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Abstract

Statistical inference for discrete-valued time series has not been developed as systematically as traditional methods

for time series generated by continuous random variables. This Ph.D. dissertation deals with time series models for
discrete-valued processes. In particular, Chapter [2] is devoted to a comprehensive overview of the literature about
observation-driven models for discrete-valued time series. Derivation of stochastic properties for these models is
presented. For the inference, general properties of the quasi maximum likelihood estimator (QMLE) are discussed,
followed by an illustrative application.

In Chapter [3] a general class of observation-driven time series models for discrete-valued processes is introduced.
Stationarity and ergodicity are derived under easy-to-check conditions, which can be directly applied to all the
models encompassed in the framework. Consistency and asymptotic normality of the QMLE are established, with
the focus on the exponential family. Finite sample properties of the estimators are investigated through a Monte
Carlo study and illustrative examples are provided. The framework introduced in the paper provides a self-contained
background that relates different models developed in the literature as well as novel specifications and makes them
fully applicable in practice.

Discrete responses are commonly encountered in real applications and are strongly connected to network data.
The specification of suitable network autoregressive models for count time series is an important aspect which is
not covered by the existing literature. In Chapter [d] we consider network autoregressive models for count data
with a known neighborhood structure. The main methodological contribution is the development of conditions that
guarantee stability and valid statistical inference. We consider both cases of fixed and increasing network dimension
and we show that quasi-likelihood inference provides consistent and asymptotically normally distributed estimators.

The work is complemented by simulation results and a data example.
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Chapter 1

Introduction

In recent years the availability of discrete data coming from several sources have motivated the outset
of a wide literature on models for count time series processes. A growing attention to high dimensional
data sets involving dynamic binary and count data has been object of interest, in different contexts. For
example, the number of clicks or amount of intra-day stock transactions (Davis and Liu, [2016; |Ahmad and
Francq, [2016). Besides that, time series analysis for integer valued random variables has not been developed
as the continuous counterpart, which, instead, has a long tradition in time series analysis. The peculiar
discrete nature of the process requires an ad hoc treatment for the development of the asymptotic theory
of the estimators. The same is true for the establishment of probabilistic properties, strict stationarity
and ergodicity, of integer valued processes. Other central aspects are related to the establishment of a
comprehensive inferential theory as well as a robust model selection procedure between several candidate
models, so as to make these model fully applicable in real studies. Moreover, usual concepts of the
continuous time series analysis, such as auto-covariance or the Wold representation, need and adapted
definition or can be meaningless.

Time series models for discrete data can be divided in two families of models: observation driven
models and parameter driven models. This thesis deals focuses on the observation driven models (Cox,
1981); which are described by a discrete time series process and a latent process, the latter is defined
as pure deterministic function of the former’s past history. In the parameter driven models, instead, the
latent process depends on unknown parameters and it is treated as stochastic.

The rest of the PhD dissertation is organized as follow. In Chapter [2| a survey of the most famous
time series models for integer valued processes is presented. Chapter [3| introduces a general modelling
framework on observation driven models for discrete data, as an original scientific article. Then, Chapter
[ regards a new contribution on network autoregression models for Poisson processes. Finally, Chapter
hosts some concluding remark on future directions of research.

More precisely, Chapter [2|is devoted to a comprehensive overview of a wide class of observation driven
models for discrete valued time series, with special focus on count and binary data. In particular, technical
and modelling properties are discussed for ARMA-like time series models for integer valued processes
Benjamin et al.| (2003); Davis et al.| (2003); Startz (2008]). The use of these ARMA-like models is illustrated
through the analysis of the daily number of deaths for COVID-19 in Italy from March to December 2020.



The analysis is performed under the assumption both of a Poisson and of a Negative Binomial distribution
for the data generating process. Finally, model comparison is carried out by using penalized likelihood
criteria.

Recent developments on binary and count times series models, involving several approaches and different
specifications for a wide range of models established a fragmentary literature. There would be a benefit from
the specification of a unified framework able to encompass most of the models available in the literature.
This will enable to study relations among models and to derive an unified approach for the derivation of
stochastic properties holding across all the models. Some authors have provided a remarkable formulation
of a general framework for observation driven models, with specific focus on discrete data, see |Douc et al.
(2013). However, this theoretical formulation might be not effective when the aim is to implement models
in real practices. More precisely, the ergodicity conditions established by Douc et al.| (2013)) are hard to
verify in practice, and they vary for each model and every different distribution.

Then, in Chapter 3| we introduce a general modelling framework aiming to provide a unified specifi-
cation for a general class of integer valued time series. From this general framework we point out some
special cases of particular interest, which are new models not directly presented in the literature yet. Then,
we analyze the relationships among different models belonging to the framework. Furthermore, stochastic
properties which hold simultaneously for the entire class of models are derived (strict stationarity and
ergodicity). For some of them, stability conditions have not been set in the literature yet. Finally, a
quasi-maximum likelihood (QMLE) inference is provided with the asymptotic properties of the estimator.
These results make all the models encompassed in the framework fully applicable in practice.

Further sources of information gaining remarkable importance are constituted by network data, which
are considered of essential importance for many topic of research (social network, epidemics, etc..). In
particular, quantifying the impact of a network structure-like dependence on a time series process raises
critical interest. Discrete variables are usually detected in the practice of network studies. For exam-
ple, several information of interest in social network analysis have an integer nature. Then, binary and
count processes are substantially related with network data. As far as we know, at the present time, no
such models exist for non-continuous responses, even though a flourishing literature for their continuous
counterparts has been set, see Zhu et al.| (2017). This is an a crucial open space in the present literature.

The main aim of Chapter [4]is exactly to fill this lack in the literature by specifying a linear and a log-
linear version of the Poisson network autoregression (PNAR) for count processes. We even derive minimal
stability properties of such models. Moreover, in this field two types of asymptotic inference are possible:
with increasing time sample size and fixed network dimension and with both time and network dimension
increasing together. The QMLE is established for the PNAR models under both types of asymptotics.
A further aspect of interest is that all the network time series models presented so far are defined under
the i.i.d. assumption of the error terms. This might be not realistic in many empirical applications. We
overtake this limit by employing the concept of a-mixing (see Doukhan| (1994)) which is a measure of
asymptotic independence over a timespan, allowing to relax the i.i.d. assumption. Then, a complex and
flexible dependence structure among variables is specified, among time and among the network, and this

is effected by defining a copula construction for modelling the dependence between variables.
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Abstract
A comprehensive overview of the literature on models for discrete valued time series is provided, with a special
focus on count and binary data. ARMA-like models such as the BARMA, GARMA, M-GARMA, GLARMA and
log-linear Poisson are illustrated in detail and critically compared. Methods for deriving the stochastic properties of

specific models are delineated and likelihood-based inference is discussed. The review is concluded with an empirical
application, concerned with the analysis of the daily number of deaths for COVID-19 in Italy, under the assumption

both of a Poisson and a negative binomial distribution for the data generating process.

2.1 Introduction

Traditionally, time series modelling has been mostly applied to data that are continuously valued. From the early
specifications of |Yule| (1927)) and |Walker| (1931)), to the formalisation by Box and Jenkins| (1970} /1976)), autoregressive
(AR) and moving average (MA) models have been regularly applied in many fields, from finance to energy and neural
networks, see for example [Ho et al.| (2002), Wang et al.| (2012)) and |Sen et al.| (2016). Non-linear models, such as the
generalized autoregressive conditional heteroskedastic models by (Engle| (1982), [Bollerslev| (1986)) or the threshold
and smooth transition models (Tong and Lim| (1980)), Terasvirtal (1994))), up to the class of score driven models
(Creal et al.| (2013), [Harvey| (2013)), are essentially grounded on autoregressive dynamics. Though often employed
regardless of the discrete nature of the data generating process, continuous models do not adequately describe the
dynamic trend of count or binary data. Notable examples where ad hoc models for discrete data are required include
the number of clicks on a website and the daily counts of people infected with a rare disease or, as far as binary
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data are concerned, the presence or absence of an edge in a random network system and the success or failure of an
industrial process.

Despite some relevant instances that we aim to discuss in this chapter, ARMA models for discrete valued time
series have not enjoyed the same popularity of linear models for continuous time series. One of the reasons certainly
lies in the fact that linear processes are related to second order stationarity, which fully characterizes Gaussian time
series, while for discrete or count data, the concept of autocovariance needs to be adapted . Moreover,
the Wold representation, which allows every covariance-stationary time series to be written as the sum of two time

series, one deterministic and one stochastic, has no direct interpretation [Davis et al (2016) in the integer-valued

case. As a matter of fact, modelling discrete valued time series entails challenging aspects which are directly related
to the nature of the generating random process.

In recent years, the interest in the analysis of discrete dynamic data has been considerably increasing. An useful
classification of time series models in two main families is due to , who distinguished observation driven
models (see Zeger and Liang| (1986])) and parameter driven models (1988)). In the parameter driven models
two different time series processes are object of inference: the process of the observed data, say {Y:},.,, and an

unobservable latent time series {j},., which presents a dynamic formulation and carry an error term {e;},., . The
observation driven models, instead, are fully described by the time series of the observed process {Y;},. ,, since here
the latent process {y},., is simply defined as a deterministic function of the past history of Y;.

An early contribution to the development of integer valued time series is constituted by Integer Autoregressive
models (INAR) [Al-Osh and Alzaid| (1987); |Alzaid and Al-Osh| (1990), that is categorized as an observation driven
model. Some other examples of observation-driven models for count time series include the works by
(2003), Benjamin et al.|(2003) and [Ferland et al. (2006), among others. With the focus on the dynamic trend of count
data, recent contributions can be envisaged in the works of Rydberg and Shephard| (2003), Kauppi and Saikkonen|
(2008), Davis and Liul (2016), Ahmad and Francq| (2016) and |Clark et al.| (2018) and |Gorgi (2020).

The aim of this chapter is to provide a comprehensive overview of the literature on observation driven models

for discrete valued time series, with a special focus on count and binary data. In particular, stochastic properties

and estimation are discussed for notable ARMA-like models, such as BARMA [Li (1994), GARMA
(2003)), GLARMA Davis et al. (2003), M-GARMA |Zheng et al.| (2015)) and log-linear Poisson [Fokianos et al.| (2009))

models. These models are generally referred to ARMA-like models as they are designed to account for the direction

and the magnitude of three relevant effects in the analysis of temporal data. More precisely, ARMA-like models
may include an autoregressive-like effect, a moving average type effect and the dependence with respect to the past
predictions of the random process. The specification for these effects eventually depends on suitable link functions
which are selected according to the probabilistic assumptions for the data generating process.

The stochastic properties of discrete ARMA models can be derived following two different methods based on

the Markov chain theory and the perturbation approach, among others. The perturbation approach developed by

[Fokianos et al.| (2009) is based on the analysis of a modified version of the discrete process, which allows one to derive

properties of the original processes. An alternative method, based on Markov chain theory without irreducibility

assumptions, has been considered by [Matteson et al.| (2011)) and Douc et al.| (2013). This approach leads to obtaining

probabilistic properties of the discrete variable by defining the latent process as a Markov chain of order one. To
illustrate these methods, an example for the GARMA model is given, taken from [Matteson et al| (2011). An
application to log-linear Poisson autoregression provided by [Douc et al|(2013) is reported, as well.

As far as inference is concerned, the properties of the maximum likelihood estimator (MLE) and Quasi MLE
(QMLE) have been widely studied for discrete-valued models; see Douc et al.| (2013), Davis and Liu (2016) and
[Ahmad and Francq| (2016)), among others. Specifically, the use of the generalized linear model (GLM) of
land Nelder| (1989)) for dynamic discrete data provides a natural extension of continuous-valued time series to integer-

valued processes. Then, theory for likelihood inference can be acquired directly from the GLM framework as well as



principles for hypothesis testing and model diagnostics. For the case of misspecified models, results related to quasi
likelihood inference are also illustrated, together with the conditions required for strong consistent and asymptotically
normal QMLE, based on the work of Douc et al.[(2013) and |Douc et al.| (2017)). Clearly, the exact likelihood inference
and the asymptotic properties of the MLE are obtained as a special case.

To conclude the review, an application of the ARMA-like models is illustrated through the analysis of the recent
time series related to the daily number of deaths for COVID-19 in Italy from March to December 2020. The analysis
is performed under the assumption of a Poisson and a negative binomial distribution for the data generating process.

Model comparison is carried out by using penalized likelihood criteria.

2.2 General overview

Let us consider a stochastic process {Y;},cy, the information set of past observations of the process F; 1 =
0{(Xs+1,Ys), s <t—1} up to the time ¢ — 1 and a vector of covariates X; up to time ¢, where o {X} refers to
the sigma-field generated by the random variable X, and it is defined as the smallest sigma-field with respect to
which it is measurable. For the definition of sigma-field see (Billingsley} 1995, p. 19-20). The corresponding realiza-
tions are denoted with the lower-case counterparts, y; and x;, respectively. The focus, throughout the chapter, is
on the case when {Y;},y is discrete-valued. Suppose that the distribution of the process lies in the general class of

one-parameter exponential family:

q(Ye |Fi1) = exp{Yy f(me) — A(m) +d(Y2)} (2.1)

where the conditional expected value is defined as
e =EB(Y; |Fio1) = A ()

and n; = g(p) with g(-) a twice-differentiable, one-to-one monotonic function, which is called link function, see
McCullagh and Nelder| (1989)).

In equation it is assumed that the dynamics of the density (or mass) function ¢(Y;|F;—1) are captured by
the parameter u;, or equivalently 7, called linear predictor. The function A(-) (log-partition) and d(-) are specific
functions which define the particular distribution of interest. In the framework of the exponential family of McCullagh
and Nelder| (1989)), f(n:) is the canonical parameter. The mapping f(-) is a twice-differentiable bijective function,

chosen accordingly to the model of interest. The conditional variance is
o? =V(Y;|Fio1) = A () = () -

Example 1. In equation (2.1), the Poisson distribution is obtained by setting f(n:) = ne, ne = g(ue) = log(pe),
A(ne) = exp(n) = e and d(Yy) = log(1/Yy!). The conditional expectation is then E(Y|Fi—1) = V(Y| Fi—1) =
exp(n) = it

Clearly, since for the Poisson distribution the canonical parameter is 1, = log(u), see [McCullagh and Nelder
(1989), one has f(n:) = n;.

Example 2. The Gaussian distribution (with known variance) is obtained by setting f(n) = me, g(pe) = L%,

Alg(pe)] = % and d(Y:) = log {\/2172 exp (2}322)} One can verify that p, = o2n;, so A(n) = o2n? /2, whose

first and second derivatives are respectively y; and o?.

It can be convenient to consider the following dynamic representation for the time varying conditional mean,

9lpe) = m =%/ B+ 2, (2.2)



D k q
2= 05 [MYi ) =x B8]+ D vz +ey) + Y bie s, (2.3)
j=1 j=1 j=1

where p, k adn ¢ are integers representing the maximum lag order of their respective additive terms, and €;, generally
called prediction error, is defined in the following way:
h(Yy) —g
€ = h(Ye) — g(pe) (2.4)

14
and v, is some scaling sequence, for example:
e v, = 04, Pearson residuals
e v; = 0}, Score-type residuals
e v, = 1, No scaling
o vy = V[h(ys) [ Fi-1]

where V[h(y;) |Fi—1] is the variance of the function h(Y:), conditional to the past information F;_;.
Furthermore, the function h(Y;) is called “data-link function” because it is applied to the observation process
Y; whereas g(u:) is said “mean-link function” because it is applied only to the conditional mean, unlike the link
function g(-) which, in principle, can be applied to any parameter or moment of the probability distribution. Both
the functions A(Y;) and g(u:) are twice-differentiable, one-to-one monotonic; their shape depends on the specific
model — and the distribution of interest in equation . Note that the terminology link function is
generally referred to the specification of a function g(-) for modelling the dependence between a transformation 7,
of the conditional expected value p; and a linear predictor including information related to past values z; or to a
covariate set x;. The same terminology is here adopted for the specification of functions h(-) and g(-) since, in some
instances belonging to the exponential family distribution, convenient choices for these functions correspond to the
canonical link function. Nevertheless, i(-) and g(-) might be different from g(-), so that the model (2.2)-(2.3) is able
to encompass a wide range of existing models developed in the literature, as its special cases. Some examples are
presented in the next section.
Despite the fact that it is not constrained to assume a specific formulation, in general, it is useful to choose the
mean-link function as follows:
g(pe) = E[R(Y1) [Feoa], (2.5)

in order to obtain ¢, ~ M DS (Martingale Difference Sequence), i.e. the difference E[h(Y;) — g(u+)|Fi—1] = 0. In fact,
a MDS process has conditional expectation Ele; |Fi—1] = 0 and unconditional expectation E(e;) = 0. Moreover it is
uncorrelated, i.e. E(ee—s) = 0, with s # 0. This is a really useful construct in probability theory because it does
not require the usual assumption of independence of the errors. Furthermore, most limit theorems that hold for an
independent sequence will also hold for a MDS.

Moreover, if v; = \/\W , then the residuals in equation form a white noise (WN) sequence,
with unit variance. In practical situations, an explicit formula for the conditional moments E [h(Y};)|Fi—1] and
V [h(Y2)|Fi—1] is not always available. In this cases, it seems reasonable to use an approximation constructed from
their Taylor expansions; for example, the second order expansions are: g(p;) = E [h(Y;)|Fy—1] & h(pe) + 5h" (1) 07,
V(Y| Fit] = B [A(Y)2|Fomr] — B [A(YD)|Femr]? & mlpn) + 3m” (ue) o? — Gl1ue)?, where m(-) = h(-)?.

Note that the process {Y;},.y is observed whereas {u;},cy is not. However, it can be shown by backward
substitutions in —, that the process {Nt}teN is a deterministic function of the past F;_1. This is the reason
why equations — belong to the class of “observation-driven models”, see |Cox| (1981)).

The parameters ¢, 6 and v in equation model the direction and the magnitude of three relevant effects

in the analysis of temporal data. Firstly, the autoregressive-like effect which represents the dependence on the

10



past observations; then, the effect of the moving average part is considered for modelling the dependence between
prediction error terms over time; finally, the effect of the past memory dependence accounts for the dependence with
respect to the past prediction rather than on the past observations. The latter can be seen as the dependence of the
process from its whole past (since p; depends on all the past observations Y;_1,Y;_2,...). In principle, any effect
can be specified in the model through different link functions. Typically, these functions are tailored to the nature

of the data generating process.

2.3 Some relevant models

This section describes the most relevant models developed in the literature of ARMA-like time series for binary and

count observations generated from probability distributions mainly belonging to the exponential family.

2.3.1 GARMA

A well-known specification for discrete-valued time series is the generalized Autoregressive Moving Average model,
GARMA, |Benjamin et al.| (2003)). Here, the distribution of the process is defined to be the one-parameter exponential
family . From equation - the GARMA model is obtained when k& = 0, by setting g = g = h and 1, =1,
so that, the three link functions are equivalent and no scaling is applied:

P q
me=x{B+> ¢ [9Vi;) —x{ B+ 0, [9(Yies) — mej]. (2.6)
j=1 j=1
The model includes the autoregressive and the moving average effects by using the same link function g. The
dependence with the past memory is not considered directly by a specific factor. This means that model would
be employed when the immediate past values of the observed process Y;_;,j = 1,..., max(p,q) may be considered
influential. In general, ¢; is not a martingale difference sequence then the mean-link function g here does not follows
, instead, it is just set to be equivalent to g. However, there still is a special case in which ¢, ~ M DS, such as
g = h :identity (see the M-GARMA model below).
Although this model is suitably applicable in practice to every distribution encompassed in , it has been
mainly used for count data following a Negative Binomial (NB) distribution like equation (12) in Benjamin et al.
(2003)).

2.3.2 M-GARMA

A suitable extension of the GARMA model in (2.6|) has recently been introduced by |[Zheng et al.| (2015)); it allows the
residuals ¢; to be a martingale difference sequence (MDS), for this reason it has been called martinagalised GARMA
(M-GARMA). It is obtained from (2.2)-(2.3)) for k =0, g(u:) = E[h(ys) | Fi—1] = g(pt) and vy = 1:

9lpe) =x[ B+ 6 [W(Yiey) = x{ ;8] + )0 [h(Yiej) — g(pe—j)] - (2.7)

j=1 j=1

For its particular construction, in this model the crucial choice is on the data-link function A which would entirely
determine the mean-link function. The usefulness of this model is on the possibility to write h(Y;) as a standard
ARMA model simply by adding h(Y;) — g(p) in both sides of (2.7) and rearranging the covariates:

p q
WYp) =x{a+Y ¢h(Yij) + e+ Y ey,
Jj=1 j=1

11



where a = (1 - Z§:1 quj) B and B is the lag operator, such as Bix; = x;_;. Note that when g(u;) = E[h(y;) | Fi—1] =
h(ue), a GARMA model with the linear predictor 7, = E[h(y;) |F;—1] is obtained. Also, the use of the first-order

Taylor approximation for g(-) around p; provides
9(e) = E[p(Yy) [Fi1] =~ h(pe) -

Then, the standard GARMA model has been found as a particular case of the M-GARMA model when linear
approximation of g is used. This leads to consider the application of model , instead of the usual GARMA
model (2.6), in all the cases when the expression g(u:) = E[h(Y;)|F;—1] has a closed-form. This happens only
under certain distributions, (such as Lognormal, Gamma and Beta, among others) and suitable choices the data-link
function h(-). The interested reader can find an exhaustive treatment of such particular cases under (Zheng et al.,
2015, Tab. 1).

2.3.3 GLARMA

A promising class has been developed by |[Rydberg and Shephard| (2003) and Davis et al| (2003) under the name
of generalized Linear Autoregressive Moving Average (GLARMA) models; here, again, the distribution belongs to
the exponential family . GLARMA models can be written based on equations — by setting p = 0 and
h :identity:

m=x{ B+ z,

k q
2 = Z’Yj(zt—j +é—j) + Z Oje—j, (2.8)
j=1 j=1

_ Y
V¢ '

€t

In this models, the error component and the past lag of the latent process are considered. However, the effect of
past lags of the discrete process Y; are not directly specified in the model. Notice that this model is equivalent to an

ARMA model on the linear predictor (minus the constants and covariates):

k q
m—X{ B =2 = Z’szt—j + ZTjEt—j )
j=1 j=1
where § = max(k, ¢) and 7; = ; + 6;. Or alternatively, in terms of 7;, we have
k q
N =X; o+ Z'yjnt,j + Z Ti€—j (2.9)
j=1 j=1

where a = (1 - Z?:l 'ijj) B.

2.3.4 Log-linear Poisson autoregression

Poisson autoregression, henceforth Pois AR, introduced by [Fokianos et al.| (2009), is obtained when (2.1)) is Pois(u:),
with f(n:) = log(n;), and in equation (2.2))-(2.3)), one has ¢ = 0 and g = h : identity:

k P
pe=x{et Y Yp—j+ Y biYi (2.10)

j=1 =1
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Obviously, the parameters in equation (2.10) are constrained in the positive real line. A variant of ([2.10) is the
log-linear Poisson autoregression, henceforth Pois log-AR, [Fokianos and Tjgstheim| (2011) which is obtained when

q=0, f(n) = m, g(pe) = log(pe) and h(Y;) = log(V; + 1):

k P

log(us) = xF o + Z% log(pe—j) + Z ¢jlog(Yej +1). (2.11)
j=1 j=1
The models and consider lagged effects for the discrete variable and the mean process explicitly and
do not include an error component. However, note that, for Poisson data, the GARMA model with identity or
log links can be considered as a constrained Poisson autoregression where v; = —6; and ¢; is replaced by ¢; 4 6;, in
equations or (2.11)). So that the Poisson autoregression model can be rewritten in ARMA form.
The model in could be used also for Negative Binomial data, by rewriting the distribution in terms of the

expected value parameter i, see Christou and Fokianos| (2014):

o0 = et () (7). 212

where v is the dispersion parameter (if integer, it is also known as the number of failures) and the usual probability
The distribution (2.12]) with model (2.11]) is obtained from the distribution (2.1J),
by setting the non-canonical link g(u;) = log(u:) and f(n:) = n: — log(v + ™), with A(n;) = —vlog (ﬁ) and

_ L(v+Y:)
d(Y2) = log v, Tty

parameter would be p; = #m

2.3.5 BARMA

In case of dynamic binary data, a relevant model is the Binomial ARMA (BARMA) model (Li (1994]), Startz| (2008)))
which is obtained when is Bin(a, j1t), where the number of trials a is known and the probability parameter is
pt = pe/a. By setting k = 0, h : identity and v, = 1 in —, we have
P q
me=x{ B+ ¢ [Yiej = x{ i8]+ Y05 [Yeej — pey].
j=1 j=1

Note that, when h : identity, the mean-link function in automatically reduces to E(Y; |Fi—1) = p;. Instead, the
link function g can be any suitable function, typically logit or probit. This model is thought for Binomial distribution
in . BARMA model includes the autoregressive effect and the moving average part. The model could be also
generalized to consider the dependence with respect to the long memory term with a suitable link function.

Models for binary time series have not enjoyed the same developments as models for count data. However,
enhancements in this direction could provide useful insights in several fields. The generalization for the non-binary
case could be also interesting for the analysis of temporal categorical data. To the best of our knowledge this part
of the literature seems to be barely explored; see |Fokianos et al.| (2003) and Moysiadis and Fokianos| (2014)) for an
introduction to these models.

2.4 Weak stationarity

We now pass to examine stationarity and ergodicity for some of the models highlighted in the previous section.
Specifically, we consider weak stationarity conditions for GARMA, M-GARMA and GLARMA models, in this section.
For the BARMA model, no direct results on weak stationarity are available in the literature so far. However, strong
stationarity is proved for BARMA, see Moysiadis and Fokianos (2014]), that we shall consider in Section along
with the Poisson autoregression, derived by [Fokianos et al.| (2009) and [Fokianos and Tjgstheim| (2011)).
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24.1 GARMA

For the GARMA model in (2.6)) for g = h : identity, one has ¢, = Y; — u, with zero conditional and unconditional
mean value. Moreover the process ¢; is uncorrelated. The observation process can now be expressed in the form

}/;5 = Ut + €. (213)

By setting w; = Y; — x!'3 and by replacing the expression of (2.6) in , a standard ARMA model is obtained:

Wy :iqu wt,jJriﬂj €—j + €. (2.14)
j=1 j=1
Of course ([2.14) can be easily rearranged via polynomial notation in:
wy = W(B) e
where W(B) = 1+ B+ B2 4 --- = ®(B) " O(B), ®(B) = 1 ~ ;B — - — 6,B7, O(B) = 1+ 6,8 — --- — 0,B"

and B is the lag operator; provided that ®(B) is invertible. Indeed, look that E(w;) = ¥(B), E(e;) = 0 and then
E(Y;) = 3 in the case where x!' 3 = 3. The autocovariance does not depend on time ¢ because of the uncorrelated

€;. Concerning the variance the situation is more complex:

V() x" B+ wy)
w;) = B(e)
U(B) e, U(B) &

Z?/J E(et— iftfj)

0 j=0

"/} (Gt ’L)

I
Tzg

M

-
I

m

[\p@ } , (2.15)

where 1 + ¢B + 3B% + --- = U3)(B). Expression (2.15) is obtained remembering that E(¢?) = V(e;) =
E [E(é7 | Fi-1)] = E [v(1t)]. The expression of the unconditional variance for the mean can be found as follows:V(Y;) =

V(pe) + V(et) since € and p; are uncorrelated. So,

V() =E{[w2(B) ~ 1] v(u)}

The particular expression for v(p) in (2.15) depends on the distribution under investigation from (2.1)). For example,
in case of Poisson distribution, v(us) = u¢ so that

V(Y;) = ¥®(B)E(u) = ¥ (B) s = ¥ (1) 5,

where W) (1) =1+ ¢? + Y3 +--- = Zj 1 1/1 it can be seen that the variance is constant over ¢ and no additional
conditions are required for weak stationarity apart from the usual invertibility of ®(B). For other distributions,
further invertibility conditions could be required; for example, in the Bernoulli case, even \11(2)(3) needs to be
invertible to assure stationarity. This proof is due to Benjamin et al.| (2003).

We remark that these conditions do not work for other link functions different from the identity; the reason is that,
in general, the prediction error in (2.6) ¢, = h(Y;) — 1, is not a MDS (apart from the special case g = h : identity).

In order to develop an asymptotic theory for the maximum likelihood estimator (MLE) much more attention has
been put in assessing strict stationarity and ergodicity for the GARMA model than proving weak stationarity. For

this reason, we will deal with these results in the following section.
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24.2 M-GARMA

The M-GARMA model allows the prediction error to be a MDS. However, the distribution of ¢; does depend
on F;_1; for this reason, |Zheng et al.| (2015) pointed out that, in general, the classical condition of invertibility for
®(B) is not sufficient for the existence of a stationary distribution of the process {g(Y:)},cy. By using the theory
of Markov chains, the authors showed that the standard invertibility condition holds only for the special cases in
which the link function §(u:) = g(pt) + ¢ where ¢ is some function which is constant with respect to p¢; they call
these special cases the canonical link functions (a survey of this link function is presented in Zheng et al.| (2015));
for the other cases they provided only strict stationarity conditions. However, the authors required ¢(y| Fi—1) to
be positive everywhere (RT); this condition is not satisfied for discrete-valued observation process ;. Thus, their
results are valid only for continuous distributions; indeed, in the paper, the attention of the authors is focused on

Beta and Gamma distributions.

2.4.3 GLARMA
For the GLARMA models, weak stationarity conditions follow immediately by rewriting (2.8 as a M A(oc0):

o0
a=V(B)e =) Ve,
j=1

where the model is initialized by z; = 0 and ¢; = 0 for ¢ < 0. In general, here the process {¢;} is a MDS and in the
special case in which Pearson residuals are chosen, it is stationary WN(0,1) and automatically z; will be (weakly)
stationary (and Y; as well) under usual stationarity and invertibility conditions (roots of ®(B) and ©(B) lie all
outside the unit circle on the complex plan). See|Dunsmuir and Scott| (2015) for details. Nevertheless, no results are
available for strict stationarity apart from the simplest case when k = 0, ¢ = 1; see [Davis et al.| (2003), [Dunsmuir
and Scott| (2015]), Davis and Liu| (2016)).

2.5 Strong stationarity

Strong stationarity and ergodicity for models discussed so far are based on several approaches, see [Fokianos et al.
(2020)) for a comprehensive introduction. Here we mainly consider two of them. One is is the perturbation approach
introduced by |Fokianos et al.| (2009)) and [Fokianos and Tjgstheim| (2011)), for the linear and log-linear Poisson au-
toregression models, respectively. The other is the Markov chain theory without irreducibility assumption developed
by Matteson et al.| (2011)), by extending the perturbation argument with Feller properties. These authors showed an
application of their approach to the GARMA model as well, see Section An alternative approach to Markov
chain theory without irreducibility assumption is presented by |Douc et al.| (2013)). In this latter paper, an application
to the log-linear Poisson autoregression is available, see Section[2.5.2] Similar results are established on the BARMA
model, see [Moysiadis and Fokianos| (2014). For the M-GARMA model only results for continuous variables are
available by Zheng et al.| (2015)). For the GLARMA model, no direct strict-stationarity results have been developed
in the literature.

The perturbation approach is an indirect way to establish stability properties of the discrete process {Y;} and it
consists of defining a real valued version of the process, by adding a small real perturbation ¢ to the original process
and then showing stochastic properties on the new perturbed process {Yt(o)}. Moreover, it can be proved that,
as 0 — 0, the two processes are arbitrarily close, see the Appendix for details. The Markov chain theory without
irreducibility allows to extends results of the perturbation approach to the original process, by exploiting the fact

that {y:} can be seen as a Markov chain. Showing stationarity and ergodicity for such chain allows one to conclude
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for strict stationarity of the integer valued process {Y;}. The difference in this approach between Matteson et al.
(2011) and Douc et al.| (2013]) lies only in the additional assumptions required.

We first report an application of the perturbation approach and its extension with Feller properties to the
GARMA model in Section Then, an example of the approach of |[Douc et al.| (2013)) to the log-linear Poisson
autoregression is presented in Section We postpone all the theoretical tools required for the application of the
two methods in the Appendix.

2.5.1 Strict stationarity and ergodicity for the GARMA model

In this section the conditions under which there exists a strict-sense stationary and ergodic version of the observation
process {Y;},. for the GARMA(1,1) model are given. Define

Y| You—1 ~ q(u), (2.16)

glue) =B+ [g(YV7 ) = B] +0 [9(Y7 1) — glpe—1)] (2.17)

where Y;* is a function which map the value of Y; to the domain of g. The process Yp.¢—1 is the set of past values of

Y; from the time 0 until ¢ — 1. ¢(u) is a synthetic notation for (2.1). Three separate cases are considered:
1. q(p) is defined for any p € R. In this case the domain of g is R and Y;* =Y} is taken.

2. q(u) is defined for only u € RT(or p on any one-sided open interval by analogy). In this case the domain of g

is RT and Y;* = max {Y;,c} for some ¢ > 0 is taken.

3. g(p) is defined for only p € (0,a) where a > 0 (or any bounded open interval by analogy). In this case the
domain of g is (0,a) and Y;* = min {max (Y3, ¢), (a — ¢)} for some ¢ € (0,a/2) is taken.

Valid link functions g are bijective and monotonic. Choices for Case 2 include the log link, which is the most

commonly used, and the link, parametrized by a > 0,

g(p) = log(e*" —1)/a

which has the property that g(u) = p for large . Examples of valid link functions for Cases 1 and 3 are the identity
and logit functions, respectively. Note that model (2.16]) is more general than the class of models developed in (2.1))
in the sense that it is not necessarily assumed that ¢(-) belongs to the exponential family.

Perturbed model

The perturbation approach consists of adding a small real-valued perturbation to the discrete-valued time series
model in order to obtain a @-irreducible process (see Definition 1] in the Appendix); then the standard tools for
Markov chains could be used to assess stationarity and ergodicity for the perturbed version of the GARMA model.

First, ergodicity and stationarity results for the following perturbed model are obtained:
Yt(o) | Yo(g)—l ~ ‘I(HEU))

g(u™) = B+ 6 g1 = B + 0 [or[)) — 9] + 0 Zu, (2.18)

where Z; ~ N(0,1) are independent, identically distributed random perturbations, for any ¢ > 0, which is a scale
factor associated with the perturbation. The value uéa) is a fixed constant that is taken to be independent of o, so

that 1\”) = pio.
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Theorem 1. The process {uff’)}teN specified by the perturbed process (2.18) is an ergodic Markov chain and thus is

stationary for an appropriate initial distribution for u((f), under the conditions below. This implies that the perturbed

process {Yt(g)}teN is stationary and ergodic when ,ugg) 1s initialized appropriately. The conditions are:

1B ) = p”.

2. (2+ 6 moment condition): There exist § >0, r € [0,1+6) and nonnegative constants di,ds such that

E(Y, ) — w120 1) < di |l + do.

3. g is bijective, increasing, and
3.1. g: R+~ R is concave on RT and conver on R™, and |p| < 1

3.2. g:RT — R is concave on RY, and |¢|,|0] < 1

3.3. 10| < 1; no additional conditions on g : (0,a) — R.

The proof can be found in the appendix of|Matteson et al.[(2011). This approach yields stationarity and ergodicity
properties for the perturbed model. In order to extend these conclusions to the original unperturbed model the results

of the following section are required.

