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Abstract

In a Maker-Breaker game there are two players, Maker and Breaker,
where Maker wins if they create a specified structure while Breaker wins
if they prevent Maker from winning indefinitely. A 3-term arithmetic
progression, or 3-AP, is a sequence of three distinct integers a, b, c such
that b−a = c−b. The 3-AP game is a biased Maker-Breaker game played
on [n] = {1, 2, . . . , n} where each round Breaker selects q unclaimed inte-
gers for every Maker’s one integer. Maker is trying to select points such
that they have a 3-AP and Breaker is trying to prevent this. The main
question of interest is determining the threshold bias q∗(n), that is, the
minimum value of q = q(n) for which Breaker has a winning strategy.
Kusch, Rué, Spiegel and Szabó (2019) initially asked this question and
proved

√
n/12− 1/6 ≤ q∗(n) ≤ √

3n. We find new strategies for both
Maker and Breaker which improve the existing bounds to

(1 + o(1))

√
n

5.6
≤ q∗(n) ≤

√
2n+O(1).

1 Introduction

Positional game theory analyzes two-player games, such as the famous kids’ game
Tic-Tac-Toe or abstract games played on hypergraphs. Two-player games often have
a framework where one player tries to build a specific structure while the other
player tries to prevent this. Such games are called Maker-Breaker games. For an
excellent overview on Maker-Breaker games and more generally positional games we
refer the reader to the survey by Krivelevich [8], and the books by Beck [2], and
by Hefetz, Krivelevich, Stojakovic and Szabó [7]. Formally, a (p, q)-Maker-Breaker
game is defined as follows.
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Let H = (V,E) be a hypergraph. The vertex set V is called the board and the
vertices will be referred to as points. There are two players, Maker and Breaker, and
on every turn, Maker first chooses p points that previously have not been chosen,
and then Breaker chooses q points that have not been chosen before. The game ends
once either Maker selects all points of an edge e ∈ E, or the entire board has been
selected without this happening. Maker wins if they completely occupy all vertices
of any edge e ∈ E, and Breaker wins otherwise, i.e. if they manage to claim at least
one element in every set e ∈ E.

The study of Maker-Breaker games was popularized by Erdős and Selfridge [5]
who found a criterion which gives a winning strategy for Breaker. Since then, a
variety of Maker-Breaker games have received considerable attention in the literature.
One of the most famous games is the game played on the edge set of Kn, where
the winning sets are collections of edges corresponding to a fixed subgraph H . In
particular, the case for H = K3, known as the triangle game, has been studied
intensively [1, 4, 6]. In this paper, we study the so-called 3-AP game.

A k-term arithmetic progression, or k-AP, is a set of integers of the form a, a +
d, . . . , a+(k−1)d for some a ∈ Z and integer d > 0. The k-AP game is a (1, q)-Maker-
Breaker game played on the first n integers and the winning sets are the collection
of k-APs, i.e. in terms of the hypergraph definition of Maker-Breaker games, we are
playing on the hypergraph H = (V,E) where

V = [n] and E = {S ⊆ V | S forms a k-AP}.

In each turn, Maker selects one unoccupied number and then Breaker selects q
unoccupied numbers from [n]. If Maker manages to select all the numbers in a k-AP,
then they win. Otherwise, Breaker wins. Define the threshold bias q∗ = q∗(n) to be
the minimum value of q for which Breaker has a winning strategy on [n]. Kusch,
Rué, Spiegel and Szabó [9] asked to find the threshold bias for the 3-AP game and
provided the following upper and lower bounds:√

n

12
− 1

6
≤ q∗(n) ≤

√
3n.

The lower bound is deduced from a general theorem by Beck (Theorem 2 in [3])
providing a criterion for Maker to win. Their Breaker strategy for the upper bound
is to block all 3-APs containing Maker’s last choice and one of their previous choices.

We improve both the upper and lower bounds by doing a more in-depth analysis
of the 3-AP game and utilizing the particular structures of 3-APs.

