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We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SATsan NP-
complete problemd in terms of random matrix theorysRMTd. We determine the global regularity of the spectral
fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting
Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest.
At each interpolation point, we quantify thedegree of regularityof the average spectral distribution via its
Brody parameter, a measure that distinguishes regularsi.e., Poissoniand from chaoticsi.e., Wigner-typed dis-
tributions of normalized nearest-neighbor spacings. We find that for hard problem instances—i.e., those having
a critical ratio of clauses to variables—the spectral fluctuations typically become irregular across a contiguous
region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region,
RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and
concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our
model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum
adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem
size.
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I. INTRODUCTION

Can quantum computers solve NP-complete problems us-
ing physical resources of time, space, and energy that are all
bounded bypolynomialsin the size of the problem? Most
computer scientists are skeptical of such a possibilityf1g.
However, recently a more physics-inspired perspective has
arisen that is causing some to rethink this question. In 2002,
Farhiet al.presented a quantum adiabatic algorithm for solv-
ing an NP-complete problem and showed via numerical
simulations on a sequence of progressively larger problem
instances that the running time of this algorithm appears to
grow only as a polynomial in problem sizef2g. By contrast,
all known classical algorithms for solving NP-complete
problems require a running time that scales exponentially
with problem size in the worst casef3g. If the polynomial
scaling of the adiabatic algorithm is correct, this would rep-
resent a monumental result for the field of quantum comput-
ing, as it would bring a host of useful but hard computations
within the domain of computational tasks that can be per-
formed exponentially faster on quantum computers than clas-
sical ones. With such extraordinary promise, it behooves us
to understand the adiabatic algorithm in full detail. Unfortu-
nately, it has proven to be exceedingly difficult to obtain
analytic results on the scaling behavior of the quantum adia-
batic algorithm. Instead, for the most part, researchers have
relied upon numerical simulations of small problem in-
stances, typically involving 23 variables or lessf2g. By com-
parison, a modern-day classical algorithm for solving
3-satisfiabilitys3-SATd can routinely solve instances contain-
ing several thousand variablesf4,5g. It is questionable
whether numerical results based on 23-variable simulations
can be extrapolated reliably to 2000-variable instances. Thus
a more analytic approach is needed.

In this paper we develop such an analysis based on ran-
dom matrix theorysRMTd f6–8g, which is a statistical de-
scription of complex quantum systems in which detailed
knowledge about particle interactions is abandoned in favor
of a description in terms of random interactions. Such a de-
scription is typically found to be applicable to complex
Hamiltonians without fundamental symmetries and with very
large phase spaceshigh dimensiond. In this case the nearest-
neighbor spacingsNNSd distribution assumes a universal
law, and only thestatistical properties of the levels are of
interest. Such Hamiltonian systems are usually highly irregu-
lar, disordered, and chaotic.

RMT has proven to be a successful method for predicting
properties of complex quantum systems that look superfi-
cially very different in terms of their energy eigenspectra. By
working with the nearest-neighbor level spacing fluctuations
rather than the raw eigenspectra, deep similarities between
apparently different physical systems have been revealed and
several hard to calculate properties, such as transition rates,
have been determined. In essence, a tractable model Hamil-
tonian can be used to make predictions about an intractable
one provided their energy spectra can be described by similar
NNS distributions.

In standard RMT, Hamiltonians are drawn from an en-
semble of orthogonal or unitary Gaussian matricesfthe
Gaussian orthogonal or unitary ensemblessGOE or GUEdg,
which corresponds to Hamiltonians with interactions of all
possible particle ranksd sd-body interactionsd. In other
words, every element of Hilbert space is assumed to be con-
nected to every other by an interaction strength that is given
by a random number. The level density corresponding to
such a model is the celebrated “semicircle law” of Wigner
f7g, which predicts a power dependence between the density
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of states and energy. Physical complex quantum systems
ssuch as large atoms or nucleid, on the other hand, are better
described by interactions of rank 2—that is, two-body inter-
actions at the most. Such Hamiltonians can be obtained from
the so-called “two-body random ensemble”f9,10g sor em-
bedded GOEd that well describes complex nuclear and
atomic level spectra, but gives rise to a Gaussian, rather than
polynomial, density of states. For Hamiltonians drawn from
either a GOE or an embedded GOE, the distribution of
nearest-neighbor level separations is unimodal with a long
tail, known as theWigner distribution f6,8g. Such distribu-
tions are typical for complex systems without symmetries,
which results in highly irregular energy spectra and chaotic
dynamics. Conversely, Hamiltonians corresponding to physi-
cal systems subject to symmetries and conservation laws
typically display regular energy spectra andPoissonian
nearest-neighbor level separations. Such distributions fall off
much faster than the Wigner distribution and decay mono-
tonically. The Brody distribution f11g interpolates between
those two distributions with a single Brody parameterq,
where the limit q=0 corresponds to the Poissonian limit
while q=1 gives the Wigner distribution.