Unperturbed model

In this section, the existence of a stationary distribution for the observation process {Y;}, .y of the original (unper-
turbed) class of GARMA models is proved. Since {Y;},y is not itself a Markov chain, the existence of a strict-sense
stationary ergodic process {Y;},oy is proved by showing that the Markov chain {4}, has a unique stationary
distribution. First, existence of a stationary distribution for the Markov chain is shown by using the weak Feller
property. Let Yo(x) denote the random variable Yy conditioned on g = x. The results of this section are due to
Matteson et al.| (2011)).

Theorem 2. The process {jt},cy specified by the GARMA model (2.17)) has a stationary distribution, and thus is

stationary for an appropriate initial distribution for pg, under the following conditions:
1. Yo(z) = Yo(a') as ¢ — o'
2. E(Ye| ) = pe-

3. (2+ 6 moment condition): There exist § > 0, r € [0,1+ &) and nonnegative constants di,ds such that

B(Y, — ™ | o) < di ] + do.

4. g is bijective, increasing, and
4.1. g : R~ R is concave on RY and convex on R™, and |¢| < 1
4.2. g:RY — R is concave on R, and |¢|,|0] < 1

4.3. 0] < 1; no additional conditions on g : (0,a) — R.

For the proof, Theorem |8 is applied to the chain {g(u¢)},cy to show that it has a stationary distribution; this
implies the same result for the chain {{},.y. The state space S = R of {g(u)},cy is a locally compact complete
separable metric space with Borel o-field. A drift condition for {g(u)},cy is given under the conditions of Theorem
for the compact set A = [-M, M] (the drift condition holds when the perturbation o = 0). All that remains is to
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show that the chain {g(s)},cy is weak Feller. See the Appendix for all the details and definitions. Let X; = g(p).
For Xy = x one has that

Xi(@) =7+ o(g(Y5 (97" () = 7) + 0(g(Y (97" (2))) — @).

Lis continuous, Yo(¢7(x)) = Yo(g~1(2)) as * — a’/. Since the * that maps Yy to the domain of g is

Since g~
continuous, it follows that Yy (¢~ %(z)) = Yy (9 1(2')) as * — 2’. Since g is continuous, then g(Yg (¢~ (x))) =
g(Yg5(g71(2"))). So X1(x) = Xi(2') as x — 2/, showing the weak Feller property.

Then, uniqueness of the stationary distribution for u; is shown, using the asymptotic strong Feller property. It
is further assumed that the distribution 7, (-) of g(¥;) conditional on g(u;) = z varies smoothly and not too quickly

as a function of z. This mean that 7. (-) has the Lipschitz property

) =)
w,zER:w#z |w,z|

lry <B<oo (2.19)

where ||-|| 7 is the total variation norm (see Meyn et al.| (2009), page 315).

Theorem 3. Suppose that the conditions of Theorem@ and the Lipschitz condition (2.19)) hold, and that there is
some ¢ € R that is in the support of Yy for all values of ug. Then there is a unique stationary distribution for

{ut}ien- This implies that {Y;}, o is strictly stationary when o is initialized appropriately.

The proof of the theorem can be found in Matteson et al.| (2011) and Proposition 8 in |Douc et al.| (2013).
A similar procedure can be followed to prove strict stationarity and ergodicity for the GARMA model with more

than one lag. See |[Matteson et al|(2011)) for further discussion.

2.5.2 Strict stationarity and ergodicity for log-linear Poisson autoregression

The work of [Douc et al| (2013) is intended to provide an alternative proof on stationarity and ergodicity for the
discrete process Y; by weaken the Lipschitz assumption , which is not satisfied for widely used observation-
driven models. They specify a wide class of observation-driven model as follows, such as the log-linear Poisson
autoregression. Let (X, d) be a locally compact, complete and separable metric space and denote by X" the associated
Borel sigma-field. Let (Y,)) be a measurable space, H a Markov kernel from (X, &) to (Y,Y) and (z,y) — f,(z) a
measurable function from (X x Y, X ® )) to (X, X).

An observation-driven model on N is a stochastic process {(Xy,Y;),t € N} on its space X x Y satisfying the

following recursions: for all t € N,
Yigr|Fe ~ H(Xy; o), X1 = frig (Xe) (2.20)

where F; = 0(X;, Y31 < t,l € N) and fy,,, is a generic function depending on the observation process {Y;,1 <t + 1}
. Similarly {(X;,Y:),t € Z} is an observation-driven time series model on Z if the previous recursion holds for all
t € Z with F, = o(X,, Y51 < t,l € Z).

Denote now by @ the transition probability associated to {X;,t € N} defined implicitly by the recursions ([2.20]).
See the Appendix for details. Then, general conditions expressed in terms of H and f are derived under which the
processes {X;,t € N} and {(X¢,Y:),t € N} admit a unique invariant probability distribution.

In the next section we highlight the proof for strict-stationarity and ergodicity for the discrete process. Only
the aspects of the proof which significantly different from those in Section [2.5.1] are showed here. We remind the

interested reader to the Appendix for the details.
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Alternative condition for Markov chain approach without irreducibility

In what follows, if (E,&) a measurable space, £ a probability distribution on (E, &) and R a Markov kernel on (E, &),
denote by P{ the probability induced on (E, E¥) by a Markov chain with transition kernel R and initial distribution
&. Denote by E? the associated expectation. The Lipschitz assumption (2.19)) is substituted by

(A3)  There exists a kernel Q on (X2 x {0,1},X®2 @ P({0,1})), a kernel Q* on (X2, X®?) and a measurable
function « : X? — [1, 00) and real numbers (D, (1, (o, p) € (RT)3 x (0,1) such that for all (z,2") € X2,

1—a(z,2") <d(z,2"\W(z,2") (2.21)
EY s, [d(X, X,)] < Dpld(z, ") (2.22)
EY s [d(X0, X)W (X0, X,)] < DptdS (2, )W (2. (2.23)

Moreover, for all z € X, there exists v, > 0 such that

sup  W(z,2') < o
«'€B(z,7x)

Some practical conditions for checking and in (A3) can be denoted.
Lemma 1. Assume that either (i) or (ii) or (iii) (defined below) holds.
(i) There exist (p,3) € (0,1) x R such that for all (z,2") € X?
(X1, X}) < pd(z,a’), PLys —aus. (2.24)
QW <W+p (2.25)
(ii) holds and W is bounded.
(i) holds and there exist 0 < o < o and B € RT such that for all (z,2") € X2
d(z,z") < W*(z,z")
QW < W
Then, and hold.

All the proof are in the Section 3 of Douc et al.| (2013]).

The condition (A3) for the Log-linear Poisson autoregression

We now report here the proof of (A3) for the log-linear Poisson autoregression model with one lag. Consider a

Markov chain {X;},.y with a transition kernel @ given implicitly by the following recursive equations:
Vi1 Xow, You ~ P(e™)
Xt+1 =d + aXt + bln()/,g+1 + 1)

'l

where P(A) is the Poisson distribution with parameter A\. Here X = R so d(z,2') = |z — 2| and the function

fy(z) = d+axz + bln(1 +y). This model called log-linear Poisson autoregression (for details see |[Fokianos and
Tjpstheim| (2011))).

Lemma 2. If |a+b| V |a| V |b] < 1, then (A3) holds.
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Proof. Define @ as the transition kernel Markov chain {Z;,t € N} with Z, = (X4, X}, U;) in the following way. Given
Zy = (x,2',u), if ¢ < 2, draw independently Y;11 ~ P(e*) and Vipq ~ P(e“’/ —e€”) and set Y/ | = Yiy1 + Vig1.
Otherwise, draw independently Y/, ; ~ P(e) and Vipq ~ P(e® —e*') and set Yiiq = Y+ Vi

Xy = d+ax+ bh’l(Y;g_;,_l + 1),

X/ 1 =d+az’ +bIn(Y/ , +1),

Uit1 =1y, =y, = lv,,,=0,

t+1

Ziv1 = (X1, X[ 11, Up)

where Q satisfies the marginal condition (A-9). Moreover, define for all z# = (z,2) € X2,Q%(«*,-) as the law of
(X1, X]) where

Xi=d+az+bln(Y +1), Y ~P(""), (2.26)
X =d+az' +bln(Y +1),
and set for all 2% = (z,2') € R?,
oz(xﬁ) = {exp —erve' 4 ez/\“"/} .

Then, Q and QF satisfy (A-11)). Using twice 1 — e™* < u,it follows that

’

1— oz(a:ﬁ) - 1-— {exp _esz' + ez/\m’} < ezV:E/ 7

eV (1 — e P2 < W(z,2')|z — 2|

with W(z,2') = eIVl so that (2.21)) holds true. To check (2.22) and (2.23)), Lemma [1| is applied, by checking
option (i). Note first that

pQ’

S, X1 — Xi| =lallz —2'|} = 1, (2.27)

so that (2.24)) is satisfied. To check (2.25)), it can be shown that

Q*W (z,2')

——= =0 2.28
|:L’\V|I:I:I’I|l~>oo W (z, ") (2.28)

and for all M > 0,
sup QW (x,z') < oo (2.29)

V]2 | <M
Now, without loss of generality, assume xz < z’. Using provides
Q*W(x,2') =E (e‘XlIVlX“) <E (e‘X”) +E (e‘X“> . (2.30)
First consider the second term of the right-hand side of ,
E (e|X{|) < e\d|E(6\az'+bln(1+Y)). (2.31)

Noting that if v and v have different signs of if v = 0, then |u + v| < |u| V |v|. Otherwise, |u +v| = (u+ v)1ys0 V
(—u — v)14<p. This implies that

e\u+v| S e|u| +6|U| _’_eu+vlv>0 _’_e—u—v1v<0.
and plugging this into (2.31]),

E(elX1) < el (e\aumw +E[(1+ )] 4+ 2 B[(1 + V)" 150 + e “*'E[(1 + Y)*b]1b<0) .
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Note that for all v € [0, 1],
E[(1+Y)]<[EQ+Y)] =1+e") <1+e% <1+,
Moreover, since |b] € [0,1], b1pso € [0,1] and —bly<o € [0, 1]. Therefore,
E(eX1) < eldl (e'a“m/‘ + 14 elbllel 4 ean” (1 4 b )10 + 679 (14 e*bz/)1b<o)
< eldl (emux'\ 11+ elollzl o glall2’] e\a+bux/|)
< ld (1 n 467(|$|V|$/|)) :

where v = |a| V |b] V |a + b] < 1. The first therm of the right hand side of (2.30) is treated as the second term by
setting ¥’ = z. So
E(l X)) < ld (1 n 4ev(lrlvlr’|)) ’

so that using (2.30]),
QW (z,2') < 2¢l (1 +4ew(\wlv\x'\)) .

Since v € (0,1) and W (z,2’) = el*VI*'l "and ([2.30) clearly implies (2.28) and (2.29). This proves (A3) and together
with (A1)-(A2) provides stationarity conditions for the process {Y;} of the log-linear Poisson autoregression. For
further details, see the Appendix. O

For this method the attention is put on showing stability conditions for the model with only one lag. The

extension to order greater than the first could be challenging. See Douc et al.| (2013)).

2.6 Inference

The inferential procedures for observation driven models of discrete processes usually rely on maximum likelihood
estimation (MLE). However a misspecified version is available, namely Quasi MLE (QMLE), where the likelihood
function considered for the estimation is not necessarily paired with the conditional distribution assumed as a data
generating process, sec [Basawa and Prakasa Rao| (1980), Zeger and Liang| (1986) and Heyde| (1997).

For linear and log-linear Poisson autoregressive time series models, [Fokianos et al| (2009) and [Fokianos and|

[Tjpstheim| (2011) developed maximum likelihood estimation. Quasi-likelihood inference of negative binomial pro-
cesses has been introduced in |Christou and Fokianos| (2014). |Ahmad and Francg| (2016)) established consistency
and asymptotic normality of the QMLE for the specific case of the Poisson distribution. For the general framework
([2.20)), Douc et al. (2013)) proved the consistency of MLE and QMLE. Asymptotic normality, in the same setting, is
later discussed by Douc et al. (2017). Comparable results have been derived by [Davis and Liu| (2016), based on the
approach developed by . The aim of this section is to give a brief introduction to QMLE for the
framework .

Let (©,d) be a compact metric subspace of RP. Define the parameter vector § € © and the QMLE

~

gn,w = argmax sz,z <}/1n> s (232)
0cO

with corresponding conditional (quasi) log-likelihood function

Ly o (Y1) =n""log (H h(f (Y1) (@); yt)) :
t=1

where h(f%{y1.4—1)(7);y;) is the density function coming from the kernel H in (2.20)) and the notation f(y..)(z) =
fo o ff oo ff(x),s<tis the so-called Iterated Random Function (IRF), sce |Diaconis and Freedman| (|199QI),
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with the convention f?(yi.0)(x) = 2. Moreover, let Xy = z be the starting value of the chain X; in (2.20)), then
the likelihood is conditional to the starting point x. Here the dependence on the parameter vector 6 is emphasized
’33(.) = fys (.)
The following results is due to Douc et al.| (2013) and Douc et al.| (2017)). We make the following assumptions.

(B1)  {Yi},cy is a strict-sense stationary and ergodic stochastic process.
(B2)  V(z,y) € X x Y, the functions § — f%y(x) and v + h(v,y) are continuous.
(B3)  There exists a family of finite random variables { f?(Y_oc.) : (6,t) € © x Z} such that for all z € X,

(1) lim,;, 500 SUPgeco d [fe <Y—m:0>(m)7 fe <Y—oo:0>] =0, as.
(i) limy— oo Supgeg [log A(f7(YVi—1)(2); Y2) —log h(fO(Y_sc—1); Y2)| =0, aus.
(iii) E |:Sup0€® (log h(fO(Y_ooit—1); Yt))_J < oo, where the notation (), is the positive part.
(B4)  The true parameter vector §* is assumed to be in ©°, the interior of ©.
(B5)  The function | H(z*,dy)logh(z,y) has a unique maximum {z*}.

Conditions (B1)-(B2) are clearly required so that the estimator 6, , is well-defined. Assumption (B3)-(i) assures
that, regardless of the initial value of X_,, = x, the chain X (and thus X;) can be approximated by a quantity
involving the infinite past of the observations. Intuitively, (B3)-(ii) allows the conditional log-likelihood function to
be approximated by a stationary sequence involving the infinite past of ;. (B3)-(iii) is required in order to obtain
a solvable maximization problem and holds for the discrete Y; (see Remark 18 in |Douc et al.| (2013))). Assumption

(B5) corresponds to an identification condition.

Theorem 4. Assume that (B1)-(B5) hold and f% (Y_oo.0) = fO(Y_oei0) implies that 0 = 6*. Then, for all x € X,

. A *
lim 6, ,=460% a.s.
n—o0

These results establish strong consistency of the QMLE. For the proof and other details see |Douc et al.| (2017)).
An example of derivation of Theorem 4| for the one lag log-linear Poisson AR can be found in [Douc et al.| (2013). See
also |Ahmad and Francg| (2016), for a similar result.

Finally, the condition under which the QMLE is asymptotically normally distributed are investigated.

Define the score function B log h )
og h(z,
Xe(ft(a),yt) = V{ﬂt(@% )
t

and the Hessian matrix

Olog h(xt,yt)
8%}

/32 log h(wt, yt)

Ke(xt(G),yt) = Vﬁwt(ﬂ) 833%

-+ Vgl’t (0)V@$t(9)

Then, define the following notation f*(Y_oo.t_1) : 0+ fOY_ooy1) and f*(Yi.e 1)(x) : 0 — fO(Y1., 1(x)). A further

assumption is required.

(B6) :  For all y € Y, the function v — h(v,y) is twice continuously differentiable. Moreover, there exist € > 0

and a family of a.s. finite random variables
{f0<yfoo:t> : (a,t) €l x Z}

such that f% (Y_...) is in the interior of X, the function 8 — f7(Y_.o) is twice continuously differentiable
on some ball B(6*,¢) and for all z € X,
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*

lim X" (F* Vi) (2), V) = X7 (P Vo), Vo) | = 0
t—o0
where ||| is any norm on RP.
(i) a.s.,
lim sup  [|K? (f*(Yie-1)(2), Ya) = K (f*(Yooo-1), Y2)|| = 0
1200 9 B(6*,¢)
where ||-|| denote here any norm on p X p-matrices with real entries.

(iii)

sup ||K0 (f*(Y_co:0)s Yl)H
0€B(6*¢)

E [er* (f.<Y—oo:O>7Y1)H2:| <oo, E < 00

Moreover, the matrix
2

j(G*) =k |:(v€gg* <Y_oo:0>) (VQfe* <Y—oc:0>)/ % 10g h (fe* <Y—oo:0>7 Yl):|

is non singular.

Intuitively, (B6) assumes that the score function and the information matrix of the data can be approximated by

the their counterpart with infinite past of the process. In addition, all of these quantities are assumed to exist.

Theorem 5. Assume (B1)-(B6) hold and 0, , 2> 60*. Then,
Vil — 0%) 5 N0, T(0) 71 Z(0") T ()71,

where

T(0*) = E (ve 7o (Y_Oo;())) (vg 7 (Y_Oo:()})/ (ai log h ( £ Yoo, Y1)>2

The proof relies on the argument of |Douc et al.| (2017)).

Note that, for correctly specified MLE, equation is the exact MLE and J(6*) = Z(6*) in Theorem
providing the standard ML inference. For further details see Douc et al.| (2017). When the quasi-likelihood come
from Poisson distribution |Ahmad and Francg (2016|) proved a similar result for Theorem An analogous conclusion

can be found in |Christou and Fokianos| (2014) for the Negative Binomial distribution.

2.7 Application

The recent outbreak of the new coronavirus called COVID-19 lends itself to a current illustration of the model
2.3). The time series we consider is related to the daily number of deaths for COVID-19 in Italy from 21st
February 2020 to 20th December 2020. The data can be downloaded by the GitHub repository of the 2019 Novel
Coronavirus Visual Dashboard operated by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University (JHU), https://github.com/CSSEGISandData/COVID-19. The time series has a sample size equal to
n = 304 and is plotted in Figure 2.1} along with its autocorrelation function. The latter shows a temporal correlation
spread over several lags in the past. We argue that observation driven models for discrete time series data may be
effective in this case. The long time dependence suggests the use of a feedback mechanism, captured by the latent

process.
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Figure 2.1: Top-left: daily count for COVID-19 deaths in Italy. Top-right: ACF. Bottom-left: ACF
standardized residuals for log-AR Poisson model. Bottom-right: ACF standardized residuals for log-AR
NB model.

We fit models coming from two different distributions; the Poisson distribution:

Yy
exp(—
P(Yt:ylft_1)1M y=20,1,2,...

b

y!
and the Negative binomial distribution (NB, henceforth):
I'(v+y) ( v )U ( it )y
P(Y; = y|Fi1) = . y=0,1,2,... 2.33
Yy =y|lFi1) T(y + DI(v) \v + vt Y ( )

where v > 0 is the dispersion parameter and p; is the conditional expectation; the latter is the same for both
distributions. Indeed, equation is defined in terms of mean rather than of the probability parameter p, = ﬁm
and it accounts for overdispersion in the data as, in , V(Ye|Fiz1) = pe (1+ pe/v) > pe. In the Poisson
distribution, the mean and variance are the same.

In order to set a model selection procedure we have estimated the following one-lag models, the log-linear Poisson

autoregression ([2.11)
log(pe) = o + dlog(ye—1 + 1) + ylog(pe-1),

the GARMA model ({2.6))
log(ue) = o + ¢log(y;_1) + 0 [log(y;_1) — log(ps-1)]
where y}_; = max {y, ¢} with ¢ = 0.1 and a = (1 — ¢)5 and the GLARMA model (2.7)

log(pe) = o+ vlog(ue—1) + 0 <yt_ls_ut_l> :
t—1
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where s; = \/j1; for the Poisson distribution and s; = /g (1 + p¢/v) for the NB.
QMLE has been carried out. The log-likelihood function of the Poisson and NB distributions is maximized by

using a standard optimizer of R based on the BFGS algorithm. The score functions written in terms of predictor

=15 (o) 20

t=1
n(0) = l Z (ye + v) expz(6) ﬁxt(ﬁ).
n expa(0) + v 00
The solution of the system of non-linear equations x,(6) = 0, if it exists, provides the QMLE of 6 (denoted by é)
See Section for details on the inference. In NB models, the estimation of v is required. We used the moment

x; = log p; are:

estimator, as in |Christou and Fokianos| (2015):

n -1
v = {wZ (e = )* = ] /ﬂ?} 7

t=1
where fi; = ut(é) from the Poisson model. Clearly, we replace each quantity with the sample counterparts computed
at .

The results of the analysis are summarized in Table In the likelihood-based framework, model selection is
based on information criteria, such as the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). All the coefficients of the estimation are significant at the usual 5% level. Both AIC and BIC select the NB
log-AR model as the best, in the goodness-of-fit sense.

Table 2.1: MLE results for COVID-19 death counts (standard errors in brackets).

Models & é 5 6 o AIC  BIC
, 0.154  0.619  0.357 -
Pois log-AR - 24204  35.355
(0.035) (0.060) (0.062) -
, 0211  0.976 - -0.360
Pois GARMA - 24.163  35.314
(0.036) (0.006) - (0.061)
0.187 - 0.961  0.038
Pois GLARMA - 28.047  39.198
(0.031) - (0.008)  (0.003)

0.061  0.569  0.424 -
NB log-AR 10.733  15.227 26.378
(0.023) (0.036) (0.035) -

0.157 0.976 - -0.441

NB GARMA 9.123 15262 26.413
(0.022) (0.004) - (0.034)
0.712 - 0822  0.177

NB GLARMA 4756 16.636  27.787
0.072) - (0.016) (0.011)

We then assess the adequacy of fit. We check the behaviour of the standardized Pearson residuals e; =
[Y; — E(Y;|Fi-1)] //V(Yi|Fi—1) which is done by taking the empirical version é; from the estimated quantities.
If the model is correctly specified, the residuals should be white noise sequence with constant variance. The ACF in
our case appears quite uncorrelated for the NB case (see Figure for log-AR models).

Another check comes from the probability calibrations, as defined in |Gneiting et al.| (2007). In particular |Czado
et al.| (2009)) introduced a non-randomized version of Probability Integral Transform (PIT) for discrete data. It can
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be build by defining the following conditional distribution function

0, u< Py — 1)
F(uly:) = %7 Pi(y:) <u < Py — 1) (2.34)
1, u > Py(ye)

where P;(-) is the cumulative distribution function at time ¢ (in our case Poisson or NB). If the model is correct,
u ~ Uniform(0,1) and the PIT (2.34) will appear to be the cumulative distribution function of a Uniform(0,1).
The PIT is computed for each realisation of the time series y;, t = 1...,n and for valuesu = j/J,j =1,...,J,
where J is the number of bins (usually equal to 10 or 20); then its mean F(j/J) = 1/nY 7, F(j/J|y:) is taken.
The outcomes are probability mass functions, which are obtained in terms of differences F(]j) — F(%) plotted in
Figure The NB PIT’s appear to be closer to Uni form(0, 1), especially for log-linear autoregression and GARMA
models.

In order to assess the power of prediction we refer to the concept of sharpness of the predictive distribution defined
in |Gneiting et al.| (2007)). It can be measured by some average quantities related to the predictive distribution, which
take the form 1/n Y " | d[P:(y:)], where d(-) is some function called scoring rule. We used some of the usual scoring
rules employed in the literature: the logarithmic score (logs) — log p:(y:), where p;(-) is the probability mass at the
time ¢; the quadratic score (qs) —2p:(y) + ||p||?, where ||p||> = Y 7, p7(k); the spherical score (sphs ) —p:(y:)/|Ipl;
the ranked probability score (rps) >-;Zo[P:(k) — 1(y; < k)] and the Dawid-Sebastiani score (dss) (¥#¢)* +2log oy,
where p; and o, are the mean and variance of P;(y;). These scores are applied to different models and distributions.
The results are summarized in Table The NB log-AR model is chosen as the best model, as it has the best
predictive performance for all the scoring rules, this confirms the result of the goodness of fit analysis.
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Figure 2.2: Top: PIT’s for the Poisson models. Bottom: PIT’s for the NB models.
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Table 2.2: Predictive performance for COVID-19 death counts (smallest values in bold).

Models Distribution logs qs sphs rps dss
loe AR Poisson 9.1054 -0.0205 -0.1260 32.6055  21.1890
op-
& NB 4.6168 -0.0324 -0.1458 29.3324 14.0354
Poisson 9.0849 -0.0212 -0.1274 32.5241 21.1019
GARMA
NB 4.6345 -0.0320 -0.1448 20.7812  14.1704
Poisson 11.0270  0.0009 -0.0822 36.5751  26.0447
GLARMA
NB 5.3215 -0.0176 -0.1033 74.0710  16.1614

2.8 Concluding remarks

The most notable observation-driven models for discrete data have been reviewed. The basic stochastic properties
required to guarantee their correct use have been presented, as well as the technical tools for their practical applica-
tion. Increased availability and interest in discrete data encourage the use of these time series models, which will be
promising key tools in future works on binary and count data.

For theoretical and substantive reasons, the analysis of discrete-valued times series would benefit from the spec-
ification of a unified framework able to encompass most of the models available in the literature. As a matter of
fact, it is not trivial to explore whether the models that we have discussed are nested, and, consequently, to de-
rive stochastic properties that simultaneously hold across models. In addition, model comparison becomes crucial
when direct relationships among different models are unknown. Furthermore, novel models not yet specified in the
literature could be analyzed in order to obtain better performances in practical applications.

Concerning probabilistic properties, up to the present time, the strict stationarity and ergodicity properties have
not been established explicitly for some of the models revised in this chapter (GLARMA and M-GARMA for discrete
variables, for example). In principle, the theoretical tools presented in the Appendix would be sufficient to show
stability conditions for such models as well as any general framework encompassed in , but the derivations of
such stationarity conditions might not be immediate and far from obvious, as shown in Section for the GARMA
and log-AR models. Then, this would be a useful step further of the literature.

Another aspect which may be interesting to consider is related to the inferential assumptions reported in Section
2.6] which could be generalized to distributions other than Poisson and Negative Binomial and for several different
models encompassed in . Lastly, model selection procedures could also be further investigated. We view

these aspects as promising topics for future research.

Appendix

Markov chain specification

In order to derive strict stationarity and ergodicity conditions, the problem is rewritten in terms of Markov chain

theory. Define an observation-driven model in the most general form:
Yi| Feor ~q(cs pe) (A-1)

pt = cs5(Yo:t—1) (A-2)

where, henceforth, Y; indicates the process and y, its realization. The function q is simply the density function which

comes from ({2.1) whereas ¢s is some function which describes the form of the dependence from the observation. In
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general, Y., = (Ys,Ys41,...,Y;) where s < ¢. The symbol ¢ is the vector of parameter of the model. Of course, the
initial values po.p,—1 are supposed to be known. The model in (A-2) can be rewritten as:

Ht = gs (Yzfp:tfh Ntfp:t71)~

This way of writing the observation-driven model (Cox| (1981)) gives a Markov p-structure for y; and then implies
that the vector py—p.+—1 forms the state of a Markov chain indexed by ¢. In this case it is possible to prove stationarity
and ergodicity of {Y;},.y by first showing these properties for the multivariate Markov chain {z;—p:¢—1} i>pe then
“lifting” the results back to the time series model {Y;}, -

Some useful definition for Markov theorems asserted throughout the paper is introduced here. Define a general
Markov chain X = {X;},_ on state space S with o-algebra F and define P*(z,A) =P(X; € A| Xo==x) for Ae F
to be the t-step transition probability starting from state Xy = x.

Definition 1. A Markov chain X is @-irreducible if there exists a non-trivial measure ¢ on F such that, whenever
o(A) >0, Pt(x, A) > 0 for some t = t(x, A), for allz € S.

Also, the definition of “aperiodicity” as stated in Meyn et al| (2009) is needed. Define a “period” d(a) =
ged{t > 1: PY(a,a) > 0}

Definition 2. An irreducible Markov chain X is aperiodic if d(x) =1, x € X.

Definition 3. A set A € F is called a small set if there exists an m > 1, a non-trivial measure v on F, and a A > 0
such that for all x € A and all C € F, P™(z,C) > Av(C).

Now let E,(-) denote the expectation under the probability P,(-) induced on the path space of the chain defined
by Q = [[;2, X: with respect to 7> = \/;2, B(X;) when the initial state X = x; where B(X¢) is the Borel o-field
on X;.

Theorem 6. (Drift Conditions). Suppose that X = { X}, is @-irreducible on S. Let A C S be small, and suppose
that there exist b € (0,00), € > 0, and a function V : S — [0,00) such that for all x € S,

E; [V(X1)] < V(2) — & + blzeay, (A-3)
then X is positive Harris recurrent.

The function V is called “Lyapunov function” or “energy function”.

Positive Harris recurrent chains possess a unique stationary probability distribution 7. Moreover, if X is
distributed according to 7 then the chain X is a stationary process. If the chain is also aperiodic then X is ergodic,
in which case if the chain is initialized according to some other distribution, then the distribution of X; will converge
tomast — oo.

A stronger form of ergodicity, called “geometric ergodicity”, arises if (|A-3) is replaced by the condition
E; [V(X1)] < BV (2) + bl{zeay (A-4)

for some § € (0,1) and some V : S — [1,00). Indeed, (A-4) implies (A-3). Eventually, stationarity and ergodicity
for the GARMA model would be accomplished if at least one of the sufficient condition (A-3)),(A-4]) above is fulfilled.
Unfortunately, a problem can occur when the distribution in (A-1)) is not continuous (Bernoulli, Poisson,...). In

fact, in these cases the Markov chain {g;—p.¢—1} may not be g-irreducible. This occurs whenever Y; can only

n>p
take a countable set of values and the state space ji;—p.s—1 is RP. Then, given a particular initial vector pg.,—1 the

set of possible values for p; is countable. Then, Definition [1| is not satisfied. For this reason other theoretical tools

are required to solve the problem:
e Perturbation approach

e Feller conditions.
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Perturbation approach

First, define the perturbed form of an observation-driven time series model:
Y7 Yol ~ i) (A-5)

i = g5, (YoS) 1, 0 Zo-1), (A-6)

where Z; ~ ¢ are independent, identically distributed random perturbations having density function ¢, ¢ > 0
is a scale factor associated with the perturbation and g¢s+(-,0Zp.1—1) is a continuous function of Zy;—; such that
95,t(y,0) = gs5..(y) for any y. The value uéa) is a fixed constant that is taken to be independent of ¢, so that ,uga) = lo.
The perturbed model is constructed to be y-irreducible, so that one can apply usual drift conditions to prove its
stationarity.

Then, it can be proved that the likelihood of the parameter vector § calculated using converges uniformly to
the likelihood calculated using the unperturbed model as o — 0. More precisely, the joint density of the observations
Y = Yo(:[tf) and first ¢ perturbations Z = Zy.;_1, conditional on the parameter vector d, the perturbation scale o, and

the initial value py, is:
f(KZ|570aMO) :f(Z|5,0',/.t0)Xf(Y|Z,6,0’,/J,0)
t—1 t
= l]‘[ o(z)| T1 1 (s m(02))
k=0 k=0

where ui(cZ) is the value of u,(f) induced by the perturbation vector cZ through (A-6), with puo(cZ) = po. The
likelihood function for the parameter vector § implied by the perturbed model is the marginal density of Y integrating

over Z, i.e.,
£a(6) = F(Y | 8.000) = [ FY. 2] 6.0, p0)i2

Let the likelihood function without the perturbations be denoted by L, so that

zmﬁfMWww)

k=0

Theorem 7. Under reqularity conditions 1 and 2 below, the likelihood function L, based on the perturbed model
lj converges uniformly on any compact set K to the likelihood function L based on the original model, i.e.,

sup | £, (8) — £(8)] Z=% 0
deK

for any fixed sequence of observations yo.; and conditional on the initial value .

So if L is continuous in § and has a finite number of local maxima and a unique global maximum on K, the
maximum-likelihood estimate of 6 based on £, converges to that based on £. The proof is in |[Matteson et al.[ (2011)).
Regularity Conditions:

1. For any fixed y the function ¢(y; ) is bounded and Lipschitz continuous in p, uniformly in § € K.
2. For each t, u;(0Z) is Lipschitz in some bounded neighbourhood of zero, uniformly in 6 € K.

Regularity condition 1 holds, e.g., for ¢(y; u) equal to a Poisson or binomial density with mean p, or a negative
binomial density with mean p and precision parameter . u.(0Z) can easily be constructed to satisfy condition 2.
One can choose to use the perturbed model (with fixed and sufficiently small perturbation scale o) instead of the
original model, without significantly affecting finite-sample parameter estimates, in order to get the strong theoretical
properties associated with stationarity and ergodicity.
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Although, it has been shown that the perturbed and original models are closely related, and although one can
use drift conditions to show stationarity and ergodicity properties of the perturbed model, this approach does not
yield stationarity and ergodicity properties for the original model. In fact, this approach addresses consistency of
parameter estimation for the perturbed model when ¢ — oo for fixed ¢ and then shows that as ¢ — 0 the finite
sample estimates (for a fixed number of observations t) of the perturbed model approach those of the original one.
In order to show real proprieties of the original model one should consider both limits ¢ — oo together with o — 0
in which a substantial technical difficulty associated with interchanging the limits arises. For this reason, the Feller
properties introduced in the next section are needed.

Feller conditions

To deal with the lack of @p-irreducibility condition, the Feller properties can be used instead.

Definition 4. A chain evolving on a complete separable metric space S is said to be “weak Feller” if P(x,-) satisfies

P(xz,") = P(y,) as x — y, for any y € S and where = indicates convergence in distribution.

In the absence of p-irreducibility, the “weak Feller” condition can be combined with a drift condition (A-3)) or
(A-4) to show existence of a stationary distribution (see [Tweedie| (1988)):

Theorem 8. Suppose that S is a locally compact complete separable metric space with F the Borel o-field on S, and
the Markov chain { X}, with transition kernel P is weak Feller. Let A € F be compact, and suppose that there
exist b € (0,00), € > 0, and a function V : S — [0,00) such that for all x € S, the drift condition holds. Then
there exists a stationary distribution for P.

Uniqueness of the stationary distribution can be established using the “asymptotic strong Feller” property, defined
in Hairer and Mattingly| (2006). Before doing it, further definitions are required:

Definition 5. Let S be a Polish (complete, separable, metrizable) space. A “totally separating system of metrics”
{di},cn for S is a set of metrics such that for any x,y € S with x # y, the value di(x,y) is nondecreasing in t and
limy 00 de(2,y) = 1.

Definition 6. A metric d on S implies the following distance between probability measures py and ps:
o =l = s ([ otonntan) ~ [ o) (A-7)
Lipg¢=1

where

Lipjo = sup ———
d z,yES:xF#y d(a:,y)

is the minimal Lipschitz constant for ¢ with respect to d.

Definition 7. A chain is “asymptotically strong Feller” if, for every fired x € S, there is a totally separating system
of metric {d;} for S and a sequence t,, > 0 such that

lim limsup sup [P (z,) — Pt"(y,')Hdt =0

0700 t—oo yeB(x,8)
where B(x,d) is the open ball of radius & centred at x, as measured using some metric defining the topology of S.

Definition 8. A “reachable” point x € S means that for all open sets A containing x, > .o, P'(y, A) > 0 for all
yeSs.
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Theorem 9. Suppose that S is a Polish space and the Markov chain {X;},o with transition kernel P is asymp-
totically strong Feller. If there is a reachable point x € S then P can have at most one stationary distribution.

This is an extension of [Hairer and Mattingly| (2006]). The results of this section lay the foundation for showing
convergence and asymptotic properties of maximum likelihood estimators for the discrete-valued observation-driven
models.

