. It is well-established that warming earth should

experience more hurricanes and/or stronger individual storms. For this reason, forecasting annual hurricane counts

is of great interest and several Poisson-based models have been developed; see Xiao et al. (2015) and references

therein. More recently, Livsey et al. (2018) used autoregressive fractionally integrated moving average models to

construct a Poisson model able to capture the long-range effect for the hurricane trend. Given the short length of

the data record (49 years), their model based on a generalization of fractionally integration methodology to discrete

data cannot properly address this issue. Nevertheless, the Poisson dynamics seems to be not always suitable and

further models for over-dispersed count distributions have been proposed founded on negative binomial assumptions

(Villarini et al., 2010). Models included in the general framework are used for the analysis of hurricane data in the

North Atlantic Basin considering both the Poisson and negative binomial assumption for the generating process.

We pay specific attention to model selection which is performed by using information criteria that also accounts for

model misspecification. With the focus on model comparison, the second application uses a test-bed time series in

count data analysis, on the spread of an infection, Escherichia coli, in the German region of North-Rhine Westphalia.

3.2 The general framework

Let {Yt}t∈T be a stationary stochastic process defined on the probability space (Ω,F ,P) where F = {Ft}t∈T and

Ft = σ(Yt−s, s ≥ 0) is the sigma-algebra generated by the random variables Ys, s ≤ t. The process Yt is adapted to

the filtration F and E|Yt| <∞ for all t ∈ T . We specify a class of observation-driven models where the conditional

density or mass function of Yt, depending on a time varying parameter µt, is a member of the one-parameter

exponential family

q(Yt|Ft−1) = exp {Yt f(Xt)−A (Xt) + d(Yt)} , (3.1)

Xt = g(µt) = ZTt α+

k∑
j=1

γjg(µt−j) +

p∑
j=1

φjh(Yt−j) +

q∑
j=1

θj

[
h(Yt−j)− ḡ(µt−j)

νt−j

]
, (3.2)
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where it is assumed that the dynamics of the density (or mass) function q(Yt|Ft−1) are captured by the parameter

µt, or equivalently by Xt. The time varying parameter µt is related to the process Xt by a twice-differentiable,

one-to-one monotonic function g(·), which is called link function. The function A(·) (log-partition) and d(·) are

specific functions which define the particular distribution (McCullagh and Nelder, 1989). The mapping f(·) is a

twice-differentiable bijective function, chosen according to the model of interest. Each exponential family in the form

(3.1) can be re-parametrised in the canonical form:

q(Yt|Ft−1) = exp
{
YtQt − Ā (Qt) + d(Yt)

}
, (3.3)

where the sequenceQt = f(Xt) = f [g(µt)] = f̃(µt) is called canonical parameter, whereas the function f̃(·) = (f◦g)(·)
is referred to as the canonical link function and Ā (·) is a re-parametrisation of A (·) with respect to Qt. It is known

that for the exponential family (3.3) the conditional mean is µt = E(Yt|Ft−1) = Ā′(Qt) = f̃−1(Qt) = g−1(Xt) and the

conditional variance is σ2
t = V(Yt |Ft−1 ) = Ā

′′
(Qt). If g(·) is the canonical link function, then f̃ ≡ g and the following

simplification occurs: f(Xt) = Xt, so Qt = Xt = g(µt), which gives again the distribution (3.1), with f(Xt) = Xt,

so that (3.1) and (3.3) are exactly the same. Clearly, the moments become µt = E(Yt|Ft−1) = A′(Xt) = g−1(Xt)

and σ2
t = V(Yt |Ft−1 ) = A

′′
(Xt). The function f(·) allows us to introduce non-canonical shapes for g(·), thus adding

flexibility to the model. We make some examples to clarify the nature of the framework.

Example 3. In the setting (3.1, 3.2), the Poisson distribution is obtained with f(Xt) = Xt, g(µt) = log(µt),

A [g(µt)] = µt and d(Yt) = log(1/Yt!). All the derivatives of A(Xt) = exp(Xt) equal µt. However, this definition

is based on the equivalence g ≡ f̃ , which is the canonical link; hence equation (3.2) becomes a log-linear model on

the response log(µt). It is possible to model (3.2) with a different shape of g(·); for example, one may be interested

to a linear model for the parameter of the Poisson µt, then g(µt) = µt and clearly g 6= f̃ . In this case, the

Poisson distribution is reconstructed from (3.1), by setting f(Xt) = log(Xt) = log(µt), A(Xt) = Xt = µt and

d(Yt) = log(1/Yt!). Again, by knowing that the inverse of the canonical link f̃−1(·) = exp(·), the conditional

expectation would be E(Yt|Ft−1) = V(Yt|Ft−1) = f̃−1(Qt) = exp[f(Xt)] = µt.

Example 4. The Gaussian distribution (with known variance) is obtained by setting f(Xt) = Xt, g(µt) = µt
σ2
t

,

A [g(µt)] =
µ2
t

2σ2
t

and d(Yt) = log

[
− 1√

2πσ2
t

exp
(
− Y 2

t

2σ2
t

)]
. One can verify that µt = σ2

tXt, so A(Xt) = σ2
tX

2
t /2, with

first and second derivatives µt and σ2
t , respectively.

Note that the process {Yt}t∈T is observed whereas {µt}t∈T is not. However, from equation (3.2), it can be

shown, by backward substitutions, that the process {µt}t∈T is a deterministic function of the past Ft−1 and this is

also the reason why we refer to “observation-driven models”. The function h(Yt) is called “data-link function” since

it is applied to the process Yt whereas ḡ(µt) is said “mean-link function” since it is applied only to the conditional

mean, unlike the link function g(·) which, in principle, can be applied to any parameter or moment of the probability

distribution. Both the functions h(Yt) and ḡ(µt) are twice-differentiable, one-to-one monotonic and their shape

depends on the specific model (3.2) and the distribution of interest in equation (3.1). We define the prediction error

as the ratio

εt =
h(Yt)− ḡ(µt)

νt
(3.4)

where the process {νt}t∈T is some scaling sequence, typically: (i) νt = σt Pearson residuals, (ii) νt = σ2
t Score-type

residuals, (iii) νt = 1 No scaling, (iv) νt =
√

V[h(Yt) |Ft−1 ].

Note that every time the mean-link function is selected as the conditional expectation of the data-link function

for the process, in symbols ḡ(µt) = E[h(Yt)|Ft−1], the difference h(Yt) − ḡ(µt) is a martingale difference sequence

(MDS). Moreover, if νt =
√

V[h(Yt) |Ft−1 ], then the residuals in equation (3.4) form a white noise (WN) sequence,

with unit variance.
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The vector Zt = [1, Z1t, . . . , Zst]
T

in equation (3.2) is a vector of covariates and α is the corresponding coefficient

vector with comparable dimensions. The parameters φj measure an autoregressive-like effect of the observations;

instead, the parameters γj state the dependence of the process from its whole past memory (since µt−j depends on

the past observations Yt−j−1, . . . ); finally, θj represents the analogous of a moving average component, since the ratio

(3.4) can be built so as to have an error-type behaviour. In general, all the functions involved are not constrained

to assume the same shape and the additive parts of the model (3.2) can be arranged in different ways. Clearly,

sub-models are allowed. This leads to a quite general and flexible framework which encompasses the most frequently

used models for discrete-valued observation processes and also new ones.

3.2.1 Related models

One of the most frequently used specifications in the area of discrete-valued time series is the Generalized Autore-

gressive Moving Average model, GARMA, (Benjamin et al., 2003). Here, the distribution of the process is usually

assumed to be the one-parameter exponential family (3.1). From equation (3.2) the GARMA model is obtained

when k = 0, by setting g ≡ ḡ ≡ h and νt = 1, so that,

g(µt) = ZTt α+

p∑
j=1

φjg(Yt−j) +

q∑
j=1

θj [g(Yt−j)− g(µt−j)] , (3.5)

where α =
(

1−
∑p
j=1 φjB

j
)
β, β is a vector of constants and B is the lag operator. By rearranging the constant in

terms of β we obtain the equation (3) of Benjamin et al. (2003).

A suitable extension of the GARMA model (3.5), the martingalised GARMA (M-GARMA), has recently been

introduced by Zheng et al. (2015); it is derived from (3.2) by setting k = 0, g(µt) ≡ ḡ(µt) = E[h(Yt) |Ft−1 ] and

νt = 1:

ḡ(µt) = ZTt α+

p∑
j=1

φjh(Yt−j) +

q∑
j=1

θj [h(Yt−j)− ḡ(µt−j)] . (3.6)

The relevant feature of the model is that it allows the residuals εt to be a martingale difference sequence, i.e.

E(εt|Ft−1) = 0.

Another similar model has been developed by Shephard (1995), Rydberg and Shephard (2003) and Davis et al.

(2003) with the name of Generalized Linear Autoregressive Moving Average model (GLARMA); here again the

distribution is the exponential family (3.1). We can write the GLARMA model (3.2) by setting p = 0, h as the

identity and ḡ(µt) = E[h(Yt) |Ft−1 ] = E(Yt |Ft−1 ) = µt:

g(µt) = ZTt α+

k∑
j=1

γjg(µt−j) +

q̃∑
j=1

θjεt−j , (3.7)

where α =
(

1−
∑k
j=1 γjB

j
)
β. Here q̃ = max(k, q) and θj = γj + τj for j = 1, . . . , q̃, where τj is a free parameter.

The formulation of the constant term in equation (3.7) as a function of β is equivalent to equation (13) in Dunsmuir

and Scott (2015), the alternative definition of the GLARMA model originally introduced in Davis et al. (2003). Note

that here, if νt = σt, then the prediction error εt = Yt−µt
νt

is a white noise process with unit variance.

Another promising stream of literature is due to Fokianos et al. (2009), who introduced Poisson autoregression,

henceforth Pois AR, which is obtained when (3.1) is Pois(µt), with f(Xt) = log(Xt), and in equation (3.2), we have

q = 0 and g ≡ h : identity:

µt = ZTt α+

k∑
j=1

γjµt−j +

p∑
j=1

φjYt−j . (3.8)
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The parameters in equation (3.8) are constrained in the positive real line. A variant of (3.8) is the log-linear Poisson

autoregression, henceforth Pois log-AR, (Fokianos and Tjøstheim, 2011) which is obtained by (3.2) when q = 0,

f(Xt) = Xt, g(µt) = log(µt) and h(Yt) = log(Yt + 1)

log(µt) = ZTt α+

k∑
j=1

γj log(µt−j) +

p∑
j=1

φj log(Yt−j + 1) . (3.9)

For Poisson data, the GARMA model (3.5) with identity or log links corresponds to a constrained Poisson autore-

gression where γj = −θj and φj is replaced by φj + θj , in equations (3.8) or (3.9). A model like (3.9) could be used

also for Negative Binomial data, by rewriting the distribution in terms of the expected value parameter µt (Christou

and Fokianos, 2014):

q (Yt|Ft−1) =
Γ(ν + Yt)

Γ(Yt + 1)Γ(ν)

(
ν

ν + µt

)v (
µt

ν + µt

)Yt
(3.10)

where ν is the dispersion parameter (if integer, it is also known as the number of failures) and the usual probability

parameter would be pt = ν
ν+µt

. The distribution (3.10) with model (3.9) is obtained from the distribution (3.1), by

setting the non-canonical link g(µt) = log(µt) and Qt = log(1 − pt), rewritten as f(Xt) = Xt − log(ν + eXt), with

A(Xt) = −ν log
(

ν
ν+eXt

)
and d(Yt) = log Γ(ν+Yt)

Γ(Yt+1)Γ(ν) .

The BARMA model (Li (1994); Startz (2008)), introduced for Binomial data, is obtained when (3.1) is Bin(a, µt),

where a is known and the probability parameter pt = µt/a, and, in (3.2), γ = 0, h : identity (ḡ(µt) reduces to µt)

and c = 0. Then

g(µt) = ZTt α+

p∑
j=1

φjYt−j +

q∑
j=1

θj [Yt−j − µt−j ] . (3.11)

Even if, this model is thought for Binomial distribution, so typically g : logit or g : probit, in general, the link

function g can be any suitable function.

3.2.2 New model specifications

Other models of potential interest not explicitly included in the existent literature are indeed encompassed in the

framework (3.1)-(3.2). We discuss a class of glink-ARMA models. As relevant instance consider the log-ARMA

model

log(µt) = ZTt α+

k∑
j=1

γj log(µt−j) +

p∑
j=1

φj log(Yt−j + 1) +

q∑
j=1

θj

[
log(Yt−j + 1)− ḡ(µt−j)

νt−j

]
(3.12)

where f(Xt) = Xt, ḡ(µt) = E [log(Yt + 1)|Ft−1] and νt =
√

V [log(Yt + 1)|Ft−1]. The model (3.12) detects the

autoregressive effect of the past lags of Yt, but it also accounts for a long past feedback effect, via lags of µt; then,

a white noise prediction error εt =
[

log(Yt+1)−ḡ(µt)
νt

]
is added to the functional transformation of the data, where

E(εt) = 0 and V(εt) = 1. The same model (3.12), when (3.1) is Bin(a, µt), is resorted by setting the non-canonical

link Xt = g(µt) = log(µt) and Qt = log
(

pt
1−pt

)
= log

(
µt

a−µt

)
, rewritten as f(Xt) = Xt − log(a − eXt), with

A(Xt) = a log
(

a
a−eXt

)
and d(Yt) = log

(
a
Yt

)
. On the same line, a logit-ARMA model can be specified for Binomial

data as a combination of the BARMA model from Li (1994) and an autoregressive component:

log

(
µt

a− µt

)
= ZTt α+

k∑
j=1

γj log

(
µt−j

a− µt−j

)
+

p∑
j=1

φj Yt−j +

q∑
j=1

θj [log(Yt−j + 1)− ḡ(µt−j)] (3.13)

where, in equation (3.1) we have f(Xt) = Xt where the canonical link is Xt = g(µt) = log
(

µt
a−µt

)
, with A(Xt) =

a log(1 + eXt) and d(Yt) = log
(
a
Yt

)
. A similar model can be specified also by replacing the logit function with the

probit link function.
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The usefulness of the specifications (3.12)-(3.13) can mainly be exploited when a closed form expression is

available for the conditional expectation ḡ(µt) (and possibly for the standard deviation νt). For example, when the

distribution of Yt|Ft−1 is Log-normal(µt, σ
2), the expectation ḡ(µt) = E [log(Yt + 1)|Ft−1] = log(µt)− 1/2σ2. For a

comprehensive discussion on the closed form solutions see Zheng et al. (2015). In the case of Binomial or Poisson

data, though, such closed forms are not available and it seems reasonable to use an approximation from the Taylor

expansion around the mean µt, like ḡ(µt) = E [h(Yt)|Ft−1] ≈ h(µt). However, this would reduce models (3.12)-(3.13)

to a reparametrized version of the already showed log-AR model described in equation (3.9). Despite the wide use

of the Poisson model for count data and the default negative Binomial alternative to account for overdispersion,

both choices fail when data present underdispersion or an excess of zero value observations (Englehardt et al., 2012).

For instance, the use of the discrete Weibull distribution of Nakagawa and Osaki (1975) and its generalizations

are quite popular in these contexts; see Peluso et al. (2019) for a discussion. The generalization of distributions to

accommodate specific data structure represents an active research area which may benefit from a flexible specification

of glink-ARMA type models.

Furthermore, novel and potentially useful models also arise when equation (3.2) involves the use of a Box-Cox

transformation (Box and Cox, 1964):

µλt − 1

λ
= ZTt α+

k∑
j=1

γj
µλt−j − 1

λ
+

p∑
j=1

φj
Y λt−j − 1

λ
+

q∑
j=1

θjεt−j , (3.14)

where g(z) = h(z) = zλ−1
λ , εt =

λ[Y λt −E(Y λt |Ft−1)]
V(Y λt |Ft−1)

, by equation (3.4) and λ is the transformation parameter, which

can be chosen according to some estimation procedure, such as profile likelihood. Note that when λ = 0 the model

(3.14) reduces to model (3.12) with log(Yt−j) instead of log(Yt−j + 1). This model can exploit the usefulness of the

Box-Cox transformation, possibly leading to a more stable variance and improving symmetry of the distribution.

However, the link function g(µt) =
µλt −1
λ is not canonical for any distribution encompassed in the exponential family

(3.1), hence the function f(·) needs to be chosen according to the conditional distribution of Yt.

3.3 Stochastic properties

This section provides the conditions for the discrete-valued stochastic process {Yt}t∈T to be stationary and ergodic

by using Markov chain theory. Although {Yt}t∈T is not itself a Markov chain, the process {µt}t∈T is. Then, by

proving that the chain {µt}t∈T has a unique invariant distribution, one also has that the double sequence {Yt, µt}t∈T
is a Markov chain with unique distribution. Hence, the process {Yt}t∈T is stationary and ergodic, see Matteson et al.

(2011) and Douc et al. (2013).

3.3.1 Stationarity and ergodicity

The proof of the stability conditions is established by showing the ergodicity of a first order Markov chain process

(see below). Since this approach is usually challenging beyond the order one chain, we set (3.2) with k = p = q = 1,

in the absence of covariates (ZTt α = α) and with unitary scaling sequence, νt = 1 for t ∈ T :

g(µt) = α+ γ g(µt−1) + φh(Y ∗t−1) + θ
[
h(Y ∗t−1)− ḡ(µt−1)

]
, (3.15)

where the function Y ∗t modifies the values of Yt to lie into the domain of h(·). In Remark 2 we discuss an extension

which includes the scaling sequence. In the first order observation-driven model (3.15) the series µt can be determined

recursively by knowing the starting point µ0 and the observations Y0, . . . , Yt−1. Define µ0 = µ, g(µ) = x and

ḡ(µ) = ḡ(g−1(x)) = g̃(x), where g̃(·) ≡ ḡ ◦ g−1(·). In order to deal with different possible domains of the process

{µt}, we consider three separate cases:
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1. q(Yt|Ft−1) for µ ∈ R. The domain of g and h is R and Y ∗t = Yt.

2. q(Yt|Ft−1) for µ ∈ R+ (or µ on one-sided open interval). The domain of g and h is R+ and Y ∗t = max {Yt, c}
for some c ≥ 0.

3. q(Yt|Ft−1) for µ ∈ (0, a) where a > 0 (or bounded open interval). The domain of g and h is (0, a) and

Y ∗t = min {max (Yt, c) , (a− c)} for some c ∈ [0, a/2).

Denote with X = {Xt}t∈T a Markov chain where Xt = g(µt) belongs to the state space S with σ-algebra FX and

define P t(x,A) = P(Xt ∈ A | X0 = x) for A ∈ FX to be the t-step transition probability with initial state X0 = x.

Consider the following assumptions:

(A1) E(Yt | µt) = µt.

(A2) ∃δ > 0, r ∈ [0, 1 + δ) and l1, l2 ≥ 0 such that E(|Yt − µt|2+δ | µt) ≤ l1 |µt|r + l2.

(A3) g and h are bijective, increasing and

1. If ḡ(µt) = g(µt),

1.1. h : R 7→ R concave on R+ and convex on R−, g : R 7→ R concave on R+ and convex on R−, |γ|+ |φ| < 1

1.2. h : R+ 7→ R concave on R+, g : R+ 7→ R concave on R+, (|γ|+ |φ|) ∨ |γ − θ| < 1

1.3. h : (0, a) 7→ R and g : (0, a) 7→ R, |γ − θ| < 1.

2. If ḡ(µt) 6= g(µt) and g̃(x) is Lipschitz with constant L ≤ 1,

2.1. h : R 7→ R concave on R+ and convex on R−, g : R 7→ R concave on R+ and convex on R−, |γ|+ |φ| < 1

2.2. h : R+ 7→ R concave on R+, g : R+ 7→ R concave on R+, |γ|+ (|φ| ∨ |θ|) < 1

2.3. h : (0, a) 7→ R and g : (0, a) 7→ R, |γ|+ |θ| < 1.

(A4) Define πz(·) as the distribution of g(Yt) conditional on g(µt) = z. Then, πz(·) has the Lipschitz property

supw,z∈R:w 6=z ‖πw(·)− πz(·)‖TV / |w, z| < B <∞, where ‖·‖TV is the total variation norm.

Theorem 11. Suppose that (A1)-(A4) hold. Then, the process {µt}t∈T in (3.15) has a unique stationary distribution.

This implies that {Yt}t∈T is strict-sense stationary and ergodic.

The proof is postponed in the Supplementary Materials and is carried out by showing that the Markov chain

{Xt}t∈T has a unique stationary distribution, under the conditions of Theorem 11. This is done by proving a

drift condition for the chain which is sufficient for ϕ-irreducible Markov chains (Meyn et al., 2009). However the

discreteness of {Yt}t∈T may lead to a non-ϕ-irreducible chain. Indeed, the process Xt depends on values of Yt, hence,

it lies in a countable subset of S, which implies the non ϕ-irreducibility of the chain. Therefore, by following the

Markov chain theory without irreducibility assumption (Matteson et al., 2011; Douc et al., 2013), the weak Feller

and the asymptotic strong Feller properties are required on the chain Xt, providing the desired result.

Assumption (A1) automatically holds when µt = E(Yt|Ft−1), as in the case of equation (3.1). For model (3.15),

the σ-algebra generated by µt is a subset of Ft−1, and for the tower property E(Yt|µt) = E[E(Yt|Ft−1)|µt] = µt.

Assumption (A2) is a mild moment condition generally satisfied for usual discrete distributions (Poisson, Binomial);

see Matteson et al. (Cor.6,7, 2011) for details.

Remark 1. It is worth noting that Theorem 11 is not restricted to distribution (3.1) since it involves only the

moment conditions in assumptions (A1)-(A2).

The conditions on the shape of the link functions g and h in (A3) are quite standard. While Assumption (A4)

might be not immediate to verify, it can usually be replaced with an alternative condition, which is easier to check:
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(A5) The distribution (3.1) is Poisson, Binomial or Negative Binomial (with known number of trial/failure), and

g−1(·) is Lipschitz.

The equivalence of (A4) and (A5) has been proved by Matteson et al. (2011) for the Poisson and Binomial distribution;

we prove it for the Negative Binomial in the Supplementary Materials. The required lipschitzianity of g−1(·) is easily

met for the usual link functions (logit, identity), however, there are exceptions (log link). The modified log link

function (12) in Matteson et al. (2011) provides a viable alternative. Another solution could be to replace (A6)

with the alternative assumption (A3) in Douc et al. (2013), although it may be not easy to verify. Concerning the

Lipschitz condition on g̃(x), it depends on the shape of g̃(x) = ḡ(g−1(x)), as a combination of Lipschitz function

is Lipschitz continuous. A suitable choice of functions g and h will satisfy this condition. For example, when

ḡ(µt) = E[h(Y ∗t )|Ft−1], if (A5) holds, it is easy to verify that the function ḡ(µ) is Lipschitz with respect to (w.r.t)

µ with constant not greater than 1; the same holds for g−1 w.r.t x, then g̃(x) is Lipschitz with L ≤ 1. When

ḡ(µt) 6= E[h(Y ∗t )|Ft−1] it can be chosen accordingly to the required assumption.

Remark 2. Let us consider equation (3.15) with ḡ(µt) = E[h(Yt)|Ft−1] and scaling sequence νt = σ(µt) =√
V[h(Yt) |Ft−1 ], i.e.

g(µt) = α+ γ g(µt−1) + φh(Yt−1) + θεt, (3.16)

where εt, as in equation (3.4), is a white noise with unit variance. Under the conditions of the following corollary,

the scaling sequence does not affect the stationarity conditions.

Corollary 1. Let νt = σ(µt). Theorem 11 still holds true by replacing (3.15) with (3.16) if the function σ(·) is:

1. increasing for µt ∈ R+ and decreasing for µt ∈ R−;

2. increasing for µt ∈ R+;

3. monotone with respect to µt;

The proof is deferred to the Supplementary Materials. The conditions on νt are widely satisfied. For example, if

Yt belongs to the exponential family in (3.3), σ2(µ) = A
′′
(Xt) = (g−1)′(g(µ)) where g is increasing by assumption,

whereas σ2(µ) is increasing since (g−1)′ is increasing; this holds as long as g is concave (g−1 is convex) which is true

for µ > 0. By contrast, σ2(µ) is decreasing if (g−1)′ is decreasing which happens when g is convex: this is the case

of µ < 0, which is what was required.

3.3.2 Stochastic properties for relevant encompassed models

The results obtained in the previous section can be applied to specific models belonging to the unified framework

(3.2), and in particular to the novel models introduced in Section 3.2.2. We also specifically derive the stochastic

properties of the related models encompassed in the framework and discussed in Section 3.2.1, since for most of them

the stochastic properties have not been fully addressed in the literature. Consider the one lag models k = p = q = 1.

First of all, as a proof of coherence in our findings, it is worth noting that, when γ = 0 and g ≡ h ≡ ḡ,

Theorem 11 reduces to Theorem 5 in Matteson et al. (2011), providing results for the GARMA model g(µt) =

α+ φ g(Y ∗t−1) + θ
[
g(Y ∗t−1)− g(µt−1)

]
. Now we derive the stochastic properties for the BARMA model in (3.11).

Corollary 2. Suppose that, conditional on Ft−1, Yt is Binomial(n, µt) with fixed number of trials n, link function

g : (0, a) 7→ R is bijective and increasing, g−1 is Lipschitz and |θ| < 1. Then the process {µt}t∈T defined in (3.11)

has a unique stationary distribution. Hence, the process {Yt}t∈T is strictly stationary and ergodic.

44



Note that for Binomial distribution (A1)-(A2) hold. Here, the conditions (A3) and (A5) on g and g−1 are clearly

satisfied for the usual link functions, like logit or probit.

At the best of our knowledge, no results are available for strict stationarity in GLARMA model, apart from the

simplest case when k = 0, q = 1 (Davis et al., 2003; Dunsmuir and Scott, 2015).

Corollary 3. Suppose that {Yt}t∈T is distributed according to (3.1). The process {µt}t∈T in (3.7) has a unique,

stationary distribution and {Yt}t∈T is strictly stationary and ergodic, if

1. g is bijective and increasing, and

1.1. g : R 7→ R concave on R+ and convex on R−, |γ| < 1

1.2. g : R+ 7→ R concave on R+, |γ|+ |θ| < 1

1.3. g : (0, a) 7→ R, |γ|+ |θ| < 1.

2. g−1 is Lipschitz with constant not greater than 1.

In the GLARMA model, the conditional distribution of {Yt}t∈T comes from the exponential family, then the

(A1)-(A2) are satisfied. Instead, (A3) and (A5) reduce to conditions 1 and 2, which clearly are widely satisfied for

the usual link functions. In practical applications, the condition on the coefficients of the model are required to

establish its stationarity.

The proof of stationarity for one lag M-GARMA model from (3.6) given in Zheng et al. (2015) only holds for

continuous variable. We generalize the results by deriving the conditions for stationarity also for the case of discrete

variables. They are shown to be equivalent to those available for the GARMA model. This is reasonable since the

former is a special case of the latter. We now move to strict-stationarity and ergodicity results for some of the novel

models presented in Section 3.2.2.

Corollary 4. Suppose that {Yt}t∈T comes from (3.1), g̃(x) is Lipschitz with constant L ≤ 1, (A4) holds and

|γ| + (|φ| ∨ |θ|) < 1. Then the process {µt}t∈T defined in (3.12) has a unique stationary distribution. Hence, the

process {Yt}t∈T is strictly stationary and ergodic.

Assumptions (A1)-(A2) are met for the distribution (3.1). The condition (A3) on the shape of the link function

holds here, as g(µ) = log(µ). However, the Lipschitz continuity on g̃(·) and the condition (A4) are required since

g−1(·) does not satisfy (A5).

Corollary 5. Suppose that {Yt}t∈T comes from (3.1), g̃(x) is Lipschitz with constant L ≤ 1 and |γ|+ |θ| < 1. Then

the process {µt}t∈T defined in (3.13) has a unique stationary distribution. Hence, the process {Yt}t∈T is strictly

stationary and ergodic.

For Binomial distribution (A1)-(A2)-(A5) hold and the conditions (A3) are satisfied for the logit link function.

For space constraints, we do not show other examples. However, based on the theoretical results developed for this

flexible framework , stationarity and ergodicity can be directly established for a wide class of models under several

discrete distributions.

3.4 Quasi-maximum likelihood inference

The aim of this section is to establish the asymptotic theory of the quasi maximum likelihood estimator of the

parameter ρ = (α, γ, φ, θ). More precisely we develop asymptotic results in the three following cases: (i) misspecified

MLE: misspecification occurs in the distribution (3.1) and/or in the model (3.2), (ii) QMLE: misspecification occurs
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in the distribution (3.1), (iii) correctly specified MLE. Specifically, strong consistency is derived in the three cases;

asymptotic normality is derived for the QMLE and the correctly specified MLE. Finite sample properties are explored

through an extensive simulation study, as well as the performance of information criteria for model selection. Tables

including detailed and numerical results are postponed to the Supplementary Materials.