A priori, the Hamiltonians arising in computational prob-
lems such ask-SAT appear to have such a special structure
that they are unlikely to be described by random interaction
matrices. We can assess this by characterizing the irregularity
of the NNS distribution of the instantaneous Hamiltonian of
the adiabatic algorithm. If we find a Brody parameter close
to zero, RMT cannot be used, while a Brody parameter
closer to 1 indicates that RMT can predict global properties
of the Hamiltonian dynamics reliably. Note that the scaling
of the level density itselfspolynomial for GOE, exponential
for embedded GOEd is irrelevant for this determination.

We determine the NNS distribution of the instantaneous
Hamiltonians solving 3-SAT problems by generating random
soluble problem instancesswith exactly one solutiond with a
fixed ratio of clauses to variables, determining for each the
eigenvalue distribution, from which the fluctuations can be
obtained. In short, the results reveal a systematic change in
the spectral regularity of the instantaneous Hamiltonians dur-
ing the course of the adiabatic algorithm. In the initial phase
of the interpolation for especially hard problem instances, the
statistical NNS fluctuations conform to a regular, Poisson-
type distribution. Later in the interpolation, the fluctuations
conform to an irregular Wigner-type distribution instead. We
also find that irregular spectra only occur for computation-
ally hard problem instances.

In this paper, we predict the scaling of the failure rate of
the adiabatic algorithm for a fixed ratio of clauses to vari-
ables at a given point in the interpolation process, as larger
and larger problem instances are considered. The adiabatic
algorithm fails when the system spontaneously transitions
from its ground state into any excited state. If we make the
conservative assumption that the only source of nonadiabatic
transitions are of the Landau-ZenersLZd type f12g—i.e., lo-
calized transitions between adjacent levels at avoided cross-
ings where the energy levels locally assume the geometry of
hyperbolaessee Fig. 1d—then we can obtain a lower bound
on the transition probability using RMT. Additional failure
modes can only make the failure rate of the algorithm worse.

With these assumptions and the use of RMT, we can then
determine the transition rate from the ground state averaged
over an ensemble of problem instances having the same ratio
of clauses to variables. There are two model-dependent
quantities in this result: the average ground-state level spac-
ing and the typical size of LZ asymptotic slopes. Ultimately,
these quantities are related to the parameters characterizing
problem instances of the type being solved—i.e., the ratio of
clauses to variables. Hence the transition rate, at a given
point in the interpolation, is related to the difficulty of the
problem instances at that point. The rest of the paper is or-
ganized as follows. Section II describes the quantum adia-
batic algorithm and the Landau-Zener transition probability.
Section III summarizes prior research on the scaling proper-
ties of the algorithm—i.e., whether the adiabatic criterion
can be met if the interpolation is completed in polynomial
time. Section IV introduces the concepts of random matrix
theory and Landau-Zener transitions needed for our analysis.
Section V reports on our numerical experiments and the gap
fluctuation phenomena they reveal. Section VI uses the phe-
nomena to justify a random matrix analysis of the adiabatic
algorithm and describes the implications on the scaling of the
quantum adiabatic algorithm. We discuss the distribution of
gap energies in the Appendix.