Coupling construction

Introduce a kernel H from (X2, X¥®2) to (Y2,Y%?) satisfying the following conditions on the marginals: for all
(x,2') € X2 and A € ),

H((z,2"); AxY)=H(z, A), H((z,2');Y x A) = H(2', A). (A-8)

Let C € Y®?2 such that H((x,2');C) # 0 and the chain {Zt = (X, X;,Up),t € N} on the“extended” space (X2 x
0,1, X%2 @ P(0,1)) with transition kernel @ implicitly defined as follows. Given Z; = (x,2’,u) € X? x {0,1}, draw
(Y1, Y;H) according to H((z,');-) and set

Xiy1 = fYt+1(517)7 Xi = fyt’“(x/)v

Uip1 = 1C(Yt+17Yt/+1)7
Ziv1 = (Xep1, Xpp1s Usr)-

The conditions on the marginals of H, given by (A-§) also imply conditions on the marginals of Q: for all A € X
and z = (x,2',u) € X? x {0,1},

Q(z;Ax X x{0,1}) =Q(z,4), Q(z:X x Ax{0,1}) = Q(z, A). (A-9)
For z = (z,2',u) € X? x {0, 1}, write

a(z,2") = Q(%X* x {1}) = H((z,2"); C) # 0. (A-10)

The quantity a(x,z’) is thus the probability of the event {U; = 1} conditionally on Zj, taken on Zy = z. Denote by
Q" the kernel on (X2, X®?) defined by: for all z = (z,2',u) € X2 x {0,1} and A € X®2

Q(z: A x {1})

Gl A = Qe (1)

so that using (A-10]),
Q(z; A x {1}) = a(z, z') Q*((x, 2'); A). (A-11)
This shows that Q¥((z,2'); ) is the distribution of (X1, X,) conditionally on (Xo, Xy, U1) = (z,2',1).

Assumptions and results of the alternative Markov chain approach
Consider the following assumptions.

(A1) The Markov kernel @) is weak Feller. Moreover, there exist a compact set C' € X,(b,e) € Rf x R} and a
function V : X — R* such that
QV <V—-e+ b].c.
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(A2) The Markov kernel @ has reachable point.

Assumption (A1) implies, by [Tweedie| (1988]), that the Markov kernel @) admits at least one stationary distribu-
tion. Assumptions (A2)-(A3) are then used to show that this stationary distribution is unique.

Note that assumptions (A1)-(A2) are the same of Theorem [§| and [9] and they can be proved for each observation
driven model as has been done for the GARMA model; assumption (A3) weakens the Lipschitz condition by
introducing a function W in . This allows to treat models which do not satisfy the Lipschitz condition ;
for example the log-linear Poisson autoregression (see Section below).

Theorem 10. Assume that (A1)-(A3) hold. Then, the Markov kernel Q admits a unique invariant probability

measure.

Proposition 1. Assume that the Markov kernel Q) admits a unique invariant probability measure. Then, there exists

a strict-sense stationary ergodic process on Z, {Yi},c,, the solution to the recursion ([2.20)).

These results can be found in Douc et al.| (2013)).

Computational aspects

The replication code for the application in Section [2.7]is available at https://github.com/mirkoarmillotta/covid_
codel First, a function for the log-likelihood and the gradient of the log-linear Poisson autoregression is provided.
The code for the other models works in a similar way and it is available upon request. Then, a function to perform
the QMLE is presented. Finally, we give the code for the COVID-19 example and the relative plots. The code to
perform the PIT is due to|Czado et al.| (2009)) and it is available in the reference therein.
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Abstract
Statistical inference for discrete-valued time series has not been developed as traditional methods for time series

generated by continuous random variables. Some relevant models exist, but the lack of a homogenous framework
raises some critical issues. For instance, it is not trivial to explore whether models are nested, it is quite arduous
to derive stochastic properties which simultaneously hold across different specifications. In this paper, inference for
a general class of observation-driven models for discrete-valued processes is developed. Stochastic properties such
as stationarity and ergodicity are derived under easy-to-check conditions, which can be directly applied to all the
models encompassed in the unified framework and for every distribution which satisfies mild moment conditions.
Consistency and asymptotic normality of quasi maximum likelihood estimators are established, with the focus on the
exponential family. Finite sample properties and the use of information criteria for model selection are investigated
throughout Monte Carlo studies. Two empirical applications are also discussed, for count data. The first application
is a novel application to hurricane data in the North Atlantic Basin; the second concerns time series on the spread

of an infection.

Keywords: count data, generalized ARMA models, likelihood inference, link function.

3.1 Introduction

The analysis of time series that are generated by continuous random variables has a long tradition in statistics and
dates back, in the parametric setting, to Yule (1927) and |Walker| (1931)), who introduced the concept of autoregression,

a dynamic model for the conditional mean of a stochastic process. In the same years, |Slutsky| (1927, [1937) defined
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moving average processes as linear combinations of uncorrelated random variables capable of capturing cyclical
fluctuations. It was only in the seventies, with the formalization by Box and Jenkins| (1970L[1976) of the class of ARMA

models, that autoregressive (AR) and moving average (MA) processes found their popularity and became massively

fitted to real data. The merit of Box and Jenkins was the specification of a unified class of processes, generalizing
ARMA models to account for non-stationarity, seasonality, exogenous regressors, as well as the systematic treatment
of all the sub-models belonging to the class, which led to the development of well established inferential procedures.

The development of parametric models for count and binary data has not enjoyed the same popularity, partly
since linear processes are related to second order stationarity, which fully characterizes Gaussian time series. For
discrete data, the concept of autocovariance needs to be adapted and the Wold representation has no
direct interpretation, see the discussion in the recent handbook edited by [Davis et al.| (2016]). Since the AR- and MA-
like models first introduced by [Zeger and Qagish| (1988) and [Li| (1994), there have been some relevant specifications,
such as the generalized ARMA (GARMA) by Benjamin et al|(2003)) and their martingalised version, the M-GARMA
by Zheng et al.| (2015)), as well as the generalized linear ARMA (GLARMA) by Davis et al.| (2003)). An interesting
class of autoregression models for count data has been proposed by [Fokianos et al.| (2009)) and [Fokianos and Tjgstheim|
(2011)), inspired to the generalized linear transformation of McCullagh and Nelder| (1989). Integer-valued time series
with extreme observations have been recently dealt with by , based on the beta-negative binomial
distribution.

The analysis of discrete-valued time series would benefit from the specification of a unified framework able to
encompass most of the models available in the literature and even to include further new specifications. As a matter
of fact, it is not trivial to explore whether models are nested, and, consequently, to derive stochastic properties that
simultaneously hold across models. In addition, model comparison becomes crucial when direct relationships among
different models are unknown. The lack of a unified framework is also in contrast with the growing attention, in
recent years, to high dimensional data sets involving dynamic binary and count data, in different contexts, such as
the number of clicks or amount of intra-day stock transactions (Davis and Liu, 2016; [Ahmad and Francg, [2016]).
Attempts in this direction have been made by [Douc et al.| (2013) who provide a theoretical formulation which is

useful in principle but less effective when the aim is to implement and adapt models for real applications. Indeed,

the quite general framework developed by Douc et al| (2013) encompasses several models for which stochastic and

inferential properties have been previously derived in the literature, but at the price of conditions that are extremely
complicated to verify in practice for each model and distribution.

If we were like to summarise the main results developed in the literature, on the side of the stochastic properties,

Matteson et al.|(2011) develop notable results about strict stationarity and ergodicity for the specific case of GARMA

and Poisson Threshold autoregressive models, using the theory of Markov chains. Conversely, conditions holding
for several models but requiring restrictive assumptions are discussed in (2011), based on contraction
conditions, and in Doukhan et al| (2012)), based on the weak dependence approach. [Fokianos et al.| (2009)) and

[Fokianos and Tjgstheim| (2011]) develop results on ergodicity employing a perturbation approach which is necessarily
suited for the case of count data following a Poisson distribution. Similar results are discussed in
under the assumption of a Negative Binomial distribution as the data generating process.

As far as inference is concerned, the properties of the maximum likelihood estimator (MLE) and Quasi MLE

(QMLE) have been studied for some subsets of discrete-valued models. [Douc et al.| (2013)) prove the consistency

of MLE and QMLE for the general framework they proposed. Asymptotic normality, in the same setting, is later
discussed by [Douc et al| (2017). Comparable results have been derived by Davis and Liul (2016), based on the
approach developed by (2011)), and by [Ahmad and Francq (2016) for the specific case of the Poisson
distribution. However, the conditions needed to verify the properties of MLE and QMLE are far from immediate.

This paper introduces a general observation driven model for discrete-valued stochastic processes that encom-
passes the existing models in literature and includes novel specifications. In the terminology of (1981)), observa-
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tion driven models are designed for time varying parameters whose dynamics are functions of the past observations
only and are not driven by an idiosyncratic noise term. FEssentially, we specify a class of dynamic model for the
conditional mean of a density, or mass function for discrete-valued time series, which does not necessarily belong to
the exponential family. This generality allows one to estimate alternative models designed to capture the past effects
of the conditional mean itself, of the lagged discrete-valued process and error-type components.

The methodological contribution of the paper consists in the development of the stochastic theory and the
likelihood inference holding for all the models in the class, through a non-trivial extension of the theory of Matteson
et al| (2011) as far as stationarity and ergodicity are concerned, and of the theory of |Douc et al.| (2013]) and Douc
et al.| (2017) for the asymptotic properties of likelihood estimators. In addition to the results that apply to novel
models, we derive several new methodological results for existing models, that were not yet proved in the literature,
such as strict-stationarity and ergodicity of first order GLARMA models and ergodicity of M-GARMA models for
discrete distributions.

In summary, we introduce a general modelling framework which aims (i) to provide a unified specification for
a broad class of discrete-valued time series where relevant instances represent special cases, (ii) to provide direct
relationships among different models which belong to the framework but are not necessarily nested within each other,
(iii) to derive the stochastic properties which hold simultaneously for the entire class of models (strict stationarity
and ergodicity), (iv) to implement quasi-maximum likelihood (QMLE) inference which also allows us to define model
selection criteria across different, and not nested, models, (v) to derive the asymptotic properties of QMLE, (vi) to
make all the models encompassed in the framework fully applicable in practice.

On the side of applications, the analysis of two real datasets is performed, for count time series. The first is a
novel application to hurricane data in the North Atlantic Basin. It is well-established that warming earth should
experience more hurricanes and/or stronger individual storms. For this reason, forecasting annual hurricane counts
is of great interest and several Poisson-based models have been developed; see [Xiao et al. (2015) and references
therein. More recently, [Livsey et al.| (2018]) used autoregressive fractionally integrated moving average models to
construct a Poisson model able to capture the long-range effect for the hurricane trend. Given the short length of
the data record (49 years), their model based on a generalization of fractionally integration methodology to discrete
data cannot properly address this issue. Nevertheless, the Poisson dynamics seems to be not always suitable and
further models for over-dispersed count distributions have been proposed founded on negative binomial assumptions
(Villarini et al.| [2010). Models included in the general framework are used for the analysis of hurricane data in the
North Atlantic Basin considering both the Poisson and negative binomial assumption for the generating process.
We pay specific attention to model selection which is performed by using information criteria that also accounts for
model misspecification. With the focus on model comparison, the second application uses a test-bed time series in

count data analysis, on the spread of an infection, Escherichia coli, in the German region of North-Rhine Westphalia.

3.2 The general framework

Let {Y;}tcr be a stationary stochastic process defined on the probability space (2, F,P) where F = {F; }ter and
Fi: = 0(Yi—s,s > 0) is the sigma-algebra generated by the random variables Y, s < ¢. The process Y; is adapted to
the filtration F and E|Y;| < oo for all ¢t € T. We specify a class of observation-driven models where the conditional
density or mass function of Y;, depending on a time varying parameter p;, is a member of the one-parameter

exponential family

q(Ye|Fio1) = exp {Y: f(X¢) — A(Xe) +d(Y2)} (3.1)
k 4 _
X, = gl = 2o+ Yo nsalnn) + 3o oh(vioy) + 30y [P0 52
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where it is assumed that the dynamics of the density (or mass) function g(Y;|F:—1) are captured by the parameter
1, or equivalently by X;. The time varying parameter u; is related to the process X; by a twice-differentiable,
one-to-one monotonic function g(-), which is called link function. The function A(-) (log-partition) and d(-) are
specific functions which define the particular distribution (McCullagh and Nelder, [1989). The mapping f(:) is a
twice-differentiable bijective function, chosen according to the model of interest. Each exponential family in the form
can be re-parametrised in the canonical form:

q(Yi|Fio1) = exp{Y: Qi — A(Q) +d(Yy)} , (3.3)

where the sequence Q; = f(X;) = flg(t)] = f() is called canonical parameter, whereas the function f(-) = (fog)(-)
is referred to as the canonical link function and A (-) is a re-parametrisation of A (-) with respect to Q;. It is known
that for the exponential family the conditional mean is iy = B(Y;|Fy_1) = A(Qy) = f~1(Q¢) = g~ (X;) and the
conditional variance is 02 = V(Y; [ F,_1 ) = A" (Q,). If g(-) is the canonical link function, then f = g and the following
simplification occurs: f(X;) = Xy, so Q¢ = X; = g(pt), which gives again the distribution , with f(X;) = Xq,
so that and are exactly the same. Clearly, the moments become p; = E(Y;|F_1) = A'(X;) = g7 1(Xy)
and 02 = V(Y; | Fi_1) = A" (X;). The function f(-) allows us to introduce non-canonical shapes for g(-), thus adding
flexibility to the model. We make some examples to clarify the nature of the framework.

Example 3. In the setting [3-9), the Poisson distribution is obtained with f(X;) = Xi, g(u) = log(ue),
Alg(ue)] = pre and d(Yz) = log(1/Y3!). All the derivatives of A(X:) = exp(X:) equal p:. However, this definition
is based on the equivalence g = f, which is the canonical link; hence equation becomes a log-linear model on
the response log(ut). It is possible to model with a different shape of g(-); for example, one may be interested
to a linear model for the parameter of the Poisson pg, then g(u:) = pe and clearly g # f In this case, the
Poisson distribution is reconstructed from (3.1)), by setting f(X;) = log(X;) = log(p), A(X:) = Xy = e and
d(Y;) = log(1/Y:!). Again, by knowing that the inverse of the canonical link f~'(-) = exp(:), the conditional
expectation would be B(Y;|Fy_1) = V(Yi|Fo1) = FH(Qr) = exp[f(X})] = pue.

Example 4. The Gaussian distribution (with known variance) is obtained by setting f(Xi) = Xi, g(pu) = L5,
t

Alg(pe)] = % and d(Y:) = log {—\/2172 exp (—2};‘22)} One can verify that p; = 02Xy, so A(X;) = 02X? /2, with

first and second derivatives u; and o?, respectively.

Note that the process {Y;},., is observed whereas {y}, ., is not. However, from equation , it can be
shown, by backward substitutions, that the process {y},c is a deterministic function of the past F;_; and this is
also the reason why we refer to “observation-driven models”. The function h(Y}) is called “data-link function” since
it is applied to the process Y; whereas g(u;) is said “mean-link function” since it is applied only to the conditional
mean, unlike the link function g(-) which, in principle, can be applied to any parameter or moment of the probability
distribution. Both the functions h(Y;) and g(u:) are twice-differentiable, one-to-one monotonic and their shape
depends on the specific model and the distribution of interest in equation . We define the prediction error
as the ratio . h(Y) — 5(01) ",

Vi
where the process {v;},., is some scaling sequence, typically: (i) v; = o Pearson residuals, (ii) vy = o? Score-type
residuals, (i47) v, = 1 No scaling, (iv) vy = \/V[h(Y2) |Fi-1].

Note that every time the mean-link function is selected as the conditional expectation of the data-link function
for the process, in symbols g(u:) = E[h(Y;)|Fi—1], the difference h(Y;) — g(p:) is a martingale difference sequence
(MDS). Moreover, if vy = y/V[h(Y;) |F:—1], then the residuals in equation form a white noise (WN) sequence,

with unit variance.
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The vector Z; = [1, Z14, . . -, Zst]T in equation is a vector of covariates and « is the corresponding coefficient
vector with comparable dimensions. The parameters ¢; measure an autoregressive-like effect of the observations;
instead, the parameters +y; state the dependence of the process from its whole past memory (since p;—; depends on
the past observations Y;_;_1,...); finally, §; represents the analogous of a moving average component, since the ratio
can be built so as to have an error-type behaviour. In general, all the functions involved are not constrained
to assume the same shape and the additive parts of the model can be arranged in different ways. Clearly,
sub-models are allowed. This leads to a quite general and flexible framework which encompasses the most frequently

used models for discrete-valued observation processes and also new ones.

3.2.1 Related models

One of the most frequently used specifications in the area of discrete-valued time series is the Generalized Autore-
gressive Moving Average model, GARMA, (Benjamin et al., 2003)). Here, the distribution of the process is usually
assumed to be the one-parameter exponential family . From equation the GARMA model is obtained
when k& = 0, by setting g = g = h and v; = 1, so that,

g(m) = Z o+ dig(Viy) + D05 [9(Yiey) — g(mu—y)] , (3.5)

j=1 j=1
where o = (1 — Z§:1 ¢ij) B, B is a vector of constants and B is the lag operator. By rearranging the constant in
terms of 3 we obtain the equation (3) of Benjamin et al.| (2003).

A suitable extension of the GARMA model (3.5)), the martingalised GARMA (M-GARMA), has recently been
introduced by [Zheng et al. (2015); it is derived from (3.2)) by setting k = 0, g(ut) = g(ue) = E[h(Yy) |[Fi—1] and

vy = 1t
q

9() = Z o+ dsh(Yig) + Y05 [B(Yi—y) — g(m—y)] (3.6)

j=1 j=1
The relevant feature of the model is that it allows the residuals €; to be a martingale difference sequence, i.e.
E(e¢|Fi—1) = 0.

Another similar model has been developed by |Shephard| (1995), Rydberg and Shephard| (2003|) and [Davis et al.
(2003) with the name of Generalized Linear Autoregressive Moving Average model (GLARMA); here again the
distribution is the exponential family . We can write the GLARMA model by setting p = 0, h as the
identity and g(u:) = E[A(Y2) | Fio1] = E(Y: | Fim1) = p

K q
glp) = Zia+ > vig(—j) + > 05e—;, (3.7)
i=1 i=1

where a = (1 — Z?Zl vaj) B. Here § = max(k,q) and 0; = ~; + 7; for j = 1,...,q, where 7; is a free parameter.

The formulation of the constant term in equation (3.7)) as a function of 3 is equivalent to equation (13) in [Dunsmuir
and Scott| (2015, the alternative definition of the GLARMA model originally introduced in |[Davis et al.[(2003). Note

. .. Y, — . . . . . .
that here, if 14 = oy, then the prediction error ¢, = ‘W“‘ is a white noise process with unit variance.

Another promising stream of literature is due to |Fokianos et al.| (2009), who introduced Poisson autoregression,
henceforth Pois AR, which is obtained when (3.1]) is Pois(u:), with f(X;) = log(X%), and in equation (3.2), we have
g =0 and g = h : identity:

k P
=2 a+Y v+ Y ¢Yi. (3.8)
j=1 j=1
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The parameters in equation (3.8]) are constrained in the positive real line. A variant of (3.8]) is the log-linear Poisson
autoregression, henceforth Pois log-AR, (Fokianos and Tjgstheim) 2011) which is obtained by (3.2)) when ¢ = 0,
f(X1) = Xy, g(pe) = log(pe) and h(Y:) = log(Y; +1)

k p
log(pe) = Zi e+ Y _vyjlog(p—j) + Y bjlog(Yij +1). (3.9)

j=1 j=1
For Poisson data, the GARMA model (3.5) with identity or log links corresponds to a constrained Poisson autore-
gression where v; = —0; and ¢; is replaced by ¢, + 6;, in equations (3.8) or (3.9). A model like (3.9) could be used

also for Negative Binomial data, by rewriting the distribution in terms of the expected value parameter p; (Christou

and Fokianos, [2014)):
Yi|Fi1) = 3.10
q( t| t 1) F(Yt—f—l)F(y) vt v+ ( )

where v is the dispersion parameter (if integer, it is also known as the number of failures) and the usual probability

1 The distribution with model (3.9) is obtained from the distribution (3.1)), by
setting the non-canonical link g(u:) = log(p:) and Qt = log(1 — p;), rewritten as f(X;) = X; — log(v + e**), with

A(X:) = —vlog ( ) and d(Y;) = log F(F(”+Y")

parameter would be p; =

ST TV +1T(v) "
The BARMA model (Li| (1994); Startz| (2008)), introduced for Binomial data, is obtained when (3.1)) is Bin(a, pt),

where a is known and the probability parameter p; = p;/a, and, in , v =0, h :identity (g(p:) reduces to )
and ¢ = 0. Then , .
9(u) = Zi e+ ¢Yij+ ) 0;[Yiej — pu—y] - (3.11)
j=1 j=1
Even if, this model is thought for Binomial distribution, so typically g : logit or g : probit, in general, the link
function g can be any suitable function.

3.2.2 New model specifications

Other models of potential interest not explicitly included in the existent literature are indeed encompassed in the
framework (3.1])-(3.2). We discuss a class of glink-ARMA models. As relevant instance consider the log-ARMA
model

(3.12)

_ T a & ! log(Y;— —j + 1) (Mt ])
log(pe) = Z{ e+ > yilog(pue—s) + > dilog(Yij + 1)+ > 0

j=1 j=1 j=1
where f(X:) = Xy, g(ue) = Eflog(Y; + 1)|F—1] and v = /V [log(Y; + 1)[F—1]. The model (3.12) detects the
autoregressive effect of the past lags of Y;, but it also accounts for a long past feedback effect, via lags of us; then,

Vi—j

a white noise prediction error ¢; = |:log Yt“ =3 | is added to the functional transformation of the data, where
E(er) = 0 and V(g;) = 1. The same model 1 , when (3.1] D is Bm (a, ut), is resorted by setting the non-canonical
link X; = g(u:) = log(p:) and @ = log p* = log , rewritten as f(X;) = X; — log(a — eXt), with

A(X:) = alog (
data as a combination of the BARMA model from |Li| (1994) and an autoregressive component:

fog () = zlas 3o o (2 ) Do Tins S logis + 1 gy 319

a — _
e iz He j=1 i=1

) and d(Y;) = log On the same line, a logit-ARMA model can be specified for Binomial

a— eXf

where, in equation (3.1) we have f(X;) = X; where the canonical link is X; = g(u:) = 1og( T ), with A(X;) =
alog(1 + eXt) and d(Y;) = log ({%) A similar model can be specified also by replacing the logzt function with the

probit link function.
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The usefulness of the specifications — can mainly be exploited when a closed form expression is
available for the conditional expectation g(u:) (and possibly for the standard deviation v4). For example, when the
distribution of Y;|F;_1 is Log-normal(py, 0?), the expectation g(u;) = E [log(Y; + 1)|Fi—1] = log(us) — 1/202. For a
comprehensive discussion on the closed form solutions see |Zheng et al.| (2015). In the case of Binomial or Poisson
data, though, such closed forms are not available and it seems reasonable to use an approximation from the Taylor
expansion around the mean 4, like g(u¢) = E [h(Y})|Fi—1] ~ h(p,). However, this would reduce models (3.12)-(3.13)
to a reparametrized version of the already showed log-AR model described in equation . Despite the wide use
of the Poisson model for count data and the default negative Binomial alternative to account for overdispersion,
both choices fail when data present underdispersion or an excess of zero value observations (Englehardt et al.l [2012)).
For instance, the use of the discrete Weibull distribution of |[Nakagawa and Osaki| (1975) and its generalizations
are quite popular in these contexts; see [Peluso et al.,| (2019) for a discussion. The generalization of distributions to
accommodate specific data structure represents an active research area which may benefit from a flexible specification
of glink-ARMA type models.

Furthermore, novel and potentially useful models also arise when equation involves the use of a Box-Cox

transformation (Box and Coxl [1964)):

k

A 1 ‘LL
'ut/\ —ZTa—i—ZW] = J +Z¢j —I—ZH €t—j, (3.14)

j=1

A AP B | Fi-a)
where g(z) = h(z) = Tlv & = W

can be chosen according to some estimation procedure, such as profile likelihood. Note that when A\ = 0 the model
reduces to model with log(Y;—;) instead of log(Y;—; + 1). This model can exploit the usefulness of the
Box-Cox transformation, possibly leading to a more stable variance and improving symmetry of the distribution.
However, the link function g(u;) = % is not canonical for any distribution encompassed in the exponential family
, hence the function f(-) needs to be chosen according to the conditional distribution of Y;.

, by equation (3.4) and X is the transformation parameter, which

3.3 Stochastic properties

This section provides the conditions for the discrete-valued stochastic process {Y:}, . to be stationary and ergodic
by using Markov chain theory. Although {Y;}, ., is not itself a Markov chain, the process {f},cp is. Then, by
proving that the chain {j},., has a unique invariant distribution, one also has that the double sequence {Y;, s },c
is a Markov chain with unique distribution. Hence, the process {Y;},.; is stationary and ergodic, see Matteson et al.
(2011) and Douc et al.| (2013).

3.3.1 Stationarity and ergodicity

The proof of the stability conditions is established by showing the ergodicity of a first order Markov chain process
(see below). Since this approach is usually challenging beyond the order one chain, we set (3.2) with k =p =¢ =1,

in the absence of covariates (Z{ a = ) and with unitary scaling sequence, v; = 1 for t € T

9(pe) = a+ vy g(pe—1) + o h(Yiy) + 0 [M(Y;)) — g(e—1)] (3.15)

where the function Y;* modifies the values of ¥; to lie into the domain of h(-). In Remark [2[ we discuss an extension
which includes the scaling sequence. In the first order observation-driven model the series p; can be determined
recursively by knowing the starting point puo and the observations Yy,...,Y;—1. Define ug = u, g(p) = = and
g(n) = g(g~(x)) = g(z), where g(-) = go g~ (-). In order to deal with different possible domains of the process
{p+}, we consider three separate cases:
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1. q(Yi|Fi—1) for p € R. The domain of g and h is R and Y;* =Y;.

2. q(Y;|F;—1) for u € RT (or p on one-sided open interval). The domain of g and h is RT and Y;* = max {Y;, ¢}
for some ¢ > 0.

3. q(Yi|Fi—1) for p € (0,a) where a > 0 (or bounded open interval). The domain of g and h is (0,a) and
Y, = min {max (Y}, ¢), (a — ¢)} for some ¢ € [0,a/2).

Denote with X = {X;},. a Markov chain where X; = g(u¢) belongs to the state space S with o-algebra F~ and
define P'(z,A) = P(X; € A| Xo = x) for A € FX to be the t-step transition probability with initial state X = .
Consider the following assumptions:
(A1) E(Y: | ) = -
(A2) 36 >0, 7 € [0,1+ 6) and I1,l5 > 0 such that B(|Y; — [>T | o) < Iy |pae|” + Lo
(A3) g and h are bijective, increasing and

LIE g(pe) = 9(me),
1.1. h:R+ R concave on RT and convex on R™, g : R — R concave on Rt and convex on R™, |y| + |¢| < 1
1.2. h:RT — R concave on Rt g : RT — R concave on RT, (|y|+ |¢|) V |y =0 < 1
1.3. h:(0,a) —»Rand g:(0,a) = R, |y —0| < 1.

2. If g(pe) # g(pe) and g(z) is Lipschitz with constant L < 1,

2.1. h:R — R concave on RT and convex on R™, g : R — R concave on RT and convex on R™, ||+ |¢| < 1
2.2. h:R" +— R concave on R*, g : R = R concave on R, |v| + (|¢| vV |0]) < 1
23. h:(0,a) »Rand g: (0,a) = R, |v| +16] < 1.

(A4) Define 7,(-) as the distribution of ¢g(Y;) conditional on g(u¢) = z. Then, m,(-) has the Lipschitz property

SUP,, eriwze |Tw () = T2 () llpy / [w, 2| < B < oo, where [|-[| 1, is the total variation norm.

Theorem 11. Suppose that (A1)-(A4) hold. Then, the process { it },cp in (3.15) has a unique stationary distribution.
This implies that {Y;},cp is strict-sense stationary and ergodic.

The proof is postponed in the Supplementary Materials and is carried out by showing that the Markov chain
{Xt},er has a unique stationary distribution, under the conditions of Theorem This is done by proving a
drift condition for the chain which is sufficient for g-irreducible Markov chains (Meyn et al., 2009). However the
discreteness of {Y}},., may lead to a non-g-irreducible chain. Indeed, the process X; depends on values of Y;, hence,
it lies in a countable subset of S, which implies the non ¢-irreducibility of the chain. Therefore, by following the
Markov chain theory without irreducibility assumption (Matteson et all [2011; [Douc et al., |2013|), the weak Feller
and the asymptotic strong Feller properties are required on the chain X;, providing the desired result.

Assumption (A1) automatically holds when 1, = E(Y;|F;_1), as in the case of equation (3.I)). For model (3.15),
the o-algebra generated by p: is a subset of F;_1, and for the tower property E(Yi|u:) = E[E(Y:|Fi—1)|pe] = pt
Assumption (A2) is a mild moment condition generally satisfied for usual discrete distributions (Poisson, Binomial);
see Matteson et al.| (Cor.6,7,2011) for details.

Remark 1. It is worth noting that Theorem is not restricted to distribution (3.1)) since it involves only the
moment conditions in assumptions (Al)-(A2).

The conditions on the shape of the link functions g and h in (A3) are quite standard. While Assumption (A4)

might be not immediate to verify, it can usually be replaced with an alternative condition, which is easier to check:
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(A5) The distribution (3.1]) is Poisson, Binomial or Negative Binomial (with known number of trial/failure), and
g~ 1(-) is Lipschitz.

The equivalence of (A4) and (A5) has been proved by Matteson et al.|(2011]) for the Poisson and Binomial distribution;
we prove it for the Negative Binomial in the Supplementary Materials. The required lipschitzianity of g~*(-) is easily
met for the usual link functions (logit, identity), however, there are exceptions (log link). The modified log link
function (12) in Matteson et al.| (2011) provides a viable alternative. Another solution could be to replace (A6)
with the alternative assumption (A3) in [Douc et al|(2013)), although it may be not easy to verify. Concerning the
Lipschitz condition on §(z), it depends on the shape of g(z) = g(g~!(z)), as a combination of Lipschitz function
is Lipschitz continuous. A suitable choice of functions g and h will satisfy this condition. For example, when
g(ue) = E[R(Y}")|Fi—1], if (A5) holds, it is easy to verify that the function g(u) is Lipschitz with respect to (w.r.t)
p with constant not greater than 1; the same holds for g~ w.r.t =, then g(z) is Lipschitz with L < 1. When
g(ut) # E[h(Y;*)|F—1] it can be chosen accordingly to the required assumption.

Remark 2. Let us consider equation (3.15) with g(u:) = E[h(Y:)|Fiz1] and scaling sequence vy = o(uy) =

VIh(Yy) | Fi-1], ie.

g(pe) = a+ v g(p—1) + dh(Yi—1) + Oey, (3.16)

where ¢, as in equation (3.4), is a white noise with unit variance. Under the conditions of the following corollary,

the scaling sequence does not affect the stationarity conditions.

Corollary 1. Let v, = o(p;). Theorem[11] still holds true by replacing (3.15) with (B.16)) if the function o(-) is:
1. increasing for p; € RY and decreasing for p; € R™;
2. increasing for u; € RT;

3. monotone with respect to i;

The proof is deferred to the Supplementary Materials. The conditions on v; are widely satisfied. For example, if
Y; belongs to the exponential family in (3.3), 0?(p) = A"(X;) = (971 (g(p)) where g is increasing by assumption,
whereas o2(u) is increasing since (¢g~!) is increasing; this holds as long as g is concave (¢! is convex) which is true
for ;1 > 0. By contrast, 0(u) is decreasing if (g~1)’ is decreasing which happens when g is convex: this is the case

of u < 0, which is what was required.

3.3.2 Stochastic properties for relevant encompassed models

The results obtained in the previous section can be applied to specific models belonging to the unified framework
, and in particular to the novel models introduced in Section We also specifically derive the stochastic
properties of the related models encompassed in the framework and discussed in Section [3.2.1] since for most of them
the stochastic properties have not been fully addressed in the literature. Consider the one lag models k = p=¢ = 1.
First of all, as a proof of coherence in our findings, it is worth noting that, when v = 0 and ¢ = h = g,
Theorem reduces to Theorem 5 in Matteson et al. (2011), providing results for the GARMA model g(u:) =
a+og(Yyy)+0[g(Yy ) — g(pe—1)]. Now we derive the stochastic properties for the BARMA model in (3.11]).

Corollary 2. Suppose that, conditional on Fi_1, Yy is Binomial(n, u;) with fived number of trials n, link function
g : (0,a) — R is bijective and increasing, g~* is Lipschitz and |0| < 1. Then the process {ue}er defined in (3.11))
has a unique stationary distribution. Hence, the process {Yi},cp is strictly stationary and ergodic.

44



Note that for Binomial distribution (A1)-(A2) hold. Here, the conditions (A3) and (A5) on g and g~! are clearly
satisfied for the usual link functions, like logit or probit.

At the best of our knowledge, no results are available for strict stationarity in GLARMA model, apart from the
simplest case when k = 0, ¢ = 1 (Davis et al., |2003; |Dunsmuir and Scott}, 2015)).

Corollary 3. Suppose that {Y;},.q is distributed according to (3.1)). The process {pi},cr in (3.7) has a unique,

stationary distribution and {Y;},cp is strictly stationary and ergodic, if
1. g is bijective and increasing, and

1.1. g: R+~ R concave on RT and convex on R™, || <1
1.2. g:RT = R concave on RT, |y| +10] < 1
1.3. g:(0,a) = R, |y|+10] < 1.

2. g~ is Lipschitz with constant not greater than 1.

In the GLARMA model, the conditional distribution of {Y;},.; comes from the exponential family, then the
(A1)-(A2) are satisfied. Instead, (A3) and (A5) reduce to conditions 1 and 2, which clearly are widely satisfied for
the usual link functions. In practical applications, the condition on the coefficients of the model are required to
establish its stationarity.

The proof of stationarity for one lag M-GARMA model from given in [Zheng et al,| (2015)) only holds for
continuous variable. We generalize the results by deriving the conditions for stationarity also for the case of discrete
variables. They are shown to be equivalent to those available for the GARMA model. This is reasonable since the
former is a special case of the latter. We now move to strict-stationarity and ergodicity results for some of the novel

models presented in Section [3.2.2)

Corollary 4. Suppose that {Yi},.p comes from (3.1), g(x) is Lipschitz with constant L < 1, (A4) holds and
7] + (|6 vV 10]) < 1. Then the process {p},cp defined in (3.12) has a unique stationary distribution. Hence, the
process {Yi}, o is strictly stationary and ergodic.

Assumptions (A1)-(A2) are met for the distribution (3.1). The condition (A3) on the shape of the link function
holds here, as g(u) = log(n). However, the Lipschitz continuity on g(-) and the condition (A4) are required since
g~ 1(+) does not satisfy (A5).

Corollary 5. Suppose that {Y:},.p comes from (3.1), g(x) is Lipschitz with constant L <1 and |y|+10| < 1. Then
the process {ut},cp defined in (3.13) has a unique stationary distribution. Hence, the process {Yi},op is strictly
stationary and ergodic.

For Binomial distribution (A1)-(A2)-(A5) hold and the conditions (A3) are satisfied for the logit link function.
For space constraints, we do not show other examples. However, based on the theoretical results developed for this
flexible framework , stationarity and ergodicity can be directly established for a wide class of models under several
discrete distributions.

