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Abstract

Let k ≥ 1 be an integer. A signed Roman k-dominating function on a di-
graph D is a function f : V (D) −→ {−1, 1, 2} such that

∑
x∈N−[v] f(x) ≥

k for every v ∈ V (D), where N−[v] consists of v and all in-neighbors of
v, and every vertex u ∈ V (D) for which f(u) = −1 has an in-neighbor
w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman
k-dominating functions on D with the property that

∑d
i=1 fi(v) ≤ k for

each v ∈ V (D), is called a signed Roman k-dominating family (of func-
tions) on D. The maximum number of functions in a signed Roman
k-dominating family on D is the signed Roman k-domatic number of G,
denoted by dksR(D). In this paper we initiate the study of signed Ro-
man k-domatic numbers in digraphs, and we present sharp bounds for
dksR(D). In particular, we derive some Nordhaus-Gaddum type inequali-
ties. In addition, we determine the signed Roman k-domatic number of
some digraphs.

1 Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [3]. In this paper we continue the study of Roman dominating functions in
graphs and digraphs. Specifically, let G be a simple graph with vertex set V = V (G)
and edge set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex
v ∈ V , the open neighborhood NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and
the closed neighborhood of v is the set NG[v] = N [v] = N(v) ∪ {v}. The degree of a
vertex v ∈ V is d(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ = δ(G) and Δ = Δ(G), respectively. A graph G is regular or r-regular
if d(v) = r for each vertex v of G. The complement of a graph G is denoted by G.
We write Kn for the complete graph of order n, Kp,p for the complete bipartite graph
of order 2p with equal size of partite sets, and Cn for the cycle of length n.



L. VOLKMANN/AUSTRALAS. J. COMBIN. 64 (3) (2016), 444–457 445

If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF)
on a graph G is defined in [4] as a function f : V (G) −→ {−1, 1, 2} such that∑

u∈N [v] f(u) ≥ k for each v ∈ V (G), and every vertex u ∈ V (G) for which f(u) = −1

is adjacent to at least one vertex w for which f(w) = 2. The weight of an SRkDF f
is the value ω(f) =

∑
v∈V f(v). The signed Roman k-domination number of a graph

G, denoted by γk
sR(G), equals the minimum weight of an SRkDF on G. The special

case k = 1 was introduced and investigated in [1]. For γ1
sR(G) we also write γsR(G).

A concept dual in a certain sense to the domination number is the domatic
number, introduced by Cockayne and Hedetniemi [2]. They have defined the domatic
number d(G) of a graph G by means of sets. A partition of V (G), all of whose classes
are dominating sets in G, is called a domatic partition. The maximum number of
classes of a domatic partition of G is the domatic number d(G) of G. But Rall
has defined a variant of the domatic number of G, namely the fractional domatic
number of G, using functions on V (G). (This was mentioned by Slater and Trees in
[9].) Analogous to the fractional domatic number we may define the signed Roman
k-domatic number.

A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on G with
the property that

∑d
i=1 fi(v) ≤ k for each v ∈ V (G), is called in [10] a signed Roman

k-dominating family (of functions) on G. The maximum number of functions in a
signed Roman k-dominating family (SRkD family) on G is the signed Roman k-
domatic number of G, denoted by dksR(G). If k = 1, then we write d1sR(G) = dsR(G).
This case was introduced and investigated in [6]. The signed Roman k-domatic
number is well-defined and dksR(G) ≥ 1 for all graphs G with δ(G) ≥ k− 1, since the
set consisting of any SRkDF forms an SRkD family on G.

Now let D be a finite and simple digraph with vertex set V (D) and arc set A(D).
The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and size
of the digraph D, respectively. We write d+D(v) = d+(v) for the out-degree of a
vertex v and d−D(v) = d−(v) for its in-degree. The minimum and maximum in-degree
are δ−(D) = δ− and Δ−(D) = Δ− and the minimum and maximum out-degree are
δ+(D) = δ+ and Δ+(D) = Δ+. The sets N+

D (v) = N+(v) = {x|(v, x) ∈ A(D)}
and N−

D (v) = N−(v) = {x|(x, v) ∈ A(D)} are called the out-neighborhood and
in-neighborhood of the vertex v. Likewise, N+