II. ADIABATIC ALGORITHM

The idea behind the quantum adiabatic algorithm is as
follows. If a quantum system is prepared in the ground state
of a time-independent HamiltonianH0 and if we then cause
the Hamiltonian to change fromH0 to a final formH1 in T
steps, e.g., by driving it linearly,

HS t

T
D = S1 −

t

T
DH0 +

t

T
H1, s1d

then the adiabatic theorem of quantum mechanicsf13g guar-
antees that the system will remain in the ground state of the
instantaneous HamiltoniansHstd, provided the change is
made sufficiently slowly—i.e., adiabatically. Thus, if the fi-
nal Hamiltonian can be made to encode a computational
problem such that the ground state ofH1 corresponds to the
solution to this problem, then the natural quantum mechani-

FIG. 1. Avoided level crossings can occur when adjacent levels
assume the geometry of converging hyperbolas. Both the slope dif-
ferenceDm and minimum gapDE affect the probability of a tran-
sition occurring.
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cal evolution of the system under the slowly changing
Hamiltonian Hstd would carry our initial state into a final
state corresponding to the solution. A final-state measure-
ment would then reveal the solution. The key question is
how quickly can one drive the interpolation between the ini-
tial and final Hamiltonians while keeping the system in the
ground state of the instantaneous Hamiltonians passed
through. If the shortest feasible interpolation time scales
polynomially with increasing problem size, the quantum
adiabatic algorithm would be deemed “efficient”; otherwise,
it would be deemed “inefficient”f14g. An alternative way of
stating this is to ask under what conditions the passage from
H0 andH1 can be performed adiabaticallyf13g. If the mini-
mum eigenvalue gap between the ground stateE0 and first
excited stateE1 of the instantaneous Hamiltonians is given
by gmin, where

gmin = min
0øtøT

fE1std − E0stdg, s2d

and the matrix element between the corresponding pair of
eigenstates is

KdH

dt
L

1,0
=KE1;tUdH

dt
UE0;tL , s3d

then the adiabatic theorem asserts that the final state will be
very close to the ground state ofH1sTd, i.e.,

ukE0;TucsTdlu2 ù 1 − e2, s4d

provided that

UKdH

dt
L

1,0
U

gmin
2 ø e, s5d

wheree!1. If this criterion is met, we can be sure the sys-
tem will evolve into the desired state. But it is not immedi-
ately clear how quickly we can interpolate betweenH0 and
H1 while ensuring this adiabaticity criterion is not violated.

III. PRIOR ANALYTIC RESULTS

Prior analytic studies of the adiabatic quantum algorithm
have yielded mixed results. Farhiet al. analyze several mod-
els in which the gap behavior can be computed analytically
and be shown to decrease polynomially in the problem size
f15g. However, they caution that the particular problems they
studied have a high degree of structure that would also make
them easy to solve classically. Nevertheless, the results show
that the adiabatic algorithm scales favorably at least on easy
problems. To show the gap is, at the very least, nonvanish-
ing, Ruskaif16g provides a clever proof that the ground state
of the instantaneous Hamiltonian must be unique. However,
as she points out, this tells us nothing about the magnitude of
the gap and how it scales with problem size. A less encour-
aging result was obtained by van Dam, Mosca, and Vazirani
f17g, who were able to construct a family of minimization
problems for which they could prove an exponential lower
bound on the running time of thesoriginald adiabatic algo-
rithm on these problems. A subsequent paper by Farhiet al.

f18g challenged the inevitability of such results by arguing
that they might be circumvented by choosing a different in-
terpolation path between the initial Hamiltonian and the one
encoding the problem to be solved. To date, the most sophis-
ticated analysis of the running time of the adiabatic algo-
rithm on NP-complete problems was provided by Roland
and Cerff19g. They found that by nesting one quantum adia-
batic search algorithm within another, one can solve NP-
complete problems more efficiently than naive use of an
adiabatic version of Grover’s algorithm. Nevertheless, the
run-time scaling is still exponential in problem size, albeit
better than what is possible classically.

IV. APPLICABILITY OF RANDOM MATRIX THEORY

Random matrix theory is a statistical approach to Hamil-
tonian systems that are otherwise analytically intractable. For
example, RMT focuses on universal model-independent
properties of the system under study, such as the distribution
of the spectralfluctuations. Many superficially different
physical systems are found to have distributions of spectral
fluctuations that fall into just a handful of categories. Such a
characterization of spectra originated in the context of
nuclear physicsf20g and was applied later to complex many-
body systems and quantum systems having a chaotic classi-
cal analogf21g. Once the distribution of spectral fluctuations
of a physical system has been identifiedsand deemed to be
irregulard, RMT can be applied to make predictions about
properties of interest, such as transition rates between differ-
ent levels. For example, the problem of estimating transition
rates has been examined in the context of nuclear dissipation,
and the use of the LZ transition as a mechanism for nuclear
dissipation was suggested originally by Hill and Wheeler
f22g. The combination of the LZ transition probability with
the RMT statistical approach was examined by Wilkinson
f23,24g, whose results we apply to the current problem. Al-
though the LZ assumption is reasonable for adiabatic sys-
temsf25g, the mechanism for dissipation in complex spectra
continues to be investigated in the context of RMT, with
more recent approaches using a non-LZ, propagator ap-
proachf26g.