Theorem 1.1. The threshold bias of the 3-AP game on [n] satisfies

(1 + o(1))

√
n

3 + 3
2

√
3

≤ q∗(n) ≤
√
2n+O(1).

Note that 3 + 3
2

√
3 ≈ 5.6. Theorem 1.1 reduces the multiplicative gap from 6 to

roughly 3.35.
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The organization of this paper is as follows. In Section 2, we present the proof of
the lower bound of Theorem 1.1, and in Section 3, we present the proof of the upper
bound of Theorem 1.1.

2 Lower Bound

In this section, we provide a strategy for Maker, yielding the lower bound on the
threshold bias from Theorem 1.1. To motivate our strategy, we first give a definition.
During the game, any unoccupied integer that forms a 3-AP with the points Maker
has placed previously, we will call a threat. Note that if at any time there are more
threats on the board than Breaker has moves, Maker will win. Let

q ≤ (1 + o(1))

√
n

3 + 3
2

√
3

and x =
1

2
+

1

2
√
3
.

The constant 3 + 3
2

√
3 will be the maximum value of an elementary function f(x)

that will arise from our combinatorial argument. The maximum of such a function
will be reached at the corresponding value x = 1

2
+ 1

2
√
3
.

Our strategy for Maker is as follows. In the first �xq� rounds, Maker will choose
the smallest unoccupied integer of value larger than

⌈
n
3

⌉
. We will show that after

these �xq� rounds, Maker can choose an unoccupied point that creates over q threats,
and thus Maker wins the game.

Let B and M be the set of integers occupied by Breaker and Maker, respectively,
after round �xq� was played. Let � denote the largest integer occupied by Maker.
Note that

� ≤
⌈n
3

⌉
+ 1 + (q + 1) �xq� ≤ n

3
+ q2 ≤ 2n

3

for sufficiently large n, because in each of the �xq� rounds q + 1 integers are played.
We split up the board [n] = J1 ∪ J2 ∪ J3 ∪ J4 into four intervals:

J1 =
[
1,
⌈n
3

⌉]
∩ N, J2 =

(⌈n
3

⌉
, �
]
∩ N,

J3 =

(
�,

⌊
2n

3

⌋]
∩ N and J4 =

(⌊
2n

3

⌋
, n

]
∩ N.

We set bi := |Ji ∩ B|, so that bi is the number of Breaker points in the interval Ji.
Note that b2 + |M | = |J2| = � − �n/3�, because all of Maker’s points are in J2 and
there is no unoccupied point in J2. After the first �xq� rounds, Breaker has played
q�xq� moves. Thus, b1 + b2 + b3 + b4 = |B| = q�xq�.

For i ∈ J3 \B, we define

Ai :=

{
2y − i, 2i− y

∣∣∣∣ y ∈ M

}
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to be the set of potential threats created by left and right reflections. Note that
Ai ⊆ [n], because i, y ∈ (⌈

n
3

⌉
,
⌊
2n
3

⌋]
. Every element in Ai completes a 3-AP with

one of Makers initial �xq� moves and the point i. Note that |Ai| = 2�xq�. If
Ai ∩M �= ∅ for some value of i, then Maker wins the game by playing the integer i.
Therefore, we can assume that Ai ∩M = ∅ for all i ∈ J3 \B.

Further, we can assume that |Ai \ B| ≤ q for each i, otherwise Maker can win
in two turns. Indeed, if |Ai \ B| > q, Maker can occupy the integer i and then
Breaker will not be able to block all the integers in Ai \ B. Maker then wins the
game by playing an unoccupied integer in Ai \ B. Therefore, we can conclude that
|Ai ∩B| ≥ 2�xq� − q ≥ (2x− 1)q. Summing up |Ai ∩ B| for all i ∈ I3 \B, we get∑

i∈J3\B
|Ai ∩B| ≥ |J3 \B| (2x− 1)q. (1)