D [v] = N+[v] = N+(v) ∪ {v} and
N−

D [v] = N−[v] = N−(v) ∪ {v}. If X ⊆ V (D), then D[X ] is the subdigraph induced
by X. For an arc (x, y) ∈ A(D), the vertex y is an out-neighbor of x and x is an
in-neighbor of y, and we also say that x dominates y or y is dominated by x. A
digraph D is out-regular or r-out-regular if δ+(D) = Δ+(D) = r. A digraph D is
in-regular or r-in-regular if δ−(D) = Δ−(D) = r. A digraph D is regular or r-regular
if δ−(D) = Δ−(D) = δ+(D) = Δ+(D) = r. The complement D of a digraph D is
the digraph with vertex set V (D) such that for any two distinct vertices u, v the arc
(u, v) belongs to D if and only if (u, v) does not belong to D.

If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF)
on a digraph D is defined in [11] as a function f : V (D) −→ {−1, 1, 2} such that∑

u∈N−[v] f(u) ≥ k for each v ∈ V (D), and such that every vertex u ∈ V (D) for
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which f(u) = −1 has an in-neighbor w for which f(w) = 2. The weight of an SRkDF
f is the value ω(f) =

∑
v∈V (D) f(v). The signed Roman k-domination number of a

digraph D, denoted by γk
sR(D), equals the minimum weight of an SRkDF on D. A

γk
sR(D)-function is an SRkDF on D with weight γk

sR(D). If k = 1, then we write
γ1
sR(D) = γsR(D). This case was introduced and studied in [8].

A set {f1, f2, . . . , fd} of distinct SRkDF on a digraph D with the property that∑d
i=1 fi(v) ≤ k for each v ∈ V (D), is called a signed Roman k-dominating family

(of functions) on D. The maximum number of functions in a signed Roman k-
dominating family (SRkD family) on D is the signed Roman k-domatic number of
D, denoted by dksR(D). If k = 1, then we write d1sR(G) = dsR(G). This case was
introduced and investigated in [7].

The signed Roman k-domination number exists when δ− ≥ k
2
− 1. However,

for investigations of the signed Roman k-dominating number and the signed Roman
k-domatic number it is reasonable to claim that δ−(D) ≥ k − 1. Thus we assume
throughout this paper that δ−(D) ≥ k − 1. The signed Roman k-domatic number
is well-defined and dksR(D) ≥ 1 for all digraphs D, since the set consisting of the
SRkDF with constant value 1 forms an SRkD family on D.

Our purpose in this paper is to initiate the study of the signed Roman k-domatic
number in digraphs. We first derive basic properties and bounds for the signed
Roman k-domatic number of a digraph. In particular, we obtain the Nordhaus-
Gaddum type result

dksR(D) + dksR(D) ≤ n + 1,

and we discuss the equality in this inequality. In addition, we determine the signed
Roman k-domatic number of some classes of digraphs. Some of our results are
extensions of known properties of the signed Roman k-domatic number of graphs,
given in [10].

We make use of the following results in this paper.

Proposition A. ([8]) LetD be a digraph of order n. Then γsR(D) ≤ n with equality
if and only if D is the disjoint union of isolated vertices and oriented triangles C3.

Proposition B. ([11]) IfD is a digraph of order n with minimum in-degree δ−(D) ≥
k − 1, then γk

sR(D) ≤ n.

Proposition C. ([1, 4]) If Kn is the complete graph of order n ≥ k ≥ 1, then
γk
sR(Kn) = k, unless k = 1 and n = 3 in which case γsR(K3) = 2.

Proposition D. ([6, 10]) If Kn is the complete graph of order n ≥ k ≥ 1, then
dksR(Kn) = n, unless k = 1 and n = 3 in which case dsR(K3) = 1 and unless
n = k = 2 in which case d2sR(K2) = 1.

Proposition E. ([11]) If D is a digraph of order n with δ−(D) ≥ k + 1, then
γk
sR(D) ≤ n− 1.
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Proposition F. ([11]) If D is an δ-out-regular digraph of order n with δ ≥ k − 1,
then

γk
sR(D) ≥

⌈
kn

δ + 1

⌉
.

Proposition G. ([4]) If k ≥ 2, then γk
sR(Kk,k) = 2k.