3.4 Quasi-maximum likelihood inference

The aim of this section is to establish the asymptotic theory of the quasi maximum likelihood estimator of the
parameter p = (o, 7, ¢,0). More precisely we develop asymptotic results in the three following cases: (i) misspecified
MLE: misspecification occurs in the distribution (3.1)) and/or in the model (3.2), (i¢) QMLE: misspecification occurs
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in the distribution (3.1)), (i7é) correctly specified MLE. Specifically, strong consistency is derived in the three cases;
asymptotic normality is derived for the QMLE and the correctly specified MLE. Finite sample properties are explored
through an extensive simulation study, as well as the performance of information criteria for model selection. Tables

including detailed and numerical results are postponed to the Supplementary Materials.

3.4.1 Asymptotic properties

The approach of [Douc et al| (2013)) and [Douc et al.| (2017) is applied to our general framework, which is based on

s€[0,t] s€(—oo;t]? the
latter is then used to establish the asymptotic properties of the likelihood estimator. See the Appendix for details.

showing that as ¢ — oo the discrete-valued process {Y;} tends to the backward infinite process {Y;}

Assume that {Y,}, ., are integer-valued. Let (A,d) be a compact metric set of parameter, with suitable metric d(-),
and A = {p = (a,7,0,0) ER*: |a| <&, |8 = |p+ 0| < S}, where @&,6 € Rt. We make explicit the dependence of
the conditional distribution from the mean process by using the notation q(y¢|Fi—1) = q(X¢; yr). Let gP(Y_oout)
be a stationary ergodic random process, not necessarily equal to the process X; = g(u) in , such that

gp<Yf<>0:t> =a+ ’ng<onozt71> + ¢h(Yi-1) + Q[h(Y},l) - [](g"(Y,mzt,ﬁ)] ) (3.17)

and its sample counterpart is denoted by ¢”(y1.+—1)(z), where x is the starting value of the chain g#(-). The notation
9" (Ys:u)(x) = g, 0gf, , 0---0gh (x), s <tis the so-called Iterated Random Function (IRF), see Diaconis and
Freedman)| (1999), with

g9y, (x) = a+yx + ¢h(yo) + O[h(yo) — §(x)]. (3.18)

It is worth noting that in the special case of correctly specified model, Xg = g (Y_0.0) and equation (3.17)) reduces
exactly to the process in equation (3.15). Let us define the log-likelihood function as follows

LY (Yim) =n “!log <Hq (Y1:4—1) );yt)>,

whose associated maximum likelihood estimator is

fpn,e = argmax LY (Yi.n) . (3.19)
pEA

Consider the following assumptions:
(H1) Eflog|A"(g”(Y-oc:0))l]+ < o0, Eflog|f'(9”(Y-oc:0))[]+ < 00, E[Yp| <o0
(H2) E[A(¢7(Y-oc0))'] <00, E[f(9”(Y-cci0))] <

B[A"(9”(Y-oc:0))"] < 00, E[f"(g"(Y- >)4] <oo, E(Yj) <o

which are mild conditions for the existence of moments, in general immediate to verify, see the related section in the
Supplementary Materials for some relevant examples.
Firstly, consistency for the misspecified MLE is proven, then the other two ML estimators are derived as special

cases of it.

Theorem 12. Assume that Theoremﬂ 111] and (H1) hold. Then, Vx € S, lim,— oo d(fnu, Ps) = 0, a.s., where
P, = argmax, ey E{Y0 flg*(Yo_occ:0)] — Alg” (Y-oci0)] + d(Y0)}

Here, the almost sure limit is meant to be valid under the stationary distribution of {Y;},.;. The proof lies in

the Appendix. Now the special case of correctly specified MLE is treated.

Theorem 13. Assume that {Y,}, o, is distributed according to (3.1)) and satisfies the recursion (3.15), with param-
eters p, € A°. Moreover, assume that Theorem |12 holds. Then, for all x € S, limy,, o0 Pz = pPx, @.S.
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We need to show that P, = {p,}. The proof is postponed to the Appendix. The asymptotic consistency of
QMLE is now established. Let us denote A° as the interior of the set A.

Corollary 6. Assume that {Yy,},; satisfies the recursion (3.15), with parameters p, € A° and p = A'(z,). More-
over, assume that Theorem |14 holds. Then, for all x € S,

Im pno = ps, a.s (3.20)

n—oo

where {x,} is the mazimum of the function [ P(z4,dy)logq(x,y).

In practice, p = A’(xz,) states that the mean function has to be correctly specified regardless the true data
generating process. The proof is analogous to Theorem [[3] and follows directly by Theorem 4.1 and [Douc et al.
(2017, Thr 4.1). Finally, we investigate the conditions under which the QMLE is asymptotically normally
distributed for the model .

Theorem 14. Assume that Corollary[6] and (H2) hold. Moreover, assume that the matriz (3.21) is non singular.
Then, v/i(fnz = px) =2 N(0,7 (0) " L(0.)T (p) ™), where

I(p*) =E ax

(V07 (V- 0)) (V0 (V) (6 log g (¢ (V—son). Yn) ] ,

2

T(p.) = B (9,0 (Vo)) (T, (Vo)) s 1080 57 (V) Y3 (3:21)

The proof relies on the argument of Douc et al.| (2017, Thr 4.2) and follows the fashion and the notation used
in the proof of Theorem [I2] thus it is postponed to the Supplementary Materials. It goes without saying that for
correctly specified MLE, equation (3.19) is the exact MLE and 7 (p.) = Z(p,) in Theorem [14] providing the standard
ML inference.

3.4.2 Finite sample properties and model selection

Finite sample properties of MLE and QMLE are explored through a simulation study which considers some models
illustrated in Sections and The details of the numerical results are stored in the Supplementary Materials.
All the results are based on s = 1000 replications, with different configuration of the parameters and increasing sample
size n = (200,500, 1000,2000). A correctly specified MLE has been carried out with data coming from Bernoulli or
Poisson distributions across several models. Simulations of QMLE are performed on data generated from Geometric
distribution, with Poisson distribution fitted instead, for GARMA and log-AR model. For all the models involved,
the mean of the estimators approaches the true value, for both the well-specified MLE and QMLE. Some convergence
problems arise for BARMA model, but the standard error and the bias still tend to reduce by increasing n; this gives
evidence of convergence, although at a slower rate. Turning to asymptotic normality, evidence of normality emerge
from the Kolmogorov-Smirnov test, even when the sample size is small. The outcomes are in line with those of [Douc
et al.| (2017)). These results are coherent with the theory presented so far.

A crucial aspect in empirical applications is model selection. In likelihood inference, model selection is typically
carried out based on information criteria such as the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). To assess the effectiveness of AIC and BIC for selecting the most appropriate model for the data at
hand, we carry out an extensive simulation study with competing one lag models log-AR, GARMA and GLARMA
for Poisson data. The last two are also computed, together with the BARMA model, for Binomial data. The details
of the analysis are reported in the Supplementary Materials. To summarize the results, when the sample size n is
small, the selection for some models can perform poorly, but when n is big enough, all the models allow to select the
right data generating model with high probability.
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Figure 3.1: Top-left: storms counts. Top-right: ACF. Bottom-right: mc plot for GLARMA model. Bottom-
left: mc plot for log-AR model. Dashed line is Poisson. Black line NB.

3.5 Applications

3.5.1 Number of storms in the North Atlantic Basin

We apply the dynamic models discussed so far for a novel application based on a set of data related to the annual
number of named storms in the North Atlantic Hurricane Basin from 1851 to 2018; counts of storms are related
to tropical storms, hurricanes and subtropical storms. The data can be found in the revised HURDAT database
at https://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html. There is an intense scientific debate over the in-
creasing hurricane activity to figure out whether hurricanes are becoming more numerous, or whether the strengths
of storms are increasing, mainly because of the warming earth. Then the prediction of the number of storms is
crucial and becomes of primary interest; see |Villarini et al.|(2010) for a discussion and |Livsey et al.| (2018) of a recent
application in a similar context. The time series is relatively short n = 168 and is plotted in Figure [3.1] along with
the sample autocorrelation function (ACF). There is a temporal correlation which spreads over several lags. For the
data generating process we assume both the Poisson and the Negative Binomial (NB) distribution in equation ,
where v > 0 is the dispersion parameter and p; is the conditional expectation; the latter is the same for both distri-
butions. Indeed, equation is defined in terms of mean rather than of the probability parameter p; = ﬁ and,
unlike the case of Poisson distribution, it accounts for overdispersion in the data as V(Yz|Fi—1) = pe (1 + pe/v) > ps.
We fit some models belonging to the class in equation :

log-AR: log(pe) = o+ ¢log(ys—1 + 1) + ylog(pe—1),
GARMA:  log(u) = a + ¢log(y;_1) + 0 [log(yi_1) — log(—1)]
GLARMA: log(ut) = a+ vlog(pe—1) + 6 (%) ,
where y; = max {y, ¢} with ¢ = 0.1. Different values of 0 < ¢ < 1 did not affect the estimates; while s; is the

square root of the conditional variance s; = \/p; for the Poisson distribution and s; = /g (1 + p/v) for the NB. In
this likelihood-based framework, model selection is based on information criteria, such as AIC and BIC. The Quasi
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Table 3.1: MLE results for named storms.

Models b é 5 0 v AIC  BIC QIC
‘ 0212 0231  0.673 -
Pois log-AR - 11.361  20.733 8.881
(0.082) (0.058) (0.089) -
, 0289  0.882 - -0.684
Pois GARMA - 11.368  20.740 8.644
(0.092)  (0.039) - (0.083)
. 0.314 - 0864  0.071
Pois GLARMA - 11.359 20.731 9.187
(0.103) - (0.046) (0.018)
0390  0.286  0.540 -
NB log-AR 5262 11.528 20.900 8.810
(0.310) (0.114) (0.246) -
0483  0.797 - -0.556
NB GARMA 5190 11.536 20.908 8.913
(0.354)  (0.154) - (0.248)
0.376 - 0836 0.139
NB GLARMA 5402 11510 20.881 7.640
(0.194) - (0.086) (0.041)

Information Criterion (QIC) introduced by [Pan|(2001)) is also employed. It is a generalization of the AIC which takes
into account the usage of a working quasi-likelihood instead of the true likelihood. QIC coincides with AIC in case
of well-specified models. QMLE estimation has been carried out. The log-likelihood function of the Poisson and NB
distributions is maximized by using a standard optimizer in R based on the BFGS algorithm. The score functions

written in terms of predictor x; = log u; are:

IS (e (o) 2 () I, rv)expai(p) dxilp)
0) = 13 (- ewn) 752 ) nZ@ e ) ).

The solution of non-linear equation system x,(p) = 0, if it exists, provides the QMLE of p (denoted by p). In NB
models, estimation of v is also required. The moment estimator proposed in |Christou and Fokianos| (2015)) is used:

RN D A

IS Yt — Ht) — e

U= <n ; 2 ) (3.22)
where fi; = p(p) comes from the Poisson model. Then, with v = ¥ we estimate the NB model and obtain the new
estimates for fi;, plug them into , obtain a new value for 7, and repeat the procedure until a certain tolerance
value is reached. The standard errors are computed from the “sandwich” estimators in Theorem each quantity
has been replaced by its sample counterpart.

The results related to MLEs are summarized in Table The intercept is not significant, at 5% level, for the
NB log-AR and GARMA models. All the other coefficients are significant. The parameter ¥ is generally around
5. Both AIC and BIC select the Pois GLARMA model as the best, in a goodness-of-fit sense, followed by the Pois
Log-AR. The QIC selects the GLARMA model, as well, but with NB distribution. This might be an indication
of overdispersion in the true data generating process, not captured by the Poisson models; this hypothesis is also
supported and discussed in |Villarini et al.| (2010)).

We then assess the adequacy of the fit. We check the behaviour of the standardized Pearson residuals e; =
[V; — E(Y;|Fi-1)] //V(Yi|Fi—1) which is done by taking the empirical version é; from the estimated quantities.
If the model is correctly specified, the residuals should be white noise sequences with constant variance. This

can be seen by the ACF, which in our case appears uncorrelated. Another check comes from the probability and
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marginal calibrations, as defined in |Gneiting et al.| (2007)). (Czado et al.| (2009)) introduced a non-randomized version
of Probability Integral Transform (PIT) for discrete data. It can be built based on the conditional cumulative

distribution function

07 U S Pt(yt - 1)
F(uly:) = %, Pi(y) <u < Py — 1) (3.23)
1, u > Py(yr)

where P;(+) is the cumulative distribution function (CDF) at time ¢ (in our case Poisson or NB). If the model is correct,
u ~ Uniform(0,1) and the PIT will appear to be the cumulative distribution function of a Uniform(0,1). The
PIT is computed for each realisation of the time series y;, t = 1...,n and for values u = j/J,j = 1,...,J,
where J is the number of bins (usually equal to 10 or 20); then its mean F(j/J) = 1/nY 7, F(j/J|y:) is taken.
The outcomes are probability mass functions, obtained in terms of differences F(%) - F(%), a representative plot
is in the Supplementary Material, Figure The difference between the distributions is subtle but the Poisson
PIT’s seems to be closer to Uniform(0,1). The marginal calibration (mc) is assessed as in |Gneiting et al.| (2007)
and |Christou and Fokianos| (2015). It compares the average of CDF selected, P(z) = 1/nY ;| P:(z), against the
average of the empirical CDF, G(z) =1/nY_;_; 1(y+ < z). A plot of the outcomes for mc is in Figure 3.1] for log-AR
and GLARMA model. In the other models the results are similar. It appears a better concordance with empirical
distribution for the Poisson case.

In order to assess the predictive power, we refer to the concept of sharpness of the predictive distribution defined
in |Gneiting et al.| (2007). It can be measured by some average quantities related to the predictive distribution,
which take the form 1/n) ;" | d(Pi(y:)), and d(-) is a scoring rule. We adopt the usual scoring rules employed
in the literature: the logarithmic score (logs) —logp:(y:), where p;(-) is the probability mass at the time ¢; the
quadratic score (qs) —2p¢(y¢) + ||p||?, where ||p||> = Y7, pi(k); the spherical score (sphs) —p(y:)/||p|| and the
ranked probability score (rps) Y o o[P:i(k) — 1(y: < k)], for different models and distributions. Then, the predictive
performance is evaluated and the Poisson log-AR model provides the best predictive performance for 3 up to 4 scoring
rules. Numerical results for each model are collected in Table in the Supplementary Material. This leads to a

different model selection, depending on the aims of the empirical analysis.

3.5.2 Disease cases of Escherichia coli in North Rhine-Westphalia

We consider a testbed set of data related to the weekly number of reported disease cases caused by Escherichia coli
in the state of North Rhine-Westphalia (Germany) from January 2001 to May 2013. The data can be found in the
R package tscount. The time series has a time length n = 646 and is plotted in Figure with its sample ACF.
There is a temporal correlation which spreads over several lags with a greater magnitude compared to the dataset
in the previous example. The slow decay of the ACF suggests the use of a feedback mechanism. The same models,
distributions and estimation procedures of the storm application have been employed.

The results of the analysis are summarized in Table [3.2] For Log-AR, GARMA and GLARMA the whole set of
parameters is significant at the 5% levels. The parameter » is generally around 10. All the information criteria select
the NB GLARMA model as the best, in a goodness-of-fit sense. We then assess the adequacy of the fit. The ACF
of the residuals appears uncorrelated. A plot representative of PIT value is in the Supplementary Material, Figure
The NB seems to be more appropriate for our data as its PIT’s are quite near to Uniform(0,1). The marginal
calibration (mc) is plotted in Figure for log-AR and GLARMA model. In the other models the results are similar.
Both distributions seem to show a good concordance with empirical distribution but the NB appears to perform better
than the Poisson, especially for the larger quantiles. Results related to the predictive power are summarized in Table
in the Supplementary Material. The NB GLARMA model has the best predictive performance for the majority

of the scores and it is ultimately chosen since it has been also selected by the information criteria.
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Figure 3.2: Top-left: Escherichia coli counts. Top-right: ACF. Bottom-left: mc plot log-AR. Bottom-right:
mec plot for GLARMA model. Dashed line is Poisson. Black line is NB.

3.6 Discussion

We developed statistical inference for a class of observation driven models which encompasses known models as well
as new models of potential interest for the analysis of discrete-valued time series. Strict stationarity and ergodicity
conditions have been derived for any model in the class and a large family of probability distributions satisfying mild
moment conditions. Consistency and asymptotic normality of the quasi maximum likelihood estimators have been
also established, with the focus on the exponential family. We expect the specification of this broad class of models
will provide useful theoretical and modelling enhancements to study the dynamic trend of count and binary data.

From a theoretical perspective, the unified framework permits to generalize the results on stochastic and infer-
ential properties for well-known models and to establish the same results for new models introduced in Section |3.2.2
of potential interest. Although the uniqueness of the stationary distribution for the process is proved in Section
by using Markov chain theory, the rate of convergence to the limiting distribution still represents an open issue.
Improvements could be achieved by considering a Markov chain of order greater than 1 to define a model with several
lags besides the first.

From a modelling side, the proposed framework allows one to accounts for three relevant aspects in the analysis
of temporal data: (i) the autoregressive-like effect, (ii) the effect of the past memory dependence and (iii) the effect
of the moving average part. Models in the class may differ for the effects they consider and also for the specification
of these effects through suitable link-functions. Then, the merit of the unified framework is to provide a wide range
of dynamic models which could be extremely different, not necessarily nested, but fully applicable and comparable
in practice since they belong to the same class. Model selection in terms of fitting and prediction across different
models can be performed using information criteria; their performance is explored through an extensive simulation
study.

Finally, in line with the recent theory developed for some multivariate discrete-valued processes (Fokianos et al.|
2020)), the specification of a unified framework for modelling multivariate discrete-valued time series may represent

an interesting generalization.
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Table 3.2: MLE results for Escherichia coli infection.

Models a ¢ 5 0 v AIC  BIC  QIC
, 0.441 0437  0.416 -
Pois log-AR - 13115 26527 27.043
(0.087) (0.062) (0.078) -
, 0.535  0.829 - -0.418
Pois GARMA - 13134 26546  27.371
(0.095)  (0.031) - (0.079)
, 0.445 - 0851  0.085
Pois GLARMA - 12954 26.366  26.639
(0.098) - (0.033) (0.013)
0.546 0400  0.419 -
NB log-AR 10.030  12.633  26.045 12.197
(0.102)  (0.05) (0.073) -
0.640  0.794 - -0.420
NB GARMA 9.865 12.641 26.053 12.336
(0.111)  (0.036) - (0.074)
0.483 - 0839  0.142
NB GLARMA 10.892 12.578 25.990 11.895
(0.110) - (0.036) (0.019)

Appendix

Proof of Theorem [12

Proof. Equation ({3.18) may be rewritten in the following way. For the mean-value theorem, §(z;)—g(0) = §'(us)xs =
csts for s = 0,...,t and 0 < uy < 5. We can replace g(z) with g(x) — g(0), this simply changes the value of the
constant o with a — 0g(0). Then, set

gy, (x) = a+yx + (¢ + 0)h(yo) — 09(z) = a + 6h(yo) + rox (B-1)

where § = ¢ + 0, rg = v — ¢y and xp = . Then, for s < ¢, by using IRF, we have,

t—s j—1 t—sj—1
9 yst _QZHTt 2+6ZHrt 7 yt j +HT] (B_Z)
7=0 =0 7=0 =0

where r;_; = 1 for i = —1. Moreover, from , and by equation (3.17), define g°(Y_.t) = OZZ] 0 Hl 0 Ti—i +
523 0 ]—L o "t—ih(Y;" ;). The proof is carried out specifically for g(-) ;é g( ). It is worth noting that |supj {e;} <1
for the Lipschitzianity of §g. Then, from Theorem we have 0 < r— < |rj| < |y +|0¢| < v+ 10 <7 < 1
where 7_ = min(r;). However, one can immediately see that also holds in the simpler case g(-) = g(-), with
ro =1 =~v—0, where |y—0| < 1 from Theorem Let {Y,},,cz be a strictly stationary and ergodic process, satisfying
Theorem The proof of Theorem [12] holds if assumptions (B1)-(B3) in [Douc et al.| (Thr. 19, [2013) are verified.
Assumptions (B1) and (B2) hold in our case for the stationarity of ¥; and the continuity of gf(x) w.r.t. p and q(-;y)
w.r.t. z. Hence, the estimator p,, , is well-defined. Assumption (B3)-(iii) holds here for the discreteness of Y}, see
Douc et al.| (Rmk. 18,/2013). This condition is required in order to obtain a solvable maximization problem. It remains
to show (B3)-(i) and (B3)-(ii). (B3)-(i): limy,—c0 SUppep [9°(Y-m:0) () — ¢°(Y_0c:0)| = 0, a.s., which ensures that,
regardless of the initial value of X_,,, = x, X (and thus X;) can be approximated by a quantity involving the infinite
past of the observations. (B3)-(ii): lim— e supep [log ¢(g”(Y14—1)(2); Ys) — log (9”(Y-cot—1); Y2)| = 0, a.s., with
the first element log ¢(9”(Y1.:-1)(2); Yz) = Y2g?(Y1.1—1)(x) — Alg? (Y1.—1)(x)] + d(Y3), the second element is defined as
log ¢(9”(Y_o0:t—1); Y2) = Y10”(Y_coit—1) — A[g° (Y_oo:t—1)] + d(Y?:). Intuitively, this assumption allows the conditional
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log-likelihood function to be approximated by a stationary sequence. In order to prove (B3)-(i) note that, a.s.

Sup|g (Yoo |<|04|ZTJ+\5|ZTJ|h (YZ) |<7+5Z7"th Y2l = 9(Y-oc0) 5 (B-3)
re 7=0 7=0
which has finite expectation, and then is finite according to (H1). In fact, h(Y;*) is stationary and |h(Yp)| < ag+a1|Yo|,
for Case 1. For Case 2, h(Yy) < a1Yy and E[Y{] < E[Y5] + ¢ (see equation (S-8)) in the Supplementary Materials).
In Case 3 h(-) and Y; are bounded so their expectations are finite. It holds also that

a <o .
99 (Vo) < 7= +6 D F (Y )] (B-4)
j=0
197 (Y1i-1) |<aZ~J+5ZNIh ) e (B-5)
7=0

which possesses a finite expectation according to (H1). Let di = |g°(Y_m.0)(z) — ¢°(Y_o0:0)| and j = m + 1 + 1.
Then,

oo m+l oo m+l
dy zaZHr_ +5ZHT ih( —m11+H7"J

=0 =0 =0 =0

oo m+l+1 oo m4l+1 m
< Hr_ az H 7:,—&—62 H r—ih(YZ )|+ Hrjx
=0 1=m+1 =0 i=m+1 7=0
o0 o0
<t (a3 A 1>|+|w|)

=0

converges to 0 as m — oo by (H1) and [Douc et al.| (2013, Lem. 34). Thus (B3)-(i) holds. We now move to (B3)-(ii),

supllogq( P(Yi4-1)(); Yy) — log q(9”(Y_ce:t—1); Y3

peEA
< Yysup |flg” (Yie—1) ()] — fl9” (Yoooi—1)] | +sup [A [¢”(Yiie—1) (2)] — A" (Yoooie—1)]] -
pEA pEA
First consider
oo t+1—2 oo t+1—2 t—2
g7 (Yi—1)(x) — ¢°(Y_oou—1)| = az H Te_1_; + 52 H re—1-ih(Y) + H T
=0 =0 =0 i=0 =0
< ot ( +6 ) FTIRY )| + |:v|>
1=0 1=0

=77 (o] + §(Y—oc0))
for (B-3)), and for [ = j when ¢t — 1 = 0. This implies that

Yisup lg”(Vie-1)(@) = 6" (Yoo —1)| < Vit (|2 + §(Y-sc0)) =50 as.
pe

according to (B-3)) and by Douc et al.| (2013, Lem. 34), under (H1). Now, for the mean value theorem,

sup,ep [A[97(Yia—1) ()] — A[gP(YVooou-1)]| = ;S)IGIIX |A"(Cy1)]|g? (YViae—1) (@) — 67 (Yooort—1)|
< Zlelp\A (Co)IF (2] + §(Y-oe0)) (B-6)
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where min {g”(Y1.4—1) (), ¢°{(Y_oo:t—1)} < Ci—1 < max{g”(Y1.1—1)(x), ¢°{(Y_so:t—1)}. The function tends to 0
as t — 00, for|[Douc et al.| (2013 Lem. 34) and E[(log|A’(C¢-1)])+] < oo, which is true for (H1). The same argument
of hold with f(-) instead of A(:), and the details are omitted. Then, (B3)-(ii) holds, and this completes the
proof. O

Proof of Theorem [13|

Proof. First of all, we note that P(x, A) = [, q(x;y)u(dy). By the stationarity of ¥; and (H1), Theorem |12 holds.
It remains to show that P, = {p,}, where p, = (ax, V%, Px, 05 ). This follows from |Douc et al.| (Prop. 21, |2013), once
we have showed that

(LP].) X() = gp* <YLOO:()>7 a.s.
(LP2) z+— P(x;-) is one-to-one mapping, i.e, if P(x;-) = P(z';-) implies that z = z’.
(LP3) ¢”*(Y_w:0) = 9°{(Y_oc0) a.s. implies that p = p,.

S0 g7 (Yorm:0) (X om—1) = ax 2200 10 it 6 dito [T res h(YZ;) + 1= 745 X —m—1, for m > 0. For m — oo
we have HT:O TjX-m-1 — 0 in fact sup; {rej} = r* <7 < 1. Hence, Xo = limp, 00 97 (Yo o) (Xpm1) =
97 (Y_o00), a.s. thus (LP1) holds. Moreover, (LP2) holds as well because P(z;-) is the cumulative distribution
function of g(x;-), which is the exponential family of parameter y = g=1(x). It remains to check (LP3). Consider

gp* <Y—oo:0> ZH QY — & ZH C— +
j=0i=0 =0 i=0
o jJ—1 oo j—1
+ > [T @ + 07 = v =0 B(YZ) + DT (00 4 0% = 6.0, = 07) c_ih(Y))
7=0 =0 7=0 =0

where 0, = ¢u + 04, 745 = Vi — Oics for —j +1 < 5 < 0. Clearly, only if @ = ay,y = V4,0 = 04,0 = ¢ (S0 p = py),
we have g7 (Y_oc.0) — 9°(Y_o0:0) = 0, which completes the proof. O

Supplementary Material

This is a supplementary material containing proofs of Theorem [II} Theorem [I4] and Corollary [I] The equivalence of
(A4) and (A5) for the Negative Binomial is verified. Some insight about conditions (H1)-(H2) is provided. Moreover,
the numerical results of the simulation study discussed in Section are reported. Finally, additional numerical
results for the application in Section are showed.

Main proofs

Preliminary Lemmata for Proof of Theorem

The proof of Theorem [11| requires some definitions and preliminary lemmata, with the same notation of Theorem

Definition 9. A set A € F is called a small set if there exists m > 1, a nontrivial measure v on F, and A > 0 such
that Vx € A, VC € F, P™(z,C) > Av(C).

Definition 10. A chain evolving on a complete separable metric space S is said to be “weak Feller” if P(z,-) satisfies

P(z,-) = P(y,) as x — y, for any y € S and where = indicates convergence in distribution.
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Definition 11. Let S be a Polish (complete, separable, metrizable) space. A “totally separating system of metrics”
{di},cn for S is a set of metrics such that for any x,y € S with x # y, the value di(x,y) is nondecreasing in t and

limy_yo0 de(z,y) = 1.

Definition 12. A chain is “asymptotically strong Feller” if, for every fized x € S, there is a totally separating system
of metric {d;} for S and a sequence t,, > 0 such that

lim limsup sup ||[P™(z,-) — P (y,)||, =0
d—00 t—oo yeB(x,d) '

where B(x,d) is the open ball of radius & centred at x, as measured using some metric defining the topology of S.
Definition 13. A “reachable” point x € S means that V open sets A containing z, Vy € S, Y o, P'(y, A) > 0.

The proof of Theorem [T1]is essentially based on the following preliminary lemmata. First, a drift condition is
proven on the Markov chain X; (Lemma; after that, the weak Feller property is established for the chain (Lemma
, which proves the existence of a stationary distribution for {X;}, . Then, the asymptotic strong Feller condition
is verified (Lemma [5)). Finally, the existence of a reachable point is shown (Lemma @ and, by combining all these
results, the uniqueness of the stationary distribution of the chain is proven.

Let E,(-) denote the expectation under the probability P,(-) induced on the path space of the chain {X;},
when the initial state X, is deterministically equal to x.

Consider the following drift condition Vz € S:

E.V(X1) <0V () + bizeay (S-1)

where n € (0,1),6>0,V : S — [1,00) and A C S is a small set.
Let (A3.1) g and h are bijective, increasing and
LI g(ue) = 9(pe),
1.1. h:R+~ R concave on RT and convex on R™, g : R — R concave on Rt and convex on R™, |y| + |¢| < 1
1.2. h:RT — R concave on Rt g : RT — R concave on RT, (|y| + |¢|) V |y =0 < 1
1.3. h:(0,a) » Rand g: (0,a) » R, |y —0] < 1.
2. 1t g(pe) # 9(pe) and g(pe) = E[A(Y)[Fia] or g=h
2.1. h:R — R concave on R" and convex on R™, g : R — R concave on RT and convex on R, ||+ |¢| < 1

2.2. h:R* — R concave on RT, g : RT — R concave on R, |y| + |¢| < 1
2.3. h:(0,a) —Rand g: (0,a) =R, |y| < 1.

Lemma 3. Under assumptions (A1), (A2) and (A3.1), the chain {X;},. has a small set A C S and satisfies the
drift condition (S-1)).
Proof of Lemma [3]

Proof. The proof is inspired on Matteson et al.|(Sec. 4.1,/2011) and the propositions therein. Firstly, we define a small
set A = [—-M, M| for some constant M > 0, where it is known that for any = € A, P,(Yy € [a1(M), ax(M)]) > 3/4

where

al(M)
ag(M)

,1(,]\/[) — [4(l max{|g71(—M)\, ‘gfl(M”}r + 12)}1/(”5) ’
UM — [ max{lg™ (= M), (M)} 4 1))/ 240

g
g
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Given Xg = x and pg = p = g *(z), we can write g(u) = g(g~'(z)) = (o g~1)(z) = §(z) where the composite
function g is still monotonic (and invertible), as a composition of monotonic functions. Then, with probability at least
3/4, X, > min{b(ar (M), b(az (M)}~ |1|M—[6]|g(M)] and X, < min{b(as (M), b(az(M))}+y|M+[6][3(M)], where
b(a) = a+(¢+6)h(a*) and a* is the operator * applied to a. This shows that A is a small set. For details see Matteson
et al.| (p. 812,12011). Next, it is possible to use the small set A to prove the drift condition by taking the function
V(z) = |z|. Then, we split the drift condition in three parts of the real axis: © < —M, =z € [-M,M], = > M.
Only the parts of the proof which differ significantly are shown. First we will give the drift condition for x € A,

Proposition 2. (Cases 1-3) There is some constant G(M) < oo such that E,V(X1) < G(M) for all x € A.
Then, the drift condition for « ¢ A is provided, handling the cases x < —M and x > M separately.

Proposition 3. (Case 1) For any ¢ € (0,1) there is some constant Go < oo such that for M large enough,
E.V(X1) < (|| + |7] + &)V (x) + Go for all z < —M.
(Cases 2-3)

o If g(n) # g(p) and g(u) = Eyx[h(Yy)] or g = h, there is some constant Uz < oo such that E,V(X;) <
Y|V (z) + Uz for allx < —M.

o Ifg(u) = g(p), there is some constant Wo < 0o such that E,V(X1) < |y — 0|V (z) + Wy for all x < —M.

Proposition 4. (Cases 1-2) For any € € (0,1) there is some constant G3 < oo such that for M large enough,
E.V(X1) < (l¢p| + |7 + &)V (z) + G3 for all x > M.
(Case 3)

o If g(u) # g(p) and g(u) = Ez[h(Yy)] or g = h, there is some constant Us < oo such that E;V(X;) <
|¥|V (z) + Us for allx > M.

o Ifg(u) = g(u), there is some constant W3 < oo such that E,V(X1) < |y — 0|V (z) + W3 for all x > M.

Propositions [3| and 4] give the overall drift condition for z ¢ A as follows. Consider Case 2; the other two cases
are analogous. If g(u) = g(p), since ¢ > 0, we can write E,V(X1) < |y — 0|V (2) + Wa < (|[y — 0] + &)V (z) + W,
from Proposition [3| and, for M large enough, E,V(X1) < (|¢| + |v] + )V (x) + G3 from Proposition 4| Set & =
(I¢]+[7])V|y—0], then we can write B,V (X1) < (£4+¢)V (z)+max {Wa,G3}. Fore = (1-€)/2, definen = £+¢ = 41,
and choose M large enough to satisfy Proposition[d] Then, for any z ¢ A, we have E,V(X;) < nV(z)+L, establishing
the drift condition for |y — 0|+ (|6 +|v]) < 1. We remark that, although the range of V is [0, 00), we can easily
replace V with V(z) = |z| 4 1 to get the range [1,00). The same holds if §(u) = E,[h(Y{)] or § = h # g, by setting
n = |p| + || + &, establishing the drift condition for |¢| + || < 1.

Proof of Proposition |2, Case 1

We assume, without loss of generality (w.l.o.g.), that h(0) = 0, since replacing h(y) with h(y) — h(0) simply changes
the value of a. In this case, we assume that h is concave on RT and convex on R™, so that there are constants
ag,a; > 0 such that |h(y)| < ao + a1]y| for all y; same assumptions hold for g. Now, we can bound E,V(X;) to
obtain the drift condition (S-1|) as follows, where C,Cy,Cy denote bounded constants with respect to p which can
take different values:
E.V(X1) = Egla + v + ¢h(Yo) + 0[h(Yo) — g(p)]|
< la] + WBala] + [6|EalR(Yo)] + 10/E,[A(Yo) — 5(1) (5-2)
<lal+ [z + (o] + [0) a1 Ex [Yo| + 10]|g(z)] -

From Matteson et al|(p. 21, 2011), E,[Yp| is bounded. So sup,c(_as,a B2V (X1) < oo, proving Proposition
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Proof of Proposition [3] and [4, Case 1

From equation (S-2|), we need to show that
E;[h(Yo)| <z +C. (S-3)

When h(p) < g(u), this holds from a result in Matteson et al.| (Sec. A.7,/2011) by substituting h(-) to g(-). Instead,
when h(p) > g(u), the results is unchanged by applying the following inequality h(u) = g(p + 0) < g(p) + g(d),
where 6 > 0, for the concavity of the functions involved in the same domain. Next, we need to show that the term
E.|h(Yo) — g(p)| in is “small” relative to the linear term in x:

Proposition 5. There are some constants ly4,115 such that E,|h(Yo)—g(u)| < Cyz"/(2+0) 4 0y for all x large enough.

Proof of Proposition

Since h(0) = 0 and h is monotonic increasing, for x > M, by Matteson et al|(eq. 23,[2011),

Ez|h(Yo) — g(w)] = Ex[h(Yolyy>o0) — g(k) + h(Yoly, <o)l
< Eo|h(Yolyy>o) — g(1)| + Ez[h(Yoly, <o)l
< Eg|h(Yolyy>o0) — ()| + ao + a1Ex[|Yo |1y, <o)
< Ex|h(Yolyy>o) — g(u)| + C.
Using the Markov inequality stated in [Matteson et al| (eq. 14,2011)), for any fixed € € (0,1) and = > M,
Ex[|h(Yolyy>0) — (1) |1y <(1-e)] (S-4)
< Eu|g(1)ly,<(i—e)ul + E|n(Yolocyy<(1—e)u)l
<GP (Yo < (1 —e)p) + Ex[h(1)lyy<1-2)u)]
= g(WP[Yo < (1 —&)u] + h(p)P:[Yo < (1 — )y
< 9(w)Pa[[Yo — ul = ep] + h(p)Po[|Yo — p| = ep]
g(w)(Cip" + Co)  h(p)(Crp” +Cz)_

£2+0,,2+6 £2+0,2+0 (5-5)

If g = h # g, equation (S-5|) reduces to Hé ) . Recall that for y > 0, ag + a1y > h(y), so that ag + a1 > h(u).