We can use a double counting argument to upper bound the sum on the left side of
(1). For every b ∈ B the sum adds up the number of times b appears in some Ai.
This is at most |M | = �xq� times for every b ∈ B. Thus,∑

i∈J3\B
|Ai ∩ B| =

∑
b∈B

|{i ∈ J3 \B : b ∈ Ai}| ≤ |B|�xq� = q�xq�2. (2)

Combining (1) with (2), we get

(|J3| − b3) (2x− 1)q ≤ q(xq + 1)2. (3)

Using � = �n/3�+ b2 + |M | = �n/3�+ b2 +O(
√
n), Inequality (3) can be written as

n

3
− b2 − O(

√
n) =

⌊
2n

3

⌋
− � = |J3| ≤ b3 +

x2

2x− 1
q2 +O(

√
n).

Therefore,

n ≤ 3b2 + 3b3 +
3x2

2x− 1
q2 +O(

√
n) ≤

(
3x+

3x2

2x− 1

)
q2 +O(

√
n)

≤
(
3 +

3

2

√
3

)
q2 +O(

√
n),

where we have used b2+b3 ≤ |B| ≤ q�xq� and x = 1
2
+ 1

2
√
3
, which we chose to minimize

the expression on the right-hand side. This contradicts q ≤ (1+o(1))
√

n
3+ 3

2

√
3
. Thus,

there exists an i ∈ J3 \B such that |Ai \B| > q and therefore Maker can win in two
more rounds, completing the proof of the lower bound on the threshold bias from
Theorem 1.1. �

3 Upper bound

In this section, we provide a strategy for Breaker, yielding the upper bound on the
threshold bias from Theorem 1.1. Our Breaker strategy builds upon the breaker
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strategy from Kusch, Rué, Spiegel and Szabó [9]. First, we will briefly explain their
strategy to help give some intuition for how our strategy works.

Their Breaker strategy is simply to block all threats created on every turn. Maker
selects at most �n/(q + 1)� integers during the game and for each pair of integers
there are at most three 3-APs containing them, i.e. three threats. Thus, Breaker has
to block at most

3

(⌈
n

q + 1

⌉
− 1

)
≤ 3n

q

integers in each round to prevent Maker from winning. Thus, Breaker can block
Maker from winning (and consequently wins themselves) as long as 3n

q
≤ q, or equiv-

alently as long as q ≥ √
3n. This proves q∗(n) ≤ √

3n.

Now, we will explain our strategy and show that it improves the upper bound for
the threshold bias. Let

q ∈
[√

2n+O(1),
√
3n

]
. (4)

We classify Breaker’s moves into two different types: forced moves and free moves.
Forced moves are moves that Breaker must play to block threats. Free moves are
any moves that Breaker has after Breaker blocks all threats. Our improvement over
the pre-existing Breaker strategy is that we strategically use our free moves to reduce
the maximum number of threats that occur on any round.

We partition the board [n] = I1 ∪ I2 ∪ I3 into three consecutive intervals

I1 =
[
1,
⌊n
3

⌋]
∩ N, I2 =

(⌊n
3

⌋
,

⌈
2n

3

⌉]
∩ N, and I3 =

(⌈
2n

3

⌉
, n

]
∩ N,

which we will refer to as left, middle and right intervals, respectively. In our strategy,
Breaker plays all their free moves arbitrarily in the middle interval until the interval is
entirely occupied. Let t∗ be the first round in which all integers of the middle interval
have been chosen (note that it is not obvious that t∗ is well-defined as theoretically
Maker could win prior to the middle becoming full; we will show that this does not
happen). On turn t∗, after the middle interval is completely occupied, Breaker might
have some free moves left and can play those remaining ones arbitrarily.

In turns t > t∗, Breaker will play all their free moves arbitrarily in the interval
that Maker played in on that turn. Under the assumption that Maker does not win,
eventually this will lead to one of I1 or I3 becoming fully occupied, and on this turn,
Breaker can play any remaining free moves arbitrarily.

A key observation for our strategy is that after time t∗ any new Maker point can
create at most two (instead of three) threats with any previously played Maker point
in the middle, see Figure 3 for an illustration.