Proposition H. ([10]) If k ≥ 4 is an even integer, then dksR(Kk,k) = k.

The associated digraph G∗ of a graph G is the digraph obtained from G when
each edge e of G is replaced by two oppositely oriented arcs with the same ends as
e. Since N−

G∗ [v] = NG[v] for each vertex v ∈ V (G) = V (G∗), the following useful
observation is valid.

Observation 1. If G∗ is the associated digraph of the graph G, then γk
sR(G

∗) =
γk
sR(G) and dksR(G

∗) = dksR(G).

Let K∗
n be the associated digraph of the complete graph Kn. Using Observation

1 and Propositions C, D, we obtain the signed Roman k-domination number and the
signed Roman k-domatic number of the complete digraph K∗

n.

Corollary 2. If K∗
n is the complete digraph of order n ≥ k ≥ 1, then γk

sR(K
∗
n) = k,

unless k = 1 and n = 3 in which case γsR(K
∗
3 ) = 2.

Corollary 3. If K∗
n is the complete digraph of order n ≥ k ≥ 1, then dksR(K

∗
n) = n,

unless k = 1 and n = 3 in which case dsR(K
∗
3) = 1 and unless n = k = 2 in which

case d2sR(K
∗
2) = 1.

Let K∗
p,p be the associated digraph of the complete bipartite graph Kp,p. Obser-

vation 1, Propositions G and H lead to the next results immediately.

Corollary 4. If k ≥ 2, then γk
sR(K

∗
k,k) = 2k.

Corollary 5. If k ≥ 4 is an even integer, then dksR(K
∗
k,k) = k.

2 Bounds on the signed Roman k-domatic number

In this section we present basic properties of dksR(D) and sharp bounds on the signed
Roman k-domatic number of a graph.

Theorem 2.1. If D is a digraph with δ−(D) ≥ k − 1, then

dksR(D) ≤ δ−(D) + 1.

Moreover, if dksR(D) = δ−(D) + 1, then for each SRkD family {f1, f2, . . . , fd} on D
with d = dksR(D) and each vertex v of minimum in-degree,

∑
x∈N−[v] fi(x) = k for

each function fi and
∑d

i=1 fi(x) = k for all x ∈ N−[v].
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Proof. Let {f1, f2, . . . , fd} be an SRkD family on D such that d = dksR(D). If v is a
vertex of minimum in-degree δ−(D), then we deduce that

kd ≤
d∑

i=1

∑
x∈N−[v]

fi(x) =
∑

x∈N−[v]

d∑
i=1

fi(x)

≤
∑

x∈N−[v]

k = k(δ−(D) + 1)

and thus dksR(D) ≤ δ−(D) + 1.

If dksR(D) = δ−(D) + 1, then the two inequalities occurring in the proof become
equalities. Hence for the SRkD family {f1, f2, . . . , fd} on D and for each vertex v of
minimum in-degree,

∑
x∈N−[v] fi(x) = k for each function fi and

∑d
i=1 fi(x) = k for

all x ∈ N−[v].

Example 2.2. If C∗
3t is the associated digraph of a cycle C3t of length 3t with an

integer t ≥ 1, then d2sR(C
∗
3t) = 3.

Proof. According to Theorem 2.1, d2sR(C
∗
3t) ≤ 3. Let C∗

3t = v0v1 . . . v3t−1v0. Define
the functions f1, f2, f3 by

f1(v3i) = 2, f1(v3i+1) = 1, f1(v3i+2) = −1,

f2(v3i) = −1, f2(v3i+1) = 2, f2(v3i+2) = 1,

f3(v3i) = 1, f3(v3i+1) = −1, f3(v3i+2) = 2

for 0 ≤ i ≤ t− 1. It is easy to see that fi is a signed Roman 2-dominating function
on C∗

3t for 1 ≤ i ≤ 3 and {f1, f2, f3} is a signed Roman 2-dominating family on C∗
3t.

Therefore d2sR(C
∗
3t) ≥ 3 and so d2sR(C

∗
3t) = 3.