3.4.1 Asymptotic properties

The approach of Douc et al. (2013) and Douc et al. (2017) is applied to our general framework, which is based on

showing that as t→∞ the discrete-valued process {Ys}s∈[0,t] tends to the backward infinite process {Ys}s∈(−∞;t], the

latter is then used to establish the asymptotic properties of the likelihood estimator. See the Appendix for details.

Assume that {Yn}n∈Z are integer-valued. Let (Λ, d) be a compact metric set of parameter, with suitable metric d(·),
and Λ =

{
ρ = (α, γ, φ, θ) ∈ R4 : |α| ≤ α̃, |δ| = |φ+ θ| ≤ δ̃

}
, where α̃, δ̃ ∈ R+. We make explicit the dependence of

the conditional distribution (3.1) from the mean process by using the notation q(yt|Ft−1) = q(Xt; yt). Let gρ〈Y−∞:t〉
be a stationary ergodic random process, not necessarily equal to the process Xt = g(µt) in (3.15), such that

gρ〈Y−∞:t〉 = α+ γgρ〈Y−∞:t−1〉+ φh(Yt−1) + θ[h(Yt−1)− g̃(gρ〈Y−∞:t−1〉)] , (3.17)

and its sample counterpart is denoted by gρ〈y1:t−1〉(x), where x is the starting value of the chain gρ〈·〉. The notation

gρ〈ys:t〉(x) = gρyt ◦ g
ρ
yt−1
◦ · · · ◦ gρys(x), s ≤ t is the so-called Iterated Random Function (IRF), see Diaconis and

Freedman (1999), with

gρy1(x) = α+ γx+ φh(y0) + θ[h(y0)− g̃(x)] . (3.18)

It is worth noting that in the special case of correctly specified model, X0 = gρ〈Y−∞:0〉 and equation (3.17) reduces

exactly to the process in equation (3.15). Let us define the log-likelihood function as follows

Lρn,x〈Y1:n〉 := n−1 log

(
n∏
t=1

q(gρ〈y1:t−1〉(x); yt)

)
,

whose associated maximum likelihood estimator is

ρ̂n,x = arg max
ρ∈Λ

Lρn,x〈Y1:n〉 . (3.19)

Consider the following assumptions:

(H1) E[log |A′(gρ〈Y−∞:0〉)|]+ <∞, E[log |f ′(gρ〈Y−∞:0〉)|]+ <∞, E|Y0| <∞

(H2) E[A′(gρ〈Y−∞:0〉)4] <∞, E[f ′(gρ〈Y−∞:0〉)4] <∞,
E[A′′(gρ〈Y−∞:0〉)4] <∞, E[f ′′(gρ〈Y−∞:0〉)4] <∞, E(Y 4

0 ) <∞

which are mild conditions for the existence of moments, in general immediate to verify, see the related section in the

Supplementary Materials for some relevant examples.

Firstly, consistency for the misspecified MLE is proven, then the other two ML estimators are derived as special

cases of it.

Theorem 12. Assume that Theorem 11 and (H1) hold. Then, ∀x ∈ S, limn→∞ d(ρ̂n,x,P?) = 0, a.s., where

P? := arg maxρ∈Λ E {Y0 f [gρ〈Y−∞:0〉]−A[gρ〈Y−∞:0〉] + d(Y0)}.

Here, the almost sure limit is meant to be valid under the stationary distribution of {Yt}t∈T . The proof lies in

the Appendix. Now the special case of correctly specified MLE is treated.

Theorem 13. Assume that {Yn}n∈Z is distributed according to (3.1) and satisfies the recursion (3.15), with param-

eters ρ? ∈ Λ0. Moreover, assume that Theorem 12 holds. Then, for all x ∈ S, limn→∞ ρ̂n,x = ρ?, a.s.
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We need to show that P? = {ρ?}. The proof is postponed to the Appendix. The asymptotic consistency of

QMLE is now established. Let us denote Λ0 as the interior of the set Λ.

Corollary 6. Assume that {Yn}n∈Z satisfies the recursion (3.15), with parameters ρ? ∈ Λ0 and µ = A′(x?). More-

over, assume that Theorem 12 holds. Then, for all x ∈ S,

lim
n→∞

ρ̂n,x = ρ?, a.s. (3.20)

where {x?} is the maximum of the function
∫
P (x?, dy) log q(x, y).

In practice, µ = A′(x?) states that the mean function has to be correctly specified regardless the true data

generating process. The proof is analogous to Theorem 13 and follows directly by Theorem 4.1 and Douc et al.

(2017, Thr 4.1). Finally, we investigate the conditions under which the QMLE (3.20) is asymptotically normally

distributed for the model (3.15).

Theorem 14. Assume that Corollary 6 and (H2) hold. Moreover, assume that the matrix (3.21) is non singular.

Then,
√
n(ρ̂n,x − ρ?)

D
=⇒ N(0,J (ρ?)

−1I(ρ?)J (ρ?)
−1), where

I(ρ?) := E

[
(∇ρgρ?〈Y−∞:0〉) (∇ρgρ?〈Y−∞:0〉)′

(
∂

∂x
log q (gρ?〈Y−∞:0〉, Y1)

)2
]
,

J (ρ?) := E

[
(∇ρgρ?〈Y−∞:0〉) (∇ρgρ?〈Y−∞:0〉)′

∂2

∂x2
log q (gρ?〈Y−∞:0〉, Y1)

]
. (3.21)

The proof relies on the argument of Douc et al. (2017, Thr 4.2) and follows the fashion and the notation used

in the proof of Theorem 12, thus it is postponed to the Supplementary Materials. It goes without saying that for

correctly specified MLE, equation (3.19) is the exact MLE and J (ρ?) = I(ρ?) in Theorem 14, providing the standard

ML inference.

3.4.2 Finite sample properties and model selection

Finite sample properties of MLE and QMLE are explored through a simulation study which considers some models

illustrated in Sections 3.2.1 and 3.2.2. The details of the numerical results are stored in the Supplementary Materials.

All the results are based on s = 1000 replications, with different configuration of the parameters and increasing sample

size n = (200, 500, 1000, 2000). A correctly specified MLE has been carried out with data coming from Bernoulli or

Poisson distributions across several models. Simulations of QMLE are performed on data generated from Geometric

distribution, with Poisson distribution fitted instead, for GARMA and log-AR model. For all the models involved,

the mean of the estimators approaches the true value, for both the well-specified MLE and QMLE. Some convergence

problems arise for BARMA model, but the standard error and the bias still tend to reduce by increasing n; this gives

evidence of convergence, although at a slower rate. Turning to asymptotic normality, evidence of normality emerge

from the Kolmogorov-Smirnov test, even when the sample size is small. The outcomes are in line with those of Douc

et al. (2017). These results are coherent with the theory presented so far.

A crucial aspect in empirical applications is model selection. In likelihood inference, model selection is typically

carried out based on information criteria such as the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC). To assess the effectiveness of AIC and BIC for selecting the most appropriate model for the data at

hand, we carry out an extensive simulation study with competing one lag models log-AR, GARMA and GLARMA

for Poisson data. The last two are also computed, together with the BARMA model, for Binomial data. The details

of the analysis are reported in the Supplementary Materials. To summarize the results, when the sample size n is

small, the selection for some models can perform poorly, but when n is big enough, all the models allow to select the

right data generating model with high probability.
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Figure 3.1: Top-left: storms counts. Top-right: ACF. Bottom-right: mc plot for GLARMA model. Bottom-

left: mc plot for log-AR model. Dashed line is Poisson. Black line NB.

3.5 Applications

3.5.1 Number of storms in the North Atlantic Basin

We apply the dynamic models discussed so far for a novel application based on a set of data related to the annual

number of named storms in the North Atlantic Hurricane Basin from 1851 to 2018; counts of storms are related

to tropical storms, hurricanes and subtropical storms. The data can be found in the revised HURDAT database

at https://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html. There is an intense scientific debate over the in-

creasing hurricane activity to figure out whether hurricanes are becoming more numerous, or whether the strengths

of storms are increasing, mainly because of the warming earth. Then the prediction of the number of storms is

crucial and becomes of primary interest; see Villarini et al. (2010) for a discussion and Livsey et al. (2018) of a recent

application in a similar context. The time series is relatively short n = 168 and is plotted in Figure 3.1 along with

the sample autocorrelation function (ACF). There is a temporal correlation which spreads over several lags. For the

data generating process we assume both the Poisson and the Negative Binomial (NB) distribution in equation (3.10),

where ν > 0 is the dispersion parameter and µt is the conditional expectation; the latter is the same for both distri-

butions. Indeed, equation (3.10) is defined in terms of mean rather than of the probability parameter pt = ν
ν+µt

and,

unlike the case of Poisson distribution, it accounts for overdispersion in the data as V(Yt|Ft−1) = µt (1 + µt/ν) ≥ µt.
We fit some models belonging to the class in equation (3.15):

log-AR: log(µt) = α+ φ log(yt−1 + 1) + γ log(µt−1) ,

GARMA: log(µt) = α+ φ log(y?t−1) + θ
[
log(y?t−1)− log(µt−1)

]
,

GLARMA: log(µt) = α+ γ log(µt−1) + θ
(
yt−1−µt−1

st−1

)
,

where y?t = max {yt, c} with c = 0.1. Different values of 0 < c < 1 did not affect the estimates; while st is the

square root of the conditional variance st =
√
µt for the Poisson distribution and st =

√
µt (1 + µt/ν) for the NB. In

this likelihood-based framework, model selection is based on information criteria, such as AIC and BIC. The Quasi
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Table 3.1: MLE results for named storms.

Models α̂ φ̂ γ̂ θ̂ ν̂ AIC BIC QIC

Pois log-AR
0.212 0.231 0.673 -

- 11.361 20.733 8.881
(0.082) (0.058) (0.089) -

Pois GARMA
0.289 0.882 - -0.684

- 11.368 20.740 8.644
(0.092) (0.039) - (0.083)

Pois GLARMA
0.314 - 0.864 0.071

- 11.359 20.731 9.187
(0.103) - (0.046) (0.018)

NB log-AR
0.390 0.286 0.540 -

5.262 11.528 20.900 8.810
(0.310) (0.114) (0.246) -

NB GARMA
0.483 0.797 - -0.556

5.190 11.536 20.908 8.913
(0.354) (0.154) - (0.248)

NB GLARMA
0.376 - 0.836 0.139

5.402 11.510 20.881 7.640
(0.194) - (0.086) (0.041)

Information Criterion (QIC) introduced by Pan (2001) is also employed. It is a generalization of the AIC which takes

into account the usage of a working quasi-likelihood instead of the true likelihood. QIC coincides with AIC in case

of well-specified models. QMLE estimation has been carried out. The log-likelihood function of the Poisson and NB

distributions is maximized by using a standard optimizer in R based on the BFGS algorithm. The score functions

written in terms of predictor xt = logµt are:

χn(ρ) =
1

n

n∑
t=1

(
yt − expxt(ρ)

)∂xt(ρ)

∂ρ
, χn(ρ) =

1

n

n∑
t=1

(
yt −

(yt + ν) expxt(ρ)

expxt(ρ) + ν

)
∂xt(ρ)

∂ρ
.

The solution of non-linear equation system χn(ρ) = 0, if it exists, provides the QMLE of ρ (denoted by ρ̂). In NB

models, estimation of ν is also required. The moment estimator proposed in Christou and Fokianos (2015) is used:

ν̂ =

(
1

n

n∑
t=1

(yt − µ̂t)2 − µ̂t
µ̂2
t

)−1

(3.22)

where µ̂t = µt(ρ̂) comes from the Poisson model. Then, with ν = ν̂ we estimate the NB model and obtain the new

estimates for µ̂t, plug them into (3.22), obtain a new value for ν̂, and repeat the procedure until a certain tolerance

value is reached. The standard errors are computed from the “sandwich” estimators in Theorem 14; each quantity

has been replaced by its sample counterpart.

The results related to MLEs are summarized in Table 3.1. The intercept is not significant, at 5% level, for the

NB log-AR and GARMA models. All the other coefficients are significant. The parameter ν̂ is generally around

5. Both AIC and BIC select the Pois GLARMA model as the best, in a goodness-of-fit sense, followed by the Pois

Log-AR. The QIC selects the GLARMA model, as well, but with NB distribution. This might be an indication

of overdispersion in the true data generating process, not captured by the Poisson models; this hypothesis is also

supported and discussed in Villarini et al. (2010).

We then assess the adequacy of the fit. We check the behaviour of the standardized Pearson residuals et =

[Yt − E(Yt|Ft−1)] /
√

V(Yt|Ft−1) which is done by taking the empirical version êt from the estimated quantities.

If the model is correctly specified, the residuals should be white noise sequences with constant variance. This

can be seen by the ACF, which in our case appears uncorrelated. Another check comes from the probability and
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marginal calibrations, as defined in Gneiting et al. (2007). Czado et al. (2009) introduced a non-randomized version

of Probability Integral Transform (PIT) for discrete data. It can be built based on the conditional cumulative

distribution function

F (u|yt) =


0, u ≤ Pt(yt − 1)
u−Pt(yt−1)

Pt(yt)−Pt(yt−1) , Pt(yt) ≤ u ≤ Pt(yt − 1)

1, u ≥ Pt(yt)

(3.23)

where Pt(·) is the cumulative distribution function (CDF) at time t (in our case Poisson or NB). If the model is correct,

u ∼ Uniform(0, 1) and the PIT (3.23) will appear to be the cumulative distribution function of a Uniform(0,1). The

PIT (3.23) is computed for each realisation of the time series yt, t = 1 . . . , n and for values u = j/J, j = 1, . . . , J ,

where J is the number of bins (usually equal to 10 or 20); then its mean F̄ (j/J) = 1/n
∑n
t=1 F (j/J |yt) is taken.

The outcomes are probability mass functions, obtained in terms of differences F̄ ( jJ )− F̄ ( j−1
J ); a representative plot

is in the Supplementary Material, Figure S-1. The difference between the distributions is subtle but the Poisson

PIT’s seems to be closer to Uniform(0,1). The marginal calibration (mc) is assessed as in Gneiting et al. (2007)

and Christou and Fokianos (2015). It compares the average of CDF selected, P̄ (x) = 1/n
∑n
t=1 Pt(x), against the

average of the empirical CDF, Ḡ(x) = 1/n
∑n
t=1 1(yt ≤ x). A plot of the outcomes for mc is in Figure 3.1 for log-AR

and GLARMA model. In the other models the results are similar. It appears a better concordance with empirical

distribution for the Poisson case.

In order to assess the predictive power, we refer to the concept of sharpness of the predictive distribution defined

in Gneiting et al. (2007). It can be measured by some average quantities related to the predictive distribution,

which take the form 1/n
∑n
t=1 d(Pt(yt)), and d(·) is a scoring rule. We adopt the usual scoring rules employed

in the literature: the logarithmic score (logs) − log pt(yt), where pt(·) is the probability mass at the time t; the

quadratic score (qs) −2pt(yt) + ‖p‖2, where ‖p‖2 =
∑∞
k=0 p

2
t (k); the spherical score (sphs) −pt(yt)/‖p‖ and the

ranked probability score (rps)
∑∞
k=0[Pt(k)− 1(yt ≤ k)], for different models and distributions. Then, the predictive

performance is evaluated and the Poisson log-AR model provides the best predictive performance for 3 up to 4 scoring

rules. Numerical results for each model are collected in Table S-5 in the Supplementary Material. This leads to a

different model selection, depending on the aims of the empirical analysis.

3.5.2 Disease cases of Escherichia coli in North Rhine-Westphalia

We consider a testbed set of data related to the weekly number of reported disease cases caused by Escherichia coli

in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013. The data can be found in the

R package tscount. The time series has a time length n = 646 and is plotted in Figure 3.2, with its sample ACF.

There is a temporal correlation which spreads over several lags with a greater magnitude compared to the dataset

in the previous example. The slow decay of the ACF suggests the use of a feedback mechanism. The same models,

distributions and estimation procedures of the storm application have been employed.

The results of the analysis are summarized in Table 3.2. For Log-AR, GARMA and GLARMA the whole set of

parameters is significant at the 5% levels. The parameter ν̂ is generally around 10. All the information criteria select

the NB GLARMA model as the best, in a goodness-of-fit sense. We then assess the adequacy of the fit. The ACF

of the residuals appears uncorrelated. A plot representative of PIT value is in the Supplementary Material, Figure

S-2. The NB seems to be more appropriate for our data as its PIT’s are quite near to Uniform(0,1). The marginal

calibration (mc) is plotted in Figure 3.2 for log-AR and GLARMA model. In the other models the results are similar.

Both distributions seem to show a good concordance with empirical distribution but the NB appears to perform better

than the Poisson, especially for the larger quantiles. Results related to the predictive power are summarized in Table

S-6 in the Supplementary Material. The NB GLARMA model has the best predictive performance for the majority

of the scores and it is ultimately chosen since it has been also selected by the information criteria.
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Figure 3.2: Top-left: Escherichia coli counts. Top-right: ACF. Bottom-left: mc plot log-AR. Bottom-right:

mc plot for GLARMA model. Dashed line is Poisson. Black line is NB.

3.6 Discussion

We developed statistical inference for a class of observation driven models which encompasses known models as well

as new models of potential interest for the analysis of discrete-valued time series. Strict stationarity and ergodicity

conditions have been derived for any model in the class and a large family of probability distributions satisfying mild

moment conditions. Consistency and asymptotic normality of the quasi maximum likelihood estimators have been

also established, with the focus on the exponential family. We expect the specification of this broad class of models

will provide useful theoretical and modelling enhancements to study the dynamic trend of count and binary data.

From a theoretical perspective, the unified framework permits to generalize the results on stochastic and infer-

ential properties for well-known models and to establish the same results for new models introduced in Section 3.2.2

of potential interest. Although the uniqueness of the stationary distribution for the process is proved in Section

3.3 by using Markov chain theory, the rate of convergence to the limiting distribution still represents an open issue.

Improvements could be achieved by considering a Markov chain of order greater than 1 to define a model with several

lags besides the first.

From a modelling side, the proposed framework allows one to accounts for three relevant aspects in the analysis

of temporal data: (i) the autoregressive-like effect, (ii) the effect of the past memory dependence and (iii) the effect

of the moving average part. Models in the class may differ for the effects they consider and also for the specification

of these effects through suitable link-functions. Then, the merit of the unified framework is to provide a wide range

of dynamic models which could be extremely different, not necessarily nested, but fully applicable and comparable

in practice since they belong to the same class. Model selection in terms of fitting and prediction across different

models can be performed using information criteria; their performance is explored through an extensive simulation

study.

Finally, in line with the recent theory developed for some multivariate discrete-valued processes (Fokianos et al.,

2020), the specification of a unified framework for modelling multivariate discrete-valued time series may represent

an interesting generalization.
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Table 3.2: MLE results for Escherichia coli infection.

Models α̂ φ̂ γ̂ θ̂ ν̂ AIC BIC QIC

Pois log-AR
0.441 0.437 0.416 -

- 13.115 26.527 27.043
(0.087) (0.062) (0.078) -

Pois GARMA
0.535 0.829 - -0.418

- 13.134 26.546 27.371
(0.095) (0.031) - (0.079)

Pois GLARMA
0.445 - 0.851 0.085

- 12.954 26.366 26.639
(0.098) - (0.033) (0.013)

NB log-AR
0.546 0.400 0.419 -

10.030 12.633 26.045 12.197
(0.102) (0.05) (0.073) -

NB GARMA
0.640 0.794 - -0.420

9.865 12.641 26.053 12.336
(0.111) (0.036) - (0.074)

NB GLARMA
0.483 - 0.839 0.142

10.892 12.578 25.990 11.895
(0.110) - (0.036) (0.019)

Appendix

Proof of Theorem 12

Proof. Equation (3.18) may be rewritten in the following way. For the mean-value theorem, g̃(xs)−g̃(0) = g̃′(us)xs =

csxs for s = 0, . . . , t and 0 < us < xs. We can replace g̃(x) with g̃(x) − g̃(0), this simply changes the value of the

constant α with α− θg̃(0). Then, set

gρy1(x) = α+ γx+ (φ+ θ)h(y0)− θg̃(x) = α+ δh(y0) + r0x (B-1)

where δ = φ+ θ, r0 = γ − θc0 and x0 = x. Then, for s ≤ t, by using IRF, we have,

gρ〈ys:t〉(x) = α

t−s∑
j=0

j−1∏
i=0

rt−i + δ

t−s∑
j=0

j−1∏
i=0

rt−ih(y∗t−j) +

t−s∏
j=0

rjx , (B-2)

where rt−i = 1 for i = −1. Moreover, from (B-2), and by equation (3.17), define gρ〈Y−∞:t〉 := α
∑∞
j=0

∏j−1
i=0 rt−i +

δ
∑∞
j=0

∏j−1
i=0 rt−ih(Y ∗t−j). The proof is carried out specifically for ḡ(·) 6= g(·). It is worth noting that

∣∣supj {cj}
∣∣ ≤ 1

for the Lipschitzianity of g̃. Then, from Theorem 11, we have 0 < r− ≤ |rj | ≤ |γ| + |θcj | ≤ |γ| + |θ| ≤ r̃ < 1

where r− = min(rj). However, one can immediately see that (B-1) also holds in the simpler case ḡ(·) = g(·), with

r0 = r = γ−θ, where |γ−θ| < 1 from Theorem 11. Let {Yn}n∈Z be a strictly stationary and ergodic process, satisfying

Theorem 11. The proof of Theorem 12 holds if assumptions (B1)-(B3) in Douc et al. (Thr. 19, 2013) are verified.

Assumptions (B1) and (B2) hold in our case for the stationarity of Yt and the continuity of gρy(x) w.r.t. ρ and q(·; y)

w.r.t. x. Hence, the estimator ρ̂n,x is well-defined. Assumption (B3)-(iii) holds here for the discreteness of Yt, see

Douc et al. (Rmk. 18, 2013). This condition is required in order to obtain a solvable maximization problem. It remains

to show (B3)-(i) and (B3)-(ii). (B3)-(i): limm→∞ supρ∈Λ |gρ〈Y−m:0〉(x)− gρ〈Y−∞:0〉| = 0, a.s., which ensures that,

regardless of the initial value of X−m = x, X0 (and thus Xt) can be approximated by a quantity involving the infinite

past of the observations. (B3)-(ii): limt→∞ supρ∈Λ |log q(gρ〈Y1:t−1〉(x);Yt)− log q(gρ〈Y−∞:t−1〉;Yt)| = 0, a.s., with

the first element log q(gρ〈Y1:t−1〉(x);Yt) = Ytg
ρ〈Y1:t−1〉(x)−A[gρ〈Y1:t−1〉(x)]+d(Yt), the second element is defined as

log q(gρ〈Y−∞:t−1〉;Yt) = Ytg
ρ〈Y−∞:t−1〉−A[gρ〈Y−∞:t−1〉] + d(Yt). Intuitively, this assumption allows the conditional
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log-likelihood function to be approximated by a stationary sequence. In order to prove (B3)-(i) note that, a.s.

sup
ρ∈Λ
|gρ〈Y−∞:0〉| ≤ |α|

∞∑
j=0

r̃j + |δ|
∞∑
j=0

r̃j |h(Y ∗−j)| ≤
α̃

1− r̃
+ δ̃

∞∑
j=0

r̃j |h(Y ∗−j)| = ĝ〈Y−∞:0〉 , (B-3)

which has finite expectation, and then is finite according to (H1). In fact, h(Y ∗t ) is stationary and |h(Y0)| ≤ a0+a1|Y0|,
for Case 1. For Case 2, h(Y ∗0 ) ≤ a1Y

∗
0 and E[Y ∗0 ] ≤ E[Y0] + c (see equation (S-8) in the Supplementary Materials).

In Case 3 h(·) and Yt are bounded so their expectations are finite. It holds also that

|gρ〈Y−∞:t−1〉| ≤
α̃

1− r̃
+ δ̃

∞∑
j=0

r̃j |h(Y ∗t−1−j)| (B-4)

|gρ〈Y1:t−1〉(x)| ≤ α̃
t−2∑
j=0

r̃j + δ̃

t−2∑
j=0

r̃j |h(Y ∗t−1−j)|+ r̃t−1|x| (B-5)

which possesses a finite expectation according to (H1). Let d1 = |gρ〈Y−m:0〉(x)− gρ〈Y−∞:0〉| and j = m + l + 1.

Then,

d1 =

∣∣∣∣∣∣α
∞∑
l=0

m+l∏
i=0

r−i + δ

∞∑
l=0

m+l∏
i=0

r−ih(Y ∗−m−l−1) +

m∏
j=0

rjx

∣∣∣∣∣∣
≤

∣∣∣∣∣
m∏
i=0

r−i

∣∣∣∣∣
∣∣∣∣∣α
∞∑
l=0

m+l+1∏
i=m+1

r−i + δ

∞∑
l=0

m+l+1∏
i=m+1

r−ih(Y ∗−m−l−1)

∣∣∣∣∣+

∣∣∣∣∣∣
m∏
j=0

rjx

∣∣∣∣∣∣
≤ r̃m+1

(
α̃

∞∑
l=0

r̃l + δ̃

∞∑
l=0

r̃l|h(Y ∗−m−l−1)|+ |x|

)

converges to 0 as m→∞ by (H1) and Douc et al. (2013, Lem. 34). Thus (B3)-(i) holds. We now move to (B3)-(ii),

sup
ρ∈Λ
|log q(gρ〈Y1:t−1〉(x);Yt)− log q(gρ〈Y−∞:t−1〉;Yt)|

≤ Yt sup
ρ∈Λ
|f [gρ〈Y1:t−1〉(x)]− f [gρ〈Y−∞:t−1〉] |+ sup

ρ∈Λ
|A [gρ〈Y1:t−1〉(x)]−A [gρ〈Y−∞:t−1〉]| .

First consider

|gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉| =

∣∣∣∣∣∣α
∞∑
l=0

t+l−2∏
i=0

rt−1−i + δ

∞∑
l=0

t+l−2∏
i=0

rt−1−ih(Y ∗−l) +

t−2∏
j=0

rjx

∣∣∣∣∣∣
≤ r̃t−1

(
α̃

∞∑
l=0

r̃l + δ̃

∞∑
l=0

r̃l−|h(Y ∗−l)|+ |x|

)
= r̃t−1 (|x|+ ĝ〈Y−∞:0〉)

for (B-3), and for l = j when t− 1 = 0. This implies that

Yt sup
ρ∈Λ
|gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉| ≤ Ytr̃t−1 (|x|+ ĝ〈Y−∞:0〉)

t→∞−−−→ 0 a.s.

according to (B-3) and by Douc et al. (2013, Lem. 34), under (H1). Now, for the mean value theorem,

supρ∈Λ |A [gρ〈Y1:t−1〉(x)]−A [gρ〈Y−∞:t−1〉]| = sup
ρ∈Λ
|A′(Ct−1)| |gρ〈Y1:t−1〉(x)− gρ〈Y−∞:t−1〉|

≤ sup
ρ∈Λ
|A′(Ct−1)| r̃t−1 (|x|+ ĝ〈Y−∞:0〉) (B-6)
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where min {gρ〈Y1:t−1〉(x), gρ〈Y−∞:t−1〉} ≤ Ct−1 ≤ max {gρ〈Y1:t−1〉(x), gρ〈Y−∞:t−1〉}. The function (B-6) tends to 0

as t→∞, for Douc et al. (2013, Lem. 34) and E[(log |A′(Ct−1)|)+] <∞, which is true for (H1). The same argument

of (B-6) hold with f(·) instead of A(·), and the details are omitted. Then, (B3)-(ii) holds, and this completes the

proof.

Proof of Theorem 13

Proof. First of all, we note that P (x,A) =
∫
A
q(x; y)µ(dy). By the stationarity of Yt and (H1), Theorem 12 holds.

It remains to show that P? = {ρ?}, where ρ? = (α?, γ?, φ?, θ?). This follows from Douc et al. (Prop. 21, 2013), once

we have showed that

(LP1) X0 = gρ?〈Y−∞:0〉, a.s.

(LP2) x 7→ P (x; ·) is one-to-one mapping, i.e, if P (x; ·) = P (x′; ·) implies that x = x′.

(LP3) gρ?〈Y−∞:0〉 = gρ〈Y−∞:0〉 a.s. implies that ρ = ρ?.

So gρ?〈Y−m:0〉(X−m−1) = α?
∑m
j=0

∏j−1
i=0 r?−i+δ?

