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Richard Dedekind (1831-1916) published in 1888 a paper entitled Was sind und was
sollen die Zahlen? variously translated as What are numbers and what should they be? or
The Nature of Meaning of Numbers. In definition 71 of that work, he characterized the set of
natural numbers N as a set whose elements are called numbers, with one particular number 1
called the base or initial number, equipped with a function, called here the successor function
N — N mapping a number n to its successor n’, such that

(1). 1 is not the successor of any number.

(2). The successor function is a one-to-one function, that is, if n # m, then
n' #m'.

(3). If a subset S of N contains 1 and is closed under the successor function (i.e.,
n € S implies n’ € S, then that subset S is all of IN.

This characterization of N by Dedekind has become to be known as Dedekind /Peano axioms
for the natural numbers.

The principle of mathematical induction. The third axiom is recognizable as what
is commonly called mathematical induction, a principle of proving theorems about natural
numbers. In order to use mathematical induction to prove that some statement is true for
all natural numbers n, you first prove the base case, that it’s true for n = 1. Next you prove
the inductive step, and for that, you assume that it’s true for an arbitrary number n and
prove, from that assumption, that it’s true for the next number n’. Once you’ve done those
two things, then you conclude that the statement is true for all natural numbers n.

This is what axiom 3 says, but in set-theoretical terms. Let S be the set of all numbers
for which the statement is true. When you prove the base case that the statment is true,
you’ve shown 1 € S. When you prove the inductive step, you've shown that S is closed under
the successor function. Axiom 3 then says S = N, so the statement is true for all natural
numbers.

An example. Let’s prove that n? > 3n — 2 for all natural numbers n > 1.

The base case is when n = 1, and the statement says 12 > 3 - —1, which we know to
be true. Generally, the base case is very easy to verify, and it’s enough to say “clearly the
statement is true for 1.” On rare occasions, the base case requires a substantial proof, but I
doubt we’ll see any of those occasions.

For the inductive step, we assume that the statement is true for a number n, that is, that
n? > 3n — 2, and prove that it’s true for the next number 7/, that is (n')? > 3(n/) — 2. We're



not in position to prove this from the Dedekind/Peano axioms yet, but after a number of
definitions and theorems about addition, multiplication, and order, we could. And the proof
would go as follows. First we would rewrite our goal (n’)* > 3(n’) — 2 in terms of addition
and multiplication, and it would say (n 4+ 1)(n +1) > 3(n + 1) — 2. We'd use distributivity
of multiplication over addition to again rewrite our goal as n?> +2n +1 > 3n + 1. But
n? > 3n — 2 by assumption, so, if we could show 2n + 1 > 3, then we would reach our goal
by adding the two inequalities, that is n? > 3n — 2 and 2n + 1 > 3 together imply the goal
n?+2n+ 1> 3n+ 1. With just a little more algebra, we can show the remaining inquality
2n + 1 > 3, because that’s equivalent to 2n > 2, which follows from n > 1. That finishes the
inductive step.

Therefore, by the principle of mathematical induction, we may conclude that n? > 3n — 2
for all natural numbers n > 1.

If you look through the proof given above, there were a lot of statements about numbers
that were used. All of them can be proved, and should be proved, before accepting this proof
as valid.

Our first theorems. Let’s prove something that follows directly from the axioms.

Definition. A predecessor of a number n is a number m whose successor is n. Thus, if m’ = n,
then the successor of m is n while the predecessor of n is m.

Theorem 1. A number can have at most one predecessor

Proof. This follows directly from axiom 2. If a number n had two predecessors m; and
ma, then m| = n = m), so by axiom 2, m; would equal my. Thus, n can have only one
predecessor. Q.E.D.

Theorem 2. Every number except 1 has a predecessor.

Proof. We'll prove the logically equivalent statement
For each number n, either n = 1 or n has a predecessor

by induction.

The base case holds since if n = 1 then either n = 1 or n has a predecessor.