Example 2.3. Let C3t = v0v1 . . . v3t−1v0 be a cycle with an integer t ≥ 1. Add t
new vertices w0, w1, . . . , wt−1 and join wi to the three vertices v3i+2, v3i+1 and v3i for
i = 0, 1, . . . , t − 1. If G is the resulting cubic graph, then let G∗ be the associated
digraph of G. We have d3sR(G

∗) = 4.

Proof. According to Theorem 2.1, d3sR(G
∗) ≤ 4. Define the functions f1, f2, f3, f4 by

f1(wi) = −1, f1(v3i) = 2, f1(v3i+1) = 1, f1(v3i+2) = 1,

f2(wi) = 1, f2(v3i) = −1, f2(v3i+1) = 2, f2(v3i+2) = 1,

f3(wi) = 1, f3(v3i) = 1, f3(v3i+1) = −1, f3(v3i+2) = 2,

f4(wi) = 2, f4(v3i) = 1, f4(v3i+1) = 1, f4(v3i+2) = −1

for 0 ≤ i ≤ t− 1. It is easy to see that fi is a signed Roman 3-dominating function
on G∗ for 1 ≤ i ≤ 4 and {f1, f2, f3, f4} is a signed Roman 3-dominating family on
G∗. Therefore d3sR(G

∗) ≥ 4 and so d3sR(G
∗) = 4.
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Examples 2.2 and 2.3 show that Theorem 2.1 is sharp for k = 2 as well as for
k = 3.

Theorem 2.4. If D is a digraph of order n, then

γk
sR(D) · dksR(D) ≤ kn.

Moreover, if γk
sR(D) · dksR(D) = kn, then for each SRkD family {f1, f2, . . . , fd} on D

with d = dksR(D), each function fi is a γk
sR(D)-function and

∑d
i=1 fi(v) = k for all

v ∈ V (D).

Proof. Let {f1, f2, . . . , fd} be an SRkD family on D such that d = dksR(D). Then

d · γk
sR(D) =

d∑
i=1

γk
sR(D) ≤

d∑
i=1

∑
v∈V (D)

fi(v)

=
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

k = kn.

If γk
sR(D) · dksR(D) = kn, then the two inequalities occurring in the proof be-

come equalities. Hence for the SRkD family {f1, f2, . . . , fd} on D and for each i,∑
v∈V (D) fi(v) = γk

sR(D). Thus each function fi is a γk
sR(D)-function, and

∑d
i=1 fi(v)

= k for all v ∈ V (D).

Corollaries 2 and 3 demonstrate that Theorems 2.1 and 2.4 are both sharp.

Let G∗ be the associated digraph of the graph G of order n. Since δ−(G∗) = δ(G),
γk
sR(G

∗) = γk
sR(G) and dksR(G

∗) = dksR(G), Theorems 2.1 and 2.4 lead to dksR(G) ≤
δ(G) + 1 and γk

sR(G) · dksR(G) ≤ kn immediately. These known bounds can be found
in [10].

Using the upper bound on the product γk
sR(D) ·dksR(D) in Theorem 2.4, we obtain

a sharp upper bound on the sum of these two parameters.

Theorem 2.5. If D is a digraph of order n ≥ 1 and δ−(D) ≥ k − 1, then

γk
sR(D) + dksR(D) ≤ n+ k.

If γk
sR(D) + dksR(D) = n + k, then

(a) γk
sR(D) = k and dksR(D) = n (in this case D = K∗

n unless k = 1 and n = 3 or
k = n = 2) or

(b) γk
sR(D) = n and dksR(D) = k (in this case D is the disjoint union of isolated

vertices and oriented triangles when k = 1, k �= 2 and k−1 ≤ δ−(D) ≤ k when
k ≥ 3).
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Proof. If dksR(D) ≤ k, then Proposition B implies γk
sR(D) + dksR(D) ≤ n+ k immedi-

ately. Let now dksR(D) ≥ k. It follows from Theorem 2.4 that

γk
sR(D) + dksR(D) ≤ kn

dksR(D)
+ dksR(D).

According to Theorem 2.1, we have k ≤ dksR(D) ≤ n. Using these bounds, and
the fact that the function g(x) = x + (kn)/x is decreasing for k ≤ x ≤ √

kn and
increasing for

√
kn ≤ x ≤ n, we obtain

γk
sR(D) + dksR(D) ≤ kn

dksR(D)
+ dksR(D) ≤ max{n+ k, k + n} = n + k,

and the desired bound is proved.