∑m
j=0

∏j−1
i=0 r?−ih(Y ∗−j)+

∏m
j=0 r?jX−m−1, for m ≥ 0. For m→∞

we have
∏m
j=0 r?jX−m−1 → 0 in fact supj {r?j} = r∗ ≤ r̃ < 1. Hence, X0 = limm→∞ gρ?〈Y−m:0〉(X−m−1) =

gρ?〈Y−∞:0〉, a.s. thus (LP1) holds. Moreover, (LP2) holds as well because P (x; ·) is the cumulative distribution

function of q(x; ·), which is the exponential family of parameter µ = g−1(x). It remains to check (LP3). Consider

gρ?〈Y−∞:0〉 − gρ〈Y−∞:0〉 =

∞∑
j=0

j−1∏
i=0

(α?γ? − αγ) +

∞∑
j=0

j−1∏
i=0

(αθ − α?θ?) c−i +

+

∞∑
j=0

j−1∏
i=0

(φ?γ? + θ?γ? − φγ − θγ)h(Y ∗−j) +

∞∑
j=0

j−1∏
i=0

(
φθ + θ2 − φ?θ? − θ2

?

)
c−ih(Y ∗−j)

where δ? = φ? + θ?, r?s = γ? − θ?cs for −j + 1 ≤ s ≤ 0. Clearly, only if α = α?, γ = γ?, θ = θ?, φ = φ? (so ρ = ρ?),

we have gρ?〈Y−∞:0〉 − gρ〈Y−∞:0〉 = 0, which completes the proof.

Supplementary Material

This is a supplementary material containing proofs of Theorem 11, Theorem 14 and Corollary 1. The equivalence of

(A4) and (A5) for the Negative Binomial is verified. Some insight about conditions (H1)-(H2) is provided. Moreover,

the numerical results of the simulation study discussed in Section 3.4.2 are reported. Finally, additional numerical

results for the application in Section 3.5 are showed.

Main proofs

Preliminary Lemmata for Proof of Theorem 11

The proof of Theorem 11 requires some definitions and preliminary lemmata, with the same notation of Theorem 11.

Definition 9. A set A ∈ F is called a small set if there exists m > 1, a nontrivial measure v on F , and λ > 0 such

that ∀x ∈ A, ∀C ∈ F , Pm(x,C) ≥ λ v(C).

Definition 10. A chain evolving on a complete separable metric space S is said to be “weak Feller” if P (x, ·) satisfies

P (x, ·)⇒ P (y, ·) as x→ y, for any y ∈ S and where ⇒ indicates convergence in distribution.
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Definition 11. Let S be a Polish (complete, separable, metrizable) space. A “totally separating system of metrics”

{dt}t∈N for S is a set of metrics such that for any x, y ∈ S with x 6= y, the value dt(x, y) is nondecreasing in t and

limt→∞ dt(x, y) = 1.

Definition 12. A chain is “asymptotically strong Feller” if, for every fixed x ∈ S, there is a totally separating system

of metric {dt} for S and a sequence tn > 0 such that

lim
δ→∞

lim sup
t→∞

sup
y∈B(x,δ)

∥∥P tn(x, ·)− P tn(y, ·)
∥∥
dt

= 0

where B(x, δ) is the open ball of radius δ centred at x, as measured using some metric defining the topology of S.

Definition 13. A “reachable” point x ∈ S means that ∀ open sets A containing x, ∀y ∈ S,
∑∞
t=1 P

t(y,A) > 0.

The proof of Theorem 11 is essentially based on the following preliminary lemmata. First, a drift condition is

proven on the Markov chain Xt (Lemma 3); after that, the weak Feller property is established for the chain (Lemma

4), which proves the existence of a stationary distribution for {Xt}t∈T . Then, the asymptotic strong Feller condition

is verified (Lemma 5). Finally, the existence of a reachable point is shown (Lemma 6) and, by combining all these

results, the uniqueness of the stationary distribution of the chain is proven.

Let Ex(·) denote the expectation under the probability Px(·) induced on the path space of the chain {Xt}t∈T
when the initial state X0 is deterministically equal to x.

Consider the following drift condition ∀x ∈ S:

ExV (X1) ≤ ηV (x) + b{x∈A} (S-1)

where η ∈ (0, 1), b > 0, V : S → [1,∞) and A ⊂ S is a small set.

Let (A3.1) g and h are bijective, increasing and

1. If ḡ(µt) = g(µt),

1.1. h : R 7→ R concave on R+ and convex on R−, g : R 7→ R concave on R+ and convex on R−, |γ|+ |φ| < 1

1.2. h : R+ 7→ R concave on R+, g : R+ 7→ R concave on R+, (|γ|+ |φ|) ∨ |γ − θ| < 1

1.3. h : (0, a) 7→ R and g : (0, a) 7→ R, |γ − θ| < 1.

2. If ḡ(µt) 6= g(µt) and ḡ(µt) = E[h(Y ∗t )|Ft−1] or ḡ ≡ h

2.1. h : R 7→ R concave on R+ and convex on R−, g : R 7→ R concave on R+ and convex on R−, |γ|+ |φ| < 1

2.2. h : R+ 7→ R concave on R+, g : R+ 7→ R concave on R+, |γ|+ |φ| < 1

2.3. h : (0, a) 7→ R and g : (0, a) 7→ R, |γ| < 1.

Lemma 3. Under assumptions (A1), (A2) and (A3.1), the chain {Xt}t∈T has a small set A ⊂ S and satisfies the

drift condition (S-1).

Proof of Lemma 3

Proof. The proof is inspired on Matteson et al. (Sec. 4.1, 2011) and the propositions therein. Firstly, we define a small

set A = [−M,M ] for some constant M > 0, where it is known that for any x ∈ A, Px(Y0 ∈ [a1(M), a2(M)]) > 3/4

where

a1(M) = g−1(−M)− [4(l1 max{|g−1(−M)|, |g−1(M)|}r + l2)]1/(2+δ) ,

a2(M) = g−1(M)− [4(l1 max{|g−1(−M)|, |g−1(M)|}r + l2)]1/(2+δ) .
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Given X0 = x and µ0 = µ = g−1(x), we can write ḡ(µ) = ḡ(g−1(x)) = (ḡ ◦ g−1)(x) = g̃(x) where the composite

function g̃ is still monotonic (and invertible), as a composition of monotonic functions. Then, with probability at least

3/4, X1 ≥ min{b(a1(M)), b(a2(M))}−|γ|M−|θ||g̃(M)| and X1 ≤ min{b(a1(M)), b(a2(M))}+|γ|M+|θ||g̃(M)|, where

b(a) = α+(φ+θ)h(a∗) and a∗ is the operator ∗ applied to a. This shows that A is a small set. For details see Matteson

et al. (p. 812, 2011). Next, it is possible to use the small set A to prove the drift condition (S-1) by taking the function

V (x) = |x|. Then, we split the drift condition in three parts of the real axis: x < −M, x ∈ [−M,M ], x > M .

Only the parts of the proof which differ significantly are shown. First we will give the drift condition for x ∈ A,

Proposition 2. (Cases 1-3) There is some constant G(M) <∞ such that ExV (X1) ≤ G(M) for all x ∈ A.

Then, the drift condition for x /∈ A is provided, handling the cases x < −M and x > M separately.

Proposition 3. (Case 1) For any ε ∈ (0, 1) there is some constant G2 < ∞ such that for M large enough,

ExV (X1) ≤ (|φ|+ |γ|+ ε)V (x) +G2 for all x < −M .

(Cases 2-3)

• If ḡ(µ) 6= g(µ) and ḡ(µ) = Ex[h(Y ∗0 )] or ḡ ≡ h, there is some constant U2 < ∞ such that ExV (X1) ≤
|γ|V (x) + U2 for all x < −M .

• If ḡ(µ) = g(µ), there is some constant W2 <∞ such that ExV (X1) ≤ |γ − θ|V (x) +W2 for all x < −M .

Proposition 4. (Cases 1-2) For any ε ∈ (0, 1) there is some constant G3 < ∞ such that for M large enough,

ExV (X1) ≤ (|φ|+ |γ|+ ε)V (x) +G3 for all x > M .

(Case 3)

• If ḡ(µ) 6= g(µ) and ḡ(µ) = Ex[h(Y ∗0 )] or ḡ ≡ h, there is some constant U3 < ∞ such that ExV (X1) ≤
|γ|V (x) + U3 for all x > M .

• If ḡ(µ) = g(µ), there is some constant W3 <∞ such that ExV (X1) ≤ |γ − θ|V (x) +W3 for all x > M .

Propositions 3 and 4 give the overall drift condition for x /∈ A as follows. Consider Case 2; the other two cases

are analogous. If ḡ(µ) = g(µ), since ε > 0, we can write ExV (X1) ≤ |γ − θ|V (x) + W2 ≤ (|γ − θ| + ε)V (x) + W2

from Proposition 3 and, for M large enough, ExV (X1) ≤ (|φ| + |γ| + ε)V (x) + G3 from Proposition 4. Set ξ =

(|φ|+|γ|)∨|γ−θ|, then we can write ExV (X1) ≤ (ξ+ε)V (x)+max {W2, G3}. For ε = (1−ξ)/2, define η = ξ+ε = ξ+1
2 ,

and choose M large enough to satisfy Proposition 4. Then, for any x /∈ A, we have ExV (X1) ≤ ηV (x)+L, establishing

the drift condition (S-1) for |γ− θ|+ (|φ|+ |γ|) < 1. We remark that, although the range of V is [0,∞), we can easily

replace V with Ṽ (x) = |x|+ 1 to get the range [1,∞). The same holds if ḡ(µ) = Ex[h(Y ∗0 )] or ḡ ≡ h 6= g, by setting

η = |φ|+ |γ|+ ε, establishing the drift condition (S-1) for |φ|+ |γ| < 1.

Proof of Proposition 2, Case 1

We assume, without loss of generality (w.l.o.g.), that h(0) = 0, since replacing h(y) with h(y)− h(0) simply changes

the value of α. In this case, we assume that h is concave on R+ and convex on R−, so that there are constants

a0, a1 ≥ 0 such that |h(y)| ≤ a0 + a1|y| for all y; same assumptions hold for g. Now, we can bound ExV (X1) to

obtain the drift condition (S-1) as follows, where C,C1, C2 denote bounded constants with respect to µ which can

take different values:

ExV (X1) = Ex|α+ γx+ φh(Y0) + θ[h(Y0)− ḡ(µ)]|

≤ |α|+ |γ|Ex|x|+ |φ|Ex|h(Y0)|+ |θ|Ex|h(Y0)− ḡ(µ)| (S-2)

≤ |α|+ |γ||x|+ (|φ|+ |θ|)a1Ex|Y0|+ |θ||g̃(x)| .

From Matteson et al. (p. 21, 2011), Ex|Y0| is bounded. So supx∈[−M,M ] ExV (X1) <∞, proving Proposition 2.
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Proof of Proposition 3 and 4, Case 1

From equation (S-2), we need to show that

Ex|h(Y0)| ≤ x+ C . (S-3)

When h(µ) ≤ g(µ), this holds from a result in Matteson et al. (Sec. A.7, 2011) by substituting h(·) to g(·). Instead,

when h(µ) > g(µ), the results is unchanged by applying the following inequality h(µ) = g(µ + δ) ≤ g(µ) + g(δ),

where δ > 0, for the concavity of the functions involved in the same domain. Next, we need to show that the term

Ex|h(Y0)− ḡ(µ)| in (S-2) is “small” relative to the linear term in x:

Proposition 5. There are some constants l14, l15 such that Ex|h(Y0)−ḡ(µ)| ≤ C1x
r/(2+δ)+C2 for all x large enough.

Proof of Proposition 5

Since h(0) = 0 and h is monotonic increasing, for x > M , by Matteson et al. (eq. 23, 2011),

Ex|h(Y0)− ḡ(µ)| = Ex|h(Y01Y0>0)− ḡ(µ) + h(Y01Y0<0)|

≤ Ex|h(Y01Y0>0)− ḡ(µ)|+ Ex|h(Y01Y0<0)|

≤ Ex|h(Y01Y0>0)− ḡ(µ)|+ a0 + a1Ex[|Y0|1Y0<0]

≤ Ex|h(Y01Y0>0)− ḡ(µ)|+ C.

Using the Markov inequality stated in Matteson et al. (eq. 14, 2011), for any fixed ε ∈ (0, 1) and x > M ,

Ex[|h(Y01Y0>0)− ḡ(µ)|1Y0≤(1−ε)µ] (S-4)

≤ Ex|ḡ(µ)1Y0≤(1−ε)µ|+ Ex|h(Y010<Y0≤(1−ε)µ)|

≤ ḡ(µ)Px(Y0 ≤ (1− ε)µ) + Ex[h(µ)1Y0≤(1−ε)µ)|

= ḡ(µ)Px[Y0 ≤ (1− ε)µ] + h(µ)Px[Y0 ≤ (1− ε)µ]

≤ ḡ(µ)Px[|Y0 − µ| ≥ εµ] + h(µ)Px[|Y0 − µ| ≥ εµ]

≤ ḡ(µ)(C1µ
r + C2)

ε2+δµ2+δ
+
h(µ)(C1µ

r + C2)

ε2+δµ2+δ
. (S-5)

If ḡ ≡ h 6= g, equation (S-5) reduces to Ch(µ)
µ2+δ−r . Recall that for y > 0, a0 + a1y ≥ h(y), so that a0 + a1µ ≥ h(µ).

Hence, µ ≥ (h(µ)− a0)/a1 and (S-4) is bounded by: Ch(µ)
[h(µ)−a0]2+δ−r

= Ch̃(x)

[h̃(x)−a0]2+δ−r
which converges to 0 as x→∞.

(h̃(·) = h(g−1(·)) = (h ◦ g−1)(·) is an increasing function, since it is a composition of increasing functions, and is

therefore bounded by a constant, for x > M . If ḡ(µt) = E[h(Yt)|Ft−1], it can be showed that ḡ(µ) = Ex[h(Y0)]. As

σ(X0) ⊆ F−1, for the tower property Ex[h(Y0)] = E[h(Y0)|X0] = E[E[h(Y0)|F−1]|X0] = E[ḡ(µ)|x] = ḡ(µ). Moreover,

we notice that ḡ(µ) = Ex[h(Y0)] ≤ h[Ex(Y0)] = h(µ). Consequently, the above bound applies here. If ḡ ≡ g 6= h we

define (S-5) as g(µ)(C1µ
r+C2)

ε2+δµ2+δ + h(µ)(C1µ
r+C2)

ε2+δµ2+δ = Cx
µ2+δ−r + Ch(µ)

µ2+δ−r and it is bounded by Cx
[x−a0]2+δ−r

+ Ch(µ)
[h(µ)−a0]2+δ−r

=

Cx
[x−a0]2+δ−r

+ Ch̃(x)

[h̃(x)−a0]2+δ−r
, which converges to 0 as x→∞. It only remains to show that

Ex|h(Y01Y0>0)− ḡ(µ)|1Y0>(1−ε)µ = Ex|h(Y0)− ḡ(µ)|1Y0>(1−ε)µ (S-6)

is “small”. When ḡ ≡ h, this is straightforward by substituting h(·) to g(·) in Matteson et al. (p. 826, 2011),

establishing Proposition 5. For ḡ(µ) = Ex[h(Y0)], the expectation (S-6) is bounded by Ex|h(Y0)|1Y0>(1−ε)µ +

Ex|ḡ(µ)|1Y0>(1−ε)µ ≤ 2ḡ(µ) ≤ 2h(µ) which is itself bounded by 2a0 + 2a1µ ≤ C2 + C1Ex|Y0| ≤ C2 + C1µ
r/(2+δ) ≤

C2 +C1x
r/(2+δ), for the concavity of h(·), for µ > 0 when x > M , (p. 824, Matteson et al., 2011), since µ ≤ x

b1(x)(1−ε)
by equation (S-1) where b1(x) is bounded for x > M . Then, Proposition 5 is proved also for ḡ(µ) = Ex[h(Y0)].
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Combining Proposition 5 with (S-2) and (S-3), we have that, for all x enough large,

ExV (X1) ≤ C2 + |φ|x+ |θ|C1x
r/(2+δ) + |γ|x ≤ C + (|φ|+ |γ|+ ε)x;

this proves Proposition 4. Proposition 3 holds by symmetry when x < −M .

Proof of Proposition 2, 3, Case 2

Assume w.l.o.g. that h(c) = 0 and g(c) = 0, this simply changes the value of α. Since h(c) = 0, h(Y ∗0 ) ≥ 0 is

non-negative for any Y ∗0 . Also, due to the concavity of h, there is some a1 > 0 such that h(y) ≤ a1y for all y ∈ R+.

The same arguments hold for g. At this point, a different proof is developed, depending on the shape of ḡ(µ). When

g̃(x) = ḡ(µ), we can bound ExV (X1) as follows:

ExV (X1) = Ex|α+ γx+ φh(Y ∗0 ) + θ[h(Y ∗0 )− ḡ(µ)]|

≤ |α|+ |γ − θ||x|+ |φ+ θ|Ex[h(Y ∗0 )]

= |α|+ |φ+ θ|Px(Y0 < c)h(c) + |φ+ θ|Ex[h(Y0)1Y0≥c] + |γ − θ||x|

= |α|+ |φ+ θ|a1Ex[Y01Y0≥c] + |γ − θ||x| .

Note that Ex[Y01Y0≥c] ≤ Ex|Y0| ≤ C2+C1µ
r/(2+δ) where µ = g−1(x), implying that ExV (X1) ≤ C2+C1µ+|θ||g̃(x)|+

|γ||x| , so ExV (X1) <∞ for x ∈ [−M,M ], proving Proposition 2. When x < −M we have µ = g−1(x) ≤ g−1(0) = c,

we obtain ExV (X1) ≤ l20 + |γ − θ||x|, and this completes the proof of Proposition 3.

Now the case when ḡ 6= g is considered. A different bound for ExV (X1) can be established:

ExV (X1) = Ex|α+ γx+ φh(Y ∗0 ) + θ[h(Y ∗0 )− ḡ(µ)]|

≤ |α|+ |γ||x|+ |φ|Ex[h(Y ∗0 )] + |θ|Ex|h(Y ∗0 )− ḡ(µ)| (S-7)

= |α|+ |φ|Px(Y0 < c)h(c) + |φ|Ex[h(Y0)1Y0≥c] + |γ||x|

+ |θ|Px(Y0 < c)|h(c)− ḡ(µ)|+ |θ|Ex[|h(Y0)− ḡ(µ)|1Y0≥c]

≤ |α|+ (|φ|+ |θ|)Ex[h(Y0)1Y0≥c] + |θ|Px(Y0 < c)|h(c)− ḡ(µ)|

+ |θ|Px(Y0 ≥ c)|ḡ(µ)|+ |γ||x|

≤ |α|+ (|φ|+ |θ|)a1Ex[Y01Y0≥c] + |θ||g̃(x)|+ |γ||x| .

When ḡ(µ) = Ex[h(Y ∗0 )], Ex[h(Y ∗0 )] = Ex[h(Y01Y0≥c) + h(c)Px(Y0 < c)] ≤ a1[Ex(Y01Y0≥c)] ≤ a1[Ex|Y0|] ≤ C1 +

C2µ
r/(2+δ) and so ExV (X1) ≤ C + |θ||Ex[h(Y ∗0 )]| + |γ||x| ≤ C + |θ|(C2 + C1c

r/(2+δ)) + |γ||x| . Lastly, if ḡ ≡ h,

|g̃(x)| = |h(µ)| = −h(µ) ≤ −h(0) = d. So the drift condition becomes ExV (X1) ≤ C + |θ|d + |γ||x| proving

Proposition 3.

Proof of Proposition 4, Case 2

Using Jensen’s inequality and the fact that Px(Y0 < c)
x→∞−−−−→ 0, for all x large enough,

Ex[h(Y ∗0 )] ≤ h(Ex[Y01Y0≥c] + cPx(Y0 < c)) = h(Ex[Y0]− Ex[Y01Y0<c] + cPx(Y0 < c)).

Using a similar argument of Case 1 above, we see that the last two terms in the argument of h converge to 0 as

x→∞. Hence, for (S-3) we have that for any ε > 0 we can find M > 0 so that, for all x > M , Ex[h(Y ∗0 )] ≤ x+ C;

combining this with (S-7), there exists M > 0 such that for x > M ,

ExV (X1) ≤ C + |φ|V (x) + |γ||x|+ |θ|Ex|h(Y ∗0 )− ḡ(µ)|.
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It remains to show that the final term in this equation is small relative to the linear (in V (x)) term as x→∞. It is

worth noting that the map ∗ does not affect the results for Proposition 5 because

Ex(Y ∗0 ) = Ex[Y01Y0≥c] + Ex[c1Y0<c] = Ex(Y0)− Ex[Y01Y0<c] + Ex[c1Y0<c]

= µ+ Ex[(c− Y0)1Y0<c] ≤ µ+ Ex[c1Y0<c] ≤ µ+ c (S-8)

and ḡ(µ) = Ex[h(Y ∗0 )] ≤ h[Ex(Y ∗0 )] ≤ h(µ + c) ≤ h(µ) + h(c) = h(µ) due to the concavity of h. Hence, the proof

follows in almost identical fashion to the proof of this result in Case 1. We omit the details.

Proof of Proposition 2, 3 and 4, Case 3

Assume again h(c) = 0. Since h(Y ∗0 ) ∈ [h(c), h(a− c)]. If ḡ(µ) = g(µ)

ExV (X1) = Ex|α+ (φ+ θ)h(Y ∗0 )− θg̃(x) + γx| ≤ |α|+ |φ+ θ|Ex|h(Y ∗0 )|+ |γ − θ||x|

≤ |α|+ |φ+ θ|h(a− c) + |γ − θ||x|.

Propositions 2-4 follow immediately. If ḡ(µ) 6= g(µ)

ExV (X1) ≤ |α|+ |φ+ θ|Ex|h(Y ∗0 )|+ |θ||g̃(x)|+ |γ||x|

≤ |α|+ |φ+ θ|h(a− c) + |θ||g̃(x)|+ |γ||x|. (S-9)

Proposition 2 follows immediately. We prove Propositions 3 and 4. If ḡ(µ) = Ex[h(Y ∗0 )], equation (S-9) will be

ExV (X1) ≤ C+ |θ||Ex[h(Y ∗0 )]|+ |γ||x| ≤ C+ |θ|h(a−c)+ |γ||x| . Then, if ḡ ≡ h, we have that |g̃(x)| = |h(µ)| = h(µ) <

h(a), if h(µ) > 0 and |h(µ)| = −h(µ) < −h(0) if h(µ) < 0, where h(a) = supµ∈(0,a) h(µ) and h(0) = infµ∈(0,a) h(µ).

Finally, the drift condition is ExV (X1) ≤ C + |γ||x| and this completes the proof of Lemma 3.

Note that Lemma 3 is sufficient to establish stationary conditions for the Case 1, since it involves a continuous-

valued process Yt so the respective chain Xt = g(µt) is ϕ-irreducible. Resort equation (3.15) from the main paper

Xt = α+ γ Xt−1 + φh(Y ∗t−1) + θ
[
h(Y ∗t−1)− ḡ(µt−1)

]
, (S-10)

Lemma 4. The chain {Xt}t∈T defined in equation (S-10) is weak Feller.

Proof of Lemma 4

Proof. Define Xt = g(µt) and X0 = x. Let Xt(x) denote the random variable Xt conditional to X0 = x and Yt(x)

denote the random variable Yt conditional to µ0 = µ. From (S-10) we have that X1(x) = α + φh(Y ∗0 (g−1(x))) +

θ[h(Y ∗0 (g−1(x)))− g̃(x)]+γx. Since g−1 is continuous, Y0(g−1(x))⇒ Y0(g−1(x′)) as x→ x′. Since the ∗ that maps Y0

to the domain of h is continuous, it follows that Y ∗0 (g−1(x))⇒ Y ∗0 (g−1(x′)) as x→ x′. Since h is continuous, we have

that h(Y ∗0 (g−1(x)))⇒ h(Y ∗0 (g−1(x′))). Since g̃(x) is continuous, we have that g̃(x)⇒ g̃(x′). So X1(x)⇒ X1(x′) as

x→ x′, showing the weak Feller property.

For Case 2 and 3, consider the assumption (A3.2):

1. If ḡ(µt) = g(µt), |γ − θ| < 1

2. If ḡ(µt) 6= g(µt) and |g̃′(x)| ≤ 1, |γ|+ |θ| < 1.

Lemma 5. Assume that Lemma 3, Lemma 4, (A3.2) and (A4) hold. Then, {Xt}t∈T is asymptotic strong Feller.
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Proof of Lemma 5

Proof. When g ≡ ḡ, it follows from equation (S-10) that X1(z) = α + φh(Y ∗0 (z)) + θ[h(Y ∗0 (z)) − g̃(z)] + γz . If

h(Y ∗0 (w)) = h(Y ∗0 (z)) then, |X1(z)−X1(w)| = |−θ(g̃(z)−g̃(w))+γ(z−w)| = |γ−θ||z−w| . From coupling theory, using

Roberts and Rosenthal (Prop. 3(g), 2004) we can construct the random variables g(Y ∗0 (z)) and g(Y ∗0 (w)) in such a way

that they have the marginal distributions πz and πw, and that P(g(Y ∗0 (w)) = g(Y ∗0 (z))) = 1− ‖πw(·)− πz(·)‖TV >

1 − B|z − w| , where the inequality holds by assumption (A4). Note that g(·) and h(·) are one-to-one functions.

Hence, we have g(Y ∗0 (w)) = g(Y ∗0 (z)) ⇐⇒ Y ∗0 (w) = Y ∗0 (z) ⇐⇒ h(Y ∗0 (w)) = h(Y ∗0 (z)) (where ⇐⇒ means “if and

only if”); so the conditional probability to g(Y ∗0 (w)) = g(Y ∗0 (z)) or h(Y ∗0 (w)) = h(Y ∗0 (z)) is equivalent. Therefore,

the probability that the chains couple at t = 1:

P(g(Y ∗1 (w)) = g(Y ∗1 (z))|h(Y ∗0 (w)) = h(Y ∗0 (z))) > 1−
∥∥πX1(z)(·)− πX1(w)(·)

∥∥
TV

(S-11)

which is bounded below by 1−B|γ−θ||z−w|. Then, the lower bound of the probability that the chains couple for all

times t = 0, 1, . . . is obtained by iterating (S-11): 1−B|z−w|
∑∞
t=0(|γ− θ|)t = 1− |z−w|B1−|γ−θ| where the equality holds

by assumption (A3.2). The rest of the proof for the asymptotic strong Feller property follows Matteson et al. (p.

819, 2011). It is sufficient to replace |θ| by |γ − θ| anywhere. We omit the details. If g 6= ḡ and h(Y ∗0 (w)) = h(Y ∗0 (z))

we have |X1(z)−X1(w)| = | − θ(g̃(z)− g̃(w)) + γ(z−w)| ≤ |θ||g̃(z)− g̃(w)|+ |γ||z−w|. Since g̃(x) is Lipschitz with

L ≤ 1, we obtain |X1(w) −X1(z)| ≤ (|θ| + |γ|)|z − w| . Hence, it is immediate to see that the proof for the former

case (ḡ ≡ g) is valid also here by substituting |θ|+ |γ| to |γ − θ|. This completes the proof.

Lemma 6. If (A3) hold, then there exists a reachable point x0 for the chain (S-10).

The condition (A3) is obtained by unifying assumptions (A3.1) and (A3.2).

Proof of Lemma 6

Proof. We show the existence of a reachable point for {Xt}t∈T where Xt = g(µt) and xt is its sample counterpart.

Firstly, consider the case in which ḡ ≡ g and put without loss of generality (w.l.o.g.) h(0) = 0 (which simply change

the value of the constant α). The model (S-10) could be written as

xt = α+ γxt−1 + (θ + φ)h(Y ∗t−1)− θg̃(xt−1). (S-12)

Let consider the case Y ∗t = 0, for t = 1, . . . , n. Hence, by (S-12), xt = α + (γ − θ)xt−1. Then, set x = α/(1 − δ),
where δ = γ − θ. Let x ∈ R and let C be an open set containing x. Then, by setting x0 = x and for all t ≥ 1,

xt = α + δxt−1 = α
∑t−1
j=0 δ

j + δtx0. Since δ ≤ |γ − θ| < 1 for (A3.2), we have limt→∞ xt = x so that ∃n such

that∀t ≥ n, xt ∈ C. For such n we have

Pn(x,C) = Px(Xn ∈ C) ≥ Px(Xn ∈ C, Y ∗0 = · · · = Y ∗n−1 = 0)

= Px(Xn ∈ C|Y ∗0 = · · · = Y ∗n−1 = 0)Px(Y ∗0 = · · · = Y ∗n−1 = 0)

= Px(Y ∗0 = · · · = Y ∗n−1 = 0) > 0.