Now assume the statement is true for n. We’ll show it’s true for n’, that is, either n’ =1
or n' has a predecessor. But n’ has the predecessor n. Q.E.D.

Variants of mathematical induction. Sometimes you don’t want to prove a statement
for all natural numbers, but only for those for some number k£ and beyond. Then you would
use a variant of mathematical induction where the base case is n = k rather than n = 1.
Here’s an example.

The factorial of a number n, written n!, is defined as the product of the natural numbers
from 1 to n, so, for instance 5! = 1-2-3-4-5 = 120. The factorial function grows very
fast, much faster than any polynomial. For instance, it grows faster than n°. But it doesn’t
start out larger than n®. In fact, by direct computation, you can show n! < n® for n < 8,
but 8! = 40320 while 8 = 32768. Here’s a proof that n! > n® for n > 8. The base case is
n = 8, and for that 8! > 85. Now for the inductive step. Assume n! > n® for some n > 8.
We need to show that (n +1)! > (n+1)°. But (n +1)! = (n+ 1)n!, so (n+ 1)! > (n +1)°
will follow from n! > (n + 1)*. But our assumption is that n! > n° so that last statement
will follow from n® > (n + 1)%. Unfortunately, that will require another proof by induction,



one that logically should be completed before this proof. I'll omit that proof, but here is the
statement the relevant theorem: For n >4, n® > (n + 1)4

Another variant of mathematical induction is where the inductive hypotheses is strength-
ened. Instead of assuming that the statement is true for just the preceding number, you may
assume that it’s true for all small numbers. For each n, if you can show that the statment
being true for all £k < n implies that the statement is true for n, then you may conclude
that the statement holds for all natural numbers. Note that when n = 1, since there are no
smaller natural numbers, you have to prove the statement directly for n = 1.

For an example, we’ll prove that every number n > 1 is a product of one or more prime
numbers. Of course, we’ll have to assume a few things about prime numbers since we haven’t
proved anything yet about them. Logically, this theorem should be placed after the definition
of prime number (a number greater than 1 that is only divisible by itself and 1), and earlier
theorems about divisibility and multiplication. Here’s the proof. Let n > 1. If n is prime,
then it is a product of one prime, namely itself. Otherwise, n = km where neither k nor m
equals 1. Then, since k and m are each smaller than n but greater than 1, by this variant of
mathematical induction, each is a product one or more prime numbers. Multiply those two
products of prime numbers together to conclude that n is product of prime numbers.

(Note that if you define an empty product to be 1, then every n > 1 is a product of zero
or more numbers, each of which is prime.)

Of course, this strengthened form of mathematical induction needs to be justified. We
can do that from the Dedekind/Peano axioms, but not yet, because we haven’t even got
a definition for the ordering, m < n, on natural numbers. Indeed, we haven’t even got a
definition for any of the operations of addition, subtraction, mulitiplication, or division.

Definining functions by induction, also called recursion. Dedekind and Peano
both accepted the priniciple of mathematical induction for defining functions on the natural
numbers N. Both gave arguments that this method should work based on intuitive properties
of functions on sets. We’ll assume that the recursive definition of functions is valid. It
is possible to show that it’s valid using some basic axioms of set theory, or some basic
assumptions of logic, but we won’t go into that here. Alternatively, this property could be
stated as an axiom for N.

To define a function f : N — S from the natural numbers to a set S, it is only necessary
to (1) say what element a of S that f(1) should be, and (2), say what f(n') should be in terms
of n and f(n). In other words, if (1) a is a specified element of S, and (2) g : N x S — S is
a function that is already defined that takes two arguments, a number k£ and an element s of
S, and yields an element g(k, s) of S, then the new function f can be defined recursively by
the two equations

(1). f(1) =a, and
(2). f(n') = g(n, f(n)).
There are, as you can imagine, variants of recursive definition just as there are variants of

mathematical induction. The one just mentioned isn’t the simpest or the strongest, but it’s
good enough to use for many defintions.