Claim 3.1. Let t > t∗. Any new Maker point can create at most two threats with
any previously played Maker point in the middle interval, I2

Proof. Let m ∈ [n] be a new Maker point played after time t∗ and m′ ∈ I2 be
an integer occupied by Maker. First assume that m ∈ I1. Only the three integers
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(m+m′)/2, 2m′−m and 2m−m′ can be threats. Assume that (m+m′)/2 and 2m′−m
are threats. We will show that 2m−m′ is not a threat. Since (m+m′)/2 < m′, we
have (m+m′)/2 ∈ I1 to be a threat. Since 2m′ −m > m′, we have 2m′ −m ∈ I3 to
be a threat. Therefore,

m+m′

2
≤

⌊n
3

⌋
and

⌈
2n

3

⌉
< 2m′ −m ≤ n.

Hence,

2m−m′ = (m+m′) + (m− 2m′) < 2
⌊n
3

⌋
−
⌈
2n

3

⌉
≤ 0,

and therefore 2m − m′ cannot be a threat. We conclude that m′ together with m
creates at most two threats. If m ∈ I3, the analysis is similar.

n
3

2n
31 n

×× ◦ ◦

Figure 1: Pairs of Maker points with one being in the middle interval create
at most two threats. ×’s represent Maker points, and ◦’s represents the
threats created by those points.

Another important observation is that any new Maker point cannot create any
threats with Maker points on the other side of the middle.

Claim 3.2. Let t > t∗. A new Maker point cannot create a threat with a Maker
point on the other side of the middle.

Proof. This claim simply follows from the fact that for m ∈ I1 and m′ ∈ I3, we have
(m+m′)/2, 2m′ −m, 2m−m′ /∈ I1 ∪ I3, because

m+m′

2
≤

⌊
n
3

⌋
+ n

2
≤

⌈
2n

3

⌉
,

m+m′

2
>

1 +
⌈
2n
3

⌉
2

≥
⌊n
3

⌋
,

2m′ −m > 2

⌈
2n

3

⌉
−
⌊n
3

⌋
≥ n and 2m−m′ < 2

⌊n
3

⌋
− 2

⌈
2n

3

⌉
≤ 0.

Now, let us get an upper bound on when turn t∗ occurs.

Claim 3.3. We have t∗ ≤ q
3
.
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Proof. On any turn t there is a maximum of 3(t− 1) forced moves so Breaker has a
minimum of q − 3(t − 1) free moves on this turn. Thus, for any turn t prior to the
middle interval being filled, Breaker will have played a total of at least

t∑
j=1

q − 3(j − 1) = tq − 3

2
(t2 − t) ≥ tq − 3

2
t2 (5)

free moves, all of which Breaker played in the middle interval. Since |I2| ≤ n
3
+ 2,

once the total free moves Breaker has been able to play exceeds n
3
+ 2, the middle

third is guaranteed to be completely occupied. Thus, using (5), we conclude that

t∗ ≤ q

3
− 1

3

√
q2 − 2n− 12 ≤ q

3
.

Note that since q − 3t∗ ≥ 0, Breaker will always have free moves before time t∗

and in particular, Breaker does not lose the game before time t∗.

Given any time t, let m1(t), m2(t) and m3(t) denote the number of Maker points
in the left, middle and right interval respectively, and let b1(t), b2(t) and b3(t) denote
the number of Breaker points in the left, middle and right interval, respectively, after
turn t was completed.

Assume it is Breaker’s turn in some round t > t∗. We will show that Breaker can
occupy all threats in this round, which further implies that Breaker eventually wins
the game. Without loss of generality, Maker has played their last move in say I1 (if
they play in I3, the analysis is similar). We claim that Maker has created at most

3m1(t) + 2m2(t) = 3m1(t) + 2m2(t
∗)

threats. Indeed, there are at most 3m1(t) threats that were made by the new Maker
point with old Maker points in the left interval, and then there are at most 2m2(t) =
2m2(t

∗) threats made by the new point with old Maker points from the middle
interval. There are no threats made with old Maker points from the right interval,
as all integers completing a 3-AP are either outside of the board or in the middle
interval and therefore blocked already. Thus, as long as

3m1(t) + 2m2(t
∗) ≤ q, (6)

Breaker will block all threats created by Maker in round t.