For the case ḡ(µt) = E[h(Y ∗t )|Ft−1], it is immediate to see that ḡ(µt) = 0, for t = 1, . . . , n and (S-12) holds as in the

previous case, with γ instead of δ, as by (A3.1) follows that |γ| < 1. When ḡ ≡ h 6= g we consider the case Yt = c,

for t = 1, . . . , n so that µt = c, for t = 1, . . . , n and Y ∗t = c, for t = 1, . . . , n; and finally, set w.l.o.g. h(c) = 0 and

(S-12) will be valid as in the former case, with γ instead of δ.
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Proof of Theorem 11

Proof. Theorem 11 follows directly from Lemmata 3-6. More precisely, if (A1)-(A2) and (A3.1) hold, the process

{Xt}t∈T has at least a stationary distribution. The result is obtained by Lemma 3, Lemma 4 and Theorem 2 in

Tweedie (1988). Besides, if (A1)-(A4) hold, the stationary distribution of the process {Xt}t∈T is unique. This is

immediate by Lemma 5, Lemma 6 and Theorem 3 in Matteson et al. (2011). Finally, by Proposition 8 in Douc et al.

(2013), the stationarity of {Yt}t∈T follows directly by the uniqueness of the stationary distribution of {Xt}t∈T , this

completes the proof.

Proof of equivalence of (A4) and (A5) for Negative Binomial

Proof. For the total variation distance between dTV (g(Y ∗t (z)), g(Y ∗t (w))) = dTV (Yt(z), Yt(w)), the coupling inequal-

ity, as in Thorisson (1995), ensures that dTV (Yt(z), Yt(w)) ≤ P(Yt(z) 6= Yt(w)). So, bounding P(Yt(z) 6= Yt(w)) with a

Lipschitz function is equivalent to prove Assumption (A4). Suppose that z > w and let Yt(z) ∼ NB(a, pz = a
g−1(z)+a )

and Yt(w) ∼ NB(a, pw = a
g−1(w)+a ); set Yt(z) = U +Yt(w), so U = Yt(z)−Yt(w), and, by using the discrete-variable

convolution we have

P(U = u) =

∞∑
k=0

P(Yt(w) = k)P(Yt(z) = k + u)

=

∞∑
k=0

(
a+ k − 1

k

)
paz(1− pz)k

(
a+ k + u− 1

k + u

)
paw(1− pw)k+u

and then

P(U = 0) = (pzpw)a
∞∑
k=0

(
a+ k − 1

k

)2

[(1− pz)(1− pw)]k .

The coupling probability could be written as

P(Yt(z) 6= Yt(w)) = P(U 6= 0) = 1− P(U = 0)

≤ 1− (pzpw)a
∞∑
k=0

(
a+ k − 1

k

)
[(1− pz)(1− pw)]k

= 1−
(

pzpw
1− (1− pz)(1− pw)

)a
= 1−

(
1

1 + 1−pz
pz

+ 1−pw
pw

)a
= 1−

(
1

D

)a
= 1−

(
g−1(w)− g−1(z)

D (g−1(w)− g−1(z))

)a
≤ 1−

(
− ζ(z − w)

D (g−1(w)− g−1(z))

)a
(S-13)

= 1−
(

ζ(z − w)

D (g−1(z)− g−1(w))

)a
≤ 1−

(
ζ(z − w)

aD∗

)a
(S-14)

where D ≥ 1 and and D
(
g−1(z)− g−1(w)

)
= D1. In equation (S-14) we put D∗ = max {D,D1}. The inequality

(S-13) holds because the function g−1(·) is Lipschitz with constant ζ. Then, (S-14) is Lipschitz as well with constant

ζ for z ∈ [w,w + aD∗/ζ], since the absolute value of its derivative is bounded by ζ, and this gives the desired

result.
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Proof of Corollary 1

Proof. Let us define ν0 = ν(µ0) = ν(µ) = ν and set g(µ) = x. It is worth noting that Ex

[
h(Y0)−g̃(x)

ν

]
=

Ex[h(Y ∗0 )−g̃(x)]
ν .

In fact ν is the standard deviation σ(µ) of h(Y0), which is constant w.r.t x (and then w.r.t µ). For this reason

Proposition 2, Case 1 is left unchanged. In Proposition 4 we have x > M ; if ν is increasing w.r.t µ we have that as

x→∞ (µ→∞) ν goes to infinity as well (and 1/ν → 0, then it is therefore bounded for x > M) or converges to a

specific constant. In both cases the proofs still hold with a modification of the constants C (Proposition 5 included).

The same thing (with signs inverted) holds for Proposition 3, provided that ν is decreasing w.r.t µ as x < −M . For

Case 2, Propositions 2 and 4 hold as before. For Proposition 3 we see that x < −M and 0 < µ < c, ν is only required

to be monotone w.r.t µ, indeed if it is decreasing σ(µ) > σ(c) = ξ, instead, if it is increasing σ(µ) > σ(0) = ξ, and

then

ExV (X1) ≤ C + (|φ|+ |θ|/ν)a1Ex[Y01Y0≥c] + |θ|/ν|g̃(x)|+ |γ||x|

≤ C2 + C1/νµ+ |θ|/ν|g̃(x)|+ |γ||x|

≤ C2 + C1/ξc+ |θ|/ξ|g̃(x)|+ |γ||x|

≤ C + |θ|/ξ(l22 + l23c
r/(2+δ)) + |γ||x|

which provide the same stationarity condition obtained in absence of the scaling sequence. For Case 3 we have

0 < µ < a, also ν is required to be monotone, if it is increasing σ(µ) > σ(0) = δ, by contrast, if it is decreasing

σ(µ) > σ(a) = δ, then

ExV (X1) ≤ C + (|φ|+ |θ|/δ)h(a− c) + |θ|/δ|g̃(x)|+ |γ||x| ≤ C + |θ|/νh(a− c) + |γ||x|

which provide again the same stationarity condition. Then, Lemma 3 holds also for the chain (3.16) in the main

paper.

As far as the Feller properties are concerned, it is easy to see that the weak Feller condition is satisfied since, in

general, σ2(µ) is continuous for µ (and then for x). Hence, Lemma 4 holds. Also, in order to prove Theorem 11, the

asymptotic strong Feller property remains to be verified. Define Ỹ0 = h(Y0) and µ̃ = ḡ(µ). We compute the scaling

sequence from the first order Taylor expansion: b(Ỹ0) ≈ b(µ̃) + b′(µ̃)(Ỹ0 − µ̃) so as to obtain V[b(Ỹ0)] ≈ b′(µ̃)2ν2

where here ν2 = V[h(Y0)]. The function b is selected as Lipschitz with constant not greater than 1. Then, by using

the variance stabilizing transformation (VST) we obtain a constant variance c2 w.r.t. the mean µ̃. After that, we

take the approximation h(Y0)−ḡ(µ)
ν ≈ b(Ỹ0)−b(µ̃)

c and show the asymptotic strong Feller property on this approximated

version. The remaining part of the proof is the same of Lemma 5. We omit the details. In general, the choice of

function b(·) depends on the nature of the process. For example, in the Poisson data case, we can select the VST

as b(Y0) =
√
Y0. For Negative Binomial data with known number of failure a the VST b(Y ∗0 ) =

√
a sinh−1(

√
Y0/a)

provides the same result. Instead, Dunsmuir and Scott (2015) suggested to set νt = 1 (no scaling) for Case 3 since

the term h(Yt−1)− ḡ(µt−1) is already bounded. Finally, as here we are in the case where ḡ(µt) = E[h(Yt)|Ft−1] the

existence of a reachable point does not require any modification of the proof for Lemma 6.

Hence, for the Markov chain (3.16) in the main paper, Corollary 1 holds.

Insight about conditions (H1)-(H2)

In this section, we verify conditions (H1)-(H2) introduced in Section 3.4.1 of the main paper, for particular cases

of interest, to show they hold for a large variety of models and are easily verifiable. Of course, the existence of

moments of Yt cannot be proved directly, as its unconditional distribution is unknown, even though they are quite

usual assumptions in the context of ML inference. We focus on the other expectations. For convenience in terms of

notation, in this paragraph we write gρ〈Y−∞:t〉 = Xt, even though the process gρ〈Y−∞:t〉 in (3.17) in the main paper

is not necessarily the same of that in (3.15).
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We start from the standard case in which the link g(·) is canonical; here the conditions on the derivative of f(·)
hold automatically, since f(Xt) = Xt, f

′(Xt) = 1 and f ′′(Xt) = 0, hence the respective expectations are finite.

The moment condition for the derivatives of A(·) can be easily proved by noting that, from the properties of the

exponential family, A′(Xt) ≡ g−1(Xt); in this case, the inverse of the link function is usually Lipschitz continuous.

Then, we can write g−1(Xt)− g−1(0) ≤ L|Xt| and

(log |g−1(Xt)|)+ = (log |g−1(Xt)− g−1(0) + g−1(0)|)+ ≤ log? |g−1(Xt)− g−1(0)|+ b

≤ log? (L|Xt|) + b ,

where b = log? |g−1(0)|, log?(x) = log(1 + x) and the second inequality holds for its sub-additivity. By taking the

expectation

E(log |A′(Xt)|)+ ≤ E (log? (L|Xt|)) + log? |g−1(0)| ≤ LE|Xt|+ b . (S-15)

So the expectation in (S-15) is finite because the expectation of Xt is finite when E|Yt| <∞, see the proof of (B-4)

in the Appendix. This proves (H1).

Assumption (H2) is required only in the context of asymptotic normality for QMLE. We remind that, if g is

canonical, then Qt = Xt is the canonical parameter, and by Corollary 6, we have A′(Xt) = µt = E(Yt|Ft−1) and

E[A′(Xt)
4] = E

[
E(Yt|Ft−1)4

]
≤ E

[
E(Y 4

t |Ft−1)
]

= E(Y 4
t ) <∞. Then, we also have E |A′′(Xt)| ≤ |L| <∞, as A′(·)

is Lipschitz, and this verify assumption (H2). However, there are cases where the canonical link function g is not

Lipschitz; for example g(·) = log(·). Here the proof is immediate: E(log |A′(Xt)|)+ = E(log | exp(Xt)|)+ = E|Xt| <
∞. Moreover E

[
A′(Xt)

4
]

= E
[
A′′(Xt)

4
]
≤ E(Y 4

t ) <∞.

The verification of conditions (H1)-(H2) for non-canonical link function g(·) clearly depends on its specific shape.

We make here some relevant examples. Suppose one wants to model the expectation µt linearly as in (3.8) of the main

paper, with a Poisson distribution coming from (3.1) of the main paper; this is done by setting f(Xt) = log(Xt) =

log(µt) and A(Xt) = Xt = µt > 0. Here, the expectations involving A(·) are finite, as A′(Xt) = 1 and A′′(Xt) = 0.

The expectations of the derivatives f ′(Xt)
4 = 1/X4

t ≤ 1/α4 and f ′′(Xt)
4 = 1/X8

t ≤ 1/α8 are bounded; in fact

µt > 0, the parameters (α, γ, φ, θ) > 0, than Xt = µt ≥ α, completing the proof.

Another common model used in the literature with non-canonical link function is (3.9) for the Negative Bi-

nomial (3.10) in the main paper; it is derived by (3.1) in the main paper when d(Yt) = log Γ(ν+Yt)
Γ(Yt+1)Γ(ν) , A(Xt) =

−ν log
(

ν
ν+µt

)
= ν log(ν + eXt) − ν log(ν) and f(Xt) = log

(
µt

ν+µt

)
= Xt − log(ν + eXt). We know that ν > 0,

hence E[A′(Xt)
4] = E[( νeXt

ν+eXt
)4] ≤ ν4 < ∞ and E[A′′(Xt)

4] = E[( ν2eXt

(ν+eXt )2
)4] ≤ exp(ν) < ∞. In the same fashion

f ′(Xt)
4 = ( ν

ν+eXt
)4 ≤ 1 and f ′′(Xt)

4 = ( νeXt

(ν+eXt )2
)4 ≤ 1, which posses finite expectations.

Proof of Theorem 14

Proof. The proof of the theorem is based on Douc et al. (Thr. 4.2, 2017), and requires to prove that all the

assumptions therein, (A1), (A4), (A5) and (A7), hold when the assumptions of Theorem 14 hold. First of all,

note that (A1) is satisfied for the stationarity of Yt and (A4) is assumed in Theorem 14. Moreover, (A5) follows

by µ = A′(x?). It remains to prove assumption (A7). Let g•〈Y−∞:t−1〉 : ρ 7→ gρ〈Y−∞:t−1〉 and g•〈Y1:t−1〉(x) :

ρ 7→ gρ〈Y1:t−1(x)〉. We assume that the function x 7→ q(x, y) is twice differentiable. For all twice differentiable

xt : P → R and all y ∈ R, define the score function χρ(xt(ρ), yt) = ∇ρxt(ρ)∂ log q(xt,yt)
∂xt

and the Hessian matrix

Kρ(xt(ρ), yt) = ∇2
ρxt(ρ)∂ log q(xt,yt)

∂xt
+∇ρxt(ρ)∇ρxt(ρ)′ ∂

2 log q(xt,yt)
∂x2
t

. In order to prove asymptotic normality for the

QMLE (3.19) in the main paper by following the line of Douc et al. (2017) the following assumptions are required

to hold true.

(A7): ∀y ∈ R, the function x 7→ q(x, y) is twice continuously differentiable. Moreover, there exists ε > 0 and a
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family of P-a.s. finite random variables gρ〈Y−∞:t〉, for (ρ, t) ∈ P×Z, such that gρ?〈Y−∞:0〉 is in the interior of S, the

function ρ 7→ gρ〈Y−∞:0〉 is, P-a.s., twice continuously differentiable on some ball B(ρ?, ε) and for all x ∈ S, almost

surely

(i) limt→∞ ‖χρ? (g•〈Y1:t−1〉(x), Yt)− χρ? (g•〈Y−∞:t−1〉, Yt)‖ = 0,where ‖·‖ is any norm on R4.

(ii) limt→∞ supρ∈B(ρ?,ε) ‖K
ρ (g•〈Y1:t−1〉(x), Yt)−Kρ (g•〈Y−∞:t−1〉, Yt)‖ = 0,where ‖·‖ denote here any norm on

4× 4 matrices with real entries.

(iii) E
[
‖χρ? (g•〈Y−∞:0〉, Y1)‖2

]
<∞ , E

[
supρ∈B(ρ?,ε) ‖K

ρ (g•〈Y−∞:0〉, Y1)‖
]
<∞.

Intuitively, (A7) implies that the score function and the information matrix of the data can be approximated by

the infinite past of the process. Besides, all these quantities are assumed to exist. We start from (A7)-(i). Clearly

limt→∞ ‖a− b‖ = 0 holds if limt→∞ |aj − bj | = 0 for all j. Put χρ(·, ·) =
[
χα(·, ·), χφ(·, ·), χγ(·, ·), χθ(·, ·)

]′
. We

compute the derivatives

χρ? (g•〈Y1:t−1〉(x), Yt) = [Ytf
′ [gρ?〈Y1:t−1〉(x)]−A′ [gρ?〈Y1:t−1〉(x)]]

∂gρ?〈Y1:t−1〉(x)

∂ρ?

where, given that rj = γ − θcj , by using the product rule, ∂1 = ∂gρ? 〈Y1:t−1〉(x)
∂γ?

. Then,

∂1 = α?

t−2∑
j=0

j−1∏
i=0

rt−1−i

j−1∑
i=0

1

rt−1−i
+ (φ? + θ?)

t−2∑
j=0

j−1∏
i=0

rt−1−ih(Y ∗t−1−j)

j−1∑
i=0

1

rt−1−i
+

t−2∏
j=0

rjx

t−2∑
j=0

1

rj

where we have made implicit r?j = γ? − θ?cj = rj to avoid excesses in the notation. The expressions for the other

derivatives are stored in the dedicated section below. An analogous result is found for χρ? (g•〈Y−∞:t−1〉, Yt). We

show the proof only for one derivative, it is easy to check that the others can be shown in a similar manner. Consider

χγ? (g•〈Y1:t−1〉(x), Yt)− χγ? (g•〈Y−∞:t−1〉, Yt)

= Ytf
′ [gρ?〈Y1:t−1〉(x)]

∂gρ?〈Y1:t−1〉(x)

∂γ?
−A′ [gρ?〈Y1:t−1〉(x)]

∂gρ?〈Y1:t−1〉(x)

∂γ?
+

−Ytf ′ [gρ?〈Y−∞:t−1〉]
∂gρ?〈Y−∞:t−1〉

∂γ?
+A′ [gρ?〈Y−∞:t−1〉]

∂gρ?〈Y−∞:t−1〉
∂γ?

and then

|χγ? (g•〈Y1:t−1〉(x), Yt)− χγ? (g•〈Y−∞:t−1〉, Yt)|

= |Yt|
∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?

∣∣∣∣ |f ′ [gρ?〈Y−∞:t−1〉]− f ′ [gρ?〈Y1:t−1〉(x)]|+

+|Yt| |f ′ [gρ?〈Y−∞:t−1〉]|
∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?
− ∂gρ?〈Y−∞:t−1〉

∂γ?

∣∣∣∣
+

∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?

∣∣∣∣ |A′ [gρ?〈Y−∞:t−1〉]−A′ [gρ?〈Y1:t−1〉(x)]|+ (S-16)

+ |A′ [gρ?〈Y−∞:t−1〉]|
∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?
− ∂gρ?〈Y−∞:t−1〉

∂γ?

∣∣∣∣ . (S-17)

Now let us verify that

∣∣∣∂gρ? 〈Y−∞:0〉
∂γ

∣∣∣ ≤ |α| ∞∑
j=0

r̃j
j−1∑
i=0

1

r−
+ |φ+ θ|

∞∑
j=0

r̃j
∣∣h(Y ∗−j)

∣∣ j−1∑
i=0

1

r−

= α̃

∞∑
j=0

r̃j

r−
j + δ̃

∞∑
j=0

r̃j

r−
j
∣∣h(Y ∗−j)

∣∣ =
∂ĝ〈Y−∞:0〉

∂γ
<∞ (S-18)
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which is finite for (H2). For the same argument∣∣∣∣∂gρ?〈Y1:t−1〉
∂γ

∣∣∣∣ ≤ ∂ĝ〈Y1:t−1〉
∂γ

<∞. (S-19)

Now the difference∣∣∣∂gρ? 〈Y1:t−1〉(x)
∂γ?

− ∂gρ? 〈Y−∞:t−1〉
∂γ?

∣∣∣ ≤ |α?| ∞∑
l=0

r̃t+l−1

r−
(t+ l − 1) +

+ |φ? + θ?|
∞∑
l=0

r̃t+l−1

r−
(t+ l − 1) |h(Y ∗l )|+ r̃t−1

r−
(t− 1) |x|

≤ r̃t−1

(
α̃

∞∑
l=0

r̃l

r−
l + δ̃

∞∑
l=0

r̃l

r−
l
∣∣h(Y ∗−l)

∣∣)+

r̃t−1(t− 1)

(
α̃

∞∑
l=0

r̃l

r−
+ δ̃

∞∑
l=0

r̃l

r−

∣∣h(Y ∗−l)
∣∣+
|x|
r−

)

= r̃t−1 ∂ĝ〈Y−∞:0〉
∂γ

+ r̃t−1(t− 1)

(
ĝ〈Y−∞:0〉

r−
+
|x|
r−

)
t→∞−−−→ 0

almost surely, so that (S-17) tends to 0 as t → ∞ according to Douc et al. (2013, Lem. 34), (H1) and equation

(S-18). An application of the mean value theorem allows to rewrite equation (S-16) as∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?

∣∣∣∣ |A′′(Ct−1)| |gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)| ,

which tends to 0 as t→∞ for the same reason in (B-6) in the appendix if the following expectation is finite

E

(
log

∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?

∣∣∣∣ |A′′(Ct−1)|
)

+

= E

(
log

∣∣∣∣∂gρ?〈Y1:t−1〉(x)

∂γ?

∣∣∣∣)
+

+ E (log |A′′(Ct−1)|)+ (S-20)

The first term of (S-20), E
(

log
∣∣∣∂gρ? 〈Y1:t−1〉(x)

∂γ?

∣∣∣)
+
≤ E

∣∣∣∂gρ? 〈Y1:t−1〉(x)
∂γ?

∣∣∣ <∞ is finite, since, for (H2), the expectation

of (S-19) is finite. The proof in the second term of (S-20) follows from the mean-value theorem. Denote M =

E (log |A′(gρ?〈Y−∞:t−1〉)|)+ + E (log |A′(gρ?〈Y1:t−1〉(x))|)+ + 1, which is finite for (H1). Consider

E (log |A′′(Ct−1)|)+ = E

(
log
|A′(gρ?〈Y−∞:t−1〉)−A′(gρ?〈Y1:t−1〉(x))|
|gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)|

)
+

(S-21)

≤ M + E (− log |gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)|)+

≤ M − E (log |gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)|)−

= M − 1

2
E (|log |gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)||) +

+
1

2
E (log |gρ?〈Y−∞:t−1〉 − gρ?〈Y1:t−1〉(x)|)

≤ M +
1

2
E |gρ?〈Y−∞:t−1〉|+

1

2
E |gρ?〈Y1:t−1〉(x)|

which is finite as the expectations of (B-4) and (B-5) in the appendix are for (H1). The same results of (S-16) and

(S-17) apply similarly for f ′(·), thus are omitted. Hence, (A7)-(i) is proved. We now move to (A7)-(ii). Consider

Kρ (g•〈Y1:t−1〉(x), Yt) = [Ytf
′ [gρ〈Y1:t−1〉(x)]−A′ [gρ〈Y1:t−1〉(x)]]

∂2gρ〈Y1:t−1〉(x)

∂ρ ∂ρ′
+

+
∂gρ〈Y1:t−1〉(x)

∂ρ

∂gρ〈Y1:t−1〉(x)

∂ρ′
[Ytf

′′ [gρ〈Y1:t−1〉(x)]−A′′ [gρ〈Y1:t−1〉(x)]] .
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We show the proof only for a single derivative, as the proof of the others is immediate.∣∣Kθ (g•〈Y1:t−1〉(x), Yt)−Kθ (g•〈Y−∞:t−1〉, Yt)
∣∣

≤
[
|Yt| |f ′ (gρ〈Y−∞:t−1〉)|+ |A′ (gρ〈Y−∞:t−1〉)|

] ∣∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2
− ∂2gρ〈Y−∞:t−1〉

∂θ2

∣∣∣∣ (S-22)

+

∣∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2

∣∣∣∣ |A′ [gρ〈Y−∞:t−1〉]−A′ [gρ〈Y1:t−1〉(x)]| (S-23)

+

∣∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2

∣∣∣∣ |Yt| |f ′ [gρ〈Y−∞:t−1〉]− f ′ [gρ〈Y1:t−1〉(x)]| (S-24)

+

(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

|A′′ [gρ〈Y−∞:t−1〉]−A′′ [gρ〈Y1:t−1〉(x)]| (S-25)

+

(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

|Yt| |f ′′ [gρ〈Y−∞:t−1〉]− f ′′ [gρ〈Y1:t−1〉(x)]| (S-26)

+

[
|Yt| |f ′′ (gρ〈Y−∞:t−1〉)|+ |A′′ (gρ〈Y−∞:t−1〉)|

] ∣∣∣∣∣
(
∂gρ〈Y1:t−1〉(x)

∂θ

)2

−
(
∂gρ〈Y−∞:t−1〉

∂θ

)2
∣∣∣∣∣ .

By the definition of second derivative it can be easily shown that∣∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2
− ∂2gρ〈Y−∞:t−1〉

∂θ2

∣∣∣∣ ≤ 2r̃t−1(t− 1)2

(
7
∂2ĝρ〈Y−∞:0〉

∂θ2
+
|x|
r2
−

)

which is finite as ∂2ĝρ〈Y−∞:0〉
∂θ2 = α̃

∑∞
l=0

r̃l

r2−
l2 +

(
α̃+ φ̃+ 1

)∑∞
l=0

r̃l

r2−
l2
∣∣h(Y ∗−l)

∣∣ has a finite expectation, according to

(H1). So that the first element (S-22) tends to 0 as t→∞ for (H1), by Douc et al. (2013, Lem. 34). The same holds

for the elements (S-23) and (S-24) since (S-20) is verified (the only difference here is that the expectation of the second

derivative is required to be finite but E
(

log
∣∣∣∂2gρ〈Y1:t−1〉(x)

∂θ2

∣∣∣)
+
≤ E

∣∣∣∂2gρ〈Y1:t−1〉(x)
∂θ2

∣∣∣ <∞ always for (H1)). Equations

(S-25) and (S-26) also tend to 0 as t → ∞ because of Douc et al. (2013, Lem. 34) and E (log |A′′′(Ct−1)|)+ < ∞,

E (log |f ′′′(Ct−1)|)+ <∞; the proof is analogue to (S-21). Finally, it follows that also the last element tends to 0 as

t→∞ for (H1), by Douc et al. (2013, Lem. 34), because it can be rewritten as∣∣∣∣(∂gρ〈Y1:t−1〉(x)
∂θ

)2

−
(
∂gρ〈Y−∞:t−1〉

∂θ

)2
∣∣∣∣ ≤ ∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ

∣∣∣∣ ∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ
− ∂gρ〈Y−∞:t−1〉

∂θ

∣∣∣∣
+

∣∣∣∣∂gρ〈Y−∞:t−1〉
∂θ

∣∣∣∣ ∣∣∣∣∂gρ〈Y1:t−1〉(x)

∂θ
− ∂gρ〈Y−∞:t−1〉

∂θ

∣∣∣∣
and this completes the proof for (A7)-(ii). It remains to show (A7)-(iii):

‖χρ? (g•〈Y−∞:0〉, Y1)‖2 ≤
(
Y 2

1 f
′ [gρ?〈Y−∞:0〉]2 +A′ [gρ?〈Y−∞:0〉]2

) 4∑
i=1

(
∂ĝ〈Y−∞:0〉

∂ρi

)2

where the inequality is obtained by substituting the corresponding equations for the derivatives,

∑4
i=1

(
∂ĝ〈Y−∞:0〉

∂ρi

)2

=
1

(1− r̃)2
+ 2

∞∑
j=0

∞∑
i=0

r̃j+ih(Y ∗−j)h(Y ∗−i) + 2
α̃

r2
−

∞∑
j=0

∞∑
i=0

r̃j+i(ji)h(Y ∗−i) +

+2
δ̃

r2
−

∞∑
j=0

∞∑
i=0

r̃j+ih(Y ∗−j)h(Y ∗−i) + 4
α̃δ̃

r2
−

∞∑
j=0

∞∑
i=0

r̃j+i(ji)h(Y ∗−i) +

+2
α̃

r2
−

∞∑
j=0

∞∑
i=0

r̃j+ijh(Y ∗−i) + 2
δ̃

r2
−

∞∑
j=0

∞∑
i=0

r̃j+ijh(Y ∗−j)h(Y ∗−i) ,
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where, for the Hölder’s inequality and (H2),

E
[
Y 2

1 f
′ [gρ?〈Y−∞:0〉]2 h(Y ∗−j)h(Y ∗−i)

]
≤
√

E [Y 4
1 ]

√
E
[
f ′ [gρ?〈Y−∞:0〉]4

]√
E
[
h(Y ∗−j)

2h(Y ∗−i)
2
]
,

which is finite. The same is true for E
[
A′ [gρ?〈Y−∞:0〉]2 h(Y ∗−j)h(Y ∗−i)

]
. This proves that the expectation of the score

squared is finite by (H2). Analogously, the Hessian

‖Kρ (g•〈Y−∞:0〉, Y1)‖ ≤ (|Y1| |f ′ [gρ〈Y−∞:0〉]|+ |A′ [gρ〈Y−∞:0〉]|)
4∑
j=1

4∑
i=1

∣∣∣∣∂2ĝ〈Y−∞:0〉
∂ρjρi

∣∣∣∣
≤ (|Y1| |f ′′ [gρ〈Y−∞:0〉]|+

|A′′ [gρ〈Y−∞:0〉]|)
4∑
j=1

4∑
i=1

∣∣∣∣∂ĝ〈Y−∞:0〉
∂ρj

∂ĝ〈Y−∞:0〉
∂ρj

∣∣∣∣
provides a finite expectation for Hölder’s inequality and (H2), completing the proof.

Simulation studies

Finite sample results

In this section, the numerical results concerning the finite sample properties discussed in Section 3.4.2 are presented.