Now assume that γk
sR(D) + dksR(D) = n+ k. The above inequality leads to

n+ k = γk
sR(D) + dksR(D) ≤ kn

dksR(D)
+ dksR(D) ≤ n+ k.

This implies that dksR(D) = n and γk
sR(D) = k or dksR(D) = k and γk

sR(D) = n.

(a) If dksR(D) = n and γk
sR(D) = k, then δ−(D) = n − 1, by Theorem 2.1 and

thus D is the complete digraph. In view of Corollaries 2 and 3, the digraph D is
isomorphic to K∗

n unless n = 3 and k = 1 or n = k = 2.

(b) If dksR(D) = k and γk
sR(D) = n, then it follows from Proposition E that

k − 1 ≤ δ−(D) ≤ k.

If k = 1, then Proposition A shows thatD consists of the disjoint union of isolated
vertices and oriented triangles.

If k = 2, then suppose that {f1, f2} is an SR2D family on D. By Theorem 2.4 f1
and f2 are γ2

sR(D)-functions and f1(v) + f2(v) = 2 for all v ∈ V (D). This yields to
the contradiction that f1(v) = f2(v) = 1 for each v ∈ V (D), and thus k = 2 is not
possible in that case.

Corollaries 2 and 3 imply that γk
sR(K

∗
n) + dksR(K

∗
n) = n + k, unless k = 1 and

n = 3 or k = n = 2. Therefore Theorem 2.5 is sharp.

Example 2.6. If C∗
3t is the associated digraph of the cycle C3t of length 3t with an

integer t ≥ 1, then d3sR(C
∗
3t) = 3.

Proof. According to Theorem 2.1, d3sR(C
∗
3t) ≤ 3. Let C∗

3t = v0v1, . . . v3t−1v0. Define
the functions f1, f2, f3 by

f1(v3i+1) = −1, f1(v3i+2) = 2, f1(v3i) = 2,

f2(v3i+1) = 2, f2(v3i+2) = −1, f2(v3i) = 2,

f3(v3i+1) = 2, f3(v3i+2) = 2, f3(v3i) = −1

for 0 ≤ i ≤ t− 1. It is easy to see that fi is a signed Roman 3-dominating function
on C∗

3t of weight 3t for 1 ≤ i ≤ 3 and {f1, f2, f3} is a signed Roman 3-dominating
family on C∗

3t. Therefore d3sR(C
∗
3t) ≥ 3 and so d3sR(C

∗
3t) = 3.
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Example 2.7. Let C3t = v0v1, . . . v3t−1v0 be a cycle of length 3t with an integer
t ≥ 1. Add t new vertices w0, w1, . . . , wt−1 and join wi to the three vertices v3i+2,
v3i+1 and v3i for i = 0, 1, . . . , t− 1. If H is the resulting cubic graph, then let H∗ be
the associated digraph of H . Then we have d4sR(H

∗) = 4.

Proof. According to Theorem 2.1, d4sR(H
∗) ≤ 4. Define the functions f1, f2, f3, f4 by

f1(wi) = −1, f1(v3i) = 2, f1(v3i+1) = 2, f1(v3i+2) = 1,

f2(wi) = 1, f2(v3i) = −1, f2(v3i+1) = 2, f2(v3i+2) = 2,

f3(wi) = 2, f3(v3i) = 1, f3(v3i+1) = −1, f3(v3i+2) = 2,

f4(wi) = 2, f4(v3i) = 2, f4(v3i+1) = 1, f4(v3i+2) = −1

for 0 ≤ i ≤ t− 1. It is easy to see that fi is a signed Roman 4-dominating function
on H∗ for 1 ≤ i ≤ 4 and {f1, f2, f3, f4} is a signed Roman 4-dominating family on
H∗. Therefore d4sR(H

∗) ≥ 4 and so d4sR(H
∗) = 4.

It follows from Proposition F that γ3
sR(C

∗
3t) ≥ 3t and so γ3

sR(C
∗
3t) = 3t by Propo-

sition B. For the digraph H∗ in Example 2.7, it follows from Proposition F that
γ4
sR(H

∗) ≥ 4t and so γ4
sR(H

∗) = 4t = n(H∗) by Proposition B.