In the remaining part of the proof, we show that (6) holds. To do so we collect
a few equalities and inequalities which will help us to upper bound m1(t), the first
term in (6). Note that for all t,

m1(t) +m2(t) +m3(t) = t and b1(t) + b2(t) + b3(t) = qt

because Maker occupies one integer and Breaker q integers in each turn. Breaker
plays at most

b3(t
∗) ≤ 3

(
m3(t

∗)
2

)
+ 2m2(t

∗)m3(t
∗) +

(
m2(t

∗)
2

)
+m1(t

∗)m2(t
∗) +O(

√
n) (7)
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points in the last third until round t∗, because a pair of Maker points b, b′ creates at
most

• 3 threats in I3 if b, b′ ∈ I3,

• 2 threats in I3 if b ∈ I3, b
′ ∈ I2,

• 1 threat in I3 if b, b′ ∈ I2,

• 1 threat in I3 if b ∈ I2, b
′ ∈ I1,

• 0 threats in I3 if b, b′ ∈ I1,

• 0 threats in I3 if b ∈ I1, b
′ ∈ I3.

In round t∗, Breaker played at most q = O(
√
n) integers in I3, explaining the

O(
√
n)-term in (7). In each of the turns between time t∗ and t where Maker plays in

the first third (there are m1(t)−m1(t
∗) many of those turns) Breaker plays at most

m2(t
∗) moves in I3. Those are the forced moves which come from threats created by

a new Maker point in the first third and Maker points in the middle. In each of the
turns between time t∗ and t where Maker plays in the last third, Breaker trivially
plays at most q moves in I3. Thus, between time t∗ and t, Breaker plays at most

b3(t)− b3(t
∗) ≤ q (m3(t)−m3(t

∗)) +m2(t
∗) (m1(t)−m1(t

∗)) +O(
√
n) (8)

integers in the last third. Note that⌈
2n

3

⌉
= |I1 ∪ I2| ≥ b1(t) + b2(t) = qt− b3(t) = q(m1(t) +m2(t) +m3(t))− b3(t).

(9)

Combining (7), (8) and (9), we get that

q(m1(t)+m2(t)+m3(t))−3

(
m3(t

∗)
2

)
−2m2(t

∗)m3(t
∗)−

(
m2(t

∗)
2

)
−m1(t

∗)m2(t
∗)

−q(m3(t)−m3(t
∗))−m2(t

∗)(m1(t)−m1(t
∗)) ≤ 2n

3
+O(

√
n). (10)

Inequality (10) can be simplified to

m1(t)(q −m2(t
∗)) + q(m2(t

∗) +m3(t))− 3

2
m3(t

∗)2 − 2m2(t
∗)m3(t

∗)− 1

2
m2(t

∗)2

−q(m3(t)−m3(t
∗)) ≤ 2n

3
+O(

√
n). (11)

Rewriting (11), m1(t) can be upper bounded by

m1(t) ≤ 1

(q −m2(t∗))

(
2n

3
− q(m2(t

∗) +m3(t)) +
3

2
m3(t

∗)2 + 2m2(t
∗)m3(t

∗)

+
1

2
m2(t

∗)2 + q(m3(t)−m3(t
∗))

)
+O(1)

=
1

(q −m2(t∗))

(
2n

3
− qm2(t

∗) +
1

2
m2(t

∗)2

+m3(t
∗)
(
3

2
m3(t

∗) + 2m2(t
∗)− q

))
+O(1)

≤ 1

(q −m2(t∗))

(
2n

3
− qm2(t

∗) +
1

2
m2(t

∗)2
)
+O(1), (12)



A. CAO ET AL. /AUSTRALAS. J. COMBIN. 84 (1) (2022), 167–177 175

where we used Claim 3.3 to get 3
2
m3(t

∗) + 2m2(t
∗) ≤ 2t∗ ≤ 2q

3
in the last inequality.