Table S-1 summarises the estimation results for the GLARMA model when the data come from a Bernoulli distri-

bution. Table S-2 and S-3 show the outcome of simulations for GARMA and log-AR models performed on data

generated from Geometric distribution in (3.10), but with Poisson distribution fitted instead (QMLE). All the re-

sults are based on s = 1000 replications, with different configuration of the parameters and increasing sample size

n = (200, 500, 1000, 2000). The first row reports the true parameter values; the following two rows show the mean of

the estimated parameters, obtained by averaging out the results from all simulations along with the corresponding

standard error. The subsequent two rows present the lower and upper limit of the confidence interval for the estimated

mean. Finally, the last two rows correspond to the bias of the mean and the p-value of the Kolmogorov-Smirnov

(KS) test for normality on the standardized MLE/QLME obtained from the simulations. In Table S-1 the estimates

tend to be closer to the true value of the parameters as the sample size increases, which confirms the consistency of

the estimators. Consequently, the bias is also reduced. Moreover, the estimates are significant at the usual levels

and the true value of the parameters falls into the confidence intervals. The KS tests do not reject the normality of

the estimators even with a small sample size. The same comments hold true for all the combinations of parameters

employed. Similar results are obtained in Table S-2 and S-3, where the QMLE is fitted. The GARMA model seems

to be more accurate on the approximation of the true values but some problems with the KS test are found when a

non-stationary region for the parameters ρ = (0.5, 0.4, 1.2) is investigated. Instead, the log-AR model could not be

estimated in non-stationary regions of the parameters.
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Table S-1: Simulations for GLARMA(1,1); Yt|Ft−1 ∼ Be(pt), s = 1000.

n α γ θ α γ θ α γ θ

True 0.500 -0.400 0.800 0.500 0.400 0.200 0.500 0.400 1.200

200

Est. 0.522 -0.441 0.795 0.721 0.147 0.176 0.558 0.341 1.193

Std.Dev 0.206 0.372 0.315 1.187 1.414 0.342 0.281 0.265 0.347

Lower 0.509 -0.464 0.776 0.647 0.059 0.154 0.541 0.324 1.172

Upper 0.535 -0.418 0.815 0.794 0.234 0.197 0.576 0.357 1.215

Bias 0.022 -0.041 -0.005 0.221 -0.253 -0.024 0.058 -0.059 -0.007

KS 0.218 0.638 0.577 0.937 0.994 0.791 0.293 0.927 0.318

500

Est. 0.509 -0.432 0.791 0.604 0.274 0.184 0.517 0.381 1.189

Std.Dev 0.124 0.219 0.187 0.762 0.911 0.207 0.168 0.171 0.219

Lower 0.501 -0.446 0.779 0.557 0.218 0.171 0.506 0.370 1.176

Upper 0.517 -0.418 0.803 0.651 0.331 0.197 0.527 0.391 1.203

Bias 0.009 -0.032 -0.009 0.104 -0.126 -0.016 0.017 -0.019 -0.011

KS 0.387 0.965 0.931 0.555 0.616 0.780 0.320 0.437 0.465

1000

Est. 0.502 -0.407 0.796 0.592 0.292 0.193 0.514 0.387 1.198

Std.Dev 0.086 0.154 0.141 0.565 0.673 0.151 0.120 0.122 0.147

Lower 0.496 -0.417 0.788 0.557 0.250 0.184 0.506 0.379 1.189

Upper 0.507 -0.398 0.805 0.627 0.333 0.203 0.521 0.394 1.207

Bias 0.002 -0.007 -0.004 0.092 -0.108 -0.007 0.014 -0.013 -0.002

KS 0.361 0.265 0.673 0.866 0.732 0.957 0.714 0.850 0.784
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Table S-2: Simulations QMLE of Poisson GARMA(1,1);Yt|Ft−1 ∼ Geom(pt), s = 1000.

n α φ θ α φ θ α φ θ

True 0.500 -0.400 0.800 0.500 0.400 0.200 0.500 0.400 1.200

200

Est. 0.485 -0.412 0.810 0.483 0.375 0.217 0.515 0.381 1.167

Std.Dev 0.110 0.153 0.177 0.106 0.117 0.144 0.253 0.068 0.172

Lower 0.478 -0.421 0.799 0.476 0.367 0.209 0.499 0.377 1.156

Upper 0.492 -0.402 0.821 0.489 0.382 0.226 0.530 0.386 1.177

Bias -0.015 -0.012 0.010 -0.017 -0.025 0.017 0.015 -0.019 -0.033

KS 0.339 0.576 0.817 0.197 0.910 0.669 0.001 0.732 0.455

500

Est. 0.494 -0.406 0.806 0.492 0.392 0.204 0.497 0.392 1.192

Std.Dev 0.065 0.102 0.115 0.067 0.077 0.091 0.200 0.051 0.127

Lower 0.490 -0.412 0.799 0.488 0.387 0.199 0.484 0.389 1.184

Upper 0.498 -0.400 0.813 0.496 0.396 0.210 0.509 0.395 1.199

Bias -0.006 -0.006 0.006 -0.008 -0.008 0.004 -0.003 -0.008 -0.008

KS 0.418 0.566 0.640 0.851 0.963 0.285 0.000 0.375 0.015

1000

Est. 0.494 -0.401 0.800 0.493 0.395 0.203 0.504 0.395 1.187

Std.Dev 0.048 0.071 0.080 0.046 0.054 0.066 0.169 0.041 0.108

Lower 0.491 -0.405 0.795 0.490 0.392 0.199 0.493 0.392 1.180

Upper 0.497 -0.396 0.805 0.496 0.398 0.207 0.514 0.397 1.194

Bias -0.006 -0.001 -0.000 -0.007 -0.005 0.003 0.004 -0.005 -0.013

KS 0.272 0.370 0.549 0.984 0.936 0.988 0.000 0.198 0.050
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Table S-3: Simulations QMLE of Poisson log-AR(1); Yt|Ft−1 ∼ Geom(pt), s = 1000.

n α φ γ α φ γ

True 0.500 -0.400 0.800 0.500 0.400 0.200

200

Est. 0.451 -0.411 0.858 0.553 0.385 0.155

Std.Dev 0.219 0.130 0.266 0.274 0.110 0.237

Lower 0.437 -0.419 0.841 0.536 0.379 0.141

Upper 0.464 -0.402 0.874 0.571 0.392 0.170

Bias -0.049 -0.011 0.058 0.053 -0.015 -0.045

KS 0.198 0.981 0.060 0.907 0.399 0.673

500

Est. 0.482 -0.401 0.820 0.528 0.395 0.177

Std.Dev 0.133 0.077 0.165 0.176 0.065 0.144

Lower 0.474 -0.405 0.810 0.517 0.391 0.168

Upper 0.490 -0.396 0.830 0.539 0.399 0.186

Bias -0.018 -0.001 0.020 0.028 -0.005 -0.023

KS 0.562 0.898 0.405 0.845 0.957 0.780

1000

Est. 0.488 -0.400 0.813 0.517 0.397 0.185

Std.Dev 0.097 0.054 0.120 0.132 0.047 0.107

Lower 0.482 -0.404 0.806 0.509 0.394 0.178

Upper 0.494 -0.397 0.820 0.526 0.400 0.192

Bias -0.012 -0.000 0.013 0.017 -0.003 -0.015

KS 0.656 0.517 0.772 0.567 0.551 0.942

Model selection

In this section we investigate the model selection on a simulation study. We simulate the first order log-AR, GARMA

and GLARMA models, as in Section 3.5.2 of the main paper, for Yt|Ft−1 distributed according to a Pois(µt), with

(α, φ, θ, γ) = (0.2, 0.4, 0.2, 0.3), number of repetitions S = 1000 and sample sizes n = (250, 500, 1000). The same is

done by generating data from the first order BARMA, GARMA and GLARMA models, with Bin(5, pt), pt = µt/a

and g(µt) = log(µt)/ log(a− µt). For the GARMA model, g(y?t ) = log(y?t )/ log(1− y?t ) , y?t = min(max(yt, c), 5− c)
and c = 0.1, Whereas, in the GLARMA model, st =

√
5pt(1− pt). For each distribution, we generate S times a

vector of data with length n from one model, then the data generated are employed in the estimation of all the three

models. The Akaike and the Bayesian information criteria are computed for each model. Finally, the frequency of

correct selection over the S repetitions is established, counting the percent number of times the information criteria

selected the model truly employed to generate the data. The same procedure is replicated for all the models. The

results for the AIC are summarized in Table S-4 (results for the BIC are identical).

For the Poisson, the results are excellent in the GARMA and the GLARMA models. The log-AR seems to show

a slower convergence towards the right model, but it reaches a satisfactory result with increasing n. The same holds,

in the case of Binomial data, for the BARMA and GLARMA models. Finally, the GARMA model works very well

also for the Binomial distribution.
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Table S-4: Frequency (%) of correct selection for AIC.

Binomial Poisson

n BARMA GARMA GLARMA log-AR GARMA GLARMA

200 62.3 97.2 60.0 53.6 99.2 95.1

500 74.4 99.7 58.0 70.5 99.9 99.4

1000 83.8 100 81.0 85.6 100 100

Applications

This section includes additional results on the applications discussed in Section 3.5. In particular, we include two

plots related to Probability Integral Transform (PIT) in (3.23) of the main paper and the tables on the predictive

performance for both the hurricane and Escherichia coli data analysis.
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Figure S-1: PIT’s for the number of storms. Top: Poisson. Bottom: NB.
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Figure S-2: PIT’s for Escheriacoli counts. Top: Poisson. Bottom: NB.

Table S-5: Predictive performance for named storms.

Models Distribution logs qs sphs rps

log-AR
Poisson 2.7257 -0.0775 -0.2808 2.0320

NB 2.8018 -0.0727 -0.2723 2.1235

GARMA
Poisson 2.7293 -0.0774 -0.2807 2.0342

NB 2.8059 -0.0724 -0.2718 2.1285

GLARMA
Poisson 2.7247 -0.0768 -0.2796 2.0384

NB 2.7927 -0.0735 -0.2736 2.1073

Table S-6: Predictive performance for Escherichia coli infection.

Models Distribution logs qs sphs rps

log-AR
Poisson 3.5662 -0.0408 -0.2073 3.8480

NB 3.3245 -0.0442 -0.2110 3.7960

GARMA
Poisson 3.5759 -0.0406 -0.2071 3.8591

NB 3.3286 -0.0440 -0.2107 3.8105

GLARMA
Poisson 3.5759 -0.0420 -0.2097 3.7347

NB 3.3286 -0.0449 -0.2127 3.6801
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Abstract

We consider network autoregressive models for count data with a non-random time-varying neighborhood structure.

The main methodological contribution is the development of conditions that guarantee stability and valid statistical

inference. We consider both cases of fixed and increasing network dimension and we show that quasi-likelihood

inference provides consistent and asymptotically normally distributed estimators. The work is complemented by

simulation results and a data example.

Keywords: generalized linear models, increasing dimension, link function, multivariate count time series, quasi-

likelihood.

4.1 Introduction

The vast availability of integer-valued data, emerging from several real world applications, has motivated the growth

of a large literature for modelling and inference about count time series processes. For comprehensive surveys, see

Kedem and Fokianos (2002), Davis et al. (2016) and Weiß (2018). Early contributions to the development of count

time series models were the Integer Autoregressive models (INAR) Al-Osh and Alzaid (1987); Alzaid and Al-Osh

(1990) and observation (Zeger and Liang, 1986) or parameter driven models (Zeger, 1988). The latter classification,

due to Cox (1981), will be particular useful as we will be developing theory for Poisson observation-driven models.

In this contribution, we appeal to the generalized linear model (GLM) framework, see McCullagh and Nelder (1989),

as it provides a natural extension of continuous-valued time series to integer-valued processes. The GLM framework

accommodates likelihood inference and supplies a toolbox whereby testing and diagnostics can be also advanced.

Some examples of observation-driven models for count time series include the works by Davis et al. (2003), Heinen

(2003), Fokianos and Kedem (2004) and Ferland et al. (2006), among others. More recent work includes Fokianos

et al. (2009) and Fokianos and Tjøstheim (2011) who develop properties and estimation for a a class of linear and log-

linear count time series models. Further related contributions have been appeared over the last years; see Christou
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and Fokianos (2014) (for quasi-likelihood inference of negative binomial processes), Ahmad and Francq (2016) (for

quasi-likelihood inference based on suitable moment assumptions) and Douc et al. (2013), Davis and Liu (2016), Cui

and Zheng (2017) and Douc et al. (2017), among others, for further generalizations of observation-driven models.

Theoretical properties of such models have been fully investigated using various techniques; Fokianos et al. (2009)

developed initially a perturbation approach, Neumann (2011) employed the notion of β-mixing, Doukhan et al.

(2012) (weak dependence approach), Woodard et al. (2011) and Douc et al. (2013) (Markov chain theory without

irreducibility assumptions) and Wang et al. (2014) (using e-chains theory; see Meyn and Tweedie (1993)).

Univariate count time series models have been developed and studied in detail, as the previous indicative list of

references shows. However, multivariate models, which are necessarily required to be used for network data, are less

developed. Studies of multivariate INAR models include those of Latour (1997), Pedeli and Karlis (2011, 2013a,b).

Theory and inference for multivariate count time series models is a research topic which is receiving increasing

attention. In particular, observation-driven models and their properties are discussed by Heinen and Rengifo (2007),

Liu (2012), Andreassen (2013), Ahmad (2016) and Lee et al. (2018). More recently, Fokianos et al. (2020) introduced

a multivariate extension of the linear and log-linear Poisson autoregression, as advanced by Fokianos et al. (2009) and

Fokianos and Tjøstheim (2011), by employing a copula-based construction for the joint distribution of the counts.

These authors employ Poisson processes properties to introduce joint dependence of counts over time. In doing so,

they avoid technical difficulties associated with the non-uniqueness of copula for discrete distributions; Genest and

Nešlehová (2007). They propose a plausible data generating process which keeps intact, marginally, Poisson processes

properties. Further details are given by the review of Fokianos (2021).

The aim of this contribution is to link multivariate observation-driven count time series models with time-

varying network data. Such data is increasingly available in many scientific areas (social networks, epidemics, etc.).

Measuring the impact of a network structure to a multivariate time series process has attracted considerable attention

over the last years; Zhu et al. (2017) for the development of Network Autoregressive models (NAR). These authors

have introduced autoregressive models for continuous network data and established associated least squares inference

under two asymptotic regimes (a) with increasing time sample size T →∞ and fixed network dimension N and (b)

with both N,T increasing, i.e. min {N,T} → ∞. Significant extension of this work to network quantile autoregressive

models has been recently reported by Zhu et al. (2019). Some other extensions of the NAR model include the grouped

least squares estimation (Zhu and Pan, 2020) and a network version of the GARCH model, see Zhou et al. (2020)

for the case of T → ∞ and fixed network dimension N . Related work was also developed by Knight et al. (2020)

who specified a Generalized Network Autoregressive model (GNAR) for continuous random variables, which takes

into account different layers of relationships within neighbours of the network. Moreover, the same authors provide

an R software for fitting such models. Remark 4 shows that the GNAR model falls in the framework outlined in the

present paper.

Following the discussion of Zhu et al. (2017, p. 1116), discrete responses are commonly encountered in real

applications and are strongly connected to network data. For example, several data of interest in social network

analysis correspond to integer-valued responses. The extension of the NAR model to multivariate count time series

is an important theoretical and methodological contribution which is not covered by the existing literature, to

the best of our knowledge. The main goal of this work is to fill this gap by specifying linear and log-linear Poisson

network autoregressions (PNAR) for count processes and by establishing the two related types of asymptotic inference

discussed above. Moreover, the development of all network time series models discussed so far relies strongly on the

i.i.d. assumption of the innovations term. Such a condition might not be realistic in many applications. We overcome

this limitation by employing the notion of Lp Near epoch dependence (NED), see Andrews (1988), Pötscher and

Prucha (1997), and the related concept of α-mixing (Rosenblatt, 1956), (Doukhan, 1994). These notions allow

relaxation of the independence assumption as they provide some guarantee of asymptotic independence over time.

An elaborate and flexible dependence structure among variables, over time and over the nodes composing the network,
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is available for all models we consider due to the definition of a full covariance matrix, where the dependence among

variables is captured by the copula construction introduced in Fokianos et al. (2020).

For the continuous-valued case, Zhu et al. (2017) employed a simple ordinary least square (OLS) estimation

combined with specific properties imposed on the adjacency matrix for the estimation of unknown parameters.

However, this method is not applicable to general time series models. In our case, estimation is carried out by using

quasi-likelihood methods; see Heyde (1997), for example. When the network dimension N is fixed and the inference

with T →∞ is performed, the standard results already available for Quasi Maximum Likelihood Estimation (QMLE)

of Poisson stationary time series, as presented in Fokianos et al. (2009), Fokianos and Tjøstheim (2011) and Fokianos

et al. (2020), among others, are also established for the PNAR(p) model. However, the asymptotic properties of the

estimators rely on the convergence of sample means to the related expectations due to the ergodicity of a stationary

random process {Yt : t ∈ Z} (or a perturbed version of it). The stationarity of an N -dimensional time series, with

N →∞, is still an open problem and it is not clear how it can be achieved. As a consequence, all the results involved

by the ergodicity of the time series are unavailable in the increasing dimension case. In the present contribution, this

problem is overcome by providing an alternative proof, based on the laws of large numbers for Lp-NED processes of

Andrews (1988). Our method requires only the stationarity of the process {Yt : t ∈ Z}.
The paper is organized as follows: Section 4.2 discusses the PNAR(p) model specification for the linear and the

log-linear case, with lag order p, and the related stability properties. Moreover, a discussion about the empirical

structure of the models is provided for the linear first order model (p = 1). In Section 4.3, the quasi-likelihood

inference is established, showing consistency and asymptotic normality of the quasi maximum likelihood estimator

(QMLE) for the two types of asymptotics T → ∞ and min {N,T} → ∞. Section 4.4 discusses the results of a

simulation study and an application on real data. The paper concludes with an Appendix containing all the proofs of

the main results, the specification of the first two moments for the linear PNAR model, and some further discussion

about empirical aspects of the log-linear PNAR(1) model as well as the simulation results.

Notation: We denote |x|r = (
∑p
j=1 |xj |

r
)1/r the lr-norm of a p-dimensional vector x. If r = ∞, |x|∞ =

max1≤j≤p |xj |. Let ‖X‖r = (
∑p
j=1 E(|Xj |r))1/r the Lr-norm for a random vector X. For a q × p matrix A =

(aij), i = 1, . . . , q, j = 1, . . . , p, denotes the generalized matrix norm |||A|||r = max|x|r=1 |Ax|r. If r = 1, then

|||A|||1 = max1≤j≤p
∑q
i=1 |aij |. If r = 2, |||A|||2 = ρ1/2(ATA), where ρ(·) is the spectral radius. If r = ∞,

|||A|||∞ = max1≤i≤q
∑p
j=1 |aij |. If q = p, then these norms are matrix norms.

4.2 Models

We consider a network with N nodes (network size) and index i = 1, . . . N . The structure of the network is completely

described by the adjacency matrix A = (aij) ∈ RN×N where aij = 1 if there is a directed edge from i to j, i → j

(e.g. user i follows j on Twitter), and aij = 0 otherwise. However, undirected graphs are allowed (i ↔ j). The

structure of the network is assumed nonrandom. Self-relationships are not allowed aii = 0 for any i = 1, . . . , N ,

this is a typical assumption, and it is reasonable for various real situations, e.g. social media. For details about the

definition of social networks see Wasserman et al. (1994), Kolaczyk and Csárdi (2014). Let us define a certain count

variable Yi,t ∈ R for the node i at time t. We want to assess the effect of the network structure on the count variable

{Yi,t} for i = 1, . . . , N over time t = 1, . . . , T .

In this section, we study the properties of linear and log-linear models. We initiate this study by considering a sim-

ple, yet illuminating, case of a linear model of order one and then we consider the more general case of p’th order model.

Finally, we discuss log-linear models. In what follows, we denote by {Yt = (Yit, i = 1, 2 . . . N, t = 0, 1, 2 . . . , T )} an

N -dimensional vector of count time series with {λt = (λit, i = 1, 2 . . . N, t = 1, 2 . . . , T )} be the corresponding N -

dimensional intensity process vector. Define by Ft = σ(Ys : s ≤ t). Based on the specification of the model, we
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assume that λt = E(Yt|Ft−1).

4.2.1 Linear PNAR(1) model

A linear count network model of order 1, is given by

Yit|Ft−1 ∼ Poisson(λit), λi,t = β0 + β1n
−1
i

N∑
j=1

aijYjt−1 + β2Yit−1 , (4.1)

where ni =
∑
j 6=i aij is the out-degree, i.e the total number of nodes which i has an edge with. From the left hand

side equation of (4.1), we observe that the process Yit is assumed to be marginally Poisson. We call (4.1) linear

Poisson network autoregression of order 1, abbreviated by PNAR(1).

The development of a multivariate count time series model would lead to the specification of a joint distribution,

so that the standard likelihood inference and testing procedures can be performed accordingly. Although several

alternatives have been proposed in the literature, see the review in Fokianos (2021, Sec. 2), the choice of a suitable

multivariate version of the Poisson probability mass function (p.m.f) is far from obvious. In fact, a multivariate

Poisson-type p.m.f has a complicated closed form and the associated likelihood inference is theoretically cumbersome

and numerically challenging. Furthermore, in many cases, the available multivariate Poisson-type p.m.f. implicitly

implies restricted models, which are of limited use in applications (e.g. covariances always positive, constant pairwise

correlations). For these reasons, in the present paper the joint distribution of the vector {Yt} is constructed by

following the approach of Fokianos et al. (2020, p. 474), imposing a copula structure on waiting times of a Poisson

process. More precisely,

1. Let Ul = (U1,l, . . . , UN,l), for l = 1, . . . ,K a sample from a N -dimensional copula C(u1, . . . , uN ), where Ui,l

follows a Uniform(0,1) distribution, for i = 1, . . . , N .

2. The transformation Xi,l = − logUi,l/λi,0 is exponential with parameter λi,0, for i = 1, . . . , N .

3. The process Yi,0 = max1≤k≤K

{∑k
l=1Xi,l ≤ 1

}
is Poisson with parameter λ0, for i = 1, . . . , N . So, Y0 =

(Y1,0, . . . , YN,0) is a set of marginal Poisson processes with mean λ0.

4. By using the model (4.1), λ1 is obtained.

5. Return back to step 1 to obtain Y1, and so on.

The described data generating process ensures all the marginal distributions of the variables Yit to be univariate

Poisson, as described in (4.1), while an arbitrary dependence among them is introduced in a flexible and general way.

For a comprehensive discussion on the choice of a multivariate count distribution and the comparison between the

alternatives proposed, the interested reader can refer to Fokianos (2021).

Model (4.1) postulates that, for every single node i, the marginal conditional mean of the process is regressed on

the past count of the variable itself for i and the average count of the other nodes j 6= i which have a connection with

i. This model assumes that only the nodes which are directly followed by the focal node i possibly have an impact

on the mean process of counts. It is a reasonable assumption in many applications; for example, in a social network

the activity of node k, which satisfies aik = 0, does not affect node i. The parameter β1 is called network effect, as

it measures the average impact of node i’s connections n−1
i

∑N
j=1 aijYjt−1. The coefficient β2 is called momentum

effect because it provides a weight for the impact of past count Yit−1. This interpretation is in line with the Gaussian

network vector autoregression (NAR) introduced by Zhu et al. (2017) for continuous variables.

For simplicity, we rewrite model (4.1) in a vector form, as in Fokianos et al. (2020),

Yt = Nt(λt), λt = β0 + GYt−1 , (4.2)
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where {Nt} is a sequence of independent N -variate copula-Poisson process, which counts the number of events in

[0, λ1,t]×· · ·×[0, λ1,t]. We also define β0 = β01N ∈ RN with 1 = (1, 1, . . . , 1)T ∈ RN and the matrix G = β1W+β2IN

where W = diag
{
n−1

1 , . . . , n−1
N

}
A is the row-normalized adjacency matrix, A = (aij), so wi = (aij/ni, j =

1, . . . , N)T ∈ RN is the i-th row vector of the matrix W, and IN is the identity matrix N ×N . Note that the matrix

W is a (row) stochastic matrix, as |||W|||∞ = 1 (Seber, 2008, Def. 9.16).

To gain intuition for model (4.1), we simulate a network from the stochastic block model (Wang and Wong,

1987); see Figure 4.1. Moments of the linear model (4.1) exist and have a closed form expression; see (C-2). The

mean vector of the process has elements E(Yit) which vary between 0.333 to 0.40, for i = 1, . . . , N whereas the

diagonal elements of Var(Yt) take values between 0.364 and 0.678. We take this simulated model as a baseline for

comparisons and its correlation structure is shown in the upper-left plot of Figure 4.1. The top-right panel displays

the same information but for the case of increasing activity in the network. The bottom panel of the same figure

shows the same information as the upper panel but with a more sparse network, i.e. K = 10. Increasing the number

of relationships among nodes of the network boosts the correlation among the count processes. A more sparse

structure of the network does not appear to alter the correlation properties of the process though.

Figure 4.2 shows a substantial increase in the correlation values which is due to the choice of the copula parameter.

Interestingly, the intense activity of the network increases the correlation values of the count process. This aspect

may be expected in real applications. For the Clayton copula (see lower plots of the same figure) we observe the

same phenomenon but the values of the correlation matrix are lower when compare to those of the Gaussian copula.

We did not observe any substantial changes for the marginal mean and variances.

Figure 4.3 shows the impact of increasing network and momentum effects. We observe that the network effect

is prevalent, as it can be seen from the top-right panel which also shows the block network structure. Significant

inflation for the correlation can be also noticed when increasing the momentum effect (bottom-left panel). When

increasing the network effect the marginal means vary between 0.333 to 1 and have large variability within the nodes;

this is a direct consequence of the block network structure. When increasing the momentum effect, the marginal

means take values from 0.5 to 0.667. When both effects grow, the mean values increase and are between 0.5 and 2.
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Figure 4.1: Correlation matrix of model (4.1). Top-left: Data are generated by employing a stochastic block model

with K = 5 and an adjacency matrix A with elements generated by P(aij = 1) = 0.3N−0.3, if i and j belong to the

same block, and P(aij = 1) = 0.3N−1, otherwise. In addition, we employ a Gaussian copula with parameter ρ = 0.5,

(β0, β1, β2) = (0.2, 0.1, 0.4)T , T = 2000 and N = 20. Top-right plot: Data are generated by employing a stochastic

block model with K = 5 and an adjacency matrix A with elements generated by P(aij = 1) = 0.7N−0.0003 if i and

j belong to the same block, and P(aij = 1) = 0.6N−0.3 otherwise. Same values for β’s, T , N and choice of copula.

Bottom-left: The same graph, as in the upper-left side but with K = 10. Bottom-right: The same graph, as in

upper-right side but with K = 10.
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Figure 4.2: Correlation matrix of model (4.1). Top: Data have been generated as in top-left of Figure 4.1 (left),

with copula correlation parameter ρ = 0.9 (middle) and as in the top-right of Figure 4.1 but with copula parameter

ρ = 0.9 (right). Bottom: same information as the top plot but data are generated by using a Clayton copula.
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Figure 4.3: Correlation matrix of model (4.1). Data have been generated as in top-left of Figure 4.1 (top-left),

higher network effect β1 = 0.4 (top-right), higher momentum effect β2 = 0.6 (lower-left) and higher network and

momentum effect β1 = 0.3, β2 = 0.6 (lower-right).

4.2.2 Linear PNAR(p) model

More generally, we introduce and study an extension of model (4.1) by allowing Yit to depend on the last p lagged

values. We call this the linear Poisson NAR(p) model and its defined analogously to (4.1) but with

λi,t = β0 +

p∑
h=1

β1h

n−1
i

N∑
j=1

aijYjt−h

+

p∑
h=1

β2hYit−h , (4.3)

where β0, β1h, β2h ≥ 0 for all h = 1 . . . , p. If p = 1, β11 = β1, β22 = β2 to obtain (4.1). The joint distribution of the

vector Yt is defined by means of the copula construction discussed in Sec. 4.2.1. Without loss of generality, we can

set coefficients equal to zero if the parameter order is different in both terms of (4.3). Its is easy to see that (4.3)

can be rewritten as

Yt = Nt(λt), λt = β0 +

p∑
h=1

GhYt−h , (4.4)

where Gh = β1hW + β2hIN for h = 1, . . . , p by recalling that W = diag
{
n−1

1 , . . . , n−1
N

}
A. We have the following

result which gives verifiable conditions equivalent to the conditions of Zhu et al. (2017, Thm.1) for continuous values

network autoregression.

Proposition 6. Consider model (4.3) (or equivalently (4.4)). Suppose that
∑p
h=1(β1h+β2h) < 1. Then the process

{Yt, t ∈ Z} is stationary and ergodic with E |Yt|r1 <∞ for any r > 1 and fixed N .

Proof. The result follows from Debaly and Truquet (2019, Thm. 4), provided that ρ(
∑p
h=1 Gh) < 1. But ρ(

∑p
h=1 Gh) ≤

|||
∑p
h=1 Gh|||∞ ≤

∑p
h=1 |||Gh|||∞ ≤

∑p
h=1(β1h|||W|||∞+ β2h) =

∑p
h=1(β1h + β2h), since |||W|||∞ = 1 by construction.