Thus Examples 2.6, 2.7 and Corollaries 4 and 5 show that Case (b) in Theorem
2.5 is possible for δ− = k − 1 as well as for δ− = k.

For some regular digraphs we will improve the upper bound given in Theorem
2.1.

Theorem 2.8. Let D be a δ-out-regular digraph of order n with δ ≥ k− 1 such that
n = p(δ+1)+r with integers p ≥ 1 and 1 ≤ r ≤ δ and kr = t(δ+1)+s with integers
t ≥ 0 and 1 ≤ s ≤ δ. Then dksR(D) ≤ δ.

Proof. Let {f1, f2, . . . , fd} be an SRkD family on D such that d = dksR(D). It follows
that

d∑
i=1

ω(fi) =
d∑

i=1

∑
v∈V (D)

fi(v) =
∑

v∈V (D)

d∑
i=1

fi(v) ≤
∑

v∈V (D)

k = kn.

Proposition F implies

ω(fi) ≥ γk
sR(D) ≥

⌈
kn

δ + 1

⌉
=

⌈
kp(δ + 1) + kr

δ + 1

⌉

= kp+

⌈
kr

δ + 1

⌉
= kp+

⌈
t(δ + 1) + s

δ + 1

⌉
= kp+ t+ 1

for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that d ≥ δ + 1, then the
above inequality chains lead to the contradiction

kn ≥
d∑

i=1

ω(fi) ≥ d(kp+ t + 1) ≥ (δ + 1)(kp+ t+ 1)

= kp(δ + 1) + (δ + 1)(t+ 1) = kp(δ + 1) + t(δ + 1) + δ + 1

= kp(δ + 1) + kr − s+ δ + 1 > kp(δ + 1) + kr = k(p(δ + 1) + r) = kn.
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Thus d ≤ δ, and the proof is complete.

Corollary 5 shows that Theorem 2.8 is sharp, and Corollary 3 demonstrates that
Theorem 2.8 is not valid in general. A digraph without directed cycles of length 2
is called an oriented graph. An oriented graph D is called a tournament when either
(u, v) ∈ A(D) or (v, u) ∈ A(D) for each pair of distinct vertices u, v ∈ V (D). By
D−1 we denote the digraph obtained by reversing all arcs of D.

Theorem 2.9. If T is a δ-regular tournament of order n such that δ−(T ) ≥ k, then
dksR(T ) ≤ δ.

Proof. Since T is a δ-regular tournament, we observe that n = 2δ + 1. Since n =
p(δ + 1) + r = (δ + 1) + δ and kr = kδ = t(δ + 1) + s = (k − 1)(δ + 1) + (δ − k + 1)
and s = δ − k + 1 ≥ 1, it follows from Theorem 2.8 that dksR(D) ≤ δ.

Corollary 2.10. If D is an oriented graph of order n such that δ−(D), δ−(D−1) ≥ k,
then

dksR(D) + dksR(D
−1) ≤ n.

Proof. If D is not a tournament or D is a non-regular tournament, then δ−(D) +
δ−(D−1) ≤ n− 2, and hence we deduce from Theorem 2.1 that

dksR(D) + dksR(D
−1) ≤ (δ−(D) + 1) + (δ−(D−1) + 1) ≤ n.

Let now D be a δ-regular tournament. Then D−1 is also a δ-regular tournament such
that n = 2δ + 1. Thus it follows from Theorem 2.9 that

dksR(D) + dksR(D
−1) ≤ δ + δ = 2δ = n− 1.

This completes the proof.

The proof of Corollary 2.10 also implies the next result immediately.

Corollary 2.11. If T is δ-regular tournament of order n such that δ−(T ) ≥ k, then
dksR(T ) + dksR(T

−1) ≤ n− 1.

3 Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or product
of a parameter on a graph or digraph and its complement. In their classical paper [5],
Nordhaus and Gaddum discussed this problem for the chromatic number of graphs.
We present such inequalities for the signed Roman k-domatic number of digraphs.

Theorem 3.1. If D is a digraph of order n such that δ−(D), δ−(D) ≥ k − 1, then

dksR(D) + dksR(D) ≤ n + 1.