Hence, u > (h(p) — ao)/a1 and ( is bounded by: [h(H)C:ZS)]Q)M,T = [E(x)gz(()]gﬁﬂ' which converges to 0 as x — oc.

(h(-) = h(g™'(-)) = (ho g_l)(~) is an increasing function, since it is a composition of increasing functions, and is
therefore bounded by a constant, for x > M. If g(u;) = E[h(Y})|F;—1], it can be showed that g(u) = E,[h(Y)]. As
0(Xo) C F_q, for the tower property E,[h(Yp)] = E[h(Y0)|Xo] = E[E[R(Ys)|F_-1]|Xo] = E[g(p)|z] = §(p). Moreover,
we notice that g(u) = E,[h(Yy)] < h[E.(Yo)] = h(u). Consequently, the above bound applies here. If g = g # h we
define (S-5)) as 9“25?;“2:;02) + h(”‘géfg;;;:@) = “2%2 + lf’;ﬁf;’i’r and it is bounded by = a0]2+5 -+ [h(H)CZEf]Lz)HfT =
Cx Ch(x)

[z—ag]2+o-T + [A(z)—ag]2+s—""

Ez[h(Yoly,>0) = 9(1)11yy>(1-e)u = Ealh(Y0) — 9(1)| 1y, >(1-e)u (S-6)

which converges to 0 as  — oco. It only remains to show that

is “small”. When g = h, this is straightforward by substituting h(-) to g(-) in Matteson et al. (p. 826, [2011),
establishing Proposition For g(u) = E.[h(Yy)], the expectation is bounded by E.|h(Y0)|1y,>a—c), +
Eo|g(1) | 1yy>(1—e)p < 2g(1t) < 2h(p) which is itself bounded by 2ag + 2a1p < Cy 4+ C1E,|Yp| < Cy 4 Cp'/+0) <
Co+Crz"/ 49 for the concavity of h(-), for u > 0 when = > M, (p. 824, Matteson et al., 2011)), since y < m
by equation where by (z) is bounded for > M. Then, Proposition [5|is proved also for g(u) = E,[h(Y0)].
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Combining Proposition [5| with (S-2) and (S-3)), we have that, for all  enough large,
E,V(X1) < Ca + [olz +16]Cra/ ) - [yle < O+ (|¢] + [y + )z

this proves Proposition [d Proposition [3] holds by symmetry when z < —M.

Proof of Proposition Case 2

Assume w.l.o.g. that h(c) = 0 and g(c¢) = 0, this simply changes the value of a. Since h(c) = 0, h(Yy) > 0 is
non-negative for any Y. Also, due to the concavity of h, there is some a; > 0 such that h(y) < a;y for all y € RT.
The same arguments hold for g. At this point, a different proof is developed, depending on the shape of g(u). When
g(x) = g(u), we can bound E,V(X7) as follows:

E;V(X1) = Eolor+ vz + oh(Y() + 0[h(Yy) — g(n)]|
<laf+ |y = 0llz| + ¢ + 0]Ex [n(Yy)]
= lal+ ¢ +0|P.(Yo < ¢)h(c) + (¢ + O|Ex[A(Y0) 1yy>e] + [ — 0[]
= la| +[¢ + 0lar1 B [Yoly,>c] + |y — 0]|2].
Note that E,[Yoly,>c] < E4|Yo| < Co+Crp™/ 49 where p = g~ (2), implying that E, V(X)) < Co+Cypu+|0]|g(x)|+
1y||z], so E,V(X1) < oo for & € [—M, M], proving Proposition 2] When z < —M we have = g~'(z) < g7 1(0) = ¢,

we obtain E,V(X;) <lz0 + |y — 6||x|, and this completes the proof of Proposition
Now the case when g # g is considered. A different bound for E, V(X7) can be established:

E.V(X1) = Egla + vz + ¢h(Yy) + 0[h(YS") — g(1)]|
< lal + [llz] + |¢Eq [A(YE)] + |0]E: |h(YS") — g(1)] (S-7)
= |a] + [¢[P2(Yo < c)h(c) + |¢[Ea[n(Y0) 1y, >c] + [7]|2]
+ 10|+ (Yo < ¢)|h(c) — g(p)| + 10| Ex[|h(Yo) — g(1)[1yy>]
<laf+ (|o] + |0 Ex[r(Yo) 1y, >c] + 0[P (Yo < ¢)|h(c) — g(u)|
+101P.(Yo > ¢)|g(p)] + [v]|z|
< laf + (|o] + |0]) a1 Ex[Yoly, > ] + [01g(2)] + []|2] -

When g(1) = Eulh(V3)], Balh(V)] = Balh(Volyyne) + h(Pa(Yo < 0)] < an[Bu(¥olypso)] < ar[Bal¥ol] < Co +
Cop™/ 49 and so B,V (X1) < C + |0||[E.[M(Y)]| + [7lz| < C + [0](Cy + C1™/CH)) + |5||z|. Lastly, if g = h,
lg(z)] = |h(p)| = —h(p) < —h(0) = d. So the drift condition becomes E,V(X;) < C + |0|d + |v||z| proving
Proposition [3]

Proof of Proposition [, Case 2

Using Jensen’s inequality and the fact that P, (Yy < ¢) 2720, for all  large enough,
E. [h(YO*)] < h(Ez [Y01Y020] + CPI(YO < C)) = h(EI [Yo] —E, [Y01Y0<c] + CPZ(YE) < C))

Using a similar argument of Case 1 above, we see that the last two terms in the argument of h converge to 0 as
x — oo. Hence, for (S-3) we have that for any £ > 0 we can find M > 0 so that, for all x > M, E,[h(Ys)] <z + C;
combining this with , there exists M > 0 such that for x > M,

E.V(X1) <C+[¢|V () + [yllz] + |0[E: |h(Yy) — g(w)]-
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It remains to show that the final term in this equation is small relative to the linear (in V(z)) term as x — oo. It is

worth noting that the map * does not affect the results for Proposition [5| because
E:c(Y()*) = Em[YblYch] + Ea: [C]-Yo<c} = Em(YO) - Em[Y01Y0<c] + Ea: [C]-Yo<c}

— i+ Eul(e — Yo)lvped < 11+ Ealelyped < it o (5-5)
and g(u) = Eg[h(YS)] < R[Ez(YS)] < h(p+¢) < h(p) + h(c) = h(p) due to the concavity of h. Hence, the proof
follows in almost identical fashion to the proof of this result in Case 1. We omit the details.

Proof of Proposition and [, Case 3
Assume again h(c) = 0. Since h(Yy) € [h(c), h(a —¢)]. If G(n) = g(p)
E.V(X1) = Ezla + (¢ + 0)h(Yy) — 09(x) + va| < |af + [¢ + 0[E. |h(Yy)| + |y — 0]|z|
<lal+ ¢ +0lhla—c) + |y — O]|z].
Propositions follow immediately. If g(u) # g(p)
E,V(X1) < |a| + ¢ + 0|Eo [ h(Y)| + 10]1§(2)] + |||
<lal+1¢ +0lh(a —c) + 10llg(2)| + [yll2]- (5-9)

Proposition [2| follows immediately. We prove Propositions [3| and il If g(u) = E.[h(Yy)], equation will be
B,V (X,) < C+0|[E [(Y;)]|+ 11lla] < C+10]h(a—c)+ hyl[z]. Then, if g = h, we have that |3(x)| = [h(x)| = h(s) <
h(a), if h(u) > 0 and |h(p)| = —h(p) < —h(0) if h(p) < 0, where h(a) = sup,¢(g,qa) (1) and h(0) = inf,c(0,a) A(1).
Finally, the drift condition is E,V(X;1) < C + |v||z| and this completes the proof of Lemma O

Note that Lemma [3]is sufficient to establish stationary conditions for the Case 1, since it involves a continuous-
valued process Y; so the respective chain X; = g(u:) is ¢-irreducible. Resort equation (3.15)) from the main paper

Xe=a+y X1+ ¢h(Y) +0 [A(Yy 1) — g(ue-1)] (5-10)

Lemma 4. The chain { X}, defined in equation (S-10) is weak Feller.

Proof of Lemma [

Proof. Define X; = g(u:) and Xo = z. Let X;(x) denote the random variable X; conditional to Xy = x and Y;(x)
denote the random variable Y; conditional to g = pu. From we have that X;(z) = a + ¢oh(Yy (g7 (x))) +
O[h(Yg (g7 (x))) —g(x)] +~x. Since g~ ! is continuous, Yy(g~1(z)) = Yo(9~1(2')) as z — 2. Since the * that maps Yy
to the domain of h is continuous, it follows that Y (¢! (z)) = Yg (971 (2')) as x — 2’. Since h is continuous, we have
that h(Yg (¢ (z))) = h(Y (971 (2"))). Since () is continuous, we have that §(z) = g(«'). So Xi(z) = X;(2') as
x — 7', showing the weak Feller property. O

For Case 2 and 3, consider the assumption (A3.2):
Lo IEg(ue) = g(ue), |y — 0] <1

2. If g(pe) # g(ue) and |g'(2)| < 1, [y +10] < 1.

Lemma 5. Assume that Lemma@ Lemma (A3.2) and (A4) hold. Then, {Xi},op is asymptotic strong Feller.
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Proof of Lemma [5

Proof. When g = g, it follows from equation (S-10) that X;(z) = a + ¢h(Yy(2)) + 0[h(Yy (2)) — g(2)] +vz. If
h(Yg (w)) = h(Yy' (2)) then, [X1(2) =X, (w)| = [0 ( ( )— (w))+7(2—w)| = [y=0|[z—w]. From coupling theory, using
Roberts and Rosenthal (Prop. 3(g),[2004) we can construct the random variables g(Y; (2)) and g(Y (w)) in such a way
that they have the marginal distributions 7. and m,, and that P(g(Yy (w)) = 9(Yy(2))) = 1 — |7 (-) = 7()|| 7y >
1 — B|z — w|, where the inequality holds by assumption (A4). Note that g(-) and h(-) are one-to-one functions.
Hence, we have g(Yg (w)) = g(¥i (2)) <= Yi(w) =Yg () <= h(Vi(w)) = h(Y§ (2)

only if”); so the conditional probability to g(Y; (w)) = g(Y5 (%)) or h(Yy (w)) = h(Y5(
the probability that the chains couple at ¢t = 1:

(where <= means “if and
z)) is equivalent. Therefore,

P(g(Yy (w)) = g(Y7" (2))|(Yg (w) = (Y (2)) > 1 = [[7x,(5) () = T, () )| oy (S-11)

which is bounded below by 1 — B|y—60||z —w|. Then, the lower bound of the probability that the chains couple for all
times ¢ = 0,1,... is obtained by iterating (S-11): 1 — Bz —w| Y o (v —0])! =1— ‘z Hf'g‘ where the equality holds
by assumption (A3.2). The rest of the proof for the asymptotic strong Feller property follows Matteson et al.| (p.
819,2011)). It is sufficient to replace |0| by |y — 0| anywhere. We omit the details. If g # g and h(Y; (w)) = h(Y5 (%))
we have |X1(2) — X1 (w)| =|—0(3(2) — g(w)) +v(z —w)| < |0]|g(2) — g(w)| + |7||z — w|. Since g(x) is Lipschitz with
L <1, we obtain | X3 (w) — X1(2)| < (|0] + |7])|z — w|. Hence, it is immediate to see that the proof for the former
case (g = g) is valid also here by substituting |0| + |7y| to |y — 6]. This completes the proof. O

Lemma 6. If (A3) hold, then there exists a reachable point xq for the chain (S-10)).

The condition (A3) is obtained by unifying assumptions (A3.1) and (A3.2).

Proof of Lemma

Proof. We show the existence of a reachable point for {X;},., where X; = g(u;) and x; is its sample counterpart.
Firstly, consider the case in which § = ¢ and put without loss of generality (w.l.o.g.) h(0) = 0 (which simply change
the value of the constant «). The model (S-10) could be written as

T =a+yxi 1+ (0 + )Y ) —09(zi—1). (S-12)

Let consider the case Y;* = 0, for t = 1,...,n. Hence, by (5-12), 2, = a + (v — 6)2;—1. Then, set z = a/(1 —6),
where § = v — 6. Let x € R and let C be an open set containing x. Then, by setting zop = x and for all ¢t > 1,
Ty =+ 0 = azt 163 4 §tzy. Since § < |[v — 6] < 1 for (A3.2), we have lim;_,oc 2 = « so that In such
thatVt > n, x; € C. For such n we have

P(2,C0) =Pp(Xn€C) 2 P(Xpn € CYF ==Y 1 =0)
=P (Xp €Oy ==Y 1 =0)P,(Yg ==Y, =0)
=P (Y= =Y, =0)>0.

For the case g(u:) = E[h(Y;*)|F:_1], it is immediate to see that g(u;) = 0, for t =1,...,n and holds as in the
previous case, with 7 instead of d, as by (A3.1) follows that |y| < 1. When g = h # ¢ we consider the case Y; = ¢,
fort =1,...,nso that uy = ¢, fort =1,...,n and Y;* = ¢, for t = 1,...,n; and finally, set w.l.o.g. h(c) =0 and
will be valid as in the former case, with v instead of 4. O
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Proof of Theorem [11]

Proof. Theorem (11| follows directly from Lemmata More precisely, if (A1)-(A2) and (A3.1) hold, the process
{Xi},cr has at least a stationary distribution. The result is obtained by Lemma [3] Lemma [4] and Theorem 2 in
Tweedie (1988). Besides, if (A1)-(A4) hold, the stationary distribution of the process {X;},., is unique. This is
immediate by Lemma Lemma@ and Theorem 3 in |Matteson et al.| (2011). Finally, by Proposition 8 in |Douc et al.
(2013), the stationarity of {Y;},., follows directly by the uniqueness of the stationary distribution of {X;}, ., this
completes the proof. O

Proof of equivalence of (A4) and (A5) for Negative Binomial

Proof. For the total variation distance between dry (g(Yi*(2)), (Y (w))) = drv (Yi(2), Yi(w)), the coupling inequal-
ity, as in|Thorisson| (1995)), ensures that dry (Yi(2), Yz(w)) < P(Yi(2) # Yi(w)). So, bounding P(Y;(z) # Yi(w)) with a
Lipschitz function is equivalent to prove Assumption (A4). Suppose that z > w and let Y;(2) ~ NB(a,p, =
and Y;(w) ~ NB(a,p, =

convolution we have

s To7a)

m), set Yi(z) = U +Yi(w), so U = Yy (z) — Yi(w), and, by using the discrete-variable

k=0
o0
_ a+k-1\ , cfa+k+u—1\ , bt
—Z( i )pz(l pz)< kot )pw(l Pw)
k=0
and then
= fa+k—1
P(U = pzpw GZ ( ) [(1 _pz)(l _pw)]k-
k=0

The coupling probability could be written as

P(Yi(z) # Yi(w)) =PU#0)=1-PU

|
~—

- s

M): s

where D > 1 and and D (g~'(2) — ¢~ *(w)) = D;. In equation (S-14) we put D* = max{D, D;}. The inequality
(S-13)) holds because the function g=!(-) is Lipschitz with constant ¢. Then, (S-14)) is Lipschitz as well with constant
¢ for z € [w,w + aD*/(], since the absolute value of its derivative is bounded by (, and this gives the desired
result. O
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Proof of Corollary

h(Yo)=3(2) | _ Eslh(¥)=d(@)]

Proof. Let us define vy = v(uo) = v(p) = v and set g(p) = «. It is worth noting that E, [
In fact v is the standard deviation o(u) of h(Yp), which is constant w.r.t x (and then w.r.t p). For this reason
Proposition [2] Case 1 is left unchanged. In Proposition 4 we have z > M; if v is increasing w.r.t ;1 we have that as
x — 00 (u — 00) v goes to infinity as well (and 1/v — 0, then it is therefore bounded for > M) or converges to a
specific constant. In both cases the proofs still hold with a modification of the constants C' (Proposition [5] included).
The same thing (with signs inverted) holds for Proposition provided that v is decreasing w.r.t p as x < —M. For
Case 2, Propositions[2] and [d] hold as before. For Proposition [3]we see that 2 < —M and 0 < p < ¢, v is only required
to be monotone w.r.t p, indeed if it is decreasing o(u) > o(c) = &, instead, if it is increasing o(p) > o(0) = ¢, and
then

E.V(X1) <C+([¢|+0|/v)a1Es[Yoly,>c] + 10]/v]g(z)| + [v]|=]
< Co+ Ci/vp+10]/v]g(@)] + |||
< Oy + C1/&e+10]/€|g(2)| + |]|2]
< C +16]/€(lzz + logc™ ) 1 ||z

which provide the same stationarity condition obtained in absence of the scaling sequence. For Case 3 we have
0 < p < a, also v is required to be monotone, if it is increasing o(u) > o(0) = J, by contrast, if it is decreasing
o(p) > o(a) =6, then

E.V(X1) < C+(I¢] +101/6)h(a — ¢) +161/6]g(x)[ + |[x] < C +16]/vh(a — ) + [y

which provide again the same stationarity condition. Then, Lemma |3| holds also for the chain in the main
paper.

As far as the Feller properties are concerned, it is easy to see that the weak Feller condition is satisfied since, in
general, 0%(u1) is continuous for u (and then for x). Hence, Lemma [4] holds. Also, in order to prove Theorem the
asymptotic strong Feller property remains to be verified. Define Yy = h(Yy) and i = g(u). We compute the scaling
sequence from the first order Taylor expansion: b(Yy) =~ b(fi) + b (f1)(Yo — fi) so as to obtain V[b(Yy)] ~ b (j1)?v/?
where here v? = V[h(Yp)]. The function b is selected as Lipschitz with constant not greater than 1. Then, by using

the variance stabilizing transformation (VST) we obtain a constant variance c?

h(Yo)=9(p) -, b(¥o)=b(i)

w.r.t. the mean fi. After that, we

take the approximation and show the asymptotic strong Feller property on this approximated
version. The remaining part of the proof is the same of Lemma We omit the details. In general, the choice of
function b(-) depends on the nature of the process. For example, in the Poisson data case, we can select the VST
as b(Yp) = v/Yo. For Negative Binomial data with known number of failure a the VST b(Yg) = /asinh™'(1/Yo/a)
provides the same result. Instead, Dunsmuir and Scott| (2015) suggested to set v, = 1 (no scaling) for Case 3 since
the term h(Y;—1) — g(p—1) is already bounded. Finally, as here we are in the case where g(u;) = E[h(Y;)|Fi—1] the
existence of a reachable point does not require any modification of the proof for Lemma [6]

Hence, for the Markov chain (3.16) in the main paper, Corollary |1] holds. O

Insight about conditions (H1)-(H2)

In this section, we verify conditions (H1)-(H2) introduced in Section of the main paper, for particular cases
of interest, to show they hold for a large variety of models and are easily verifiable. Of course, the existence of
moments of Y; cannot be proved directly, as its unconditional distribution is unknown, even though they are quite
usual assumptions in the context of ML inference. We focus on the other expectations. For convenience in terms of
notation, in this paragraph we write g”(Y_.t) = X¢, even though the process g (Y_so.¢) in in the main paper
is not necessarily the same of that in .
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We start from the standard case in which the link ¢(-) is canonical; here the conditions on the derivative of f(-)
hold automatically, since f(X;) = X, f/(X;) = 1 and f”(X;) = 0, hence the respective expectations are finite.
The moment condition for the derivatives of A(-) can be easily proved by noting that, from the properties of the
exponential family, A’(X;) = g~ !(X;); in this case, the inverse of the link function is usually Lipschitz continuous.
Then, we can write g~ 1(X;) — ¢~ 1(0) < L|X;| and

(loglg™" (X¢) — g7 (0) + g7 (0)])+ <log”|g~"(Xe) — g (0)| +b

(loglg~ ' (X))+ =
< log™ (L|X¢[) + b,

where b = log* |[g7%(0)|, log*(x) = log(1 + z) and the second inequality holds for its sub-additivity. By taking the
expectation

E(log|A"(Xy))+ < E(log" (L|Xy])) +log* [¢~(0)] < LE|Xy| +b. (S-15)

So the expectation in is finite because the expectation of X; is finite when E|Y;| < oo, see the proof of
in the Appendix. This proves (H1).

Assumption (H2) is required only in the context of asymptotic normality for QMLE. We remind that, if g is
canonical, then Q; = X; is the canonical parameter, and by Corollary @ we have A'(X;) = ur = E(Yi|Fe—1) and
E[A(X;)*] = E [E(Y|Fi—1)*] < E[E(Y}Fi—1)] = E(Y;*) < 0o. Then, we also have E|A”(X;)| < |L] < oo, as A'(-)
is Lipschitz, and this verify assumption (H2). However, there are cases where the canonical link function g is not
Lipschitz; for example g(-) = log(:). Here the proof is immediate: E(log |A'(X})|)+ = E(log|exp(X:)|)+ = E|X¢| <
0o. Moreover E [A'(X;)*] = E [A"(X;)*] < E(Y}) < oo.

The verification of conditions (H1)-(H2) for non-canonical link function g(-) clearly depends on its specific shape.
We make here some relevant examples. Suppose one wants to model the expectation p; linearly as in of the main
paper, with a Poisson distribution coming from of the main paper; this is done by setting f(X;) = log(X;) =
log(u:) and A(X:) = X; = pr > 0. Here, the expectations involving A(-) are finite, as A'(X;) = 1 and A”(X;) = 0.
The expectations of the derivatives f/(X;)? = 1/X} < 1/a* and f"(X;)* = 1/X$ < 1/a® are bounded; in fact
ue > 0, the parameters (a, 7, ¢,0) > 0, than X; = u; > «, completing the proof.

Another common model used in the literature with non-canonical link function is for the Negative Bi-

nomial (3.10) in the main paper; it is derived by (3.1) in the main paper when d(Y;) = log %7 A(Xy) =
—vlog (VIHJ = vlog(v + e*Xt) — vlog(v) and f(X;) = log (V_‘:’;“) = X; —log(v + ¢X*). We know that v > 0,

hence E[A’(X;)1] = E( veXt )4 < v? < 0o and E[A”(X})Y] = E[(i)ﬂ < exp(v) < oo. In the same fashion

vteXt (v+eXt)?
X
(Xt = (o= )2 <1and f(X¢)* = (ﬁ)4 < 1, which posses finite expectations.
Proof of Theorem [14]

Proof. The proof of the theorem is based on [Douc et al| (Thr. 4.2, [2017), and requires to prove that all the
assumptions therein, (A1), (A4), (A5) and (A7), hold when the assumptions of Theorem [14] hold. First of all,
note that (A1) is satisfied for the stationarity of Y; and (A4) is assumed in Theorem Moreover, (Ab5) follows
by u = A’(x,). It remains to prove assumption (A7). Let ¢*(Y_ooit—1) : p = ¢°(Y_wot—1) and ¢*(Y1.4-1)(2) :
p = g°(Y1.:-1(x)). We assume that the function z — ¢(z,y) is twice differentiable. For all twice differentiable
¢ : P — R and all y € R, define the score function x”(x+(p),yt) = Vpxt(p)%xt’yt)and the Hessian matrix

KP(z(p),yr) = V?,xt(p)ak’ggig"yt) + Vpxt(p)vpxt(p)'w. In order to prove asymptotic normality for the
QMLE (3.19) in the main paper by following the line of [Douc et al| (2017) the following assumptions are required
to hold true.

(A7): Yy € R, the function z — ¢(x,y) is twice continuously differentiable. Moreover, there exists ¢ > 0 and a
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family of P-a.s. finite random variables g”(Y_..), for (p,t) € P x Z, such that g°* (Y_..0) is in the interior of S, the
function p — ¢°(Y_oo.0) is, P-a.s., twice continuously differentiable on some ball B(py,€) and for all 2 € S, almost

surely
(1) Timg oo [ (9° (Vi 1)(2), Y2) — X (9°(V-oest1), Y2) | = O,where ||| is any norm on RY.
(i) limg— oo SUP e B(p, ¢) 1K (g*(Y1.e—1)(2),Y:) — KP (¢*(Y_oo:t—1), Y2)|| = O,where ||-|| denote here any norm on

4 x 4 matrices with real entries.

(111) E |:||Xp* (g.<yfoo:0>7}/1)||2:| <o, E [SuppeB(p*,e) HKP (g.<ono:O>7Y1)||i| < o0.

Intuitively, (A7) implies that the score function and the information matrix of the data can be approximated by
the infinite past of the process. Besides, all these quantities are assumed to exist. We start from (A7)-(i). Clearly
hmt—>oo ||a - b” = 0 holds if hmt—>oo |aj - bJ| = 0 for all ] Put Xp('7 ) = [on(.’ ')3X¢('a ')aX’Y(W ')7X0('7 )}/ We

compute the derivatives

997 (Yi4—1)(x)

X7 (9° (Via—1) (@), Y2) = [Vaf' [97* (Viee—1) ()] — A [97* (Yis—1) (2)] .

where, given that r; = v — fc;, by using the product rule, 9, = W. Then,

t—27—1 Jj—1 t—275—1 j—1
h=a.y ] re1- 0400 [[rea (Vi) 3 — +HWZ*
7=013i=0 10 - j=01i=0 i—0 L1t 7=0 3=0

where we have made implicit 7"; = 7. — 0,c; = r; to avoid excesses in the notation. The expressions for the other
derivatives are stored in the dedicated section below. An analogous result is found for x** (¢*(Y_coit—1), Y:). We

show the proof only for one derivative, it is easy to check that the others can be shown in a similar manner. Consider

X7 (9" (Y1) (@), Vo) = X7 (97 (Yooor—1), Vi)

_ )/tf/ [gp* <Y1;t_1>($)] agp* <Y1:t—1>(x) A [gp* <Yv1:t_1>(x)] 69;)* <Y1:t—1>(m) +

Oy 05
99" (Yoo DgP* (Y-
_Y;ff/ [gp* <onozt71>] g <3'y - 1> + A’ [ p*< —oo:t— 1>} L <57 = 1>

and then
X7 (g° (Yi—1) (@), Ye) = X7 (9°(Y_ooit—1), Y2)|
|Y|‘YH1>() "7 (Yosore—1)] — [ 97 (Y1) (@)]| +

9g9°* Yig—1)(z)  99°* (Yoooit—1)

*

AT oot1>1||

87* 67*
0gP*{Y71.4_
|2 L ()] - A W]+ (5-16)
9gP* Yiu—1)(z) 99" (Yoooi—1)
+ A/ Px o ‘ S-17
A g (V)| [ - (5-17)
Now let us verify that
09 (Y- s > 11 > 1
9" (Y_oc:0 ~J ~j *
PG| <ol 3o Y A e+ 613 [ 3
7=0 =0 7=0 =0
e o N . O9(Y_ .
Y DYy S| = 2T <o (519
j=0 j=0
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which is finite for (H2). For the same argument

8gp* <Y1:t_1> < 3§<Yl:t—1> < 0 (8—19)
oy - on -
Now the difference
997 (Yiu—1)(z) _ 9g°* (Y_ooit—1) o~
0 o O0vx <|a*|z t+l_1)+
o0 tl-1 pt=1

t+1=D[hY)+ ——( = 1)|z]

+ [ + 6 |Z -
~t—1 [ ~ f N 7 *
<7 aZ—H—(SZ—l\h(Y_lH +
1=0 - =0 -
oo ~l ~ o0 ..l
ol —1) (az :— +6y :— |h(Y2)| + Lx)
=0 =0 -

_ 7~;t—1 8g<Y_oo:0> + Ft_1<t o 1) <Q<Y_oo:0> + |l‘|) t—00 0
oy r_ r_

almost surely, so that (S-17) tends to 0 as t — oo according to [Douc et al.| (2013, Lem. 34), (H1) and equation
(S-18). An application of the mean value theorem allows to rewrite equation (S-16) as

O A" (Cr )" (Yoort—1) — 97 (Yi—1)(2)]

which tends to 0 as t — oo for the same reason in in the appendix if the following expectation is finite
aP (Y., AgP+(Y1.4_
E(log 97" (Y1) (@) A"(Ct_1)|> :E<log 9°* (Yia—1) ()
+
(Yl t—1)(x) g°* (Yl t—1)(x)

O0x 07«
The first term of -, ( o ) s
of { is finite. The proof in the second term of ( - follows from the mean-value theorem. Denote M =

(log |A’(g”*< “ooit—1))]) 4 + E (log [A (g7 (Y1.4—1)(x))]),. + 1, which is finite for (H1). Consider

) FBGogla"Cin),  (s0)
.

< oo is finite, since, for (H2), the expectation

" AP (Y_ooit—1)) — A'(97* (Y11
< M+E(- 10g|g”*< —ooit—1) = 97 (Yiu—1)(2)]) ¢
< M —E(log|g” (Yoocit—1) — g7 (Y1—1)(2)]) _
= M- 1E(|log 197 (Yooot—1) — 9" (Yia—1) (@)[]) +
+3E (log 197 (Vocott) = 97 (Vi) (@)
< M+ E|9p*< —ooit—1)| + E|gp*<Y1t 1)(@)]

which is finite as the expectations of (B-4) and (B-5) in the appendix are for (H1). The same results of (S-16|) and
(S-17)) apply similarly for f/(-), thus are omitted. Hence, (A7)-(i) is proved. We now move to (A7)-(ii). Consider

829P<Y1:t—1>(=’17)
op 0p’

Yef" 19" (Vi—a)(@)] = A" [9” (Vi 1) ()] -

K (g*(Yis—1)(2),Ye) = [Yof [97 (Yise—1) (2)] — A" [9° (Yi—1) ()]

N 9g° (Yii¢—1)(@) 9gP (Yi:4—1) (@)
dp op’
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We show the proof only for a single derivative, as the proof of the others is immediate.

[K? (g*(Y1-1) (@), Y2) = K7 (9" (Yo scit1), )|

< (0157 (Pt 14 (o) | | PGt P i) (s22)
PPV (g (Y1)~ A ) @) (5-23)
PLVA)O ) 11 g rmr)] ~ £ o Vi) @) (5-24)
+(W) A (74— serm)] = A g (Vi) @) (5-25)
+(39<Y89>”) Yl 1 9Vt = £ (97 (Vi) @) (5-26)

(1187 (@] 14 (0 >>|H(W) (el

By the definition of second derivative it can be easily shown that

PgP(Yi—a)(x) 029" (Yoooui-1) -1 PG (Yoooo) | 2|
962 962 <2 -1y’ (7 062 +r2>

which is finite as % =ay 2 %12 + (d + ¢+ 1) >o :—;lz |h(Y*))| has a finite expectation, according to

(H1). So that the ﬁrst element (S-22) tends to 0 as ¢t — oo for (H1), by [Douc et al| (2013 Lem. 34). The same holds
for the elements ([S-23|) and ([S-24 - since ([S-20)) is verified (the only difference here is that the expectation of the second
derivative is reqmred to be finite but E log w >+ <E ‘%ﬁ,lm (H1)). Equations
(S-25) and also tend to 0 as ¢ — oo because of [Douc et al| (2013, Lem. 34) and E (log|A"”(Cy_1)|), < oo,
E (log |f"(C¢-1)|) . < oo; the proof is analogue to (S-21). Finally, it follows that also the last element tends to 0 as
t — oo for (H1), by Douc et al,| (2013 Lem. 34), because it can be rewritten as

’8g”<Y1:t_1>(:c) 09°(Y_oo:t—1)

(agwggfn(w)f B (agwmwf' < ’39"<Y1:t—1>(x)

00 00 00 00
agp< —ooit— 1> agp<Y1:t_1>([L‘) 8gp< —ooit— 1>
00 1ol a0

and this completes the proof for (A7)-(ii). It remains to show (AT)-(iii):
~ (090 c0) )’
. N —o00:0
I V) I < (V21 P Va5 A (0 nl]) 3 (25200 )
i=1 v
where the inequality is obtained by substituting the corresponding equations for the derivatives,

221:1 (8@(2;;0:0))2 _ 1 - T Z Z ~j+zh Y* *i) + 2% Z ZFJ+Z(]Z)h(Yj1) +

§=0 i=0 §=0 i=0

g oo o0 i . . d oo o0 i §
2D > FIEROYIDAYI) A Y D F TGRS +

= j=0i=0 ~ j=0i=0

a S 7J T * S — ~J+ * *
2 YD FTGRYE) + 2 D (Y)Y,

— j=01i=0 — j=0i=0
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where, for the Holder’s inequality and (H2),

B (V2 I Ol PO HO)] < BB [l 0wl B 77 200, ],

which is finite. The same is true for E [A’ [9°* (Y- oo0)] h(ij)h(Y_*i)} . This proves that the expectation of the score
squared is finite by (H2). Analogously, the Hessian

4
K7 (9° (Yoooi0), YI)I - < (I f" [97 (Vooco)] + 1A [97(Yooci0) Z 6
j:l =1 pJPz
< (V1| 1f" [9" (Yoc0)]] +
4 4
8g —o0:0 8g< >
) Y
j=1i=1 3pj
provides a finite expectation for Holder’s inequality and (H2), completing the proof. O

Simulation studies

Finite sample results

In this section, the numerical results concerning the finite sample properties discussed in Section [3:4.2] are presented.
Table [S-1] summarises the estimation results for the GLARMA model when the data come from a Bernoulli distri-
bution. Table and show the outcome of simulations for GARMA and log-AR models performed on data
generated from Geometric distribution in , but with Poisson distribution fitted instead (QMLE). All the re-
sults are based on s = 1000 replications, with different configuration of the parameters and increasing sample size