Therefore we conclude that {Yt, t ∈ Z} is a stationary and ergodic process with E |Yt|r1 <∞ for any r > 1.

Some further results about the first and second order properties of model (4.3) are given in the Appendix. Similar

results have been recently reported by Fokianos et al. (2020) when there is a feedback in the model. Following these

authors, we obtain the same results of Proposition 6 but under stronger conditions. For example, when p = 1, we

will need to assume either |||G|||1 or |||G|||2 < 1 to obtain identical results. The condition
∑p
h=1(β1h + β2h) < 1 is

more natural and complements the existing work on continuous valued models Zhu et al. (2017). In addition, note
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that the copula construction is not used in the proof of Prop. 6 (see also Prop. 8 for log-linear model). However, it is

used in Section 4.4.1 where we report a simulation study. It is interesting though this setup is similar to multivariate

ARMA models, where the stability conditions are independent of the correlations in the innovation.

Proposition 6 states that all the moments exist finite, for fixed N . A similar results is also proved in Fokianos

et al. (2020, Prop. 3.2). The following results state that even when N is increasing all the moments exist and are

uniformly bounded. For clarity in the notation, we present the result for the PNAR(1) model, but it can be easily

extended to hold true for p > 1.

Proposition 7. Consider the model (4.1) and the stationarity condition β1 +β2 < 1. Then, maxi≥1 E |Yit|r < Cr <

∞, for any r ∈ N.

Proof. By (C-2), recall that E(Yit) = µ = β0/(1 − β1 − β2) for all 1 ≤ i ≤ N . Then, max1≤i≤N E(Yit) = µ and

limN→∞max1≤i≤N E(Yit) = maxi≥1 E(Yit) ≤ µ = C1, using properties of monotone bounded functions. Moreover,

E(Y rit|Ft−1) =
∑r
k=1

{
r
k

}
λrit , employing Poisson properties, where

{
r
k

}
are the Stirling numbers of the second kind.

Set r = 2. For the law of iterated expectations (Billingsley, 1995, Thm. 34.4), we have that

max
1≤i≤N

‖Yit‖2 = max
1≤i≤N

[
E
(
λ2
it + λit

)]1/2 ≤ max
1≤i≤N

E

β0 + β1

N∑
j=1

wijYjt−1 + β2 ‖Yit−1‖2

2

+ µ


1/2

≤ β0 + β1 max
1≤i≤N

 N∑
j=1

wij ‖Yjt−1‖2

+ β2 max
1≤i≤N

‖Yit−1‖2 + µ1/2

≤ β0 + (β1 + β2) max
1≤i≤N

‖Yit−1‖2 + µ1/2

≤ β0 + µ1/2

1− β1 − β2
= C

1/2
2 <∞ ,

where the last inequality works for the stationarity of the process {Yt, t ∈ Z} and the finiteness of its moments,

with fixed N . As max1≤i≤N E |Yit|2 is bounded by C2, for the same reason above maxi≥1 E |Yit|2 ≤ C2. Since

E(Y 3
it |Ft−1) = λ3

it + 3λ2
it + λit, similarly as above

max
1≤i≤N

‖Yit‖3 ≤ β0 + (β1 + β2) max
1≤i≤N

‖Yit−1‖3 + (3E(λ2
it))

1/3 + µ1/3

≤ β0 + (β1 + β2) max
1≤i≤N

‖Yit−1‖3 + (3C2)1/3 + µ1/3

≤ β0 + (3C2)1/3 + µ1/3

1− β1 − β2
= C

1/3
3 <∞ ,

where the second inequality holds for the conditional Jensen’s inequality, and so on, for r > 3, the proof works

analogously by induction, therefore is omitted.

4.2.3 Log-linear PNAR models

Recall model (4.1). The network effect β1 of model (4.1) is typically expected to be positive, see Chen et al. (2013),

and the impact of Yit−1 is positive, as well. Hence, positive constraints on the parameters are theoretically justifiable

as well as practically sound. However, in order to allow a better link to the GLM theory, McCullagh and Nelder

(1989), and adding the possibility to insert covariates as well as coefficients which take values on the entire real line

and cannot be estimated by a linear model, we propose the following log-linear model, see Fokianos and Tjøstheim

(2011):

Yit|Ft−1 ∼ Poisson(νi,t), νit = β0 + β1n
−1
i

N∑
j=1

aij log(1 + Yjt−1) + β2 log(1 + Yit−1) , (4.5)
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where νit = log(λit) for every i = 1, . . . , N . No constraints are required in model (4.5) since νit ∈ R. The

interpretation of parameters and additive components remains unchanged. Again, the model can be rewritten in

vectorial form, as in the case of model (4.1)

Yt = Nt(νt), νt = β0 + G log(1N + Yt−1) , (4.6)

with νt ≡ log(λt), componentwise. Furthermore, we can have a useful approximation by

log(1N + Yt) = β0 + G log(1N + Yt−1) +ψt ,

where ψt = log(1N + Yt)− νt. By lemma A.1 in Fokianos and Tjøstheim (2011) E(ψt|Ft−1)→ 0 as νt →∞, so ψt
is “approximately” martingale difference sequence (MDS). Moreover, one can define here the martingale difference

sequence ξt = Yt − exp(νt). We discuss empirical properties of the model (4.5) in the Appendix. More generally,

we define the log-linear PNAR(p) by

νit = β0 +

p∑
h=1

β1h

n−1
i

N∑
j=1

aij log(1 + Yjt−h)

+

p∑
h=1

β2h log(1 + Yit−h) , (4.7)

using the same notation as before. The interpretation of this model is developed along the lines of the linear model.

Furthermore,

Yt = Nt(νt), νt = β0 +

p∑
h=0

Gh log(1N + Yt−h) , (4.8)

where Gh = β1hW + β2hIN for h = 1, . . . , p.

Proposition 8. Consider model (4.7) (or equivalently (4.8)). Suppose that
∑p
h=1(|β1h| + |β2h|) < 1. Then the

process {Yt, t ∈ Z} is stationary and ergodic with E |Yt|1 <∞ and there exists δ > 0 such that E[exp(δ |Yt|r1)] <∞
and E[exp(δ |νt|r1)] <∞ for fixed N .

Proof. The result follows from Debaly and Truquet (2019, Thm. 5), provided that |||
∑p
h=1 |Gh|e|||∞ < 1, where |·|e

is the elementwise absolute value. But ||||Gh|e|||∞ ≤ |β1h| |||W|||∞+ |β2h| = |β1h|+ |β2h|. Therefore we conclude that

{Yt, t ∈ Z} is a stationary and ergodic process with E |Yt|1 <∞ and there exists δ > 0 such that E[exp(δ |Yt|r1)] <∞
and E[exp(δ |νt|r1)] <∞ .

Remark 3. Taking into account known time-varying network structures, i.e. At, t = 1, . . . , T denote dynamic

adjacency matrices, is of potential interest in applications. In this case, model (4.2) is written as

Yt = Nt(λt), λt = β0 + GtYt−1 ,

where Gt = β1Wt + β2IN and Wt = diag
{
n−1

1,t , . . . , n
−1
N,t

}
At. It is worth noting that |||Wt|||∞ = 1, is still true

for every t = 1, . . . , T , so |||Wt|||∞ = |||W|||∞, which is the only property required for this matrix, throughout

the paper. Even though ρ(Gt) < 1, for every t, Propositions 6 and 8 do not apply. Provided that the model is

stationary, all methods and results developed in the present contribution extend straightforwardly to time-varying

network structures. To avoid excessive notation, the results reported in the paper are under the condition Wt = W.

Remark 4. Another suitable extension encompassed in this paper is the GNAR(p) version introduced in Knight et al.

(2020, eq. 1) in the context of continuous-valued random variables. This model adds an average neighbour impact

for several stages of connections between the nodes of a given network. Define N ({i}) = {j ∈ {1, . . . , N} : i→ j}
the set of neighbours of the node i. Then, N (r)(i) = N

{
N (r−1)(i)

}
/
[{
∪r−1
q=1N (q)(i)

}
∪ {i}

]
, for r = 2, 3, . . .

is the set of r-stage neighbours of i and N (1)(i) = N ({i}). (So, for example, N (2)(i) describes the neighbours
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of the neighbours of the node i, and so on.) In this case, the row-normalized adjacency matrix have elements(
W(r)

)
i,j

= wi,j × I(j ∈ N (r)(i)), where wi,j = 1/card(N (r)(i)), card(·) denotes the cardinality of a set and I(·) is

the indicator function. Several C types of edges are allowed in the network. Moreover, time-varying networks can

be considered as well. Under the framework, the Poisson GNAR(p) has the following formulation.

λi,t = β0 +

p∑
h=1

 C∑
c=1

sh∑
r=1

β1,h,r,c

∑
j∈N (r)

t (i)

w
(t)
i,j,cYjt−h + β2,hYit−h

 , (4.9)

where sh is the maximum stage of neighbour dependence for the time lag h. Model (4.9) can be included in the

formulation (4.4) by setting Gh =
∑C
c=1

∑sh
r=1 β1,h,r,cW

(r,c) +β2,hIN . Since it holds that
∑
j∈N (r)(i)

∑C
c=1 wi,j,c = 1,

we have
∣∣∣∣∣∣∣∣∣∑C

c=1 W(r,c)
∣∣∣∣∣∣∣∣∣
∞

= 1. The time-varying network extension is straightforward, by taking into account

Remark 3. Then, all the results of the present contribution apply directly to (4.9). Analogous arguments hold true

for the log-linear model (4.7).

4.3 Estimation

4.3.1 Quasi-likelihood inference for fixed N

We approach the estimation problem by using the theory of estimating functions; see Basawa and Prakasa Rao

(1980), Zeger and Liang (1986) and Heyde (1997), among others. Let the vector of unknown parameters θ =

(β0, β11, . . . , β1p, β21, . . . , β2p)
T ∈ Rm, where m = 2p+ 1. Define the conditional quasi-log-likelihood function for θ:

lNT (θ) =

T∑
t=1

N∑
i=1

yi,t log λi,t(θ)− λi,t(θ) , (4.10)

which is the log-likelihood one would obtain if time series modelled in (4.2), or (4.6), would be contemporaneously

independent. This simplifies computations but guarantees consistency and asymptotic normality of the resulting

estimator. Although the joint copula structure C(. . . , ρ) and the set of parameters ρ, usually describing its functional

form, are not included in the maximization of the “working” log-likelihood (4.10), this does not mean that the

inference is carried out under the assumption of independence along the observed process, conditionally on the past

Ft−1; it can easily be detected from the shape of the conditional information matrix (4.14) below, which takes into

account the true conditional covariance matrix of the process Yt.

Douc et al. (2017), among others, established inference theory for Quasi Maximum Likelihood Estimation

(QMLE) for observation driven models. Assuming that there exist a true vector of parameter, say θ0, such that the

mean model specification (4.2) (or equivalently (4.6)) is correct, regardless the true data generating process, then we

obtain a consistent and asymptotically normal estimator by maximizing the quasi-log-likelihood (4.10). Denote by

θ̂ := arg maxθ lNT (θ), the QMLE for θ. The score function for the linear model is given by

SNT (θ) =

T∑
t=1

N∑
i=1

(
yi,t

λi,t(θ)
− 1

)
∂λi,t(θ)

∂θ

=

T∑
i=1

∂λTt (θ)

∂θ
D−1
t (θ)

(
Yt − λt(θ)

)
=

T∑
t=1

sNt(θ) , (4.11)

where
∂λt(θ)

∂θT
= (1N ,WYt−1, . . . ,WYt−p,Yt−1, . . . ,Yt−p)
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is a N ×m matrix and Dt(θ) is the N ×N diagonal matrix with diagonal elements equal to λi,t(θ) for i = 1, . . . , N .

The Hessian matrix is given by

HNT (θ) =

T∑
t=1

∂λTt (θ)

∂θ
Ct(θ)

∂λt(θ)

∂θT
=

T∑
t=1

hNt(θ) , (4.12)

with Ct(θ) = diag
{
y1,t/λ

2
1,t(θ) . . . yN,t/λ

2
N,t(θ)

}
and the conditional information matrix is

BNT (θ) =

T∑
t=1

∂λTt (θ)

∂θ
D−1
t (θ)Σt(θ)D−1

t (θ)
∂λt(θ)

∂θT
=

T∑
t=1

bNt(θ) ,

where Σt(θ) = E(ξtξ
T
t |Ft−1) denotes the true conditional covariance matrix of the vector Yt and we have defined

ξt ≡ Yt −λt. Expectation is taken with respect to the stationary distribution of {Yt}. We drop the dependence on

θ when a quantity is evaluated at θ0.

Proposition 9. Consider model (4.2). Let θ ∈ Θ ⊂ Rm. Suppose that Θ is compact and assume that the true

value θ0 belongs to the interior of Θ. Suppose that at the true value θ0, the condition of Proposition 6 hold. Then,

there exists a fixed open neighbourhood , say O(θ) = {θ : |θ − θ0| < δ}, of θ0 such that with probability tending to

1 as T → ∞, the equation SNT (θ) = 0 has a unique solution, say θ̃. Moreover, θ̃ is consistent and asymptotically

normal: √
T (θ̃ − θ0)

d−→ N(0,H−1
N BNH−1

N ) ,

with

HN (θ) = E

[
∂λTt (θ)

∂θ
D−1
t (θ)

∂λt(θ)

∂θT

]
, (4.13)

BN (θ) = E

[
∂λTt (θ)

∂θ
D−1
t (θ)Σt(θ)D−1

t (θ)
∂λt(θ)

∂θT

]
. (4.14)

Proposition 9 follows immediately from Theorem 4.1 in Fokianos et al. (2020). Proposition 9 applies to the

log-linear model (4.6), provided that E[exp(r |νt|)] < ∞, for any r > 0. Then, we have that the score function is

given by:

SNT (θ) =

T∑
t=1

N∑
i=1

(
yi,t − exp(νi,t(θ))

)∂νi,t(θ)

∂θ
=

T∑
t=1

∂νTt (θ)

∂θ

(
Yt − exp(νt(θ))

)
, (4.15)

where

∂νt(θ)

∂θT
= (1N ,W log(1N + Yt−1), . . . ,W log(1N + Yt−p), log(1N + Yt−1), . . . , log(1N + Yt−p))

is a N ×m matrix, and

HNT (θ) =

T∑
t=1

∂νTt (θ)

∂θ
Dt(θ)

∂νt(θ)

∂θT
, (4.16)

BNT (θ) =

T∑
t=1

∂νTt (θ)

∂θ
Σt(θ)

∂νt(θ)

∂θT
,

where Dt(θ) is the N × N diagonal matrix with diagonal elements equal to exp(νi,t(θ)) for i = 1, . . . , N and

Σt(θ) = E(ξtξ
T
t |Ft−1) with ξt = Yt − exp(νt(θ)). Moreover,

HN (θ) = E

[
∂νTt (θ)

∂θ
Dt(θ)

∂νt(θ)

∂θT

]
, (4.17)
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BN (θ) = E

[
∂νTt (θ)

∂θ
Σt(θ)

∂νt(θ)

∂θT

]
(4.18)

are respectively (minus) the Hessian matrix and the information matrix.

4.3.2 Quasi-likelihood inference for increasing N

Proposition 9 establishes asymptotic results when T →∞ and N fixed. In the paper W is a nonrandom sequence of

matrices indexed by N . In this case, the specification of the asymptotic properties for N → ∞ and T → ∞ allows

to establish a double-dimensional “spatio-temporal” type of consistency and asymptotic normality of the estimator.

The results established in the previous section cannot be extended to such asymptotic regime because no ergodicity

results are available, as min {N,T} → ∞. Moreover, the definition of stationarity for an N -dimensional time series

Yt ∈ RN when N → ∞ does not seem to be generally established in the literature. Consequently, we propose here

an alternative proof based on the previous stationarity results (with fixed N) and no ergodicity required. Define

lNT (θ) =
∑T
t=1

∑N
i=1 li,t(θ), where li,t(θ) = yi,t log λi,t(θ)− λi,t(θ). Let M be a finite constant.

Assumption 1. The following limits exist, at θ = θ0:

(i) limN→∞N−1HN = H, with H a m×m positive definite matrix, where HN is defined by (4.13).

(ii) limN→∞N−1BN = B, with B a m×m positive definite matrix, where BN is defined by (4.14).

(iii) Assume the third derivative of the quasi-log-likelihood (4.10) is bounded by functions mit which satisfy

limN→∞N−1
∑N
i=1 E(mit) = M .

Assumption 2. For the linear model (4.4) assume

(i) 1
N

∑N
i,j=1 ‖ξitξjt‖a <∞ , for some a ≥ 4.

(ii) The process
{
ξt = Yt − λt, FNt : N ∈ N, t ∈ Z

}
is α-mixing, FNt = σ (ξis : 1 ≤ i ≤ N, s ≤ t).

Assumptions 1-(i) and 1-(ii) are type of law of large number assumptions, which are quite standard in the existing

literature, since little is known about the behaviour of the distribution as N →∞. See assumption C3 of Zhu et al.

(2017) and assumption C2.3 of Zhu et al. (2019). To clarify this, set p = 1, so m = 3. Define Ỹit−1 = wTi Yt−1 and

σijt = E(ξitξjt|FNt−1). Then, the matrices HN , BN in (4.13, 4.14), evaluated at θ = θ0, will be

HN =

H
(11)
N H

(12)
N H

(13)
N

H
(22)
N H

(23)
N

H
(33)
N

 , BN =

B
(11)
N B

(12)
N B

(13)
N

B
(22)
N B

(23)
N

B
(33)
N

 ,

where

H
(11)
N = E

[
1TND−1

t 1N
]

=

N∑
i=1

E

(
1

λi,t

)
, H

(12)
N = E

[
1TND−1

t WYt−1

]
=

N∑
i=1

E

(
Ỹit−1

λi,t

)
,

H
(13)
N = E

[
1TND−1

t Yt−1

]
=

N∑
i=1

E

(
Yit−1

λi,t

)
, H

(22)
N = E

[
YT
t−1W

TD−1
t WYt−1

]
=

N∑
i=1

E

(
Ỹ 2
it−1

λi,t

)
,

H
(23)
N = E

[
YT
t−1W

TD−1
t Yt−1

]
=

N∑
i=1

E

(
Ỹit−1Yit−1

λi,t

)
, H

(33)
N = E

[
YT
t−1D

−1
t Yt−1

]
=

N∑
i=1

E

(
Y 2
it−1

λi,t

)
,
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and

B
(11)
N = E

[
1TND−1

t ΣtD
−1
t 1N

]
=

N∑
i,j=1

E

(
ξitξjt
λitλjt

)
,

B
(12)
N = E

[
1TND−1

t ΣtD
−1
t WYt−1

]
=

N∑
i,j=1

E

(
σijtỸit−1

λitλjt

)
,

B
(13)
N = E

[
1TND−1

t ΣtD
−1
t Yt−1

]
=

N∑
i,j=1

E

(
σijtYit−1

λitλjt

)
,

B
(22)
N = E

[
YT
t−1W

TD−1
t ΣtD

−1
t WYt−1

]
=

N∑
i,j=1

E

(
σijtỸit−1Ỹjt−1

λitλjt

)
,

H
(23)
N = E

[
YT
t−1W

TD−1
t ΣtD

−1
t Yt−1

]
=

N∑
i,j=1

E

(
σijtỸit−1Yjt−1

λitλjt

)
,

H
(33)
N = E

[
YT
t−1D

−1
t ΣtD

−1
t Yt−1

]
=

N∑
i,j=1

E

(
σijtYit−1Yjt−1

λitλjt

)
,

Assumption 1-(i) requires the laws of large number limN→∞N−1H
(k,l)
N = hkl, limN→∞N−1B

(k,l)
N = bkl, where hk,l

and bk,l are constants, for k, l = 1, 2, 3 and (k, l) = (l, k).

In the setup we study, however, we require two “regularity” conditions since under the quasi-likelihood inference

the information matrix and the Hessian matrix are in general different. This is not the case in Zhu et al. (2017),

since these authors consider least squares regression under i.i.d. assumption of the error terms. For the same reason,

a condition on the derivative is usually required for the quasi-likelihood approach, as in Assumption 1-(iii).

The condition Assumption 2-(i) can also be seen as a law of large numbers-type of assumption which is additional

in our case, since the error term does not consist of an i.i.d. sequence. Moreover, for the result of Fokianos et al. (2020,

Prop. 3.1-3.4), Assumption 2-(i) is satisfied for fixed N ; we conjecture that this still holds true when N increases, as

in this case the behaviour of the distribution of the process is unknown. This kind of assumption is common in the

literature of high-dimensional processes, see, for example, Assumption M1 in Stock and Watson (2002).

Finally, Assumption 2-(ii) is a crucial assumption we adopt as we study processes with dependent errors (see

Doukhan (1994) for definition of α-mixing). The α-mixing is a measure of asymptotic independence of the process

and it is weaker than the i.i.d. assumption made by Zhu et al. (2017, 2019). In particular, the process defined in

Assumption 2-(ii) is an α-mixing array, namely,

α(J) = sup
t∈Z,N≥1

sup
A∈FN−∞,t,B∈FNt+J,∞

|P(A ∩B)− P(A)P(B)| m→∞−−−−→ 0

where FNt ≡ FN−∞,t = σ (ξis : 1 ≤ i ≤ N, s ≤ t), FNt+J,∞ = σ (ξis : 1 ≤ i ≤ N, s ≥ t+ J) and it is clear that the

dependence between two events A and B tends to vanish as they are spaced in time, uniformly in N . Moreover, note

that no rate of decay for the dependence measured by α(J) along time is specified, as a consequence, the α-mixing

process can depends on several lags of its past before becoming “asymptotically” independent. When N is fixed and

p = 1, by Fokianos et al. (2020, Prop. 3.1-3.4), the assumptions |||G|||1 < 1 or |||G|||2 < 1 are sufficient conditions for

obtaining an α-mixing process {ξt : t ∈ Z}.
Note that we develop an approach where no further assumptions on the network structure are required, compare

with Zhu et al. (2017, 2019, Ass. C2.1-C2.2). This leads to a more flexible framework for modelling network processes.

Following the discussion in Zhu et al. (2019, p. 351), assumption C2.2 in Zhu et al. (2017, 2019) might not hold true

when there exists considerable heterogeneity among nodes of the network (e.g., a social network with few “superstars”

and several low-active nodes). Such an assumption, though, is not required by our approach.
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Lemma 7. For the linear model (4.4), suppose the condition of Proposition 6 and Assumptions 1-2 hold. Consider

SNT and HNT defined as in (4.11) and (4.12), respectively. Then, as min {N,T} → ∞

1. (NT )−1HNT
p−→ H ,

2. (NT )−
1
2 SNT

d−→ N(0,B) ,

3. maxj,l,k supθ∈O(θ0)

∣∣∣ 1
NT

∑T
t=1

∑N
i=1

∂3li,t(θ)
∂θj∂θl∂θk

∣∣∣ ≤MNT
p−→M ,

where MNT := 1
NT

∑T
t=1

∑N
i=1mi,t. The proof is postponed to the Appendix.

Theorem 15. Consider model (4.4). Let θ ∈ Θ ⊂ Rm+ . Suppose that Θ is compact and assume that the true value

θ0 belongs to the interior of Θ. Suppose that the conditions of Lemma 7 hold. Then, there exists a fixed open

neighbourhood O(θ0) = {θ : |θ − θ0| < δ} of θ0 such that with probability tending to 1 as min {N,T} → ∞, for the

score function (4.11), the equation SNT (θ) = 0 has a unique solution, called θ̂, which is consistent and asymptotically

normal: √
NT (θ̂ − θ0)

d−→ N(0,H−1BH−1) .

Lemma 7 and Taniguchi and Kakizawa (2000, Thm. 3.2.23) adapted to double-indexed convergence, for instance,

guarantees the conclusion of Theorem 15.

We now state the analogous result for the log-linear model (4.8) and the notation corresponds to eq. (4.15)–(4.18).

Assumption 1′. Assume the same conditions as in Assumption 1 but with HN and BN defined in (4.17) and (4.18),

respectively.

Assumption 2′. For the log-linear model (4.8) assume

(i) 1
N

∑N
i,j=1 ‖ξitξjt‖a < ∞ , maxi≥1 E |Yit|r < ∞ , maxi≥1 E [exp(r |νit|)] < ∞ , for any r ≥ 1 and some

a ≥ 4.

(ii)
{
ψt = log(1 + Yt)− νt, FNt : N ∈ N, t ∈ Z

}
is α-mixing; FNt = σ (ψis : 1 ≤ i ≤ N, s ≤ t).

The same discussion about Assumptions 1′ and 2′ applies similar to the QMLE of the linear model. The

existence of exponential moments is of crucial importance to study the properties of log-linear models. see Fokianos

and Tjøstheim (2011) and Fokianos et al. (2020), among others.

Lemma 8. Let SNT and HNT as in (4.15) and (4.16). Then, for the log-linear model (4.8), under the condition of

Proposition 8 and Assumptions 1′-2′ the conclusion of Lemma 7 holds.

The proof is postponed to the Appendix.

Theorem 16. Consider model (4.8). Let θ ∈ Θ ⊂ Rm. Suppose that Θ is compact and assume that the true value

θ0 belongs to the interior of Θ. Suppose that the conditions of Lemma 8 hold. Then, there exists a fixed open

neighbourhood O(θ0) = {θ : |θ − θ0| < δ} of θ0 such that with probability tending to 1 as min {N,T} → ∞, for the

score function (4.15), the equation SNT (θ) = 0 has a unique solution, called θ̂, which is consistent and asymptotically

normal: √
NT (θ̂ − θ0)

d−→ N(0,H−1BH−1) .
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The conclusion follows as above.

In practical application one needs to specify a suitable estimator for the limiting covariance matrix of the quasi

maximum likelihood estimators. To this aim define the following matrix

B̂NT (θ̂) =

T∑
t=1

sNt(θ̂)sNt(θ̂)T .

Let V := H−1BH−1 and V(θ̂) := (NT )H−1
NT (θ̂)B̂NT (θ̂)H−1

NT (θ̂). The following results establish the inference for

the limiting covariance matrix of Theorems 15 and 16, respectively.

Theorem 17. Consider model (4.4). Suppose the conditions of Theorem 15 hold true. Moreover, assume that

N−1
∑N
i,j=1 ‖YitYjt‖2 <∞. Then, as min {N,T} → ∞, V(θ̂)

p−→ V.

The proof is postponed to the Appendix.

Theorem 18. Consider model (4.8). Suppose the conditions of Theorem 16 hold true. Moreover, assume that

N−1
∑N
i,j=1 ‖exp(νit) exp(νjt)‖2 <∞. Then, as min {N,T} → ∞, V(θ̂)

p−→ V.

The proof is analogous to the proof of Theorem 17, therefore is omitted.

4.4 Applications

4.4.1 Simulations

We study finite sample behaviour of the QMLE for models (4.2) and (4.6). For this goal we ran a simulation

study with S = 1000 repetitions and different time series length and network dimension. We consider the cases

p = 1 and 2. The adjacency matrix is generated by the lag-one Stochastic Block model (K = 5 blocks) using

(β0, β1, β2)T = (0.2, 0.4, 0.5)T . The observed time series are generated using the copula-based data generating

process of Fokianos et al. (2020). The network density is set equal to 0.3. We performed simulations with a network

density equal to 0.5, as well, but we obtained similar results, hence we do not reported these. Tables4.1 and 4.2

summarize the simulation results. Additional findings are given in the Appendix–see Tables C-1–C-6.

The estimates for parameters and their standard errors (in brackets) are obtained by averaging out the results

from all simulations; the third row below each coefficient shows the percentage frequency of t-tests which reject

H0 : β = 0 at the level 1% over the S simulations. We also report the percentage of cases where various information

criteria select the correct generating model. In this study, we employ the Akaike (AIC), the Bayesian (BIC) and the

Quasi (QIC) information criteria. The latter is a special case of the AIC which takes into account that estimation is

done by quasi-likelihood methods. See Pan (2001) for more details.

We observe that when there is strong correlation between count variables Yi,t–see Table 4.1– and T is small

when compared to the network size N , then the estimates are biased. The same conclusion is drawn from Table

C-1. Instead, when both T and N are reasonably large (or at least T is large), then the estimates are close to

the real values and the standard errors are small. Standard errors reduce as T increases–this should be expected.

Regarding estimators of the log-linear model (see Table 4.2 and C-4), we obtain the same conclusions. Note that the

approximations for network (β̂1) and lagged (β̂2) effects is better when compared to the approximation of intercept

(β̂0).