Furthermore, if dksR(D) + dksR(D) = n+ 1, then D is in-regular.
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Proof. It follows from Theorem 2.1 that

dksR(D) + dksR(D) ≤ (δ−(D) + 1) + (δ−(D) + 1)

= (δ−(D) + 1) + (n−Δ−(D)− 1 + 1) ≤ n+ 1.

If D is not in-regular, then Δ−(D)− δ−(D) ≥ 1, and hence the above inequality
chain implies the better bound dksR(D) + dksR(D) ≤ n.

For tournaments of odd order we improve Theorem 3.1.

Theorem 3.2. If T is a tournament of odd order n ≥ 3 such that δ−(T ), δ−(T ) ≥ k,
then

dksR(T ) + dksR(T ) ≤ n− 1.

Proof. If T is not regular, then δ−(T ) ≤ (n − 3)/2 and δ−(T ) ≤ (n − 3)/2. Hence
Theorem 2.1 implies that

dksR(T ) + dksR(T ) ≤ (δ−(T ) + 1) + (δ−(T ) + 1) ≤ n− 3

2
+

n− 3

2
+ 2 = n− 1.

Let now T be a δ-regular tournament. Then T is also a δ-regular tournament such
that n = 2δ + 1. Thus it follows from Theorem 2.9 that

dksR(T ) + dksR(T ) ≤ δ + δ = 2δ = n− 1.

In [7], we have proved the following Nordhaus-Gaddum type inequality for regular
digraphs.

Theorem 3.3. Let D be an δ-regular digraph of order n. Then dsR(D) + dsR(D) ≤
n + 1 with equality if and only if D = K∗

n or D = K∗
n and n �= 3.

As a supplement to Theorem 3.3, we present the following result for k ≥ 2.

Theorem 3.4. Let k ≥ 2 be an integer, and let D be a δ-regular digraph such that
δ ≥ k − 1 and δ = δ−(D) ≥ k − 1. Then there is only a finite number of digraphs D
such that

dksR(D) + dksR(D) = n(D) + 1.

Proof. Let n(G) = n. The strategy of our proof is as follows. For a fixed integer
k ≥ 2, we show that dksR(D) + dksR(D) ≤ n or n ≤ k3 + 5

2
k2 − 2k + 1. Together with

Theorem 3.1 this implies the desired result.

Since D is δ-regular, D is δ-regular such that δ + δ + 1 = n. Assume, without
loss of generality, that δ ≤ δ.
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Let kδ = t(δ+1)+ s with integers t ≥ 0 and 0 ≤ s ≤ δ. If s �= 0, then we deduce
from Theorem 2.8 that dksR(D) ≤ δ, and Theorem 2.1 yields to

dksR(D) + dksR(D) ≤ δ + (δ + 1) = n.

If s = 0, then the condition δ ≤ δ shows that

kδ = t(δ + 1) with 1 ≤ t ≤ k − 1 (1)

and thus

δ =
kδ

t
− 1. (2)

Let now
n = p(δ + 1) + r with integers p ≥ 1 and 0 ≤ r ≤ δ (3)

and when r �= 0

kr = a(δ + 1) + b with integers a ≥ 0 and 0 ≤ b ≤ δ. (4)

If b, r �= 0, then we conclude from Theorem 2.8 that dksR(D) ≤ δ, and we obtain by
Theorem 2.1

dksR(D) + dksR(D) ≤ (δ + 1) + δ = n.

Now let r �= 0 and b = 0. Then (3) and (4) yield to

kr = a(δ + 1) with 1 ≤ a ≤ k − 1

and thus

δ =
kr

a
− 1. (5)

In view of (2), we obtain

δ =
k

t

(
kr

a
− 1

)
− 1

and so

n = δ + δ + 1 =
k

t

(
kr

a
− 1

)
+

kr

a
− 1. (6)

According to (3) and (5), we have

n = p(δ + 1) + r =
pkr

a
+ r. (7)

Combining (6) and (7), we find that

r

(
pk

a
+ 1

)
=

kr

a

(
k

t
+ 1

)
− k

t
− 1

and therefore

1 +
k

t
= r

(
k2

at
+

k

a
− pk

a
− 1

)
=

kr

a

(
k

t
+ 1− p

)
− r. (8)
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These equalities show that

k2

at
+

k

a
− pk

a
− 1 > 0 and

k

t
+ 1− p > 0

and hence
k2

at
+

k

a
− pk

a
− 1 ≥ 1

at
. (9)

and
k

t
+ 1− p ≥ 1

t
.