= (200, 500, 1000, 2000). The first row reports the true parameter values; the following two rows show the mean of
the estimated parameters, obtained by averaging out the results from all simulations along with the corresponding
standard error. The subsequent two rows present the lower and upper limit of the confidence interval for the estimated
mean. Finally, the last two rows correspond to the bias of the mean and the p-value of the Kolmogorov-Smirnov
(KS) test for normality on the standardized MLE/QLME obtained from the simulations. In Table the estimates
tend to be closer to the true value of the parameters as the sample size increases, which confirms the consistency of
the estimators. Consequently, the bias is also reduced. Moreover, the estimates are significant at the usual levels
and the true value of the parameters falls into the confidence intervals. The KS tests do not reject the normality of
the estimators even with a small sample size. The same comments hold true for all the combinations of parameters
employed. Similar results are obtained in Table and where the QMLE is fitted. The GARMA model seems
to be more accurate on the approximation of the true values but some problems with the KS test are found when a
non-stationary region for the parameters p = (0.5,0.4,1.2) is investigated. Instead, the log-AR model could not be

estimated in non-stationary regions of the parameters.
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Table S-1: Simulations for GLARMA(1,1); Y| F;—1 ~ Be(pt), s = 1000.
n «@ 0% 0 @ ol 0 « ¥ 0
True 0.500 -0.400 0.800 0.500 0.400 0.200 0.500 0.400 1.200
Est. 0.522 -0.441 0.795 0.721 0.147 0.176 0.558 0.341 1.193
Std.Dev 0.206 0.372 0.315 1.187 1.414 0.342 0.281 0.265  0.347
200 Lower 0.509 -0.464 0.776 0.647 0.059 0.154 0.541 0.324 1.172
Upper 0.535 -0.418 0.815 0.794 0.234 0.197 0.576 0.357 1.215
Bias 0.022 -0.041 -0.005 0.221 -0.253 -0.024 0.058 -0.059 -0.007
KS 0.218 0.638 0.577 0.937 0.994 0.791 0.293 0.927 0.318
Est. 0.509 -0.432 0.791 0.604 0.274 0.184 0.517 0.381 1.189
Std.Dev 0.124 0.219 0.187 0.762 0.911 0.207 0.168 0.171  0.219
500 Lower 0.501 -0.446 0.779 0.557 0.218 0.171 0.506 0.370 1.176
Upper 0.517 -0.418 0.803 0.651 0.331 0.197 0.527 0.391 1.203
Bias 0.009 -0.032 -0.009 0.104 -0.126 -0.016 0.017 -0.019 -0.011
KS 0.387 0.965 0.931 0.555 0.616 0.780 0.320 0.437  0.465
Est. 0.502 -0.407 0.796 0.592  0.292 0.193 0.514 0.387 1.198
Std.Dev 0.086 0.154 0.141 0.565 0.673 0.151 0.120 0.122  0.147
1000 Lower 0.496 -0.417 0.788 0.557 0.250 0.184 0.506 0.379 1.189
Upper 0.507 -0.398 0.805 0.627 0.333 0.203 0.521 0.394 1.207
Bias 0.002 -0.007 -0.004 0.092 -0.108 -0.007 0.014 -0.013 -0.002
KS 0.361 0.265 0.673 0.866 0.732  0.957 0.714 0.850 0.784
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Table S-2: Simulations QMLE of Poisson GARMA(1,1); Y;|Fi—1 ~ Geom(p;), s = 1000.

n @ 10} 0 @ 10} 0 @ 10} 0
True 0.500 -0.400 0.800 0.500  0.400 0.200 0.500 0.400 1.200
Est. 0.485 -0.412 0.810 0.483 0375 0.217 0.515 0.381 1.167
Std.Dev 0.110  0.153 0.177 0.106 0.117 0.144 0.253 0.068 0.172

900 Lower 0.478 -0.421 0.799 0.476 0.367 0.209 0.499 0.377 1.156
Upper 0.492 -0.402 0.821 0.489 0.382 0.226 0.530 0.38  1.177
Bias -0.015 -0.012 0.010 -0.017 -0.025 0.017 0.015 -0.019 -0.033
KS 0.339 0.576 0.817 0.197 0.910 0.669 0.001 0.732 0.455
Est. 0.494 -0.406 0.806 0.492 0.392 0.204 0.497 0.392 1.192
Std.Dev 0.065 0.102 0.115 0.067 0.077 0.091 0.200 0.051 0.127
Lower 0.490 -0.412 0.799 0.488 0.387 0.199 0.484 0.389 1.184

500 Upper 0.498 -0.400 0.813 0.496 0.396 0.210 0.509 0.395 1.199
Bias -0.006 -0.006 0.006 -0.008 -0.008 0.004 -0.003 -0.008 -0.008
KS 0.418 0.566 0.640 0.851 0.963 0.285 0.000 0.375 0.015
Est. 0.494 -0.401 0.800 0.493 0.395 0.203 0.504 0.395 1.187
Std.Dev 0.048 0.071 0.080 0.046 0.054 0.066 0.169 0.041 0.108

1000 Lower 0.491 -0.405 0.795 0.490 0.392 0.199 0.493 0.392 1.180
Upper 0.497 -0.396 0.805 0.496 0.398 0.207 0.514 0.397 1.194
Bias -0.006 -0.001 -0.000 -0.007 -0.005 0.003 0.004 -0.005 -0.013
KS 0.272  0.370  0.549 0.984 0.936 0.988 0.000 0.198  0.050
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Table S-3: Simulations QMLE of Poisson log-AR(1); Y;|Fi—1 ~ Geom(p;), s = 1000.

n a ¢ v a ¢ Y
True 0.500 -0.400 0.800 0.500 0.400  0.200
Est. 0.451 -0.411 0.858 0.553 0.385 0.155
Std.Dev 0.219 0.130 0.266 0274 0110 0.237
200 Lower 0.437 -0.419 0.841 0.536  0.379  0.141
Upper 0.464 -0.402 0.874 0.571  0.392  0.170
Bias -0.049 -0.011 0.058 0.053 -0.015 -0.045
KS 0.198  0.981 0.060 0.907 0.399 0.673
Est. 0.482 -0.401 0.820 0.528 0.395 0.177
Std.Dev 0.133  0.077 0.165 0.176 0.065 0.144
Lower 0.474 -0.405 0.810 0517 0.391 0.168
500 Upper 0.490 -0.396 0.830 0.539 0.399 0.186
Bias -0.018 -0.001 0.020 0.028 -0.005 -0.023
KS 0.562 0.898 0.405 0.845 0.957 0.780
Est. 0.488 -0.400 0.813 0.517 0.397 0.185
Std.Dev 0.097 0.054 0.120 0.132  0.047 0.107
1000 Lower 0.482 -0.404 0.806 0.509 0.394 0.178
Upper 0.494 -0.397 0.820 0.526  0.400 0.192
Bias -0.012 -0.000 0.013 0.017 -0.003 -0.015
KS 0.656 0.517 0.772 0.567 0.551  0.942

Model selection

In this section we investigate the model selection on a simulation study. We simulate the first order log-AR, GARMA
and GLARMA models, as in Section of the main paper, for Y;|F;_; distributed according to a Pois(j;), with
(o, 9,0,7) = (0.2,0.4,0.2,0.3), number of repetitions S = 1000 and sample sizes n = (250, 500,1000). The same is
done by generating data from the first order BARMA, GARMA and GLARMA models, with Bin(5,p;), pr = ut/a
and g(u;) = log(ju)/10g(a — ). For the GARMA model, g(y?) = log(y;)/10g(1 — y7) , yf = min(max(yr, c), 5 — c)
and ¢ = 0.1, Whereas, in the GLARMA model, s; = m For each distribution, we generate S times a
vector of data with length n from one model, then the data generated are employed in the estimation of all the three
models. The Akaike and the Bayesian information criteria are computed for each model. Finally, the frequency of
correct selection over the S repetitions is established, counting the percent number of times the information criteria
selected the model truly employed to generate the data. The same procedure is replicated for all the models. The
results for the AIC are summarized in Table (results for the BIC are identical).

For the Poisson, the results are excellent in the GARMA and the GLARMA models. The log-AR seems to show
a slower convergence towards the right model, but it reaches a satisfactory result with increasing n. The same holds,
in the case of Binomial data, for the BARMA and GLARMA models. Finally, the GARMA model works very well
also for the Binomial distribution.
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Table S-4: Frequency (%) of correct selection for AIC.

Binomial Poisson

n  BARMA GARMA GLARMA Ilog-AR GARMA GLARMA

200 62.3 97.2 60.0 53.6 99.2 95.1
500 74.4 99.7 58.0 70.5 99.9 99.4
1000 83.8 100 81.0 85.6 100 100

Applications

This section includes additional results on the applications discussed in Section In particular, we include two
plots related to Probability Integral Transform (PIT) in (3.23)) of the main paper and the tables on the predictive
performance for both the hurricane and Escherichia coli data analysis.
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Figure S-1: PIT’s for the number of storms. Top: Poisson. Bottom: NB.
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Figure S-2: PIT’s for Escheriacoli counts. Top: Poisson. Bottom: NB.

Table S-5: Predictive performance for named storms.

Models Distribution logs qs sphs rps
Poisson 2.7257 -0.0775 -0.2808 2.0320
log-AR
NB 2.8018 -0.0727  -0.2723  2.1235
GARMA Poisson 2.7293  -0.0774  -0.2807  2.0342
NB 2.8059  -0.0724  -0.2718  2.1285
Poiss 2.7247 -0.0768 -0.2796  2.0384
GLARMA 0%
NB 2.7927  -0.0735 -0.2736  2.1073

Table S-6: Predictive performance for Escherichia coli infection.

Models Distribution logs qs sphs rps
Poisson 3.5662 -0.0408 -0.2073  3.8480
log-AR
NB 3.3245 -0.0442 -0.2110  3.7960
Poisson 3.5759  -0.0406 -0.2071  3.8591
GARMA
NB 3.3286  -0.0440 -0.2107  3.8105
Poisson 3.5759  -0.0420 -0.2097  3.7347
GLARMA
NB 3.3286 -0.0449 -0.2127 3.6801
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Abstract
We consider network autoregressive models for count data with a non-random time-varying neighborhood structure.
The main methodological contribution is the development of conditions that guarantee stability and valid statistical
inference. We consider both cases of fixed and increasing network dimension and we show that quasi-likelihood
inference provides consistent and asymptotically normally distributed estimators. The work is complemented by

simulation results and a data example.

Keywords: generalized linear models, increasing dimension, link function, multivariate count time series, quasi-

likelihood.

4.1 Introduction

The vast availability of integer-valued data, emerging from several real world applications, has motivated the growth
of a large literature for modelling and inference about count time series processes. For comprehensive surveys, see
Kedem and Fokianos| (2002)), |Davis et al.| (2016|) and Weif}) (2018)). Early contributions to the development of count
time series models were the Integer Autoregressive models (INAR) |Al-Osh and Alzaid, (1987); |Alzaid and Al-Osh
(1990) and observation (Zeger and Liang), [1986)) or parameter driven models (Zeger, [1988)). The latter classification,
due to |Cox! (1981)), will be particular useful as we will be developing theory for Poisson observation-driven models.
In this contribution, we appeal to the generalized linear model (GLM) framework, see McCullagh and Nelder| (1989)),
as it provides a natural extension of continuous-valued time series to integer-valued processes. The GLM framework
accommodates likelihood inference and supplies a toolbox whereby testing and diagnostics can be also advanced.
Some examples of observation-driven models for count time series include the works by [Davis et al.| (2003, [Heinen
(2003)), [Fokianos and Kedem| (2004) and |Ferland et al.| (2006]), among others. More recent work includes [Fokianos
et al.| (2009) and |[Fokianos and Tjgstheim|(2011)) who develop properties and estimation for a a class of linear and log-

linear count time series models. Further related contributions have been appeared over the last years; see |Christou
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land Fokianos| (2014) (for quasi-likelihood inference of negative binomial processes), |Ahmad and Francq (2016) (for
quasi-likelihood inference based on suitable moment assumptions) and [Douc et al.| (2013), Davis and Liu (2016,
land Zheng) (2017) and Douc et al| (2017), among others, for further generalizations of observation-driven models.

Theoretical properties of such models have been fully investigated using various techniques; [Fokianos et al.| (2009)
developed initially a perturbation approach, [Neumann| (2011) employed the notion of S-mixing, [Doukhan et al|
(2012) (weak dependence approach), [Woodard et al| (2011) and Douc et al.| (2013) (Markov chain theory without
irreducibility assumptions) and [Wang et al| (2014) (using e-chains theory; see Meyn and Tweedie| (1993)).

Univariate count time series models have been developed and studied in detail, as the previous indicative list of
references shows. However, multivariate models, which are necessarily required to be used for network data, are less
developed. Studies of multivariate INAR models include those of [Latour| (1997)), [Pedeli and Karlis| (2011} 2013alb).
Theory and inference for multivariate count time series models is a research topic which is receiving increasing

attention. In particular, observation-driven models and their properties are discussed by [Heinen and Rengifo| (2007)),
(2012), |Andreassen| (2013)), Ahmad| (2016) and Lee et al|(2018). More recently, Fokianos et al.| (2020) introduced

a multivariate extension of the linear and log-linear Poisson autoregression, as advanced by [Fokianos et al.| (2009) and

[Fokianos and Tjgstheim| (2011)), by employing a copula-based construction for the joint distribution of the counts.

These authors employ Poisson processes properties to introduce joint dependence of counts over time. In doing so,
they avoid technical difficulties associated with the non-uniqueness of copula for discrete distributions;
. They propose a plausible data generating process which keeps intact, marginally, Poisson processes
properties. Further details are given by the review of .

The aim of this contribution is to link multivariate observation-driven count time series models with time-
varying network data. Such data is increasingly available in many scientific areas (social networks, epidemics, etc.).
Measuring the impact of a network structure to a multivariate time series process has attracted considerable attention
over the last years; for the development of Network Autoregressive models (NAR). These authors
have introduced autoregressive models for continuous network data and established associated least squares inference
under two asymptotic regimes (a) with increasing time sample size T — oo and fixed network dimension N and (b)
with both N, T increasing, i.e. min {N, T} — oo. Significant extension of this work to network quantile autoregressive
models has been recently reported by . Some other extensions of the NAR model include the grouped
least squares estimation (Zhu and Pan, 2020) and a network version of the GARCH model, see Zhou et al.| (2020)
for the case of T — oo and fixed network dimension N. Related work was also developed by Knight et al.| (2020)

who specified a Generalized Network Autoregressive model (GNAR) for continuous random variables, which takes
into account different layers of relationships within neighbours of the network. Moreover, the same authors provide
an R software for fitting such models. Remark [4] shows that the GNAR model falls in the framework outlined in the
present paper.

Following the discussion of |Zhu et al| (2017, p. 1116), discrete responses are commonly encountered in real

applications and are strongly connected to network data. For example, several data of interest in social network
analysis correspond to integer-valued responses. The extension of the NAR model to multivariate count time series
is an important theoretical and methodological contribution which is not covered by the existing literature, to
the best of our knowledge. The main goal of this work is to fill this gap by specifying linear and log-linear Poisson
network autoregressions (PNAR) for count processes and by establishing the two related types of asymptotic inference
discussed above. Moreover, the development of all network time series models discussed so far relies strongly on the

i.i.d. assumption of the innovations term. Such a condition might not be realistic in many applications. We overcome

this limitation by employing the notion of L? Near epoch dependence (NED), see |Andrews| (1988]), [P6tscher and)
(1997)), and the related concept of a-mixing (Rosenblattl [1956), (Doukhan| [1994). These notions allow
relaxation of the independence assumption as they provide some guarantee of asymptotic independence over time.

An elaborate and flexible dependence structure among variables, over time and over the nodes composing the network,
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is available for all models we consider due to the definition of a full covariance matrix, where the dependence among
variables is captured by the copula construction introduced in [Fokianos et al.| (2020)).

For the continuous-valued case, |Zhu et al.| (2017) employed a simple ordinary least square (OLS) estimation
combined with specific properties imposed on the adjacency matrix for the estimation of unknown parameters.
However, this method is not applicable to general time series models. In our case, estimation is carried out by using
quasi-likelihood methods; see |[Heyde| (1997)), for example. When the network dimension N is fixed and the inference
with T — oo is performed, the standard results already available for Quasi Maximum Likelihood Estimation (QMLE)
of Poisson stationary time series, as presented in [Fokianos et al.|(2009), |[Fokianos and Tjgstheim|(2011)) and |[Fokianos
et al.| (2020), among others, are also established for the PNAR(p) model. However, the asymptotic properties of the
estimators rely on the convergence of sample means to the related expectations due to the ergodicity of a stationary
random process {Y; : t € Z} (or a perturbed version of it). The stationarity of an N-dimensional time series, with
N — 00, is still an open problem and it is not clear how it can be achieved. As a consequence, all the results involved
by the ergodicity of the time series are unavailable in the increasing dimension case. In the present contribution, this
problem is overcome by providing an alternative proof, based on the laws of large numbers for LP-NED processes of
Andrews| (1988). Our method requires only the stationarity of the process {Y; :t € Z}.

The paper is organized as follows: Section discusses the PNAR(p) model specification for the linear and the
log-linear case, with lag order p, and the related stability properties. Moreover, a discussion about the empirical
structure of the models is provided for the linear first order model (p = 1). In Section the quasi-likelihood
inference is established, showing consistency and asymptotic normality of the quasi maximum likelihood estimator
(QMLE) for the two types of asymptotics T — oo and min {N,T} — oo. Section discusses the results of a
simulation study and an application on real data. The paper concludes with an Appendix containing all the proofs of
the main results, the specification of the first two moments for the linear PNAR model, and some further discussion

about empirical aspects of the log-linear PNAR(1) model as well as the simulation results.

Notation: We denote |x|, = (3°7_, |z;|")}/" the I"-norm of a p-dimensional vector x. If r = oo, [X|e =
maxi<j<p |z;|. Let [|X], = ( 5:1 E(|X;|")Y/" the L"-norm for a random vector X. For a ¢ x p matrix A =
i'7.: a"'7a.: Y 52 5 i = x| .= . = )
(aij), i=1 qg,7=1 p, denotes the generalized matrix norm |[[|All|. = max)y -1 [Ax|.. If 7 = 1, then
A, = maxi<j<p >blayl. I r =2, |All, = p/2(ATA), where p(-) is the spectral radius. If r = oo,

Al = maxi<i<q Z§:1 |ai;|. If ¢ = p, then these norms are matrix norms.

4.2 Models

We consider a network with N nodes (network size) and index ¢ = 1,... N. The structure of the network is completely
described by the adjacency matrix A = (a;;) € RV*YN where a;; = 1 if there is a directed edge from i to j, i — j
(e.g. user i follows j on Twitter), and a;; = 0 otherwise. However, undirected graphs are allowed (i <> j). The
structure of the network is assumed nonrandom. Self-relationships are not allowed a; = 0 for any ¢ = 1,..., N,
this is a typical assumption, and it is reasonable for various real situations, e.g. social media. For details about the
definition of social networks see [Wasserman et al.| (1994), Kolaczyk and Csardi| (2014). Let us define a certain count
variable Y; ; € R for the node ¢ at time ¢. We want to assess the effect of the network structure on the count variable
{Yi;tfori=1...,Nover timet=1,...,T.

In this section, we study the properties of linear and log-linear models. We initiate this study by considering a sim-
ple, yet illuminating, case of a linear model of order one and then we consider the more general case of p’th order model.
Finally, we discuss log-linear models. In what follows, we denote by {Y; = (Y;;, i =1,2...N,t=0,1,2...,7)} an
N-dimensional vector of count time series with {At = (A, i =1,2...N,t=1,2...,T)} be the corresponding N-
dimensional intensity process vector. Define by F; = o(Y, : s < t). Based on the specification of the model, we
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assume that Ay = E(Y¢|Fi—1).

4.2.1 Linear PNAR(1) model

A linear count network model of order 1, is given by

N
Yit|Fi—1 ~ Poisson(Ait), Xy = Bo + 51”{1 Z a;i;Yji—1 + B2Yi—1, (4.1)
i=1

where n; = 3 i Gij is the out-degree, i.e the total number of nodes which ¢ has an edge with. From the left hand
side equation of , we observe that the process Yj; is assumed to be marginally Poisson. We call linear
Poisson network autoregression of order 1, abbreviated by PNAR(1).

The development of a multivariate count time series model would lead to the specification of a joint distribution,
so that the standard likelihood inference and testing procedures can be performed accordingly. Although several
alternatives have been proposed in the literature, see the review in [Fokianos (2021, Sec. 2), the choice of a suitable
multivariate version of the Poisson probability mass function (p.m.f) is far from obvious. In fact, a multivariate
Poisson-type p.m.f has a complicated closed form and the associated likelihood inference is theoretically cumbersome
and numerically challenging. Furthermore, in many cases, the available multivariate Poisson-type p.m.f. implicitly
implies restricted models, which are of limited use in applications (e.g. covariances always positive, constant pairwise
correlations). For these reasons, in the present paper the joint distribution of the vector {Y;} is constructed by
following the approach of [Fokianos et al.| (2020, p. 474), imposing a copula structure on waiting times of a Poisson

process. More precisely,

1. Let Uy = (Uyy,...,Uny), for I =1,..., K a sample from a N-dimensional copula C(u1,...,un), where U,
follows a Uniform(0,1) distribution, for i =1,..., N.

2. The transformation X;; = —log U, ;/\; o is exponential with parameter X; o, for i =1,..., N.

3. The process Yo = maxi<p<k {Zle X1 < 1} is Poisson with parameter A\g, for ¢ = 1,...,N. So, Yo =

(Y1,0,...,Yn,0) is a set of marginal Poisson processes with mean A.
4. By using the model (4.1)), A\; is obtained.
5. Return back to step 1 to obtain Y, and so on.

The described data generating process ensures all the marginal distributions of the variables Y;; to be univariate
Poisson, as described in , while an arbitrary dependence among them is introduced in a flexible and general way.
For a comprehensive discussion on the choice of a multivariate count distribution and the comparison between the
alternatives proposed, the interested reader can refer to [Fokianos| (2021)).

Model postulates that, for every single node i, the marginal conditional mean of the process is regressed on
the past count of the variable itself for ¢ and the average count of the other nodes j # ¢ which have a connection with
1. This model assumes that only the nodes which are directly followed by the focal node i possibly have an impact
on the mean process of counts. It is a reasonable assumption in many applications; for example, in a social network
the activity of node k, which satisfies a;; = 0, does not affect node i. The parameter 3; is called network effect, as
it measures the average impact of node ¢’s connections n; 1 Zjvzl ai;Yjt—1. The coefficient B3 is called momentum
effect because it provides a weight for the impact of past count Y;;_;. This interpretation is in line with the Gaussian
network vector autoregression (NAR) introduced by |Zhu et al.| (2017) for continuous variables.

For simplicity, we rewrite model in a vector form, as in |Fokianos et al.| (2020),

Y, =Ni(A), M=8,+GY;_1, (4.2)
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where {IN;} is a sequence of independent N-variate copula-Poisson process, which counts the number of events in
[0, A1.¢] %+~ %[0, A1,¢]. We also define B, = Boly € RY with 1 = (1,1,...,1)T € RY and the matrix G = S W+ Ix
where W = diag {nl_l,...,n;,l}A is the row-normalized adjacency matrix, A = (a;;), so w; = (a;;/n;, j =
1,...,N)T € RV is the i-th row vector of the matrix W, and Iy is the identity matrix N x N. Note that the matrix
W is a (row) stochastic matrix, as [|[W]||,, =1 (Seber, 2008, Def. 9.16).

To gain intuition for model , we simulate a network from the stochastic block model (Wang and Wong,
1987)); see Figure Moments of the linear model exist and have a closed form expression; see (C-2). The
mean vector of the process has elements E(Y;;) which vary between 0.333 to 0.40, for ¢« = 1,..., N whereas the
diagonal elements of Var(Y;) take values between 0.364 and 0.678. We take this simulated model as a baseline for
comparisons and its correlation structure is shown in the upper-left plot of Figure The top-right panel displays
the same information but for the case of increasing activity in the network. The bottom panel of the same figure
shows the same information as the upper panel but with a more sparse network, i.e. K = 10. Increasing the number
of relationships among nodes of the network boosts the correlation among the count processes. A more sparse
structure of the network does not appear to alter the correlation properties of the process though.

Figure[£.2]shows a substantial increase in the correlation values which is due to the choice of the copula parameter.
Interestingly, the intense activity of the network increases the correlation values of the count process. This aspect
may be expected in real applications. For the Clayton copula (see lower plots of the same figure) we observe the
same phenomenon but the values of the correlation matrix are lower when compare to those of the Gaussian copula.
We did not observe any substantial changes for the marginal mean and variances.

Figure shows the impact of increasing network and momentum effects. We observe that the network effect
is prevalent, as it can be seen from the top-right panel which also shows the block network structure. Significant
inflation for the correlation can be also noticed when increasing the momentum effect (bottom-left panel). When
increasing the network effect the marginal means vary between 0.333 to 1 and have large variability within the nodes;
this is a direct consequence of the block network structure. When increasing the momentum effect, the marginal

means take values from 0.5 to 0.667. When both effects grow, the mean values increase and are between 0.5 and 2.
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Figure 4.1: Correlation matrix of model . Top-left: Data are generated by employing a stochastic block model
with K = 5 and an adjacency matrix A with elements generated by P(a;; =1) = 0.3N~93_if i and j belong to the
same block, and P(a;; = 1) = 0.3N ~1 otherwise. In addition, we employ a Gaussian copula with parameter p = 0.5,
(Bo, B1,B2) = (0.2,0.1,0.4)T, T = 2000 and N = 20. Top-right plot: Data are generated by employing a stochastic
block model with K = 5 and an adjacency matrix A with elements generated by P(a;; = 1) = 0.7N~0-0903 if § and
j belong to the same block, and P(a;; = 1) = 0.6N %3 otherwise. Same values for 8’s, T, N and choice of copula.
Bottom-left: The same graph, as in the upper-left side but with K = 10. Bottom-right: The same graph, as in
upper-right side but with K = 10.

- 1w 1w 1
™ 8 -.- 8 8
L 6 6 6
|| || 8
™ 4 . 4 ™ 4
- 2 - 2 2
L o L o o
|| [
_ 0z _ 0z 0z
- 0.4 -- 0. 0.4
L 0.6 0.6

n : n : 0¢
Ea ffoe e ffoe -.. 0
ml, L L] =

Figure 4.2: Correlation matrix of model (4.1). Top: Data have been generated as in top-left of Figure (left),
with copula correlation parameter p = 0.9 (middle) and as in the top-right of Figure but with copula parameter
p = 0.9 (right). Bottom: same information as the top plot but data are generated by using a Clayton copula.
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Figure 4.3: Correlation matrix of model (4.1). Data have been generated as in top-left of Figure (top-left),
higher network effect 8; = 0.4 (top-right), higher momentum effect 82 = 0.6 (lower-left) and higher network and
momentum effect 5, = 0.3, S = 0.6 (lower-right).

4.2.2 Linear PNAR(p) model

More generally, we introduce and study an extension of model (4.1) by allowing Y;; to depend on the last p lagged
values. We call this the linear Poisson NAR(p) model and its defined analogously to (4.1]) but with

P N P
Xiw =Bo+ D> Bin | ni "D aiYieon | + Y BanYieon, (4.3)
h=1 =1 h=1

where By, Bin, Bon > 0forall h=1...,p. If p=1, 811 = B1, P22 = P2 to obtain . The joint distribution of the
vector Y, is defined by means of the copula construction discussed in Sec. Without loss of generality, we can
set coefficients equal to zero if the parameter order is different in both terms of . Its is easy to see that
can be rewritten as

P
Y =Ni(A), Ae=Bo+ > GuYis, (4.4)
h=1
where G = B, W + BopIy for h = 1,...,p by recalling that W = diag {nfl, et ,nf\,l} A. We have the following

result which gives verifiable conditions equivalent to the conditions of |Zhu et al.| (2017, Thm.1) for continuous values
network autoregression.

Proposition 6. Consider model ([.3) (or equivalently (4.4)). Suppose that 7 _,(B1n+ B2n) < 1. Then the process
{Y, t € Z} is stationary and ergodic with E|Y}|] < oo for any > 1 and fixed N.

Proof. The result follows from |Debaly and Truquet| (2019, Thm. 4), provided that p(3_}_; Gp) < 1. But p(3>°)_; Gp) <

152521 Gnllloe < 32hoy IGllle < 22hey (Biall Wl o + B2n) = 325-1 (Bin + Ban), since [[W]|, = 1 by construction.
Therefore we conclude that {Y;, ¢ € Z} is a stationary and ergodic process with E [Y|] < oo for any r > 1. O

Some further results about the first and second order properties of model (4.3)) are given in the Appendix. Similar
results have been recently reported by [Fokianos et al.| (2020) when there is a feedback in the model. Following these

authors, we obtain the same results of Proposition [6] but under stronger conditions. For example, when p = 1, we
will need to assume either |G|, or [|G||, < 1 to obtain identical results. The condition Y 7 _,(Bin + Bon) < 1 is
more natural and complements the existing work on continuous valued models Zhu et al.| (2017). In addition, note
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that the copula construction is not used in the proof of Prop. |§| (see also Prop. |8 for log-linear model). However, it is
used in Section [£:4.1] where we report a simulation study. It is interesting though this setup is similar to multivariate
ARMA models, where the stability conditions are independent of the correlations in the innovation.

Proposition [f] states that all the moments exist finite, for fixed N. A similar results is also proved in [Fokianos
et al.| (2020, Prop. 3.2). The following results state that even when N is increasing all the moments exist and are
uniformly bounded. For clarity in the notation, we present the result for the PNAR(1) model, but it can be easily
extended to hold true for p > 1.

Proposition 7. Consider the model (4.1) and the stationarity condition 1 + 2 < 1. Then, max;>1 E |Yit|r <C,<
oo, for any r € N.

Proof. By , recall that E(Y;;) = u = Bo/(1 — p1 — B2) for all 1 < i < N. Then, maxi<;<y E(Yi:) = p and
limpy 00 maxi<i<n E(Yi) = max;>1 E(Y;) < p = C4, using properties of monotone bounded functions. Moreover,
E(Yj|Fi—1) = > 1 {1} A, , employing Poisson properties, where {}} are the Stirling numbers of the second kind.
Set r = 2. For the law of iterated expectations (Billingsley} 1995, Thm. 34.4), we have that

9 1/2

N
5 1/2
A [ Yiell, = A [E (A + )] 7 < max, E | Bo + 51 E 1 wijYie—1+ Bo||[Yie—illy | + 1
J:

N
1/2
< Bo+ B 1r§niaé}§v z:l'w'ij 1Yt—1lly | + B2 121%)5\] Yit—1lly + /
=

< ‘ 1/2
< Bo + (B1 + B2) max [Yie—1lly + 1

Bo + pt/?
T 1-p1—pe

where the last inequality works for the stationarity of the process {Y;,t € Z} and the finiteness of its moments,

2021/2<oo,

with fixed N. As maxlSiSNE|Yit|2 is bounded by C5, for the same reason above maxizlE\YMz < (5. Since
E(Y2|Fi—1) = A3, + 30% + A1, similarly as above

max, 1Yiells < Bo+ (B + B2) R [Vie—1lls + BE(AZ))L/3 4 pt/3

< Bo+ (Br+ f2) 1211%}%\] 1Yie—1ll5 + (302)1/3 + /3
30C5)1/3 1/3

<50+( )Pt s

1—p1— B2

where the second inequality holds for the conditional Jensen’s inequality, and so on, for r» > 3, the proof works

analogously by induction, therefore is omitted. O

4.2.3 Log-linear PNAR models

Recall model . The network effect 51 of model is typically expected to be positive, see|Chen et al.| (2013),
and the impact of Y;;_1 is positive, as well. Hence, positive constraints on the parameters are theoretically justifiable
as well as practically sound. However, in order to allow a better link to the GLM theory, McCullagh and Nelder
(1989), and adding the possibility to insert covariates as well as coefficients which take values on the entire real line

and cannot be estimated by a linear model, we propose the following log-linear model, see |[Fokianos and Tjgstheim

(2011):
N

Yie| Foo1 ~ Poisson(vis), vie=Po+ Biny 'Y aijlog(l + Yji_1) + Balog(1+ Yie_1), (4.5)
j=1
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where v;; = log(A;) for every ¢ = 1,...,N. No constraints are required in model (4.5) since v;; € R. The
interpretation of parameters and additive components remains unchanged. Again, the model can be rewritten in
vectorial form, as in the case of model (4.1J

Yt = Nt(llt)7 Vi = /60 + GlOg(lN =+ thl) 5 (46)
with vy = log(A;), componentwise. Furthermore, we can have a useful approximation by
log(ly +Y:) =B+ Glog(ly + Yio1) + ¥,

where ¥, = log(1y +Y;) — v;. By lemma A.1 in |Fokianos and Tjgstheim| (2011) E(4p,|F;—1) — 0 as v — 00, so ¢,
is “approximately” martingale difference sequence (MDS). Moreover, one can define here the martingale difference
sequence &, = Y; — exp(v:). We discuss empirical properties of the model in the Appendix. More generally,
we define the log-linear PNAR(p) by

p N 4
vie =Bo+ > Bin [ ni 'Y ailog(l+Yieon) |+ Banlog(l+ Yien), (4.7)
h=1 j=1 h=1
using the same notation as before. The interpretation of this model is developed along the lines of the linear model.
Furthermore,
P
Y, =Ny(v1), vi=8,+Y Gnlog(ly+Yin), (4.8)
h=0

where G, = 1, W + BopIy for h=1,...,p.

Proposition 8. Consider model (4.7) (or equivalently (4.8))). Suppose that >, _,(|8in| + |B2x]) < 1. Then the
process {Y, t € Z} is stationary and ergodic with E|Y;|; < oo and there exists § > 0 such that E[exp(d [Y¢|])] < oo
and Elexp(d [v¢|])] < oo for fixed N.

Proof. The result follows from |Debaly and Truquet| (2019, Thm. 5), provided that [[>>7_, |Gnp| [l < 1, where ||,
is the elementwise absolute value. But [[||Gn|. [l < [Bin| Wl + |B2r| = |Bin] +|B2n|. Therefore we conclude that
{Y, t € Z} is a stationary and ergodic process with E [ Y;|; < co and there exists § > 0 such that E[exp(d|Y,]])] < oo
and Elexp(d |v]])] < oo . O

Remark 3. Taking into account known time-varying network structures, i.e. A;, t = 1,...,T denote dynamic

adjacency matrices, is of potential interest in applications. In this case, model (4.2) is written as
Y =Ni(Ae), A =PBp+Gi Y1,

where G; = 1 W, + 321y and W, = diag nf%, . m;ﬁt} A;. Tt is worth noting that ||[W[||,, = 1, is still true
for every t = 1.....T, so [[Will. = [IW]
the paper. Even though p(G;) < 1, for every ¢, Propositions [6] and [§] do not apply. Provided that the model is

wo» Which is the only property required for this matrix, throughout
stationary, all methods and results developed in the present contribution extend straightforwardly to time-varying

network structures. To avoid excessive notation, the results reported in the paper are under the condition W; = W.

Remark 4. Another suitable extension encompassed in this paper is the GNAR(p) version introduced in|[Knight et al.
(2020, eq. 1) in the context of continuous-valued random variables. This model adds an average neighbour impact
for several stages of connections between the nodes of a given network. Define N'({i}) = {j € {1,...,N} i — j}
the set of neighbours of the node i. Then, N (i) = N {NT=D (i)} / [{UZ;%N(Q)(Z')} U{i}], for r = 2,3,...
is the set of r-stage neighbours of i and N (i) = N({i}). (So, for example, N (i) describes the neighbours
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of the neighbours of the node 4, and so on.) In this case, the row-normalized adjacency matrix have elements
(W(T))i,j =w;; x I(j € N)(@)), where w; ; = 1/card(N' (") (7)), card(-) denotes the cardinality of a set and I(-) is
the indicator function. Several C' types of edges are allowed in the network. Moreover, time-varying networks can
be considered as well. Under the framework, the Poisson GNAR(p) has the following formulation.

BO+Z Zzﬁlhrc Z wz](']t h+ BanYien | (4.9)

= c=1r=1 jGN(T)()

where s, is the maximum stage of neighbour dependence for the time lag h. Model (4.9) can be included in the
formulation (4.4)) by setting Gj, = Zle Zfll ﬁLh,r,CW(T’C) + 82,1 In. Since it holds that ZjeN(T)(i) chzl Wy e =1,
we have ‘HZ W(Tc)‘ ‘

Remark |3 l Then, all the results of the present contribution apply directly to . Analogous arguments hold true
for the log-linear model .