The t-tests and percentage of right selections due to various information criteria provide empirical confirmation

for the model selection procedure. Again, we note that when T is small then there is no definite winner among all

of them. Based on these results, the QIC provides the best selection procedure for the case of the linear model; its

success selection rate is about 94%. The BIC shows better performance only when N is small and this is so because
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it tends to select models with fewer parameters. The same conclusions are reached for the case of the log-linear

model, even though the rate of right selections for the QIC does not exceed 87%. However, the QIC is more robust,

especially when used for misspecified models.

To validate these results, we consider the case where all series are independent (Gaussian copula with ρ = 0).

Then QMLE provides satisfactory results if N is large enough, even if T is small (see Table C-2, C-5). When

ρ > 0, both the temporal size T and the network size N are required to be reasonably large in order to obtain good

inferential results. From the QQ-plot shown in Figure 4.4 we can conclude that, with N and T large enough, the

asserted asymptotic normality is quite adequate. For this plot, the data were generated by a linear model with a

Gaussian copula (ρ = 0.5) and N = 100. A more extensive discussion and further simulation results can be found in

the Appendix.

Table 4.1: Estimators obtained from S = 1000 simulations of model (4.2), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0.5 and p = 1. Model (4.2) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.202 0.395 0.492 0.199 0.384 0.485 0.017 0.009

87.0 97.1 93.7(0.029) (0.046) (0.041) (0.030) (0.056) (0.046) (0.050) (0.029)

100 100 100 100 99.9 100 0.4 0.1

200

0.202 0.396 0.496 0.199 0.389 0.491 0.011 0.006

89.7 97.3 94.2(0.021) (0.032) (0.030) (0.021) (0.039) (0.032) (0.034) (0.020)

100 100 100 100 100 100 0.1 0.5

100

10

0.254 0.337 0.438 0.240 0.316 0.424 0.039 0.016

78.9 79.9 85.1(0.104) (0.077) (0.079) (0.103) (0.099) (0.095) (0.109) (0.071)

13.7 69 85.7 5.5 36.2 64.8 0.6 0.1

20

0.235 0.366 0.465 0.227 0.351 0.454 0.025 0.011

77.6 81.2 90.7(0.075) (0.057) (0.059) (0.076) (0.074) (0.069) (0.072) (0.044)

65.3 96.3 99.3 56 90.4 98.6 0.8 0.3

100

0.207 0.393 0.491 0.204 0.385 0.486 0.011 0.005

75.0 83.8 93.6(0.033) (0.025) (0.026) (0.034) (0.034) (0.031) (0.031) (0.018)

100 100 100 100 100 100 0.4 0.1

200

0.202 0.396 0.496 0.200 0.390 0.492 0.008 0.004

72.1 83.1 94.1(0.023) (0.018) (0.019) (0.024) (0.024) (0.022) (0.022) (0.013)

100 100 100 100 100 100 0.3 0.2
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Table 4.2: Estimators obtained from S = 1000 simulations of model (4.6), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0.5 and p = 1. Model (4.6) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.209 0.402 0.492 0.212 0.401 0.494 0.003 -0.006

60.4 85.5 82.5(0.069) (0.022) (0.039) (0.074) (0.038) (0.048) (0.043) (0.040)

64.8 100 100 57.7 100 100 0.6 0.4

200

0.204 0.403 0.494 0.206 0.402 0.495 0.003 -0.003

61.6 90.0 84.9(0.049) (0.016) (0.027) (0.053) (0.027) (0.034) (0.031) (0.028)

93.2 100 100 89.2 100 100 0.6 0.3

100

10

0.299 0.392 0.443 0.301 0.368 0.443 0.039 -0.011

30.2 35.5 58.2(0.195) (0.043) (0.078) (0.191) (0.077) (0.087) (0.088) (0.069)

12.4 99.4 87.8 10.9 67.5 72.0 1.3 0.6

20

0.265 0.398 0.465 0.269 0.390 0.472 0.015 -0.015

25.6 34.1 69.8(0.145) (0.028) (0.056) (0.146) (0.062) (0.069) (0.071) (0.053)

20.5 100 99.8 20.5 99.2 99.4 1.7 0.6

100

0.216 0.401 0.492 0.218 0.402 0.496 0.000 -0.006

23.3 44.3 82.3(0.065) (0.012) (0.025) (0.068) (0.030) (0.033) (0.035) (0.026)

74.2 100 100 70.9 100 100 0.7 0.5

200

0.209 0.401 0.495 0.210 0.399 0.496 0.002 -0.002

26.6 51.0 86.9(0.046) (0.008) (0.018) (0.048) (0.022) (0.022) (0.025) (0.018)

96.7 100 100 95.6 100 100 0.5 0.2
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Figure 4.4: QQ-plots for the linear model, Gaussian copula with ρ = 0.5, N = 100. Left: T = 20. Right:

T = 100.

4.4.2 Data analysis

The application on real data concerns the monthly number of burglaries on the south side of Chicago from 2010-

2015 (T = 72). The counts are registered for the N = 552 census block groups. The data are taken by Clark

et al. (2018), https://github.com/nick3703/Chicago-Data. The undirected network structure raises naturally,

as an edge between block i and j is set if the locations share a border. The density of the network is 1.74%. The

maximum number of burglaries in a month in a census block is 17. The variance to mean ratio in the data is 1.82,

suggesting there is some overdispersion in the data. The median of degrees is 5. On this dataset we fit the linear

and log-linear PNAR(1) and PNAR(2) model. The results are summarized in Table 4.3-4.4. All the models have
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significant parameters. The magnitude of the network effects β11 and β12 seems reasonable, as an increasing number

of burglaries in a block can lead to a growth in the same type of crime committed in a close area. Also, the lagged

effects have an increasing impact on the counts. Interestingly, the log-linear model is able to account for the general

downward trend registered from 2010 to 2015 for this type of crime in the area analysed. All the information criteria

select the PNAR(2) models, in accordance with the significance of the estimates.

Table 4.3: Estimation results for Chicago crime data.

Linear PNAR(1) Log-linear PNAR(1)

Estimate SE (×102) p-value Estimate SE (×102) p-value

β0 0.4551 2.1607 <0.01 -0.5158 3.8461 <0.01

β1 0.3215 1.2544 <0.01 0.4963 2.8952 <0.01

β2 0.2836 0.8224 <0.01 0.5027 1.2105 <0.01

Linear PNAR(2) Log-linear PNAR(2)

Estimate SE (×102) p-value Estimate SE (×102) p-value

β0 0.3209 1.8931 <0.01 -0.5059 4.7605 <0.01

β11 0.2076 1.1742 <0.01 0.2384 3.4711 <0.01

β21 0.2287 0.7408 <0.01 0.3906 1.2892 <0.01

β12 0.1191 1.4712 <0.01 0.0969 3.3404 <0.01

β22 0.1626 0.7654 <0.01 0.2731 1.2465 <0.01

Table 4.4: Information criteria for Chicago crime data. Smaller values in bold.

AIC×10−3 BIC×10−3 QIC×10−3

linear log-linear linear log-linear linear log-linear

PNAR(1) 115.06 115.37 115.07 115.38 115.11 115.44

PNAR(2) 111.70 112.58 111.72 112.60 111.76 112.68
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Appendix

Moments for the linear PNAR(p) model

It is easy to derive some elementary properties of the linear NAR(p) model. Fix µ = (IN − (G1 + · · ·+ GP ))−1β0;

we can again rewrite model (4.3) as a Vector Autoregressive VAR(1) model

Yt − µ = G1(Yt−1 − µ) + · · ·+ Gp(Yt−p − µ) + ξt ,

where ξt is a martingale difference sequence, and rearrange it in a Np-dimensional VAR(1) form by

Y∗t − µ∗ = G∗(Y∗t−1 − µ∗) + Ξt . (C-1)
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Here we have Y∗t = (YT
t ,Y

T
t−1, . . . ,Y

T
t−p+1)T , µ∗ = (INp −G∗)−1B0, B0 = (βT0 ,0

T
N(p−1))

T Ξt = (ξt,0
T
N(p−1))

T ,

where 0N(p−1) is a N(p− 1)× 1 vector of zeros, and

G∗ =



G1 G2 · · · Gp−1 Gp

IN 0N,N · · · 0N,N 0N,N

0N,N IN · · · 0N,N 0N,N
...

...
. . .

...
...

0N,N 0N,N · · · IN 0N,N

 ,

where 0N,N is a N ×N matrix of zeros.

For model (C-1) we can find the unconditional mean E(Y∗t ) = µ∗ and variance vec[Var(Y∗t )] = (I(Np)2 −G∗ ⊗
G∗)−1vec[E(Σ∗t )] with E(Σ∗t ) = E(ΞtΞ

T
t ). For details about the VAR(1) representation of a VAR(p) model and its

moments, see Lütkepohl (2005). Define the selection matrix J = (IN : 0N,N : · · · : 0N,N ) with dimension N ×Np.

Proposition 10. Assume that N is fixed and
∑p
h=1(β1h + β2h) < 1 in model (4.3). Then, model (4.4) has the

following unconditional moments:

E(Yt) = Jµ∗ = (IN − (G1 + · · ·+ GP ))−1β0 = µ ,

vec[Var(Yt)] = (J⊗ J)vec[Var(Y∗t )] ,

vec[Cov(Yt,Yt−h)] = (J⊗ J)(INp −G∗)hvec[Var(Y∗t )] .

Applying these results to model (4.1) (equivalently (4.2)), we obtain

E(Yt) = (IN −G)−1β0 = β0(1− β1 − β2)−11 ,

vec[Var(Yt)] = (IN2 −G⊗G)−1vec[E(Σt)] , (C-2)

vec[Cov(Yt,Yt−h)] = (IN −G)hvec[Var(Yt)] .

The mean of Yt depends on the network effect β1, the momentum effect β2 and the structure of the network (via

W). The same fact holds for second moments structure; in addition, the conditional covariance Σt makes explicit

the dependence on the copula correlation structure. We can observe that equations (C-2) are analogous to equations

(2.4) and (2.5) of Zhu et al. (2017, Prop. 1), who analysed the continuous variable case. Then, the interpretations

(Case 1 and 2 pag.1099-1100) and the potential applications (Section 3, pag.1105) apply also here for integer-valued

case.

Empirical properties of the log-linear PNAR(1) model

We give here some insight on the structure of the model (4.6) above for the linear model. Here an explicit formulation

of the unconditional moments is not possible. We report the sample statistics to estimate the unknown quantities

and replicate the same baseline characteristics and the same scenarios of the linear case. In Figure C-1 we can see

that, analogously to the linear case, the correlations among counts grow when more activity in the network is showed.

However, here a more sparse matrix seems to slightly affect correlations. The general levels of correlations are higher

than the linear case in Figure 4.1. The mean ranges around 1.7 and 2; it tends to rise with higher network activities

up to 2.2. For the variance we find analogous results.
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Figure C-1: Correlation matrix of model (4.5). Top-left: Data are generated by employing a stochastic block model

with K = 5 and an adjacency matrix A with elements generated by P(aij = 1) = 0.3N−0.3, if i and j belong to the

same block, and P(aij = 1) = 0.3N−1, otherwise. In addition, we employ a Gaussian copula with parameter ρ = 0.5,

(β0, β1, β2) = (0.2, 0.1, 0.4)T , T = 2000 and N = 20. Top-right plot: Data are generated by employing a stochastic

block model with K = 5 and an adjacency matrix A with elements generated by P(aij = 1) = 0.7N−0.0003 if i and

j belong to the same block, and P(aij = 1) = 0.6N−0.3 otherwise. Same values for β’s, T , N and choice of copula.

Bottom-left: The same graph, as in the upper-left side but with K = 10. Bottom-right: The same graph, as in

upper-right side but with K = 10.
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Figure C-2: Correlation matrix of model (4.5). Top: Data have been generated as in top-left of Figure C-1 (left),

with copula correlation parameter ρ = 0.9 (middle) and as in the top-right of Figure C-1 but with copula parameter

ρ = 0.9 (right). Bottom: same information as the top plot but data are generated by using a Clayton copula.
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Figure C-3: Correlation matrix of model (4.5). Data have been generated as in top-left of Figure C-1 (top-left),

higher network effect β1 = 0.4 (top-right), higher momentum effect β2 = 0.6 (lower-left) and higher network and

momentum effect β1 = 0.3, β2 = 0.6 (lower-right).
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Figure C-4: Correlation matrix of model (4.5). Data have been generated as in top-left of Figure C-1 (top-left),

negative network effect β1 = −0.1 (top-right), negative momentum effect β2 = −0.4 (lower-left) and negative network

and momentum effect β1 = −0.1, β2 = −0.4 (lower-right).

Figure C-2 shows the outcomes obtained by varying the copula structure and the copula parameter ρ. The results

are similar to Figure 4.2 but here the correlations tend to be more homogeneous. By adding positive weights to the

network and momentum effect in Figure C-3 we notice comparable results with those of the linear model in Figure

4.3, but here the growth in parameters leads to a less severe effect on correlations. Significant increases in mean and

variance are detected. In the log-linear model negative values for the parameters are allowed. In Figure C-4 we see

no remarkable impact of negative coefficients on correlations. However, the sample means and variances decrease

when compared to the corresponding plots produced using β1, β2 > 0.
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Proof of Lemma 7

We will prove Lemma 7 in the case p = 1. The case p > 1 works analogously for the representation (C-1). Recall

from Assumption 2-(ii) that FNt−1 = σ (ξis : 1 ≤ i ≤ N, s ≤ t− 1). Then, for N ∈ N, we have that E(Yt|Ft−1) =

E(Yt|FNt−1), see for example Shiryaev (2016, p. 210). Before proving each single point of the Lemma 7 we proof the

following helpful results.

Lemma 9. Rewrite the linear model (4.2) as Yt = f(Yt−1,θ) + ξt, for t ≥ 0 where ξt = Yt −λt and f(Yt−1,θ) =

λt = β0 + GYt−1. Define the following predictors, for J > 0:

Ȳt =

f(Ȳt−1,θ), t > 0

Y0, t ≤ 0
, Ŷs

t−J =

f(Ŷs−1
t−J ,θ) + ξs, max {t− J, 0} < s ≤ t

Ȳs, s ≤ max {t− J, 0}
,

where f(Ȳt−1,θ) = β0 + GȲt−1 and f(Ŷt−1
t−J ,θ) = λ̂

t

t−J = β0 + GŶt−1
t−J . Let Ỹ∗t = cYt + (1 − c)Ȳt and Ỹt =

cYt + (1− c)Ŷt
t−J with 0 ≤ c ≤ 1. Then,∣∣∣Yt − Ŷt

t−J

∣∣∣
∞
≤ dJ

t−J−1∑
j=0

dj
∣∣ξt−J−j∣∣∞ ,

where |ξt|∞ = max1≤j≤N |ξit|.

Proof. Set t ≥ 0, ∣∣Yt − Ȳt

∣∣
∞ =

∣∣f(Yt−1,θ) + ξt − f(Ȳt−1,θ)
∣∣
∞

≤
∣∣∣∣∣∣∣∣∣∣∣∣ ∂∂Y

f(Ỹ∗t−1,θ)

∣∣∣∣∣∣∣∣∣∣∣∣
∞
|Yt−1 − Ȳt−1|∞ + |ξt|∞

≤ d
∣∣Yt−1 − Ȳt−1

∣∣
∞ + |ξt|∞

≤ d2
∣∣Yt−2 − Ȳt−2

∣∣
∞ + d

∣∣ξt−1

∣∣
∞ + |ξt|∞

...

≤ dt
∣∣Y0 − Ȳ0

∣∣
∞ +

t−1∑
j=0

dj
∣∣ξt−j∣∣∞

=

t−1∑
j=0

dj
∣∣ξt−j∣∣∞ .

The first inequality holds for an application of the multivariate mean value theorem. Moreover, ∂f(Yt−1,θ)/∂Y = G

and |||G|||∞ ≤ β1 + β2 = d < 1. Now set t− J > 0,∣∣∣Yt − Ŷt
t−J

∣∣∣
∞

=
∣∣∣f(Yt−1,θ) + ξt − f(Ŷt−1

t−J ,θ)− ξt
∣∣∣
∞

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∂f(Ỹt−1,θ)

∂Y

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

∣∣∣Yt−1 − Ŷt−1
t−J

∣∣∣
∞

≤ d
∣∣∣Yt−1 − Ŷt−1

t−J

∣∣∣
∞

≤ d2
∣∣∣Yt−2 − Ŷt−2

t−J

∣∣∣
∞

...

≤ dJ
∣∣Yt−J − Ȳt−J

∣∣
∞

≤ dJ
t−J−1∑
j=0

dj
∣∣ξt−J−j∣∣∞
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and the last inequality comes from the previous recursion. It is immediate to see that, for t−J < 0,
∣∣∣Yt − Ŷt

t−J

∣∣∣
∞
≤

dJ−t
∣∣Y0 − Ȳ0

∣∣
∞ = 0.

Proof of (1)

Define Wt = (Yt,Yt−1)T , Ŵt
t−J = (Ŷt

t−J , Ŷ
t−1
t−J)T := f(ξt, . . . , ξt−J), Ŷit, λ̂it the i-th elements of Ŷt

t−J and

λ̂
t

t−J . Consider the following triangular array {gNt(Wt) : 1 ≤ t ≤ TN , N ≥ 1}, where TN → ∞ as N → ∞.

For any η ∈ Rm, gNt(Wt) = N−1ηT
∂λTt
∂θ Ct

∂λt
∂θT

η =
∑m
r=1

∑m
l=1 ηrηlhrlt where N−1hNt = (hrlt)1≤r,l≤m. We

take the most complicated element, h22t, the result is analogously proven for the other elements. Define l1it =∣∣∣(wTi Yt−1)2Yit(λ̂it + λit)
∣∣∣, l2it =

∣∣(wTi Yt−1)2λ2
it

∣∣ and l3it =
∣∣∣Ŷitλ2

it(Yit−1 + Ŷit−1)
∑N
j=1 wij(Yjt−1 + Ŷjt−1)

∣∣∣. Addi-

tionally, the equality
∣∣∣λ̂it − λit∣∣∣ =

∣∣∣Yit − Ŷit∣∣∣ is a consequence of the constructions in Lemma 9. Then

∣∣h22t − ht22,t−J
∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

(wTi Yt−1)2Yit
λ2
it

− 1

N

N∑
i=1

(wTi Ŷt−1
t−J)2Ŷit

λ̂2
it

∣∣∣∣∣
≤ β−4

0

N

N∑
i=1

∣∣∣(wTi Yt−1)2Yitλ̂
2
it − (wTi Ŷt−1

t−J)2Ŷitλ
2
it

∣∣∣
≤ β−4

0

N

N∑
i=1

∣∣∣(wTi Yt−1)2Yit(λ̂
2
it − λ2

it) +
[
(wTi Yt−1)2Yit − (wTi Ŷt−1

t−J)2Ŷit

]
λ2
it

∣∣∣
≤ β−4

0

N

∣∣∣∣∣
N∑
i=1

(wTi Yt−1)2Yit(λ̂it + λit)(λ̂it − λit)

∣∣∣∣∣+
β−4

0

N

∣∣∣∣∣
N∑
i=1

(wTi Yt−1)2λ2
it(Yit − Ŷit)

∣∣∣∣∣
+
β−4

0

N

∣∣∣∣∣
N∑
i=1

Ŷitλ
2
it

[
(wTi Yt−1)2 − (wTi Ŷt−1

t−J)2
]∣∣∣∣∣

≤ β−4
0

N

N∑
i=1

l1it

∣∣∣λ̂it − λit∣∣∣+
β−4

0

N

N∑
i=1

l2it

∣∣∣Yit − Ŷit∣∣∣
+
β−4

0

N

N∑
i=1

Ŷitλ
2
it

∣∣∣(wTi Yt−1) + (wTi Ŷt−1
t−J)

∣∣∣ ∣∣∣(wTi Yt−1)− (wTi Ŷt−1
t−J)

∣∣∣
≤ β−4

0

N

N∑
i=1

l1it

∣∣∣λ̂it − λit∣∣∣+
β−4

0

N

N∑
i=1

l2it

∣∣∣Yit − Ŷit∣∣∣
+
β−4

0

N

N∑
i=1

Ŷitλ
2
it

∣∣∣∣∣∣
N∑
j=1

wij(Yjt−1 + Ŷjt−1)

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

wij(Yjt−1 − Ŷjt−1)

∣∣∣∣∣∣
≤ β−4

0

N

N∑
i=1

(l1it + l2it)
∣∣∣Yit − Ŷit∣∣∣+

β−4
0

N

N∑
i=1

l3it

∣∣∣∣∣∣
N∑
j=1

wij(Yjt−1 − Ŷjt−1)

∣∣∣∣∣∣ .
Set 1/a + 1/b = 1/2 and 1/q + 1/p + 1/n = 1/a. By Cauchy-Schwarz inequality, as wij > 0 for j = 1, . . . , N and∑N
j=1 wij = 1 we have that (wTi Yt−1)2 =

(∑N
j=1 wijYjt−1

)2

≤
∑N
j=1 wijY

2
jt−1. So, max1≤i≤N

∥∥(wTi Yt−1)2
∥∥
q
≤

max1≤i≤N

(∑N
j=1 wij

∥∥Y 2
jt−1

∥∥
q

)
≤ maxi≥1

∥∥Y 2
it

∥∥
q
≤ C

1/q
2q < ∞, by Proposition 7. Moreover, maxi≥1

∥∥λ2
it

∥∥
n
≤

maxi≥1

∥∥Y 2
it

∥∥
n
≤ Cn, by the conditional Jensen’s inequality. Similarly, maxi≥1

∥∥∥λ̂2
it

∥∥∥
n
≤ maxi≥1

∥∥∥Ŷ 2
it

∥∥∥
n
. An appli-

cation of Lemma 9 provides maxi≥1

∥∥∥Yit − Ŷit∥∥∥
b
≤ dJ

∑t−J−1
j=0 dj maxi≥1 ‖ξit‖b ≤ dJ2C

1/b
b /(1− d). By an analogous

recursion argument, it holds that maxi≥1

∥∥∥Ŷ 2
it

∥∥∥
n
≤ 2β0

∑∞
j=0 d

j +
∑∞
j=0 d

j maxi≥1 ‖ξit‖n ≤ (2β0 + 2C
1/n
n )/(1− d) :=
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∆ < ∞. By Holder’s inequality maxi≥1 ‖l1it‖a ≤ maxi≥1

∥∥(wTi Yt−1)2
∥∥
q
‖Yit‖p

(∥∥∥λ̂it∥∥∥
n

+
∥∥∥λ̂it∥∥∥

n

)
< l1 < ∞. In

the same way we can conclude that maxi≥1 ‖l2it‖q < l2 < ∞ and maxi≥1 ‖l3it‖q < l3 < ∞. Then, by Minkowski

inequality

∥∥h22t − ht22,t−J
∥∥

2
≤ β−4

0

N

N∑
i=1

‖l1it + l2it‖a
∥∥∥Yit − Ŷit∥∥∥

b
+
β−4

0

N

N∑
i=1

‖l3it‖a
N∑
j=1

wij

∥∥∥Yjt−1 − Ŷjt−1

∥∥∥
b

≤ β−4
0 max

1≤i≤N
(‖l1it‖a + ‖l2it‖a)

∥∥∥Yit − Ŷit∥∥∥
b

+ β−4
0 max

1≤i≤N
‖l3it‖a

∥∥∥Yit−1 − Ŷit−1

∥∥∥
b

≤ β−4
0 (l1 + l2 + l3) 2C

1/b
b dJ−1

t−J−1∑
j=0

dj ≤
β−4

0 (l1 + l2 + l3) 2C
1/b
b

1− d
dJ−1 := c22νJ ,

with νJ = dJ−1. By the definition in Assumption 2-(ii), recall FNt−J,t+J = σ (ξit : 1 ≤ i ≤ N, t− J ≤ t ≤ t+ J).

Since E
[
gNt(Wt)|FNt−J,t+J

]
is the optimal FNt−J,t+J -measurable approximation to gNt(Wt) in the L2-norm and

gNt(Ŵ
t
t−J) is FNt−J,t+J -measurable, it follows that∥∥gNt(Wt)− E

[
gNt(Wt)|FNt−J,t+J

]∥∥
2
≤
∥∥∥gNt(Wt)− gNt(Ŵt

t−J)
∥∥∥

2

≤
m∑
r=1

m∑
l=1

ηkηl

∥∥∥hrlt − ĥtrl,t−J∥∥∥
2

≤ cNtνj ,

where cNt =
∑m
r=1

∑m
l=1 ηrηlcrl and νJ = dJ−1 → 0 as J → ∞, establishing Lp-near epoch dependence (Lp-NED),

with p ∈ [1, 2], for the triangular array {XNt = gNt(Wt)− E [gNt(Wt)]}; see Andrews (1988). Moreover, for a similar

argument above, it is easy to see that E |XNt|2 <∞. Then, for Assumption 2-(ii) and the argument in Andrews (1988,

p. 464), we have that {XNt} is a uniformly integrable L1-mixingale. Furthermore, since limN→∞ T−1
N

∑TN
t=1 cNt <∞

the law of large number of Theorem 2 in Andrews (1988) provides the desired result (NT )−1ηTHNT η
p−→ ηTHη as

min {N,T} → ∞.

Proof of (2)

Let g̃Nt(Wt) = N−1ηT
∂λTt
∂θ D−1

t ΣtD
−1
t

∂λt
∂θT

η =
∑m
r=1

∑m
l=1 ηrηlbrlt where N−1bNt = (brlt)1≤r,l≤m and Σt =

E(ξtξ
T
t |FNt−1), with ξt = Yt − λt = Ŷt

t−J − λ̂
t

t−J , since E(Ŷt
t−J |FNt−1) = λ̂

t

t−J . We consider again the most

complicated element, that is b22t. For 1 ≤ i, j ≤ N , define σijt = E(ξitξjt|FNt−1), then

∣∣b22t − bt22,t−J
∣∣ =

∣∣∣∣∣∣ 1

N

N∑
i=1

N∑
j=1

(wTi Yt−1)(wTj Yt−1)σijt

λitλjt
− 1

N

N∑
i=1

N∑
j=1

(wTi Ŷt−1
t−J)(wTj Ŷt−1

t−J)σijt

λ̂itλ̂jt

∣∣∣∣∣∣
≤ β−4

0

∣∣∣∣∣∣ 1

N

N∑
i=1

N∑
j=1

σijt

∣∣∣(wTi Yt−1)(wTj Yt−1)λ̂itλ̂jt − (wTi Ŷt−1
t−J)(wTj Ŷt−1

t−J)λitλjt

∣∣∣
∣∣∣∣∣∣

≤ β−4
0

∣∣∣∣∣∣ 1

N

N∑
i,j=1

σijt

r1ijt

∣∣∣λit − λ̂it∣∣∣+ r2ijt

∣∣∣∣∣∣
N∑
j=1

wij(Yjt−1 − Ŷjt−1)

∣∣∣∣∣∣
∣∣∣∣∣∣ .

The second inequality is obtained as for the element of the Hessian h22t in the previous section. Moreover, r1ijt =

(wTi Yt−1)(wTj Yt−1)(λ̂jt + λjt) and r2ijt = λitλjt(w
T
i Yt−1 +wTi Yt−1

t−J) and 1
N

∑N
i,j=1 ‖σijt‖a ≤

1
N

∑N
i,j=1 ‖ξitξjt‖a <

λ <∞ for Assumption 2-(i). Set 1/q+1/h = 1/b. Note that maxi,j≥1 ‖r1ijt‖q < r1 <∞, maxi,j≥1 ‖r2ijt‖q < r2 <∞

100



by the same argument of maxi≥1 ‖l1it‖a < l1 above. Then,

∥∥b22t − bt22,t−J
∥∥

2
≤ β−4

0

1

N

N∑
i,j=1

‖σijt‖a

∥∥∥∥∥∥r1ijt

∣∣∣λit − λ̂it∣∣∣+ r2ijt

∣∣∣∣∣∣
N∑
j=1

wij(Yjt−1 − Ŷjt−1)

∣∣∣∣∣∣
∥∥∥∥∥∥
b

≤ β−4
0 λ max

1≤i,j≤N
‖r1ijt‖q

∥∥∥Yit − Ŷit∥∥∥
h

+ β−4
0 λ max

1≤i,j≤N
‖r2ijt‖q

∥∥∥Yit−1 − Ŷit−1

∥∥∥
h

≤
β−4

0 λ (r1 + r2) 2C
1/h
h

1− d
dJ−1 := r22νJ .

Here again νJ = dJ−1. Then, the triangular array
{
X̃Nt = g̃Nt(Wt)− E [g̃Nt(Wt)]

}
is Lp-NED and Theorem 2 in

Andrews (1988) holds for it. This result and Assumption 1-(ii) yields to the convergence

(NT )−1ηTBNT η
p−→ ηTBη , (C-3)

as min {N,T} → ∞, for any η ∈ Rm.