We deduce from the last inequality that

p ≤ k − 1

t
+ 1 ≤ k. (10)

Using (9) and the first equality in (8), we obtain

1 +
k

t
≥ r

at

and thus
r ≤ at+ ak. (11)

In view of (5), it follows that

δ + 1 =
kr

a
≤ kt+ k2. (12)

If t = 1, then we deduce from (3), (10), (11), a ≤ k − 1 and the last inequality leads
to the desired bound as follows

n = p(δ + 1) + r ≤ k(kt+ k2) + at + ak

≤ k(k + k2) + (k − 1) + k(k − 1)

= k3 + 2k2 − 1 ≤ k3 +
5

2
k2 − 2k + 1.

If t ≥ 2, then the first inequality of (10) leads to p ≤ k+1
2
. Applying this bound, (3),

(11), (12), t ≤ k − 1 and a ≤ k − 1, we arrive at the desired bound

n = p(δ + 1) + r ≤ k + 1

2
(kt+ k2) + at+ ak

≤ k + 1

2
(k(k − 1) + k2) + (k − 1)2 + k(k − 1)

= k3 +
5

2
k2 − 7

2
k + 1 ≤ k3 +

5

2
k2 − 2k + 1.

It remains the case that r = 0 and thus n = p(δ+1) with an integer p ≥ 2. Since
n = δ + δ + 1, we deduce that

δ + 1 = (p− 1)δ + p.
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Using this identity and (1), we obtain

kδ = t(δ + 1) = t(p− 1)δ + tp

and thus
tp = δ(k − t(p− 1)).

It follows that t(p−1) ≤ k−1 and so tp ≥ δ and p ≤ k. Therefore δ ≤ tp ≤ k(k−1)
and consequently,

n = p(δ + 1) ≤ k(k(k − 1) + 1) = k3 − k2 + k ≤ k3 +
5

2
k2 − 2k + 1.

This completes the proof.

Example 3.5. Let k ≥ 3 be an integer and let D be the disjoint union of two copies
of the complete digraph K∗

k . Then dksR(D) = k.

Proof. The digraph D = K∗
k ∪K∗

k is k-regular of order 2k. Since 2k = p(δ+1)+ r =
(k+1)+ (k−1) and kr = k(k−1) = t(k+1)+ s = (k−2)(k+1)+2 and s = 2 ≤ k,
it follows from Theorem 2.8 that dksR(D) ≤ k.

Now let {v0, v1, . . . , vk−1} be the vertex set of one copy ofK∗
k and {w0, w1, . . . , wk−1}

the vertex set of the other copy of K∗
k . Define the functions f1, f2, . . . , fk by f1(v0) =

f1(vk−1) = f1(w0) = f1(wk−1) = 2, f1(v1) = f1(w1) = −1 and f1(vi) = f1(wi) = 1 for
2 ≤ i ≤ k − 2 and for 2 ≤ j ≤ k and 0 ≤ i ≤ k − 1

fj(vi) = fj−1(vi+j−1) and fj(wi) = fj−1(wi+j−1),

where the indices are taken modulo k. It is easy to see that fi is a signed Roman
k-dominating function on D for 1 ≤ i ≤ k and {f1, f2, . . . , fk} is a signed Roman
k-dominating family on D. Hence dksR(D) ≥ k and thus dksR(D) = k.

Example 3.5 also demonstrates the sharpnes of Theorem 2.8

Conjecture 3.6. Let k ≥ 2 be an integer. If D is a δ-regular digraph of order n
such that δ, δ ≥ k − 1, then

dksR(D) + dksR(D) ≤ n.

If k ≥ 4 is an even integer, then Corollary 5 and Example 3.5 show that

dksR(K
∗
k,k) + dksR(K

∗
k,k) = 2k = n(K∗

k,k).

Thus Conjecture 3.6 would be tight, at least for k ≥ 4 even.
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