= 1. The time-varying network extension is straightforward by taking into account

4.3 Estimation

4.3.1 Quasi-likelihood inference for fixed N

We approach the estimation problem by using the theory of estimating functions; see |Basawa and Prakasa Rao
(1980), |Zeger and Liang (1986) and Heyde| (1997), among others. Let the vector of unknown parameters 8 =
(Bo, Bi1s- -5 Bip, Bot, - - ,62p)T € R™, where m = 2p + 1. Define the conditional quasi-log-likelihood function for :

T N
INT(8) = > wirlog \is(0) — Xit(0), (4.10)
t=1 i=1
which is the log-likelihood one would obtain if time series modelled in , or , would be contemporaneously
independent. This simplifies computations but guarantees consistency and asymptotic normality of the resulting
estimator. Although the joint copula structure C(..., p) and the set of parameters p, usually describing its functional
form, are not included in the maximization of the “working” log-likelihood , this does not mean that the
inference is carried out under the assumption of independence along the observed process, conditionally on the past
Fi—1; it can easily be detected from the shape of the conditional information matrix below, which takes into
account the true conditional covariance matrix of the process Y.

Douc et al.| (2017)), among others, established inference theory for Quasi Maximum Likelihood Estimation
(QMLE) for observation driven models. Assuming that there exist a true vector of parameter, say 6, such that the
mean model specification (or equivalently ) is correct, regardless the true data generating process, then we
obtain a consistent and asymptotically normal estimator by maximizing the quasi-log-likelihood . Denote by
0 = arg maxg [n7(0), the QMLE for 8. The score function for the linear model is given by

d it ONii (6
Snr(0) :ZZ<AZ(0> 1) ég()

T T T
oA; (0) . _
-y 50( )p-1(0) (Yt - ,\t(e)) =3 sni(0), (4.11)
=1 t=1
where O (0)
a;T = (1NaWYt71,'";Wthvatfla'";thp)
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is a N x m matrix and D;(0) is the N x N diagonal matrix with diagonal elements equal to A; ;(0) for i =1,..., N.
The Hessian matrix is given by

T T
oo O (
Hyr(0) = 5 0( )ct t § :hNt (4.12)
t=1

with Cy(0) = diag {y1,:/A3 ,(0) ... yN,t/A%V,t(e)} and the conditional information matrix is

. oxT(0)
00

D, (0)5.(0)D; " (6) 222 me

Brr(6) = aeT

t=1
where X,(0) = E(£,£] | Fi_1) denotes the true conditional covariance matrix of the vector Y; and we have defined
&, =Y, — A\ Expectation is taken with respect to the stationary distribution of {Y;}. We drop the dependence on

0 when a quantity is evaluated at 6.

Proposition 9. Consider model (4.2). Let 8 € ® C R™. Suppose that © is compact and assume that the true
value 6, belongs to the interior of ®. Suppose that at the true value 8y, the condition of Proposition [f] hold. Then,
there exists a fixed open neighbourhood , say O(0) = {60 : |0 — 0| < d}, of Oy such that with probability tending to

1 as T — oo, the equation Sy7(0) = 0 has a unique solution, say 6. Moreover, 0 is consistent and asymptotically

normal:
VT(6 - 60) % N0, Hy'ByHY),
with .
Hy(0) = b 5*5;0>Ds<e>8g;<;’>], (1.1
B.(6) ElaAgé")Dt @00 (0247 (1.14)

Proposition |§| follows immediately from Theorem 4.1 in [Fokianos et al| (2020). Proposition |§| applies to the
log-linear model (4.6)), provided that Elexp(r|v:])] < oo, for any r > 0. Then, we have that the score function is

given by:
N 31/ T
Swr(0) =3 (vie — exp(ia(6)) =5 it Z (Yt ~ exp(v(6))), (4.15)
t=1 i=1 =1
where
0v(0)
507 =1y, Wlog(ly +Ys—1),..., Wlog(ly + Yi—p),log(In + Yi1),...,log(An + Yi—}))
is a N x m matrix, and
T
B ovl(0) Ov(0)
T
ovl () v (0)
Bnr(6) = 59 3:(0) 207

=1
where D¢(0) is the N x N diagonal matrix with diagonal elements equal to exp(v;+(0)) for i = 1,...,N and
31(0) = E(£,&/ |Fi1) with &, = Y, — exp(v(8)). Moreover,

ovl(0)
00

v (0)
00"

Hy(0) = E D,(6) : (4.17)
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O (0)

0
2:(6) 00T

(4.18)

are respectively (minus) the Hessian matrix and the information matrix.

4.3.2 Quasi-likelihood inference for increasing N

Proposition [J] establishes asymptotic results when 7' — oo and N fixed. In the paper W is a nonrandom sequence of
matrices indexed by N. In this case, the specification of the asymptotic properties for N — oo and T" — oo allows
to establish a double-dimensional “spatio-temporal” type of consistency and asymptotic normality of the estimator.
The results established in the previous section cannot be extended to such asymptotic regime because no ergodicity
results are available, as min {N,T} — oco. Moreover, the definition of stationarity for an N-dimensional time series
Y, € RY when N — oo does not seem to be generally established in the literature. Consequently, we propose here
an alternative proof based on the previous stationarity results (with fixed N) and no ergodicity required. Define
InT(0) = Zthl vazl 1;+(0), where I; 1(0) = y; 1 1og X; +(0) — X\; 1(0). Let M be a finite constant.

Assumption 1. The following limits exist, at @ = 6g:
(i) imy_ oo N"'Hy = H, with H a m x m positive definite matrix, where Hy is defined by .
(ii) limy— 0o N7'By =B, with B a m x m positive definite matrix, where By is defined by (4.14).
(iii) Assume the third derivative of the quasi-log-likelihood is bounded by functions m;; which satisfy
Hmy oo NP SN E(my) = M.
Assumption 2. For the linear model assume
(i) % Zf\;:l Héitfjtﬂa < oo, for some a > 4.

(ii) The process {Et =Y, -\, FN: NeNjte Z} is a-mixing, F; o(&is: 1<i<N,s<t).

Assumptions(i) and (ii) are type of law of large number assumptions, which are quite standard in the existing
literature, since little is known about the behaviour of the distribution as N — co. See assumption C3 of [Zhu et al.
(2017) and assumption C2.3 of |[Zhu et al.| (2019). To clarify this, set p = 1, so m = 3. Define Yii_q = wl'Y,; 1 and
oijt = E(§it&jt|Fni—1). Then, the matrices Hy, By in , evaluated at @ = 0, will be

Hg\l]l) H§\1,2) Hg\l]S) Bg\}l) Bg\l]Q) BS\I{S)
Hy = H H |, By= B B® |,
HS\?S) BS$>3)
where
N
- mfgo <3 ) me - eitpwye) - yoe (),
i=1 b

N
H{® =E[17D; 'Y, 1] =Y B (Y“_l) . HYY =E[Y[ W'D 'WY, ] = ZE ( A

V2
-1
)
i1 it Jt

N > N
Vie_1Yie— V3
( t;‘ t 1)7 HS\?;B) [YtTlD 1Yt | _ZE( it— 1)
it i=1

HYY =E[Y] WD/ 'Y, ;] =Y E

i=1
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and

N
B{" =E[11D;'s,D; 1] = Y E <5“5ﬁ ) ,

ij=1

ByY =E[1}D;'=,D;'WY,_,]

I
[~]=
sl
/N
Q
b
Tl
E“ o~
L
~—

N
ijtYit—
B{Y =E[1{D;'=D; 'Y, 1] = Y E (U” ! 1),

BYY = E[Y] , W'D, !%,D;'WY, ] Z E < 5
zt gt

,Jl

Uz]tht 1Y]t 1 >
)

Vi 1Y
H(Y =E[Y] ,W'D;'%,D; 'Y, ] Z E(‘”* 17t 1),

A
ij=1 ’Lt gt

N
HYY =E[Y! \D;'SD; 'Y, ] = Y E (U”t}j\if‘;_yjt*) ,
ij=1 it
Assumption (1) requires the laws of large number limy _ o N’lHS\];’l) = hy, imy o0 N’lBS\’,f’l) = by, where hy
and by are constants, for k,1 =1,2,3 and (k,l) = (I, k).

In the setup we study, however, we require two “regularity” conditions since under the quasi-likelihood inference
the information matrix and the Hessian matrix are in general different. This is not the case in |Zhu et al.| (2017)),
since these authors consider least squares regression under i.i.d. assumption of the error terms. For the same reason,
a condition on the derivative is usually required for the quasi-likelihood approach, as in Assumption (iii).

The condition Assumption (1) can also be seen as a law of large numbers-type of assumption which is additional
in our case, since the error term does not consist of an i.i.d. sequence. Moreover, for the result of|Fokianos et al.| (2020},
Prop. 3.1-3.4), Assumption (1) is satisfied for fixed N; we conjecture that this still holds true when N increases, as
in this case the behaviour of the distribution of the process is unknown. This kind of assumption is common in the
literature of high-dimensional processes, see, for example, Assumption M1 in [Stock and Watson| (2002]).

Finally, Assumption ( i) is a crucial assumption we adopt as we study processes with dependent errors (see
Doukhan| (1994) for definition of a-mixing). The a-mixing is a measure of asymptotic independence of the process
and it is weaker than the i.i.d. assumption made by [Zhu et al. (2017, |2019). In particular, the process defined in
Assumption ( i1) is an a-mixing array, namely,

a(J) = sup sup IP(AN B) — P(A)P(B)| === 0

t€L,N>1 AeFN | BEFN ;

where FN = FN ot = =0(&s:1<i<N,s<t), ]-'HJOO =0(&s:1<i<N,s>t+.J) and it is clear that the
dependence between two events A and B tends to vanish as they are spaced in time, uniformly in N. Moreover, note
that no rate of decay for the dependence measured by «(J) along time is specified, as a consequence, the a-mixing
process can depends on several lags of its past before becoming “asymptotically” independent. When N is fixed and
p = 1, by [Fokianos et al.| (2020, Prop. 3.1-3.4), the assumptions ||G|||; < 1 or [[|G]||, < 1 are sufficient conditions for
obtaining an a-mixing process {&, : t € Z}.

Note that we develop an approach where no further assumptions on the network structure are required, compare
with|Zhu et al.| (2017,[2019, Ass. C2.1-C2.2). This leads to a more flexible framework for modelling network processes.
Following the discussion in |Zhu et al.| (2019, p. 351), assumption C2.2 in|Zhu et al.[ (2017 2019) might not hold true
when there exists considerable heterogeneity among nodes of the network (e.g., a social network with few “superstars”

and several low-active nodes). Such an assumption, though, is not required by our approach.
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Lemma 7. For the linear model (4.4]), suppose the condition of Proposition |§| and Assumptions hold. Consider
Syt and Hyr defined as in (4.11)) and (4.12)), respectively. Then, as min {N,T} — oo

1. (NT)"'"Hyr & H,
2. (NT)~3Syr % N(0,B),

1 T N 9%1;:(0) p
NT Dot Dim1 oo;00,00, | ~ M1 = M,

3. max;, 1 SUPgco(,)

where My = ﬁ Z?:l Ziil m; ;. The proof is postponed to the Appendix.

Theorem 15. Consider model . Let 8 € ® C R?. Suppose that © is compact and assume that the true value
6, belongs to the interior of ®. Suppose that the conditions of Lemma [7] hold. Then, there exists a fixed open
neighbourhood O(6y) = {0 : |0 — 0| < 0} of Oy such that with probability tending to 1 as min { N, T} — oo, for the
score function , the equation Sy7(0) = 0 has a unique solution, called 9, which is consistent and asymptotically
normal:

VNT(6 — 69) % N(O,H 'BH ).

Lemmam and |Taniguchi and Kakizawa| (2000, Thm. 3.2.23) adapted to double-indexed convergence, for instance,
guarantees the conclusion of Theorem
We now state the analogous result for the log-linear model (4.8) and the notation corresponds to eq. (4.15)—(4.18)).

Assumption 1’. Assume the same conditions as in Assumption [/ but with Hy and By defined in (4.17)) and (4.18]),

respectively.

Assumption 2'. For the log-linear model (4.8]) assume

(i) %va]:l [€12&ell, < 0o, max;>1 E|Yy|” < 0o, max;>1 E[exp(r|vy|)] < oo, for any r > 1 and some
a>4.

(i) {¥, =log(1+Y,) — vy, FY : N €Nt € Z} is a-mixing; ¥ =0 (¢hjs: 1 <i < N,s < t).

The same discussion about Assumptions and applies similar to the QMLE of the linear model. The
existence of exponential moments is of crucial importance to study the properties of log-linear models. see |[Fokianos
and Tjestheim| (2011) and [Fokianos et al.| (2020), among others.

Lemma 8. Let Sy and Hy7 as in (4.15) and (4.16). Then, for the log-linear model (4.8)), under the condition of
Proposition [§] and Assumptions the conclusion of Lemma [7) holds.

The proof is postponed to the Appendix.

Theorem 16. Consider model . Let @ € ® C R™. Suppose that © is compact and assume that the true value
0y belongs to the interior of ®. Suppose that the conditions of Lemma [§ hold. Then, there exists a fixed open
neighbourhood O(6g) = {0 : |0 — 0y| < 0} of 8y such that with probability tending to 1 as min {N,T} — oo, for the
score function , the equation Sy7(0) = 0 has a unique solution, called é7 which is consistent and asymptotically
normal:

VNT(O - 0y) % N(O,H'BH™).
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The conclusion follows as above.
In practical application one needs to specify a suitable estimator for the limiting covariance matrix of the quasi

maximum likelihood estimators. To this aim define the following matrix
A T A A
Byr(0) = ZSNt(B)SNt(e)T
t=1

Let V:= H'BH! and V() = (NT)HElT(é)BNT(é)H;VlT(é) The following results establish the inference for
the limiting covariance matrix of Theorems [L5| and respectively.

Theorem 17. Consider model (4.4). Suppose the conditions of Theorem hold true. Moreover, assume that
N=EY Y [YieYiell, < 0o. Then, as min {N, T} — oo, V(6) & V.

The proof is postponed to the Appendix.

Theorem 18. Consider model (4.8). Suppose the conditions of Theorem hold true. Moreover, assume that
N1t Ef\,[j:1 llexp(vi¢) exp(v;t)|l, < 0o. Then, as min {N,T} — oo, MOESS

The proof is analogous to the proof of Theorem therefore is omitted.

4.4 Applications

4.4.1 Simulations

We study finite sample behaviour of the QMLE for models and . For this goal we ran a simulation
study with S = 1000 repetitions and different time series length and network dimension. We consider the cases
p = 1 and 2. The adjacency matrix is generated by the lag-one Stochastic Block model (K = 5 blocks) using
(Bo, B1,B2)T = (0.2,0.4,0.5)T. The observed time series are generated using the copula-based data generating
process of [Fokianos et al.| (2020). The network density is set equal to 0.3. We performed simulations with a network
density equal to 0.5, as well, but we obtained similar results, hence we do not reported these. Tabled4.1] and [.2]
summarize the simulation results. Additional findings are given in the Appendix—see Tables

The estimates for parameters and their standard errors (in brackets) are obtained by averaging out the results
from all simulations; the third row below each coefficient shows the percentage frequency of t-tests which reject
Hy : 8 =0 at the level 1% over the S simulations. We also report the percentage of cases where various information
criteria select the correct generating model. In this study, we employ the Akaike (AIC), the Bayesian (BIC) and the
Quasi (QIC) information criteria. The latter is a special case of the AIC which takes into account that estimation is
done by quasi-likelihood methods. See [Pan| (2001)) for more details.

We observe that when there is strong correlation between count variables Y;:—see Table and T is small
when compared to the network size N, then the estimates are biased. The same conclusion is drawn from Table
Instead, when both 7" and N are reasonably large (or at least T is large), then the estimates are close to
the real values and the standard errors are small. Standard errors reduce as T increases—this should be expected.
Regarding estimators of the log-linear model (see Table and , we obtain the same conclusions. Note that the
approximations for network (Bl) and lagged (,32) effects is better when compared to the approximation of intercept
(o).

The t-tests and percentage of right selections due to various information criteria provide empirical confirmation
for the model selection procedure. Again, we note that when T is small then there is no definite winner among all
of them. Based on these results, the QIC provides the best selection procedure for the case of the linear model; its

success selection rate is about 94%. The BIC shows better performance only when N is small and this is so because
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it tends to select models with fewer parameters. The same conclusions are reached for the case of the log-linear
model, even though the rate of right selections for the QIC does not exceed 87%. However, the QIC is more robust,
especially when used for misspecified models.

To validate these results, we consider the case where all series are independent (Gaussian copula with p = 0).
Then QMLE provides satisfactory results if N is large enough, even if T is small (see Table . When
p > 0, both the temporal size T' and the network size N are required to be reasonably large in order to obtain good
inferential results. From the QQ-plot shown in Figure [£.4] we can conclude that, with N and 7T large enough, the
asserted asymptotic normality is quite adequate. For this plot, the data were generated by a linear model with a
Gaussian copula (p = 0.5) and N = 100. A more extensive discussion and further simulation results can be found in
the Appendix.

Table 4.1: Estimators obtained from S = 1000 simulations of model (4.2]), for various values of N and T'.
Data are generated by using the Gaussian copula with p = 0.5 and p = 1. Model (4.2) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo B Ba Bo A1 B P B | AIC BIC QIC
0202  0.395 0492 | 0199 0.384 0485  0.017  0.009
100 | (0.029) (0.046) (0.041) | (0.030) (0.056) (0.046) (0.050) (0.029) | 87.0 97.1 93.7
100 100 100 100 99.9 100 0.4 0.1
20 0202 0396 0496 | 0.199 0389 0491  0.011  0.006
200 | (0.021) (0.032) (0.030) | (0.021) (0.039) (0.032) (0.034) (0.020) | 89.7 97.3 94.2
100 100 100 100 100 100 0.1 0.5
0254 0337 0438 | 0.240 0316 0424  0.039  0.016
10 | (0.104) (0.077) (0.079) | (0.103) (0.099) (0.095) (0.109) (0.071) | 78.9 79.9 85.1
13.7 69 85.7 5.5 362 64.8 0.6 0.1
0.235  0.366 0465 | 0.227  0.351 0454  0.025  0.011
20 | (0.075) (0.057) (0.059) | (0.076) (0.074) (0.069) (0.072) (0.044) | 77.6 812 90.7
653 963  99.3 56 904  98.6 0.8 0.3
100 0207  0.393 0491 | 0.204 0.385 0486 0.011  0.005
100 | (0.033) (0.025) (0.026) | (0.034) (0.034) (0.031) (0.031) (0.018) | 75.0 83.8 93.6
100 100 100 100 100 100 0.4 0.1
0.202  0.396  0.496 | 0.200 0.390  0.492  0.008  0.004
200 | (0.023) (0.018) (0.019) | (0.024) (0.024) (0.022) (0.022) (0.013) | 72.1 83.1 94.1
100 100 100 100 100 100 0.3 0.2
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Table 4.2: Estimators obtained from S = 1000 simulations of model (4.6]), for various values of N and T'.
Data are generated by using the Gaussian copula with p = 0.5 and p = 1. Model (4.6]) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo B B Bo B B Bra B | AIC BIC QIC
0.209  0.402 0492 | 0.212 0401 0494  0.003  -0.006
100 | (0.069) (0.022) (0.039) | (0.074) (0.038) (0.048) (0.043) (0.040) | 60.4 85.5 82.5
64.8 100 100 57.7 100 100 0.6 0.4
20 0.204 0403  0.494 | 0.206 0402 0495  0.003 -0.003
200 | (0.049) (0.016) (0.027) | (0.053) (0.027) (0.034) (0.031) (0.028) | 61.6 90.0 84.9
93.2 100 100 89.2 100 100 0.6 0.3
0.209 0.392 0.443 | 0301 0368  0.443  0.039 -0.011
10 | (0.195) (0.043) (0.078) | (0.191) (0.077) (0.087) (0.088) (0.069) | 30.2 355 58.2
124 994 878 | 109 675 720 1.3 0.6
0.265 0.398  0.465 | 0.269 0.390 0472  0.015 -0.015
20 | (0.145) (0.028) (0.056) | (0.146) (0.062) (0.069) (0.071) (0.053) | 25.6 34.1 69.8
20.5 100 99.8 | 205 992 994 1.7 0.6
100 0.216 0401  0.492 | 0.218 0402 0496  0.000 -0.006
100 | (0.065) (0.012) (0.025) | (0.068) (0.030) (0.033) (0.035) (0.026) | 23.3 44.3 82.3
74.2 100 100 70.9 100 100 0.7 0.5
0.209  0.401 0495 | 0.210 0399  0.496  0.002  -0.002
200 | (0.046) (0.008) (0.018) | (0.048) (0.022) (0.022) (0.025) (0.018) | 26.6 51.0 86.9
96.7 100 100 95.6 100 100 0.5 0.2
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QQ-plots for the linear model, Gaussian copula with p = 0.5, N = 100. Left: T = 20. Right:

4.4.2 Data analysis

The application on real data concerns the monthly number of burglaries on the south side of Chicago from 2010-
2015 (T = 72). The counts are registered for the N = 552 census block groups. The data are taken by |Clark
et al| (2018), https://github.com/nick3703/Chicago-Data. The undirected network structure raises naturally,

as an edge between block 7 and j is set if the locations share a border. The density of the network is 1.74%. The

maximum number of burglaries in a month in a census block is 17. The variance to mean ratio in the data is 1.82,

suggesting there is some overdispersion in the data. The median of degrees is 5. On this dataset we fit the linear
and log-linear PNAR(1) and PNAR(2) model. The results are summarized in Table All the models have
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significant parameters. The magnitude of the network effects 511 and (12 seems reasonable, as an increasing number
of burglaries in a block can lead to a growth in the same type of crime committed in a close area. Also, the lagged
effects have an increasing impact on the counts. Interestingly, the log-linear model is able to account for the general
downward trend registered from 2010 to 2015 for this type of crime in the area analysed. All the information criteria

select the PNAR(2) models, in accordance with the significance of the estimates.

Table 4.3: Estimation results for Chicago crime data.

Linear PNAR(1) Log-linear PNAR(1)
Estimate SE (x10%) p-value | Estimate SE (x10%2) p-value
Bo 0.4551 2.1607 <0.01 -0.5158 3.8461 <0.01
51 0.3215 1.2544 <0.01 0.4963 2.8952 <0.01
B2 0.2836 0.8224 <0.01 0.5027 1.2105 <0.01
Linear PNAR(2) Log-linear PNAR(2)
Estimate SE (x10%) p-value | Estimate SE (x102) p-value
Bo 0.3209 1.8931 <0.01 -0.5059 4.7605 <0.01
Bi1 0.2076 11742 <0.01 | 02384 34711  <0.01
P21 0.2287 0.7408 <0.01 0.3906 1.2892 <0.01
B2 0.1191 1.4712 <0.01 0.0969 3.3404 <0.01
By 0.1626 0.7654  <0.01 | 0.2731 1.2465  <0.01

Table 4.4: Information criteria for Chicago crime data. Smaller values in bold.

AICx1073 BICx10—3 QICx1073
linear log-linear | linear log-linear | linear log-linear
PNAR(1) 115.06 115.37 115.07 115.38 115.11 115.44
PNAR(2) 111.70 112.58 | 111.72 112.60 | 111.76 112.68
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Appendix

Moments for the linear PNAR(p) model

It is easy to derive some elementary properties of the linear NAR(p) model. Fix p = (Iy — (G1 + -+ Gp)) " 8y;
we can again rewrite model (4.3) as a Vector Autoregressive VAR(1) model

Yi—p=Gi (Y1 —p)+ -+ Gp(Yip — ) + &,
where &, is a martingale difference sequence, and rearrange it in a Np-dimensional VAR(1) form by
Y- = G YL, - ) + B (C-1)
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Here we have Y: = (YtTngllw .. aY;-,‘le+1)T7 P«* = (INp - G*)71B07 BO = (ﬁg,oﬁ(p_l))T Et = (€t,0%(p_1))T7
where Oy (,—1) is a N(p — 1) x 1 vector of zeros, and

Gi, Gy - G, G,
In Onn - Oxn Onn

G'=|On~y In -+ Oyxn Onn |,
Oy Onn -+ In Oyn

where On,n is a N x N matrix of zeros.

For model we can find the unconditional mean E(Y}) = p* and variance vec[Var(Y;)] = (I(np2 — G* ®
G*) " lvec[E(X})] with E(Z}) = E(E,E]). For details about the VAR(1) representation of a VAR(p) model and its
moments, see [Liitkepohl| (2005). Define the selection matrix J = (I : Oy, n @ - -+ : Oy n) with dimension N x Np.

Proposition 10. Assume that N is fixed and Y7 _;(B1n + Bon) < 1 in model (4.3). Then, model (4.4) has the
following unconditional moments:

E(Y:)
vec[Var(Y})]
vec[Cov(Yy, Yip)]

Jp* = Iy - (Gi1+ - +Gp) "By =n,
(J ® J)vec[Var(Y;)],
(I ® J)(Inp — G*)vec[Var(Y;)] .

|
T

)
)

Applying these results to model (4.1)) (equivalently (4.2))), we obtain

E(Y:) = (In —G) '8y = fo(1 = 1 — B2)'1,
vec[Var(Y;)] = (In> — G ® G) lvec[E(Zy)], (C-2)
vec[Cov(Yy, Yip)] = (In — G)"vec[Var(Y,)].

The mean of Y; depends on the network effect 51, the momentum effect 85 and the structure of the network (via
W). The same fact holds for second moments structure; in addition, the conditional covariance X; makes explicit
the dependence on the copula correlation structure. We can observe that equations are analogous to equations
(2.4) and (2.5) of Zhu et al.| (2017, Prop. 1), who analysed the continuous variable case. Then, the interpretations
(Case 1 and 2 pag.1099-1100) and the potential applications (Section 3, pag.1105) apply also here for integer-valued

case.

Empirical properties of the log-linear PNAR(1) model

We give here some insight on the structure of the model above for the linear model. Here an explicit formulation
of the unconditional moments is not possible. We report the sample statistics to estimate the unknown quantities
and replicate the same baseline characteristics and the same scenarios of the linear case. In Figure we can see
that, analogously to the linear case, the correlations among counts grow when more activity in the network is showed.
However, here a more sparse matrix seems to slightly affect correlations. The general levels of correlations are higher
than the linear case in Figure The mean ranges around 1.7 and 2; it tends to rise with higher network activities

up to 2.2. For the variance we find analogous results.
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Figure C-1: Correlation matrix of model . Top-left: Data are generated by employing a stochastic block model
with K = 5 and an adjacency matrix A with elements generated by P(a;; =1) = 0.3N~93_if i and j belong to the
same block, and P(a;; = 1) = 0.3N !, otherwise. In addition, we employ a Gaussian copula with parameter p = 0.5,
(Bo, B1,B2) = (0.2,0.1,0.4)T, T = 2000 and N = 20. Top-right plot: Data are generated by employing a stochastic
block model with K = 5 and an adjacency matrix A with elements generated by P(a;; = 1) = 0.7N~0-0903 if § and
j belong to the same block, and P(a;; = 1) = 0.6N %3 otherwise. Same values for 8’s, T, N and choice of copula.
Bottom-left: The same graph, as in the upper-left side but with K = 10. Bottom-right: The same graph, as in
upper-right side but with K = 10.
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Figure C-2: Correlation matrix of model (4.5). Top: Data have been generated as in top-left of Figure (left),
with copula correlation parameter p = 0.9 (middle) and as in the top-right of Figure but with copula parameter
p = 0.9 (right). Bottom: same information as the top plot but data are generated by using a Clayton copula.
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Figure C-3: Correlation matrix of model (4.5). Data have been generated as in top-left of Figure (top-left),
higher network effect 8; = 0.4 (top-right), higher momentum effect 82 = 0.6 (lower-left) and higher network and
momentum effect 5, = 0.3, S = 0.6 (lower-right).
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Figure C-4: Correlation matrix of model (4.5). Data have been generated as in top-left of Figure (top-left),
negative network effect 5, = —0.1 (top-right), negative momentum effect o = —0.4 (lower-left) and negative network
and momentum effect f; = —0.1, f2 = —0.4 (lower-right).

Figure[C-2shows the outcomes obtained by varying the copula structure and the copula parameter p. The results
are similar to Figure but here the correlations tend to be more homogeneous. By adding positive weights to the
network and momentum effect in Figure we notice comparable results with those of the linear model in Figure
[4:3] but here the growth in parameters leads to a less severe effect on correlations. Significant increases in mean and
variance are detected. In the log-linear model negative values for the parameters are allowed. In Figure [C-4] we see
no remarkable impact of negative coefficients on correlations. However, the sample means and variances decrease
when compared to the corresponding plots produced using 1, 2 > 0.
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Proof of Lemma [T

We will prove Lemma 7] in the case p = 1. The case p > 1 works analogously for the representation . Recall
from Assumption (zz) that FY, = 0(§s: 1 <i< N,s<t—1). Then, for N € N, we have that E(Y,|F;_1) =
E(Y|FY ), see for example |Shiryaev| (2016, p. 210). Before proving each single point of the Lemmalﬂ we proof the
following helpful results.

Lemma 9. Rewrite the linear model (4.2)) as Y¢ = f(Y¢-1,0) +&,, for t > 0 where &, = Y; — A; and f(Y;-1,0) =
A+ = By + GY,_;. Define the following predictors, for J > 0:

v f(Yy_1,0), t>0 .. FOYSh0) + ¢, max{t—J0}<s<t

t = ) —-J = _
Yo, t<0 =7 Y., s < max{t— J,0}

where f(Y,_1,0) = By + GY,_; and f(Y'=1,0) = A, = By + GY'"L. Let Y; = cY, + (1 — )Y, and Y, =
cY:+ (11— C)Y};_J with 0 < ¢ < 1. Then,

t—J—1
’Yt - Yi—JL@ <d’ Y g, ],

=0
where || = maxi<j<n [§i].

Proof. Set t >0,
Yo=Yl = [f(Yem1.0) +& — f(Yimr.0)]
0 L i< Y,
= mayf (Yt—l"”HLYt‘l bl

<d|[Yi1 - Yt—l‘oo + 1€l oo
< d? ’Yt72 - thzloo +d |£t*1‘oo + |£t|oo

t—1
<d" [Yo—Yo|  + D & ]
=0

t—1
- Zdj 1§65l -
§=0
The first inequality holds for an application of the multivariate mean value theorem. Moreover, 9f(Y;_1,0)/0Y = G
and [||G|l|, < B1+ P2 =d < 1. Nowsett—J >0,
Yo=Yl =AY 0) 6 - (YiT0) -6,

Fﬂ?thm

o0

<

rt—1
\th—YFJ
o0

o0

oY

<d|Yi1 - YT
(oo}

2 rt—2
Sd‘Yﬁz—YLA
oo

<d’ Yy — Yt—J}OO
t—J-1

S dJ Z dj ’5t—J—j|oo

Jj=0
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t
] <
o0

dJ_t‘Yo—Yo‘OOZO. O

and the last inequality comes from the previous recursion. It is immediate to see that, for t —J < 0,

Proof of (1)

Define W, = (Y4, Y, )7, W!_, = (Y!_ ,,Y'")T = f(&,....&_), Yit, A the i-th elements of Y!_, and
X;_J. Consider the following triangular array {gn:(Wy):1 <t <Tn,N > 1}, where Ty — o0 as N — oo.
For any n € R™, gyt (W) = N~ IWTO;\(S Ctgg‘%ﬂ = > S nemhew where N~ hyy = (hyie)i<ri<m. We
take the most complicated element, hoos, the result is analogously proven for the other elements. Define l1;; =
‘(wiTYt—l)QYit(;\it + /\it)’7 loie = |(w1TYt—1)2)\22t’ and 3 = ‘Yit)\?t(yit—l + Y1) Ejvzl wi; (Yii—1 + YA}'t—l)’~ Addi-

Nit — Nt

Y;: — Y| is a consequence of the constructions in Lemma [9 Then

tionally, the equality

St 190
t Yt ]) Yit
haat — h22,t7.]| =

1 'lUYtl Y3 1N
g3 R Ly e

7=

zt

—

4

‘( Y1)V, — (wl Y)Y g,

1

~

IN IN
\ 2‘;}7 2‘0
.MZ HMZ

(@I Y0 )2V (32 = 22) + [l Yio0)?Yi — (I Y25 Wa] 23

©
I
—

4| N _4| N
< % 1:21( wlY ;- 1)2Yie(Nis + Nie) (i — Xie) | + % i:Zl(w;FYt,l)Q)\?t(Yit —Yi)
Bt T<rt—112
+ N ZY”)\ (U) Y;_ 1) — (wi Yt—J)
i=1

it_>\t it T

Bt~ I3

S%Zlut A
N

y B I

Z 1it

,4N

O
Z 1t 115 Zwm Jjt— 1+}/th 1 Zwlj Jjt—1 — jt 1)

+ — lost |Ys
N i=1

(I Y1) + (V)| |@! Vi) = (! Yizh)

it

6_ N
+ OT sz Y;

—4 N
BO Z llzt + l?zt

§ 13125 E wzg ]t 1~ jt 1) .

Set 1/a+1/b=1/2 and 1/¢ + 1/p + 1/n = 1/a. By Cauchy-Schwarz inequality, as w;; > 0 for j = 1,...,N and
2
YLy wiy = 1 we have that (w]'Y, 1)? = (Zj\; winjt_1> < YL wy Vi So, maxicien ||(w] Yioa)?, <

maxi<;<n (Zjvzlwm ||Yth71Hq> < max;>1 ||Y£||q < C’Qléq < 00, by Proposition Moreover, max;>1 [| AL, <

max;>1 HYan < Cy, by the conditional Jensen’s inequality. Similarly, max;>1

2| < max;>g ‘ |l - An appli-
n n
it

72
Yiy

cation of Lemma|§|provides max;>1 ’ <d’ Z;;g_l &’ max;>1 [|€x], < dJQC;/b/(l —d). By an analogous
> b >

<260 % o d + 37 o d maxis1 [|atll,, < (260 +2C0") /(1 —d) =

recursion argument, it holds that max;>; ‘
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2t 2t

A < oco. By Holder’s inequality max;>1 ||l15¢]|, < max;>; || (wI'Y,—1) || ||th|| (‘

+[3
the same way we can conclude that max;>1 [|l2it]l, < l2 < oo and max;>1 [|lzill, < I3 < oo, Then, by Minkowski

><ll<oo. In

inequality

Z st Zwm

.t By Jmax il

t—J-1 _ 1/b
; li+ 12+ 13)2C
< 5074 (ll + 1y +l3) 2cg/de—1 § &< BO ( 1 +1 itl 3) b

Jj=0

‘th 1 Jt IHb

zt

—4 N
Aozt = ho sy, < 507 Z vie + L2iell, || Yie —
i=1

—4
< By* mavx (el + el

Yvit_ it

Vs V|
b

J—-1 ._
d = C22Vyj,

with v; = d/~!. By the definition in Assumption (zz), recall ]-'tZXJ,H_J =0y :1<i<Nt—J<t<t+J).
Since E [gNt(Wt)‘ft]\_fJ’t+J:| is the optimal fﬁJ7t+J—measurable approximation to gn:(W¢) in the L?-norm and

oW

r=
CNtV] ’

gnt(WE_ ) is FY ;op-measurable, it follows that

IN

loe (W) = B [gne(WOIFX 1], >gthL

IN

km’ rit — rlt JH

IA

where cny = Y e Yo memen and vy = d’ 71 — 0 as J — oo, establishing LP-near epoch dependence (LP-NED),
with p € [1, 2], for the triangular array {Xn: = gnt(W:) — E [gn:(W4)]}; see|/Andrews| (1988). Moreover, for a similar
argument above, it is easy to see that E | Xy¢|* < co. Then, for Assumption (#1) and the argument in|Andrews| (1988
p. 464), we have that {X ¢} is a uniformly integrable L!-mixingale. Furthermore, since limy_; o 7’ ]Ql ngl cng < 00
the law of large number of Theorem 2 in |[Andrews| (1988) provides the desired result (NT)~'n"Hypn & nTHy as
min{N, T} — occ. O

Proof of (2)

T m —
Let gne(Wy) = NﬁlﬂT%Dt_lztD_lg;‘%ﬂ = >y n 1ﬂr7lzbrzt where N='by; = (byit)i<ri<m and X, =
E(&,T|Fni1), with &, = Y, — A = Y!_, — )\t 7, since B(Y!_ | Fni1) = )\t 7 - We consider again the most
complicated element, that is beg;. For 1 <1i,j < N, define 0;;; = E(§1&;t|Fni—1), then

22t — - RN B
t 22,t—J N Pt )\n)\gt i1 j=1 )\zt/\]t
LA o .
<85 D> o [l Ye) (W] Yeo)Nikye = (wf Y{Z5) (] Y25 XiAse
i=1 j=1
1 & -
< 50_4 — Oijt | T1ije | Nit — it | + T2ijt wij (Vi1 = Yji-1)
N ij=1 j=1

The second inequality is obtained as for the element of the Hessian hgy¢ in the previous section. Moreover, r1;;¢ =
N _ N N

(wlY o) (Wl Y1) (A + Aje) and rogje = Aahje(w] Yo +w] Y7 5) and 5 Y5y llowell, < % 200520 1€l <

A < oo for Assumption(i). Set 1/q+1/h = 1/b. Note that max; j>1 [|715ell, <71 < 00, max; j>1 [[rasell, <72 <00
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by the same argument of max;>1 ||lii]|, < {1 above. Then,

N N
41 A N
[|b22e — bgz,t—JHQ < By 4N llosjell, [|71ige | Nie — Nie| + T245¢ sz‘j(th—1 —Yji-1)
ig=1 j=1 X

< 50 )\1<ma§N — Yy + 50 )\1<I£1§%§N ||7”2ithq ‘ Yie1 — Yz‘tth

—4 1/h
A 2C
< Bo (7“11—&-:[2) h @71 = poor .