Now we show asymptotic normality. Define εNt = ηT ∂λt∂θ

T
D−1
t ξt, and recall the σ-field FNt = σ (ξis : 1 ≤ i ≤ N, s ≤ t).

Set SNt =
∑t
s=1 εNs, so

{
SNt,FNt : t ≤ TN , N ≥ 1

}
is a martingale array. Following a similar argument above, for

Cauchy-Schwarz inequality and Assumption 2-(i), E
(
N−1ηT ∂λt∂θ

T
D−1
t ξtξ

T
t D−1

t
∂λt
∂θT

η
)2

< Cβ−4
0 λ2 < ∞ , where

C = Ch
∑m
r,l=1 |ηr|

2 |ηl|2, satisfying the Lindberg’s condition

1

NTN

TN∑
t=1

E
[
ε2
NtI

(
|εNt| >

√
NTNδ

)
| FNt−1

]
≤ δ−2

N2T 2
N

TN∑
t=1

E
(
ε4
Nt | FNt−1

) p−→ 0 ,

for any δ > 0, as N →∞. By the result in equation (C-3)

1

NTN

TN∑
t=1

E
(
ε2
Nt | FNt−1

)
=

1

NTN

TN∑
t=1

ηT
∂λt
∂θ

T

D−1
t E(ξtξ

T
t | FNt−1)D−1

t

∂λt

∂θT
η

p−→ ηTBη ,

for any δ > 0, as N →∞. Then, the central limit theorem for martingale array in Hall and Heyde (1980, Cor. 3.1)

applies, (NTN )−1/2SNTN
d−→ N(0, ηTBη), leading to the desired result.

Proof of (3)

Consider the third derivative

∂3li,t(θ)

∂θj∂θl∂θk
= 2

Yi,t
λ3
i,t(θ)

(
∂λi,t(θ)

∂θj

∂λi,t(θ)

∂θl

∂λi,t(θ)

∂θk

)
.

Take the case θj = θl = θk = β1, the proof is analogous for the other derivatives,

1

N

N∑
i=1

∂3li,t(θ)

∂β3
1

=
1

N

N∑
i=1

2
Yi,t

λ3
i,t(θ)

(
wTi Yt−1

)3 ≤ 1

N

N∑
i=1

2β−3
0 Yi,t

(
wTi Yt−1

)2 (
wTi Yt−1

)
:=

1

N

N∑
i=1

mi,t .

Now, define MNT := 1
NT

∑T
t=1

∑N
i=1mi,t and 1

N

∑N
i=1 E(mi,t) < ∞ since all the moment of Yt exist. It is easy to

see that MNT
p−→M as min {N,T} → ∞, similarly as above for point (1) and (2), then point (3) of Lemma 7 follows

by Assumption 1-(iii). We omit the details.

Proof of Lemma 8

The proof is analogous to that of Lemma 7. We will point out only the parts which differ significantly.
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Lemma 10. Define Zt = log(1 + Yt). Rewrite the linear model (4.6) as Zt = νt + ψt, for t ≥ 0, where νt =

β0 + GZt−1. Define the predictors Ẑtt−J = ν̂tt−J +ψt, where ν̂tt−J = β0 + GẐt−1
t−J and Z̄tt−J analogously to Lemma

9. Then,
∣∣∣Zt − Ẑtt−J

∣∣∣
∞
≤ dJ

∑t−J−1
j=0 dj

∣∣ψt−J−j∣∣∞.

Proof. The proof is analogous to Lemma 9 and therefore is omitted.

Proof of (1)

Set Ŷt
t−J = exp(ν̂tt−J) + ξt, Wt = (Zt,Zt−1,Yt)

T , Ŵt
t−J = (Ẑtt−J , Ẑ

t−1
t−J , Ŷ

t
t−J)T := f(ψt, . . . ,ψt−J). Consider

the triangular array {gNt(Wt) : 1 ≤ t ≤ TN ;N ≥ 1}, where TN → ∞ as N → ∞. For any η ∈ Rm, gNt(Wt) =

N−1ηT
∂νTt
∂θ Dt

∂νt
∂θT

η =
∑m
r=1

∑m
l=1 ηrηlhrlt. Then,

∣∣h22t − ht22,t−J
∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

(wTi Zt−1)2 exp(νit)−
1

N

N∑
i=1

(wTi Ẑt−1
t−J)2 exp(ν̂it)

∣∣∣∣∣
≤ β−4

0

N

N∑
i=1

c∗1it |exp(νit)− exp(ν̂it)|+
β−4

0

N

N∑
i=1

c2it

∣∣∣∣∣∣
N∑
j=1

wij(Zjt−1 − Ẑjt−1)

∣∣∣∣∣∣
≤ β−4

0

N

N∑
i=1

c∗1it exp(νit) exp(ν̂it) |νit − ν̂it|+
β−4

0

N

N∑
i=1

c2it

∣∣∣∣∣∣
N∑
j=1

wij(Zjt−1 − Ẑjt−1)

∣∣∣∣∣∣ ,
where c∗1it = (wTi Zt−1)2, c1it = c∗1it exp(νit) exp(ν̂it) and c2it = exp(ν̂it)(w

T
i Zt−1 + wTi Ẑt−1

t−J). The second in-

equality follows by |exp(x)− exp(y)| = |exp(y)(exp(x− y)− 1)| and |(exp(x− y)− 1)| ≤ |exp(x− y)| |x− y| ≤
|exp(x)| |x− y|, for x, y ∈ R+

0 . Set Set 1/a + 1/b = 1/2 and 1/q + 1/p + 1/n = 1/a. It is easy to show

that max1≤i≤N
∥∥(wTi Zt−1)2

∥∥
q
≤ max1≤i≤N

∥∥Z2
it

∥∥
q
, by Cauchy-Schwarz inequality. Moreover, maxi≥1 ‖Zit‖q ≤

maxi≥1 ‖Yit‖q and maxi≥1 ‖νit‖q ≤ β0 + (β1 + β2) maxi≥1 ‖Zit‖q. All these quantities are bounded by Assump-

tion 2′-(i). Lemma 10 implies maxi≥1

∥∥∥Zit − Ẑit∥∥∥
b

= maxi≥1 ‖νit − ν̂it‖b ≤ dJ
∑t−J−1
j=0 dj maxi≥1 ‖ψit‖b ≤ dJC,

where C is some constant, and maxi≥1

∥∥∥Ẑit∥∥∥
q
≤ 2β0

∑∞
j=0 d

j +
∑∞
j=0 d

j maxi≥1 ‖ψit‖q < ∆ < ∞, again by

Assumption 2′-(i). Define ei a vector of zero’s with 1 only in the i-th position. Moreover, recall that ν̂it =∑t−1
j=0 e

T
i Gjβ0 +

∑J−1
j=1 e

T
i Gjψt−j = b0 +

∑J−1
j=1 f(θ, wij)ψjt−j , where b0 =

∑t−1
j=0 e

T
i Gjβ0 and f(θ, wij) ∈ R is

some deterministic continuous function. Then

E [exp(qν̂it)] ≤ exp(b0q)E

exp

q J−1∑
j=1

f(θ, wij)ψjt−j


≤ exp(b0q)

J−1∏
j=1

E1/2lj [exp (cj |ψjt−j |)] ,

where the second inequality works for successive use of Cauchy-Schwarz inequality, with 1 ≤ lJ−1 ≤ J − 3 and

cj = 2lj |f(θ, wij)| q. Now note that E[exp(cj |ψjt|)] ≤ E1/2[exp(2cj |Zjt|)]E1/2[exp(2cj |νjt|)], and, by an application

of the binomial theorem, we show that

E
[
exp (|Zjt|)2cj

]
= E

[
(1 + Yjt)

2cj
]
≤

2cj∑
k=0

(
2cj

k

)
E |Yjt|k

is finite for Assumption 2′-(i), as well as E[exp(2cj |νjt|)] < ∞, so ‖exp(ν̂it)‖q < ∆e < ∞ and maxi≥1 ‖c1it‖q <
c1 <∞ and maxi≥1 ‖c2it‖q < c2 <∞. Then,

∥∥h22t − ht22,t−J
∥∥

2
≤ c22νJ is Lp-NED and, by Assumption 2′-(ii), the

conclusion follows as for the linear model.
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Proof of (2)

Let g̃Nt(Wt) = N−1ηT
∂νTt
∂θ Σt

∂νt
∂θT

η =
∑m
r=1

∑m
l=1 ηrηlbrlt, where Σt = E(ξtξ

T
t |FNt−1), with ξt = Yt − exp(νt) =

Ŷt
t−J − exp(ν̂tt−J), since E(Ŷt

t−J |FNt−1) = exp(ν̂tt−J). Analogously as above

∣∣b22t − bt22,t−J
∣∣ ≤
∣∣∣∣∣∣ 1

N

N∑
i,j=1

σijt

∣∣∣∣∣∣(n1it + n2it)

N∑
j=1

wij(Yjt−1 − Ŷjt−1)

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

where n1it + n2it = wTi Zt−1 + wTi Ẑt−1
t−J , maxi≥1 ‖n1it + n2it‖q < ∆ < ∞ and 1

N

∑N
i,j=1 ‖σijt‖a < λ < ∞, for

Assumption 2′, proving Lp-NED. The proof of asymptotic normality follows the same fashion of the linear model

and therefore is omitted.

Proof of (3)

Consider the third derivative
∂3li,t(θ)

∂θj∂θl∂θk
= 2Yi,t

(
∂νi,t(θ)

∂θj

∂νi,t(θ)

∂θl

∂νi,t(θ)

∂θk

)
.

Take the case θj = θl = θk = β1,

1

N

N∑
i=1

∂3li,t(θ)

∂β3
1

=
1

N

N∑
i=1

2Yi,t
(
wTi Zt−1

)3
:=

1

N

N∑
i=1

mi,t .

The rest of the proof is omitted as it is in the same style of part (1) and (2).

Proof of Theorem 17

Consider the following inequality, for the single (k, l) element of the Hessian matrix.∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

(
∂2li,t(θ̂)

∂θk∂θl
− ∂2li,t(θ0)

∂θk∂θl

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

∂3li,t(θ
?)

∂θk∂θl∂θs

∣∣∣∣∣ ∣∣∣θ̂s − θ0,s

∣∣∣ ≤MNT

∣∣∣θ̂s − θ0,s

∣∣∣ ,
which converges to 0, in probability, as min {N,T} → ∞. The second inequality holds for condition 3 in Lemma 7,

θs is the s-element of θ and θ? is an intermediate point between θ̂ and θ0. This result, together with condition 1 in

Lemma 7, provides (NT )−1HNT (θ̂)
p−→ H(θ0). It is immediate to show that the result (NT )−1B̂NT (θ0)

p−→ B(θ0)

holds, as min {N,T} → ∞. The proof is closely analogous to the proof of Lemma 7-(2), by substituting ξitξjt to

σijt. Then, we only need to verify that
∣∣∣∣∣∣∣∣∣(NT )−1(B̂NT (θ̂)− B̂NT (θ0))

∣∣∣∣∣∣∣∣∣ p−→ 0, where |||·||| is a suitable matrix norm.

Consider the following inequalities, for the single (k, l) element of the matrices B̂NT (·).∣∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i,j=1

(
∂li,t(θ̂)

∂θk

∂lj,t(θ̂)

∂θl
− ∂li,t(θ0)

∂θk

∂lj,t(θ0)

∂θl

)∣∣∣∣∣∣ ≤ D1 +D2 ,

defined as

D1 =

∣∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i,j=1

∂li,t(θ̂)

∂θk

(
∂lj,t(θ̂)

∂θl
− ∂lj,t(θ0)

∂θl

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i,j=1

∂li,t(θ̂)

∂θk

∣∣∣∣∣∣ op(1) =
S

(l)
NT (θ̂)

T
op(1) = 0
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where the second equality works for the continuous mapping theorem and the fourth equality is true since S
(l)
NT (θ̂)

is the l-element of SNT (θ̂) = 0, and

D2 =

∣∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i,j=1

∂lj,t(θ0)

∂θl

(
∂li,t(θ̂)

∂θk
− ∂li,t(θ0)

∂θk

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i,j=1

∂lj,t(θ0)

∂θl

∂2li,t(θ
?)

∂θk∂θs

(
θ̂s − θ0,s

)∣∣∣∣∣∣
=

∣∣∣∣∣ 1

NT

T∑
t=1

∂lt(θ0)

∂θl

∂2lt(θ
?)

∂θk∂θs

∣∣∣∣∣ op(1) = Op(1)op(1) .

The second equality works for the mean-value theorem. The last equality is true if the following sufficient condition

is satisfied (Van der Vaart, 2000, Ex. 2.6).

E

∣∣∣∣∣ 1

NT

T∑
t=1

∂lt(θ0)

∂θl

∂2lt(θ
?)

∂θk∂θs

∣∣∣∣∣ ≤ 1

N
E

∣∣∣∣∂lt(θ0)

∂θl

∂2lt(θ
?)

∂θk∂θs

∣∣∣∣ ≤ 1

N

∥∥∥∥∂lt(θ0)

∂θl

∥∥∥∥
2

∥∥∥∥∂2lt(θ
?)

∂θk∂θs

∥∥∥∥
2

= O(1) . (C-4)

We show (C-4) for the most complicated case, when θl = β1, the proof is the same for the other derivatives. Then,

1

N
E

(
∂lt(θ0)

∂θl

)2

=
1

N
E

[
N∑
i=1

(
Yit
λit
− 1

)
∂λit(θ0)

∂θ

]2

=
1

N
E

[
N∑
i=1

(
ξit
λit

)
wTi Yt−1

]2

=
1

N

N∑
i,j=1

E

(
ξitξjt
λitλjt

Ỹi,t−1Ỹj,t−1

)
=

1

N
B

(22)
N = O(1) ,

where the last equality comes from Assumption 2-(ii). The second term for θk = θs = β1 is

1

N
E

(
∂2lt(θ

?)

∂θk∂θs

)2

=
1

N
E

(
N∑
i=1

Yit
λ2
it(θ

?)
Ỹ 2
i,t−1

)2

≤ (β?0)−4

N

N∑
i,j=1

E

(
YitYjt

N∑
h=1

N∑
m=1

wihwjmY
2
h,t−1Y

2
m,t−1

)

≤ (β?0)−4

N

N∑
i,j=1

N∑
h=1

N∑
m=1

wihwjm ‖YitYjt‖2
∥∥Y 2

h,t−1Y
2
m,t−1

∥∥
2

≤ (β?0)−4

N

N∑
i,j=1

‖YitYjt‖2 max
h,m≥1

∥∥Y 2
h,t−1

∥∥
4

∥∥Y 2
m,t−1

∥∥
4

N∑
h=1

N∑
m=1

wihwjm

≤ C

N

N∑
i,j=1

‖YitYjt‖2 = O(1)

where the first inequality works since λit(θ
?) ≥ β?0 and for Cauchy-Schwarz inequality. The last inequality holds for

Proposition 7 and the fact that
∑N
h=1 wih = 1. Then, (C-4) holds true and D2

p−→ 0, as min {N,T} → ∞, implying

that (NT )−1B̂NT (θ̂)
p−→ B(θ0), and this ends the proof.

Further simulations results

We present here further comments and results from the simulation study reported in Sec. 4.4.1. In the situation of

independence (ρ = 0) the QMLE reduces to the standard MLE. When N is big and T is small we see that QMLE

provides satisfactory results (Table C-2, C-5). However, this is not always the case. As it was mentioned in Sec. 4.4.1

when dependence is present, the quasi likelihood (4.10) is a rough approximation to the true likelihood. Intuitively,

increasing N should confirm the asymptotic results of Thm. 15. However, at the same time, it could lead to a

more complex structure of dependence among variables and then the quasi-likelihood might not approximate the

true likelihood. In particular, when N → ∞ and T is small, care must be taken in the interpretation of obtained
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estimates. This fact is also confirmed by the Tables C-1 and C-4 who illustrate better results when there exists

moderate dependence among the count variables. Finally, if both the temporal size T and the network size N are

reasonably large, then Thm. 15 applies. The usage of the Clayton copula instead of the Gaussian (Tables C-3 and

C-6) provide slightly better results but they are generally in agreement with previous observations.

Figure C-5 shows a QQ-plot of the standardized estimators for the log-linear model of order 1, with Gaussian

copula (ρ = 0.5) and N = 100. When T is small then, we observed a deviation from normality, especially on the

right tail of the distribution. When both dimensions are large, then the approximation is more satisfactory. Clearly,

by reducing dependence among count variables, we can obtain better large-sample approximations but these results

are not plotted due to space constraints.

Table C-1: Estimators obtained from S = 1000 simulations of model (4.2), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0.2 and p = 1. Model (4.2) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.201 0.395 0.495 0.199 0.386 0.490 0.015 0.007

93.1 99.6 93.8(0.020) (0.041) (0.030) (0.021) (0.049) (0.033) (0.043) (0.022)

100 100 100 100 100 100 0.2 0.2

200

0.201 0.399 0.497 0.199 0.382 0.493 0.012 0.005

92.7 99.9 93.9(0.014) (0.030) (0.021) (0.015) (0.035) (0.023) (0.031) (0.015)

100 100 100 100 100 100 0.2 0.2

100

10

0.229 0.337 0.478 0.219 0.363 0.468 0.025 0.012

88.8 90.2 87.6(0.063) (0.051) (0.051) (0.063) (0.063) (0.058) (0.061) (0.038)

58.0 97.1 99.8 35.1 84.0 98.0 0.1 0.1

20

0.216 0.384 0.485 0.211 0.376 0.479 0.014 0.007

89.7 93.9 93.4(0.045) (0.037) (0.035) (0.045) (0.046) (0.040) (0.043) (0.026)

99.6 100 100 98.9 99.9 100 0.1 0.3

100

0.203 0.396 0.496 0.201 0.392 0.492 0.007 0.003

86.8 96.6 94.6(0.020) (0.016) (0.016) (0.020) (0.020) (0.018) (0.019) (0.011)

100 100 100 100 100 100 0.2 0.1

200

0.201 0.398 0.498 0.200 0.395 0.495 0.005 0.002

85.6 96.9 93.8(0.014) (0.012) (0.011) (0.014) (0.014) (0.013) (0.013) (0.008)

100 100 100 100 100 100 0.2 0.3
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Table C-2: Estimators obtained from S = 1000 simulations of model (4.2), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0 and p = 1. Model (4.2) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.201 0.399 0.496 0.198 0.389 0.490 0.015 0.008

94.8 99.8 94.4(0.014) (0.039) (0.025) (0.015) (0.046) (0.028) (0.042) (0.020)

100 100 100 100 100 100 0.4 0.2

200

0.201 0.400 0.498 0.199 0.392 0.493 0.012 0.005

94.9 100 94.9(0.010) (0.027) (0.018) (0.010) (0.032) (0.020) (0.029) (0.014)

100 100 100 100 100 100 0.4 0.0

100

10

0.203 0.397 0.497 0.196 0.385 0.487 0.018 0.012

94.4 96.0 91.4(0.027) (0.037) (0.031) (0.030) (0.046) (0.036) (0.047) (0.030)

99.8 100 100 99.2 100 100 0.3 0.2

20

0.202 0.399 0.498 0.197 0.391 0.492 0.012 0.007

95.3 98.8 94.0(0.019) (0.025) (0.022) (0.021) (0.031) (0.025) (0.032) (0.020)

100 100 100 100 100 100 0.1 0.2

100

0.200 0.400 0.500 0.198 0.396 0.497 0.005 0.003

94.6 99.5 93.9(0.008) (0.011) (0.010) (0.009) (0.014) (0.011) (0.013) (0.009)

100 100 100 100 100 100 0.3 0.4

200

0.200 0.400 0.500 0.199 0.397 0.497 0.004 0.002

94.0 99.7 93.3(0.006) (0.008) (0.007) (0.006) (0.010) (0.008) (0.009) (0.006)

100 100 100 100 100 100 0.4 0.5

Table C-3: Estimators obtained from S = 1000 simulations of model (4.2), for various values of N and T .

Data are generated by using the Clayton copula with ρ = 0.5 and p = 1. Model (4.2) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.202 0.393 0.493 0.200 0.384 0.488 0.015 0.006

92.9 99.3 94.8(0.019) (0.043) (0.034) (0.020) (0.051) (0.037) (0.044) (0.023)

100 100 100 100 99.9 100 0.1 0.2

200

0.201 0.397 0.496 0.199 0.391 0.492 0.010 0.005

93.6 99.7 95.8(0.013) (0.031) (0.024) (0.014) (0.036) (0.026) (0.031) (0.016)

100 100 100 100 100 100 0.1 0.2

100

10

0.233 0.364 0.460 0.223 0.349 0.450 0.027 0.011

84.9 87.2 87.4(0.064) (0.065) (0.067) (0.065) (0.077) (0.074) (0.070) (0.044)

61.1 88.0 95.5 34.7 65.3 86.0 0.1 0.1

20

0.222 0.375 0.476 0.216 0.365 0.469 0.016 0.008

77.6 90.1 92.3(0.045) (0.048) (0.049) (0.046) (0.057) (0.054) (0.050) (0.030)

99.3 99.7 100 98.8 99.2 100 0.7 0.2

100

0.203 0.393 0.493 0.201 0.389 0.489 0.008 0.004

81.2 90.7 93.2(0.019) (0.021) (0.022) (0.020) (0.026) (0.024) (0.022) (0.013)

100 100 100 100 100 100 0.2 0.2

200

0.201 0.397 0.497 0.199 0.393 0.494 0.006 0.003

79.0 92.7 93.9(0.014) (0.015) (0.015) (0.014) (0.018) (0.017) (0.015) (0.009)

100 100 100 100 100 100 0.4 0.5
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Table C-4: Estimators obtained from S = 1000 simulations of model (4.6), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0.2 and p = 1. Model (4.6) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.205 0.401 0.496 0.207 0.400 0.498 0.002 -0.004

81.2 97.2 85.2(0.047) (0.019) (0.027) (0.051) (0.033) (0.033) (0.035) (0.028)

94.3 100 100 91.7 100 100 0.7 0.2

200

0.201 0.400 0.499 0.202 0.399 0.499 0.001 -0.001

81.2 98.7 85.5(0.033) (0.013) (0.019) (0.036) (0.023) (0.023) (0.025) (0.020)

100 100 100 100 100 100 0.3 0.4

100

10

0.239 0.396 0.479 0.240 0.386 0.477 0.016 -0.003

53.5 57.6 61.5(0.124) (0.033) (0.047) (0.122) (0.052) (0.052) (0.056) (0.045)

17.1 100 99.9 12.7 97.5 99.3 0.9 0.2

20

0.221 0.399 0.490 0.223 0.393 0.489 0.008 -0.003

61.5 66.6 74.3(0.089) (0.021) (0.033) (0.089) (0.039) (0.039) (0.043) (0.033)

39.4 100 100 37.9 100 100 1.4 0.9

100

0.209 0.399 0.497 0.209 0.399 0.498 0.000 -0.002

57.5 83.4 83.9(0.038) (0.009) (0.014) (0.039) (0.018) (0.018) (0.020) (0.015)

99.5 100 100 99.4 100 100 0.6 0.1

200

0.204 0.400 0.498 0.204 0.400 0.499 0.000 0.000

59.3 87.8 85.9(0.027) (0.006) (0.010) (0.028) (0.013) (0.013) (0.014) (0.010)

100 100 100 100 100 100 0.5 0.8

Table C-5: Estimators obtained from S = 1000 simulations of model (4.6), for various values of N and T .

Data are generated by using the Gaussian copula with ρ = 0 and p = 1. Model (4.6) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.202 0.401 0.498 0.203 0.400 0.498 0.002 -0.001

86.9 98.9 84.8(0.034) (0.018) (0.024) (0.038) (0.031) (0.029) (0.033) (0.026)

99.9 100 100 99.9 100 100 0.4 0.5

200

0.202 0.400 0.498 0.202 0.400 0.499 0.000 -0.001

87.3 99.7 87.0(0.024) (0.013) (0.017) (0.027) (0.022) (0.021) (0.023) (0.018)

100 100 100 100 100 100 0.3 0.5

100

10

0.206 0.401 0.496 0.206 0.398 0.495 0.005 -0.001

88.2 90.3 77.8(0.049) (0.026) (0.029) (0.050) (0.038) (0.037) (0.041) (0.030)

70.4 100 100 55.3 99.9 100 0.3 0.2

20

0.202 0.400 0.499 0.202 0.400 0.499 0.001 0.000

87.6 94.1 82.3(0.035) (0.017) (0.021) (0.036) (0.026) (0.026) (0.028) (0.022)

99.3 100 100 98.8 100 100 0.7 0.5

100

0.201 0.400 0.500 0.201 0.400 0.500 0.000 -0.001

86.5 98.8 86.6(0.016) (0.008) (0.009) (0.017) (0.012) (0.012) (0.013) (0.010)

100 100 100 100 100 100 0.5 0.4

200

0.200 0.400 0.500 0.200 0.400 0.500 0.000 0.000

85.2 99.3 85.1(0.012) (0.005) (0.007) (0.012) (0.008) (0.008) (0.009) (0.007)

100 100 100 100 100 100 0.4 0.6
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Table C-6: Estimators obtained from S = 1000 simulations of model (4.6), for various values of N and T .

Data are generated by using the Clayton copula with ρ = 0.5 and p = 1. Model (4.6) is also fitted using

p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p = 1 p = 2 IC (%)

N T β̂0 β̂1 β̂2 β̂0 β̂11 β̂21 β̂12 β̂22 AIC BIC QIC

20

100

0.208 0.403 0.492 0.211 0.401 0.494 0.004 -0.005

66.6 91.3 83.8(0.060) (0.021) (0.034) (0.064) (0.036) (0.042) (0.041) (0.036)

80 100 100 74.9 100 100 0.9 0.3

200

0.203 0.401 0.497 0.204 0.399 0.498 0.002 -0.002

66.6 93.9 84.3(0.042) (0.015) (0.024) (0.046) (0.026) (0.030) (0.029) (0.025)

97.5 100 100 96.1 100 100 0.4 0.5

100

10

0.297 0.389 0.448 0.299 0.368 0.448 0.032 -0.010

34.8 37.5 57.2(0.166) (0.039) (0.067) (0.162) (0.071) (0.074) (0.081) (0.062)

17.1 99.1 94.0 12.9 74.4 84.5 0.8 0.4

20

0.255 0.398 0.469 0.259 0.396 0.478 0.007 -0.016

31.5 40.5 71.6(0.126) (0.025) (0.049) (0.128) (0.057) (0.060) (0.065) (0.048)

26.0 100 100 25.5 99.8 100 1.2 0.2

100

0.214 0.400 0.493 0.216 0.400 0.495 0.002 -0.004

28.7 52.1 83.1(0.057) (0.011) (0.022) (0.059) (0.028) (0.029) (0.032) (0.023)

84.0 100 100 81.5 100 100 0.6 0.3

200

0.208 0.399 0.497 0.209 0.399 0.498 0.001 -0.002

32.0 55.7 81.2(0.040) (0.008) (0.015) (0.042) (0.020) (0.021) (0.023) (0.017)

99.0 100 100 97.7 100 100 1.1 0.6
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Chapter 5

Concluding remarks

In conclusion, we give some insight of future direction of study. We start from Chapter 3. First of all, we focus on the

probabilistic properties. Although the uniqueness of the stationary distribution for the discrete valued processes are

proved by using Markov chain theory, the rate of convergence to the limiting distribution is still unanswered. From

the point of view of modelling improvements, an interesting extension could be achieved by considering a Markov

chain of order greater than 1 which is able to define a model with several lags besides the first. As far as inferential

model comparison is concerned, methods based on penalized likelihood, i.e., AIC and BIC, are adopted to compare

the performance across various models, in terms of fitting and prediction. Nevertheless, theory and methods for

model selection represent an important open issue, which need to be better investigated. Finally, in line with the

recent theory developed for some multivariate discrete-valued processes, the specification of a unified framework for

modelling multivariate discrete-valued time series may represent an interesting and challenging generalization.

For what concerns Chapter 4, is it worth to specify that throughout the paper the network has been assumed as

nonrandom; this structure may be suitable for some fields (social network in short time periods, spatial borders) but

it might be unrealistic for other applications (like epidemics). Therefore, a challenging and useful extension of the

Network Autoregression (NAR) models either for continuous and discrete responses would be estimating a random

adjacency matrix, and then casting it into the time series model. However, strong problems of model identifiability

could raise as well as curse of dimensionality difficulties related to the contemporaneous estimations of several

parameters. A second extension of crucial importance is related to the estimation. As the network dimension grows

the QMLE obtained from the independence quasi-likelihood might be a poor estimator of the “true” parameters.

A more suitable estimation procedure, for example using the generalized estimating equation theory, might be of

interest for future researches.
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