Finally, we provide an upper bound of the left hand side of (6) using our bound on
m1(t) from (12),

3m1(t)+2m2(t
∗) ≤ 3

(q −m2(t∗))

(
2n
3
− qm2(t

∗) + 1
2
m2(t

∗)2
)
+ 2m2(t

∗)+O(1)

≤ 3

(
√
2n−m2(t∗))

(
2n
3
−
√
2nm2(t

∗) + 1
2
m2(t

∗)2
)
+ 2m2(t

∗)+O(1).

(13)

Let c ≥ 0 be such that m2(t
∗) = c

√
n. Since m2(t

∗) ≤ t∗ ≤ q/3, we have c < 1.
Define

f(x) :=
3√
2− x

(
2

3
−

√
2x+

x2

2

)
+ 2x,

and note that the right-hand side of (13) is f(c)
√
n+O(1). The first derivative of f

is non-positive for 0 ≤ x ≤ 1:

df

dx
=

c(c− 2
√
2)

2(
√
2− c)2

≤ 0.

Therefore, f(c) ≤ f(0) =
√
2. We conclude

3m1(t) + 2m2(t
∗) ≤ f(c)

√
n+O(1) ≤

√
2n+O(1) ≤ q.

Hence inequality (6) holds, completing the proof of the upper bound on the threshold
bias from Theorem 1.1. �

4 Concluding remarks

We would like to remark that both strategies presented in this paper focus on first
occupying integers in the middle. This matches the intuition that those integers are
the most valuable as they are contained in the most 3-APs. We believe that optimal
strategies will be in this spirit too.

A natural variant of the 3-AP Game on [n] is the 3-AP Game on Z/nZ, i.e.
the winning sets are triples forming a 3-AP in the cyclic group Z/nZ. Denote the
threshold bias of this game q∗c (n). We have

(1 + o(1))

√
n

3 + 3
2

√
3
≤ q∗(n) ≤ q∗c (n) ≤

√
3n. (14)

Note that q∗(n) ≤ q∗c (n) holds trivially, since the winning sets of the 3-AP game on
[n] can be viewed as subsets of the winning sets of the 3-AP game on Z/nZ and
therefore Maker will win on Z/nZ if they play with their winning strategy on [n].

The upper bound in (14) follows from the same proof used in [9] (see the first
few paragraphs of Section 3 for a summary of this strategy), as the strategy only
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relied on the fact that every pair of integers is in at most three 3-APs, which is true
both in [n] and Z/nZ. The upper bound proof from Section 3 does not translate
to this setting, since our improvement over the bound in [9] comes specifically from
exploiting the fact that integers in [n] near 1 or n are in less 3-APs than the integers
in the middle of [n] (which is not true for Z/nZ).

Another direction of further study could be to take a look at the more general
k-AP game. The right order of magnitude for the threshold bias was established to
be n1/(k−1) for any k in [9], however they do not give explicit constants. Note that

q∗k(n) ≥
(

n

k(k − 1)2

)1/(k−1)

follows from a theorem by Beck (Theorem 2 in [3]).

Another interesting variation of the 3-AP Game is the Schur game. This is the
Maker-Breaker game on [n] with the winning sets being Schur triples, i.e. three
distinct integers a, b, c such that a + b = c. Denote by q∗s(n) the threshold bias of
the Schur game. Since any pair of integers can at most be in two Schur triples, the
bounds

(1 + o(1))

√
n

8
≤ q∗s (n) ≤

√
2n (15)

can be established quickly. The lower bound in (15) follows from Beck’s theorem
(Theorem 2 in [3]) and the upper bound follows from the same proof used in [9]
for the 3-AP game (see the first few paragraphs of Section 3 for a summary of this
strategy). The proof techniques we used for Theorem 1.1 can be applied to get
improvements on the bounds (15) for the Schur game.
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