Here again v; = d’~'. Then, the triangular array {XNt =gnt(Wy) — E [gNt(Wt)]} is LP-NED and Theorem 2 in
Andrews| (1988) holds for it. This result and Assumption [T} (i) yields to the convergence

(NT)"'9"Byrn % 1" B, (C-3)

as min {N, T} — oo, for any n € R™.

Now we show asymptotic normality. Define en; = n” %)g Dflﬁt, and recall the o-field FN = 0 (§;5: 1 <i < N,s < t).
Set Sy¢ = Zi ENs, SO {SNt7f t<Tyn,N > 1} is a martingale array. Following a similar argument above, for
Cauchy-Schwarz inequality and Assumption |2 (z), E (N InT %ﬁ‘; Cle e DIy n>2 < OBy*A? < oo, where
C=Cny oy Ine|? |m|?, satisfying the Lindberg’s condition

-2
NT ZE [ENt (|5Nt| > M6) | }'tNl} N2T2 ZE e | FE) Bo,
for any 0 > 0, as N — oco. By the result in equation

1 TN TN

6)\ oA
E 2 N — T t 71E T N D 1 t
*NTN; (R | FY4) NT Z D; B¢ | FY))

T
—>B,
0777777

for any 0 > 0, as N — oo. Then, the central limit theorem for martingale array in [Hall and Heyde| (1980, Cor. 3.1)
applies, (NTn)~Y2Sn1y 4 N(0,7TBn), leading to the desired result. O

Proof of (3)

Consider the third derivative

931;+(0) _9 Yie (0Xi+(0) 0N (0) 0N :(0)
06,00,00,  N2,0) \ 96, 00, 00, )

Take the case 8; = 8; = 8;, = (1, the proof is analogous for the other derivatives,

31 4( Y;, < 1Y 1Y
NZ 553 NZ )\3 it .TYt 1) N; 503}/7t (w] Ty, 1) (wiTYt_l) ::N;mi’t'

Now, define My = NT Zt 1 ZZ 1M and Zl 1 E(m; +) < oo since all the moment of Y exist. It is easy to
see that Myp £ M as min {N, T} — oo, smularly as above for point (1) and (2), then point (3) of Lemmalﬂfollows
by Assumption [I} (izi). We omit the details. O

Proof of Lemma

The proof is analogous to that of Lemma[7] We will point out only the parts which differ significantly.
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Lemma 10. Define Z; = log(1l + Y;). Rewrite the linear model (4.6) as Z; = v; + ¢,, for ¢ > 0, where v, =
By + GZ;_,. Define the predictors Z!_, = }_; +1p,, where &!_; = By + GZ!~} and Z!_ analogously to Lemma

@ Then, |Z; — Zg_J’ <! YT |y

Proof. The proof is analogous to Lemma [0] and therefore is omitted. O

Proof of (1)

Set YLJ = eXp(f/LJ) + &, Wy = (Z,Z41,Y)T, VAVLJ = (ZLJ,Zi 1J,Yf DT = f(py,...,,_;). Consider
the trlangular array {gn:(Wy):1 <t <Tn;N > 1}, where Ty — o0 as N — co. For any n € R™, gn¢(W;) =

N~ 1 Taut Dt ggqt"n = Z:nzl 2?;1 77r77lhrlt~ Then,

1 1 Y

haat — hg2,t—J| N Z(w;‘rztflf exp(Vit) — N Z(wngg:l]y exp(V;t)
i=1 1=1

B
~ Zcm lexp(vit) — exp (Vi H‘ Zczzt szg jt—1 — jt 1)

=1
,4 N
chzt €xXp Vzt) exp(Vzt) |Vzt Vzt| + a7 ZCQNS sz] jt—1 — Z]t 1) )
i=1 j=1
where ¢, = (wI'Zi_1)?, crie = ¢l exp(vig) exp(Diy) and coip = exp(Pi)(wlZy—y + wTZt ~1). The second in-

equality follows by |exp(z) — exp(y)| = |exp(y)(exp(z —y) — 1)| and |(exp(z —y) — 1)| < |exp(z —y)||z —y| <
lexp(z)| |z —y|, for 2,y € RY. Set Set 1/a + 1/b = 1/2 and 1/q + 1/p + 1/n = 1/a. Tt is easy to show
that maxi<;<nN ’|(w?zt,1)2|‘q < maxj<i<nN HZ2

, by Cauchy-Schwarz inequality. Moreover, max;>1 [[Zill, <

max;>1 [|Yiell, and max;>1 [[viell, < Bo + (81 + B2) maxi>1[[Zit],. All these quantities are bounded by Assump-
tion [2't(i). Lemma implies max;>1 ) Zit — Zull = max;>1 ||Vt — Virll, < d’ Z; ‘é Lai max;>1 [[it]l, < d’c,
where C is some constant, and maxizl‘ < 2602 d + E] Odf mMax;>1 let” < A < o0, again by

Assumption |2 (z) Define e; a vector of zero’s with 1 only in the i-th position. Moreover, recall that 0; =

S0 el GIBy + T TG, = bo + Y7} F(8,wij) s, where by = S2\(eTGIB, and f(8,wy;) € R is
some deterministic continuous function. Then

Zit
q

J—1
E [exp(qiie)] < exp(boq)E |exp | ¢ Y £(0,wij) vy
j=1
J—1 ]
< exp(boq) [[ B lexp (¢ [tbe—i])] »
j=1

where the second inequality works for successive use of Cauchy-Schwarz inequality, with 1 < [;_; < J — 3 and
c¢j = 21; | f(0,w;;)| . Now note that Elexp(c; [1;:])] < EY2[exp(2¢; | Z;4|)]EY?[exp(2¢; |v;:])], and, by an application
of the binomial theorem, we show that

2C7‘

B fexp (1Z;)*] =B [0+ 0] <3 (z,jj)E Yl*

k=0

is finite for Assumption (z), as well as Elexp(2¢; [vj:|)] < oo, so [lexp(Pit)[l, < Ae < oo and max;>1 [[c1itll, <
— hféz,thHg < cg9vy is LP-NED and, by Assumption (n), the
conclusion follows as for the linear model. O

1 < 0o and max;>1 [[e2it |,
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Proof of (2)

~ — 81/ m m .
Let gne (W) = N~ 1nT S EtaeTn = 1> e N Mibry, where 3, = E(&,T | Fne_1), with &, = Y, — exp(v;) =
Y! , —exp(P)_;), since E( ! | Fni—1) = exp(¥;_;). Analogously as above

’b22t - bgz,t—.}| < Z Tije | (n1ie + n2it) Zw” jt V|
4,j=1
where nyit + noie = wl i1 + wTZ§ Ll,, max;>1 Hnut-i-nzitH < A < oo and + Z” losell, < A < oo, for
Assumption [2] proving LP-NED. The proof of asymptotic normality follows the same fashion of the linear model

and therefore is omitted. O

Proof of (3)

Consider the third derivative

83Zi7t(9) — 9y 8ui,t(0)6ui,t(0)8ui,t(0)
90,;00,00,  ~ '\ 00; 06, 06, )

Take the case 0; = 0; = 0, = (31,

31 4 N
NZ [“)ﬁt?’ NZ: zthtl = Zmzt

The rest of the proof is omitted as it is in the same style of part (1) and (2). O

Proof of Theorem

Consider the following inequality, for the single (k, 1) element of the Hessian matrix.

LZT:ZN: 0°:4(0)  9PLis(80)
NT 00,00, 00,00,

t=1 1=1

T

1 ZXN: 831;.,(6
NTt . L 180k6)0180

which converges to 0, in probability, as min {N,T} — co. The second inequality holds for condition 3 in Lemma

és - 0073 S MNT As

0, is the s-element of @ and * is an intermediate point between 6 and 6¢. This result, together with condition 1 in
Lemma |7, provides (NT) *Hy7(8) 2> H(6,). It is immediate to show that the result (NT)"'Byr(8y) 2 B(0o)
holds, as min {N,T} — oo. The proof is closely analogous to the proof of Lemma ( ), by substituting &;:£;+ to
oijt- Then, we only need to verify that H‘(NT)_l(BNT(B) Bnr(60)) H’ = 0, where [||-]|| is a suitable matrix norm.

Consider the following inequalities, for the single (k,!) element of the matrices By (-).

N
dl; +(6 )al]t( ) 0li1(80) Ol;(80)
- : <
Z( 00, 00, 00, 00, S Di+ Dy,

defined as

T N T N O
L Ol;0(8) _ 01i+(80) \| _ | 1 +(0) _ Snr(8) _
Pr= NTZ:Z aok ( 06, 00, ||~ NT;Z W =""p o) =0
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where the second equality works for the continuous mapping theorem and the fourth equality is true since S](\?T(é)
is the l-element of Sy7(0) = 0, and

B 0L;1(80) [(OLii(0)  Lii(B0)\| | 1 o= = 9l;.(80) 921:1(0%) /;
D = NTZZ 00 (aek 00, - ﬁ;;% 00, 96,00, (03 00@)

t=14,5=1 !

Z 0l:(6 82lt(0*)
N T 891 00,00,
The second equality works for the mean-value theorem. The last equality is true if the following sufficient condition
is satisfied (Van der Vaart| 2000, Ex. 2.6).

0p(1) = Op(1)oy(1) .

1 o= 9li(80) 8°1(6")
NT ael 96,00,

ol (6o)

1 921,(6%)
- N 00,

00,00,

1 [90:(60) 9%1:(67)
SN | 08, 06,00,

=0(1). (C-4)

We show (C-4)) for the most complicated case, when 6; = 31, the proof is the same for the other derivatives. Then,
2 2
1 (01,(60)\° 1. [~ (Ya ONit(0) 1 [\ r
—E = —E — —1|———=| =—=E - A
N < 06, N z; it 00 N g o)

N
i 1
Z <ftfgt i 1Yt 1) :NBE\QIQ) =0(1),

1t ]t

where the last equality comes from Assumption (ii). The second term for 8 = 6, = 3 is

9%1:(6%) N 2 (B~ N N N ) )
E<80k80 > - EZ: 12 9 = N Z E Y;-thtZ Zwihwjmyh,tflym,tfl

i ij=1 h=1m=1

g5~ Sl
<=5 ZZZ winWjm [|YieYielly V2 1 Y24,
i,j=1 h=1m=1
(85)~
<N II Yielly masc (Y5 ea |, [1¥om o 1H4ZZwmwm

ij=1 h=1m=1

<.

c X
< O3 aval, =ow)
ij=1
where the first inequality works since A;1(0*) > 8§ and for Cauchy-Schwarz inequality. The last inequality holds for
Proposition EI and the fact that Zthl w;p, = 1. Then, holds true and Dy % 0, as min {N,T} — oo, implying
that (NT)"'Byn7(8) £ B(6,), and this ends the proof. O

Further simulations results

We present here further comments and results from the simulation study reported in Sec. 4.1} In the situation of
independence (p = 0) the QMLE reduces to the standard MLE. When N is big and T is small we see that QMLE
provides satisfactory results (Table . However, this is not always the case. As it was mentioned in Sec.
when dependence is present, the quasi likelihood is a rough approximation to the true likelihood. Intuitively,
increasing N should confirm the asymptotic results of Thm. However, at the same time, it could lead to a
more complex structure of dependence among variables and then the quasi-likelihood might not approximate the

true likelihood. In particular, when N — oo and T is small, care must be taken in the interpretation of obtained

104



estimates. This fact is also confirmed by the Tables and who illustrate better results when there exists
moderate dependence among the count variables. Finally, if both the temporal size T' and the network size N are
reasonably large, then Thm. applies. The usage of the Clayton copula instead of the Gaussian (Tables and
C-6f) provide slightly better results but they are generally in agreement with previous observations.

Figure shows a QQ-plot of the standardized estimators for the log-linear model of order 1, with Gaussian
copula (p = 0.5) and N = 100. When T is small then, we observed a deviation from normality, especially on the
right tail of the distribution. When both dimensions are large, then the approximation is more satisfactory. Clearly,
by reducing dependence among count variables, we can obtain better large-sample approximations but these results

are not plotted due to space constraints.

Table C-1: Estimators obtained from S = 1000 simulations of model (4.2)), for various values of N and T
Data are generated by using the Gaussian copula with p = 0.2 and p = 1. Model (4.2) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 IC (%)
N | T Bo B o Bo B o Bra Bas AIC BIC QIC
0201  0.395 0495 | 0199  0.38 0490 0.015  0.007
100 | (0.020) (0.041) (0.030) | (0.021) (0.049) (0.033) (0.043) (0.022) | 93.1 99.6 93.8
2 100 100 100 100 100 100 0.2 0.2
0201 0399 0497 | 0199 0382 0493  0.012  0.005
200 | (0.014) (0.030) (0.021) | (0.015) (0.035) (0.023) (0.031) (0.015) | 927 99.9 93.9
100 100 100 100 100 100 0.2 0.2
0229 0337 0478 | 0.219 0363 0468  0.025  0.012
10 | (0.063) (0.051) (0.051) | (0.063) (0.063) (0.058) (0.061) (0.038) | 88.8 90.2 87.6
580 971 998 | 351  84.0  98.0 0.1 0.1
0216  0.384 0485 | 0211  0.376 0479  0.014  0.007
20 | (0.045) (0.037) (0.035) | (0.045) (0.046) (0.040) (0.043) (0.026) | 89.7 939 93.4
99.6 100 100 | 989  99.9 100 0.1 0.3
100 0.203  0.396 0496 | 0.201  0.392 0492  0.007  0.003
100 | (0.020) (0.016) (0.016) | (0.020) (0.020) (0.018) (0.019) (0.011) | 86.8 96.6 94.6
100 100 100 100 100 100 0.2 0.1
0201  0.398 0498 | 0.200 0.395 0495  0.005  0.002
200 | (0.014) (0.012) (0.011) | (0.014) (0.014) (0.013) (0.013) (0.008) | 85.6 96.9 93.8
100 100 100 100 100 100 0.2 0.3
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Table C-2: Estimators obtained from S = 1000 simulations of model (4.2)), for various values of N and T'.
Data are generated by using the Gaussian copula with p = 0 and p = 1. Model (4.2)) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo B B Bo B B Bra B | AIC BIC QIC
0201  0.399 0496 | 0198  0.389 0490 0.015  0.008
100 | (0.014) (0.039) (0.025) | (0.015) (0.046) (0.028) (0.042) (0.020) | 94.8 99.8 94.4
100 100 100 100 100 100 0.4 0.2
20 0.201  0.400 0498 | 0.199 0.392 0493 0012  0.005
200 | (0.010) (0.027) (0.018) | (0.010) (0.032) (0.020) (0.029) (0.014) | 94.9 100  94.9
100 100 100 100 100 100 0.4 0.0
0.203  0.397 0497 | 0.196  0.385 0487  0.018  0.012
10 | (0.027) (0.037) (0.031) | (0.030) (0.046) (0.036) (0.047) (0.030) | 94.4 96.0 91.4
99.8 100 100 | 99.2 100 100 0.3 0.2
0202 0399 0498 | 0197  0.391 0492  0.012  0.007
20 | (0.019) (0.025) (0.022) | (0.021) (0.031) (0.025) (0.032) (0.020) | 95.3 98.8 94.0
100 100 100 100 100 100 0.1 0.2
100 0.200  0.400 0500 | 0.198  0.396  0.497  0.005  0.003
100 | (0.008) (0.011) (0.010) | (0.009) (0.014) (0.011) (0.013) (0.009) | 94.6 995 93.9
100 100 100 100 100 100 0.3 0.4
0.200  0.400 0500 | 0.199  0.397  0.497  0.004  0.002
200 | (0.006) (0.008) (0.007) | (0.006) (0.010) (0.008) (0.009) (0.006) | 94.0 99.7 93.3
100 100 100 100 100 100 0.4 05

Table C-3: Estimators obtained from S = 1000 simulations of model (4.2)), for various values of N and T
Data are generated by using the Clayton copula with p = 0.5 and p = 1. Model (4.2)) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo By Bs Bo Bi1 B Bra B2 | AIC BIC QIC
0.202  0.393 0493 | 0.200 0.384 0488  0.015  0.006
100 | (0.019) (0.043) (0.034) | (0.020) (0.051) (0.037) (0.044) (0.023) | 92.9 99.3 94.8
100 100 100 100 99.9 100 0.1 0.2
20 0201  0.397 0496 | 0.199  0.391 0492  0.010  0.005
200 | (0.013) (0.031) (0.024) | (0.014) (0.036) (0.026) (0.031) (0.016) | 93.6 99.7 95.8
100 100 100 100 100 100 0.1 0.2
0233 0364 0460 | 0223 0349 0450  0.027  0.011
10 | (0.064) (0.065) (0.067) | (0.065) (0.077) (0.074) (0.070) (0.044) | 84.9 87.2 874
611 880 955 | 347 653  86.0 0.1 0.1
0222 0375 0476 | 0.216  0.365 0469  0.016  0.008
20 | (0.045) (0.048) (0.049) | (0.046) (0.057) (0.054) (0.050) (0.030) | 77.6 90.1 92.3
99.3  99.7 100 | 988  99.2 100 0.7 0.2
100 0.203  0.393 0493 | 0.201  0.389 0489  0.008  0.004
100 | (0.019) (0.021) (0.022) | (0.020) (0.026) (0.024) (0.022) (0.013) | 81.2 90.7 93.2
100 100 100 100 100 100 0.2 0.2
0201  0.397 0497 | 0199  0.393 0494  0.006  0.003
200 | (0.014) (0.015) (0.015) | (0.014) (0.018) (0.017) (0.015) (0.009) | 79.0 92.7 93.9
100 100 100 100 100 100 0.4 05
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Table C-4: Estimators obtained from S = 1000 simulations of model (4.6|), for various values of N and T'.
Data are generated by using the Gaussian copula with p = 0.2 and p = 1. Model (4.6)) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo B B Bo B B Bra B | AIC BIC QIC
0.205  0.401 0496 | 0.207  0.400  0.498  0.002 -0.004
100 | (0.047) (0.019) (0.027) | (0.051) (0.033) (0.033) (0.035) (0.028) | 81.2 97.2 85.2
94.3 100 100 | 91.7 100 100 0.7 0.2
20 0.201  0.400 0499 | 0202  0.399 0499  0.001  -0.001
200 | (0.033) (0.013) (0.019) | (0.036) (0.023) (0.023) (0.025) (0.020) | 81.2 98.7 85.5
100 100 100 100 100 100 0.3 0.4
0239  0.396 0479 | 0.240  0.38 0477  0.016  -0.003
10 | (0.124) (0.033) (0.047) | (0.122) (0.052) (0.052) (0.056) (0.045) | 53.5 57.6 615
17.1 100 999 | 127 975 993 0.9 0.2
0221 0399 0490 | 0.223  0.393 0489  0.008 -0.003
20 | (0.089) (0.021) (0.033) | (0.089) (0.039) (0.039) (0.043) (0.033) | 61.5 66.6 74.3
39.4 100 100 37.9 100 100 14 0.9
100 0209  0.399 0497 | 0209 0.399  0.498  0.000 -0.002
100 | (0.038) (0.009) (0.014) | (0.039) (0.018) (0.018) (0.020) (0.015) | 57.5 83.4 83.9
99.5 100 100 | 99.4 100 100 0.6 0.1
0.204  0.400 0498 | 0.204  0.400  0.499  0.000  0.000
200 | (0.027) (0.006) (0.010) | (0.028) (0.013) (0.013) (0.014) (0.010) | 59.3 87.8 85.9
100 100 100 100 100 100 0.5 0.8

Table C-5: Estimators obtained from S = 1000 simulations of model (4.6)), for various values of N and T
Data are generated by using the Gaussian copula with p = 0 and p = 1. Model (4.6)) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T | B B Bs Bo JEt B B Baa | AIC BIC QIC
0202 0401 0498 | 0203 0400 0498  0.002  -0.001
100 | (0.034) (0.018) (0.024) | (0.038) (0.031) (0.029) (0.033) (0.026) | 86.9 98.9 84.8
99.9 100 100 | 99.9 100 100 0.4 0.5
20 0.202  0.400 0498 | 0202  0.400 0499  0.000 -0.001
200 | (0.024) (0.013) (0.017) | (0.027) (0.022) (0.021) (0.023) (0.018) | 87.3 99.7 87.0
100 100 100 100 100 100 0.3 0.5
0206 0401 0496 | 0.206 0398 0495  0.005 -0.001
10 | (0.049) (0.026) (0.029) | (0.050) (0.038) (0.037) (0.041) (0.030) | 882 90.3 77.8
70.4 100 100 553 99.9 100 0.3 0.2
0202 0400 0499 | 0.202 0400 0499  0.001  0.000
20 | (0.035) (0.017) (0.021) | (0.036) (0.026) (0.026) (0.028) (0.022) | 87.6 94.1 82.3
99.3 100 100 | 98.8 100 100 0.7 05
100 0.201  0.400 0500 | 0.201  0.400 0.500  0.000 -0.001
100 | (0.016) (0.008) (0.009) | (0.017) (0.012) (0.012) (0.013) (0.010) | 865 98.8 86.6
100 100 100 100 100 100 0.5 0.4
0200 0400 0500 | 0.200 0400 0500  0.000  0.000
200 | (0.012) (0.005) (0.007) | (0.012) (0.008) (0.008) (0.009) (0.007) | 85.2 99.3 85.1
100 100 100 100 100 100 0.4 0.6
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Table C-6: Estimators obtained from S = 1000 simulations of model (4.6|), for various values of N and T'.
Data are generated by using the Clayton copula with p = 0.5 and p = 1. Model (4.6]) is also fitted using
p = 2 to check the performance of various information criteria (IC). We use AIC, BIC and QIC.

Dim. p=1 p=2 1C (%)
N | T Bo B B Bo B B Bra B | AIC BIC QIC
0.208  0.403 0492 | 0.211 0401  0.494  0.004 -0.005
100 | (0.060) (0.021) (0.034) | (0.064) (0.036) (0.042) (0.041) (0.036) | 66.6 91.3 83.8
80 100 100 74.9 100 100 0.9 0.3
20 0.203 0401  0.497 | 0.204 0399  0.498  0.002 -0.002
200 | (0.042) (0.015) (0.024) | (0.046) (0.026) (0.030) (0.029) (0.025) | 66.6 93.9 84.3
97.5 100 100 96.1 100 100 0.4 0.5
0.207 0389  0.448 | 0.299 0368 0.448  0.032 -0.010
10 | (0.166) (0.039) (0.067) | (0.162) (0.071) (0.074) (0.081) (0.062) | 34.8 37.5 57.2
171 991 940 | 129 744 845 0.8 0.4
0.255  0.398 0469 | 0.259 0396 0478  0.007 -0.016
20 | (0.126) (0.025) (0.049) | (0.128) (0.057) (0.060) (0.065) (0.048) | 31.5 405 716
26.0 100 100 255  99.8 100 1.2 0.2
100 0.214 0400 0.493 | 0.216 0400 0495  0.002 -0.004
100 | (0.057) (0.011) (0.022) | (0.059) (0.028) (0.029) (0.032) (0.023) | 28.7 52.1 83.1
84.0 100 100 81.5 100 100 0.6 0.3
0.208  0.399  0.497 | 0.209  0.399  0.498  0.001  -0.002
200 | (0.040) (0.008) (0.015) | (0.042) (0.020) (0.021) (0.023) (0.017) | 32.0 55.7 812
99.0 100 100 97.7 100 100 1.1 0.6
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Normal QQ —plot for By, T=20 Normal QQ —plot for 3y, T = 100
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Figure C-5: QQ-plots for the log-linear model, Gaussian copula with p = 0.5, N = 100. Left: T = 20.
Right: T' = 100.

109



Bibliography

Ahmad, A. (2016). Contributions a [’éconemélrie des séries temporelles & valeurs entiéres. Ph. D. thesis, University
Charles De Gaulle-Lille III, France.

Ahmad, A. and C. Francq (2016). Poisson QMLE of count time series models. Journal of Time Series Analysis 37,
291-314.

Al-Osh, M. and A. A. Alzaid (1987). First-order integer-valued autoregressive (INAR (1)) process. Journal of Time
Series Analysis 8, 261-275.

Alzaid, A. and M. Al-Osh (1990). An integer-valued pth-order autoregressive structure (INAR (p)) process. Journal
of Applied Probability, 314-324.

Andreassen, C. M. (2013). Models and inference for correlated count data. Ph. D. thesis, Aaarhus University,
Denmark.

Andrews, D. W. (1988). Laws of large numbers for dependent non-identically distributed random variables. Econo-
metric Theory 4, 458-467.

Basawa, I. V. and B. L. S. Prakasa Rao (1980). Statistical Inference for Stochastic Processes. Academic Press, Inc.,
London-New York.

Billingsley, P. (1995). Probability and Measure. John Wiley & Sons.

Chen, X., Y. Chen, and P. Xiao (2013). The impact of sampling and network topology on the estimation of social
intercorrelations. Journal of Marketing Research 50, 95-110.

Christou, V. and K. Fokianos (2014). Quasi-likelihood inference for negative binomial time series models. Journal
of Time Series Analysis 35, 55-T8.

Clark, N. J., M. S. Kaiser, and P. M. Dixon (2018). A spatially correlated auto-regressive model for count data.
arXiv preprint arXiv:1805.08323.

Cox, D. R. (1981). Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics 8,
93-115.

Cui, Y. and Q. Zheng (2017). Conditional maximum likelihood estimation for a class of observation-driven time
series models for count data. Statistics & Probability Letters 123, 193-201.

Davis, R. A.;, W. T. M. Dunsmuir, and S. B. Streett (2003). Observation-driven models for Poisson counts.
Biometrika 90, 777-790.

Davis, R. A., S. H. Holan, R. Lund, and N. Ravishanker (Eds.) (2016). Handbook of Discrete-Valued Time Series.
London: Chapman & Hall/CRC.

Davis, R. A. and H. Liu (2016). Theory and inference for a class of nonlinear models with application to time series
of counts. Statistica Sinica 26, 1673-1707.

Debaly, Z. M. and L. Truquet (2019). Stationarity and moment properties of some multivariate count autoregressions.
arXww preprint arXiv:1909.11392.

110



Douc, R., P. Doukhan, and E. Moulines (2013). Ergodicity of observation-driven time series models and consistency

of the maximum likelihood estimator. Stochastic Processes and their Applications 123, 2620 — 2647.

Douc, R., K. Fokianos, and E. Moulines (2017). Asymptotic properties of quasi-maximum likelihood estimators in

observation-driven time series models. FElectronic Journal of Statistics 11, 2707-2740.
Doukhan, P. (1994). Mizing, Volume 85 of Lecture Notes in Statistics. Springer-Verlag, New York.

Doukhan, P., K. Fokianos, and D. Tjgstheim (2012). On weak dependence conditions for Poisson autoregressions.
Statistics € Probability Letters 82, 942-948. with a correction in Vol. 83, pp. 1926-1927.

Ferland, R., A. Latour, and D. Oraichi (2006). Integer-valued GARCH process. Journal of Time Series Analysis 27,
923-942.

Fokianos, K. (2021). Multivariate count time series modelling. arXiv preprint arXiv:2103.08028.

Fokianos, K. and B. Kedem (2004). Partial likelihood inference for time series following generalized linear models.
Journal of Time Series Analysis 25, 173-197.

Fokianos, K., A. Rahbek, and D. Tjgstheim (2009). Poisson autoregression. Journal of the American Statistical
Association 104, 1430-1439.

Fokianos, K., B. Stgve, D. Tjgstheim, and P. Doukhan (2020). Multivariate count autoregression. Bernoulli 26,
471-499.

Fokianos, K. and D. Tjgstheim (2011). Log-linear Poisson autoregression. Journal of Multivariate Analysis 102,
563-578.

Genest, C. and J. Neslehovd (2007). A primer on copulas for count data. Astin Bull. 37, 475-515.

Hall, P. and C. C. Heyde (1980). Martingale Limit Theory and its Application. Academic Press, Inc., New York-
London.

Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. Technical Report
MPRA Paper 8113, University Library of Munich, Germany. Available at http://mpra.ub.uni-muenchen.de/
8113/.

Heinen, A. and E. Rengifo (2007). Multivariate autoregressive modeling of time series count data using copulas.
Journal of Empirical Finance 14, 564 — 583.

Heyde, C. C. (1997). Quasi-likelihood and its Application. A General Approach to Optimal Parameter Estimation.
Springer Series in Statistics. Springer-Verlag, New York.

Kedem, B. and K. Fokianos (2002). Regression Models for Time Series Analysis. John Wiley & Sons, Hoboken, NJ.

Knight, M., K. Leeming, G. Nason, and M. Nunes (2020). Generalized network autoregressive processes and the
GNAR package. Journal of Statistical Software 96, 1-36.

Kolaczyk, E. D. and G. Csérdi (2014). Statistical Analysis of Network Data with R, Volume 65. Springer.

Latour, A. (1997). The multivariate GINAR (p) process. Advances in Applied Probability 29, 228-248.

111


http://mpra.ub.uni-muenchen.de/8113/
http://mpra.ub.uni-muenchen.de/8113/

Lee, Y., S. Lee, and D. Tjgstheim (2018). Asymptotic normality and parameter change test for bivariate Poisson
INGARCH models. TEST 27, 52—69.

Liu, H. (2012). Some models for time series of counts. Ph. D. thesis, Columbia University, USA.

Liitkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2nd ed.). London: Chapman & Hall.

Meyn, S. P. and R. L. Tweedie (1993). Markov Chains and Stochastic Stability. London: Springer.

Neumann, M. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17, 1268-1284.
Pan, W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120-125.
Pedeli, X. and D. Karlis (2011). A bivariate INAR (1) process with application. Statistical Modelling 11, 325-349.

Pedeli, X. and D. Karlis (2013a). On composite likelihood estimation of a multivariate INAR (1) model. Journal of
Time Series Analysis 34, 206—220.

Pedeli, X. and D. Karlis (2013b). Some properties of multivariate INAR (1) processes. Computational Statistics &
Data Analysis 67, 213-225.

Potscher, B. M. and I. R. Prucha (1997). Dynamic Nonlinear Econometric Models. Springer-Verlag, Berlin. Asymp-
totic theory.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the National Academy
of Sciences of the United States of America 42, 43—47.

Seber, G. A. F. (2008). A Matriz Handbook for Statisticians. Wiley Series in Probability and Statistics. Wiley-
Interscience [John Wiley & Sons|, Hoboken, NJ.

Shiryaev, A. N. (2016). Probability. 1 (Third ed.), Volume 95. Springer, New York.

Stock, J. H. and M. W. Watson (2002). Forecasting using principal components from a large number of predictors.
Journal of the American Statistical Association 97, 1167-1179.

Taniguchi, M. and Y. Kakizawa (2000). Asymptotic Theory of Statistical Inference for Time Series. Springer Series
in Statistics. Springer-Verlag, New York.

Van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

Wang, C., H. Liu, J.-F. Yao, R. A. Davis, and W. K. Li (2014). Self-excited threshold Poisson autoregression. Journal
of the American Statistical Association 109, T77-787.

Wang, Y. J. and G. Y. Wong (1987). Stochastic blockmodels for directed graphs. Journal of the American Statistical
Association 82, 8-19.

Wasserman, S., K. Faust, et al. (1994). Social Network Analysis: Methods and Applications, Volume 8. Cambridge

University Press.

Weif}, C. H. (2018). An Introduction to Discrete-valued Time Series. John Wiley & Sons.

112



Woodard, D. W., D. S. Matteson, and S. G. Henderson (2011). Stationarity of count-valued and nonlinear time
series models. Electronic Journal of Statistics 5, 800-828.

Zeger, S. L. (1988). A regression model for time series of counts. Biometrika 75, 621-629.

Zeger, S. L. and K.-Y. Liang (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics,
121-130.

Zhou, J., D. Li, R. Pan, and H. Wang (2020). Network GARCH model. Statistica Sinica 30, 1-18.
Zhu, X. and R. Pan (2020). Grouped network vector autoregression. Statistica Sinica 30, 1437-1462.

Zhu, X., R. Pan, G. Li, Y. Liu, and H. Wang (2017). Network vector autoregression. The Annals of Statistics 45,
1096-1123.

Zhu, X., W. Wang, H. Wang, and W. K. Héardle (2019). Network quantile autoregression. Journal of Economet-
rics 212, 345-358.

113



Chapter 5

Concluding remarks

In conclusion, we give some insight of future direction of study. We start from Chapter[3] First of all, we focus on the
probabilistic properties. Although the uniqueness of the stationary distribution for the discrete valued processes are
proved by using Markov chain theory, the rate of convergence to the limiting distribution is still unanswered. From
the point of view of modelling improvements, an interesting extension could be achieved by considering a Markov
chain of order greater than 1 which is able to define a model with several lags besides the first. As far as inferential
model comparison is concerned, methods based on penalized likelihood, i.e., AIC and BIC, are adopted to compare
the performance across various models, in terms of fitting and prediction. Nevertheless, theory and methods for
model selection represent an important open issue, which need to be better investigated. Finally, in line with the
recent theory developed for some multivariate discrete-valued processes, the specification of a unified framework for
modelling multivariate discrete-valued time series may represent an interesting and challenging generalization.

For what concerns Chapter [4] is it worth to specify that throughout the paper the network has been assumed as
nonrandom; this structure may be suitable for some fields (social network in short time periods, spatial borders) but
it might be unrealistic for other applications (like epidemics). Therefore, a challenging and useful extension of the
Network Autoregression (NAR) models either for continuous and discrete responses would be estimating a random
adjacency matrix, and then casting it into the time series model. However, strong problems of model identifiability
could raise as well as curse of dimensionality difficulties related to the contemporaneous estimations of several
parameters. A second extension of crucial importance is related to the estimation. As the network dimension grows
the QMLE obtained from the independence quasi-likelihood might be a poor estimator of the “true” parameters.
A more suitable estimation procedure, for example using the generalized estimating equation theory, might be of

interest for future researches.
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