To determine the applicability of RMT, the regularity of
the entire spectrum at each adiabatic interpolation point is
measured by the Brody parametersdefined belowd. The
nearest-neighbor spacing distribution is the most common
measure of spectral regularity in quantum systems. This
measure is quantified by the Brody parameterq that interpo-
lates between a regular Poisson spectrumsq=0d and an ir-
regularsquantum chaoticd Wigner distributionsq=1d f11g. A
renormalized spectrum with a Brody parameterq is charac-
terized by the following NNS probability distribution for
spacing level spacingd:

pqsdd = s1 + qdbdqexps− bd1+qd, b = FGS2 + q

1 + q
DG1+q

.

s6d

The form of this distribution, for different values of the
Brody parameter, is shown in Fig. 2.
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Irregular RMT spectra are characterized by an abundance
of avoided level crossings and a lack of level degeneracies.
We now proceed to determine whether or not the distribution
of spectral fluctuations is anywhere irregular during the in-
terpolation process.

V. SPECTRAL FLUCTUATION EXPERIMENTS

Our first task is to determine an appropriate ensemble of
random soluble 3-SAT problem instances to use. We would
like to use computationally hard problem instances, because
we are most interested in assessing the scaling of the failure
rate of the adiabatic algorithm on hard problems. Hard, in
this sense, is a relative term. When solving random instances
of soluble 3-SAT problems havingn variables andm clauses,
typically the hardest instances are encountered at a critical
value of the clause to variable ratiom/n. For the 3-SAT
problem asn→`, the hardest instances are clustered around
the ratiom/n<4.2. However, small problem instancesshav-
ing, say,n,40d, typically, have a somewhat displaced tran-
sition point. Figure 3 shows the mean computational cost of
solving 3-SAT problems containing fromn=8 to n=50 vari-
ables using either the Davis-PutnamsDPd algorithm f27g or
the GSAT algorithmf4g. Regardless of the algorithm used, an
easy-hard-easy pattern is apparent when the number of
clauses is increased at fixed number of variables. In the limit
of infinite problem size, the easy and hard instances are sepa-
rated by a phase transitionssee, e.g.,f28gd. But as can be
seen from Fig. 3, the location of the phase transition point is
extremely ill defined for problem instances havingn,20.
Thus inferring any reliable cost scaling by extrapolating
costs from such small instances would be exceedingly unre-
liable. As the simulation of the adiabatic algorithm solving
an n-variable 3-SAT problem involvess2n32nd-dimensional
matrices, we cannot simulate very large cases. Hence, we

begin by first determining theactual location of the hardest
problems for 3-SAT problems involving a more tractablen
=8 variables, rather than relying on the asymptotically
known result whose applicability is suspect at smalln. Spe-
cifically, we generated 72 000 random 3-SAT problem in-
stances all havingn=8 variables, but with the number of
clauses ranging fromm=8 to 80, corresponding to 1øm/n
ø10, and solved them using theGSAT algorithm. Each data
point was computed from an average of 1000 problem in-
stances. The results are shown in the lower portion of Fig. 3.
Although the difference between easy cases and hard cases is
not as pronounced as it is for much largern, nevertheless the
data suggest that problem instances centered aroundm/n
=6 will yield relatively hard casesf29g. We will use such
problem instances to create the ensemble we need in our
numerical studies of the distribution of spectral fluctuations
of the instantaneous Hamiltonians encountered during the
interpolation phase of the adiabatic algorithm.

Next we turn our attention to the global spectral proper-
ties of the instantaneous Hamiltonians encountered in the
quantum adiabatic algorithm for easy and hard problem in-
stances. Specifically, we obtain the NNS distribution of the
adiabatic HamiltonianHssd after renormalization of the spec-

FIG. 2. sColor onlined Nearest-neighbor probability distribution
pqsdd for eigenvalue spacingsd, in unfolded spectra for values of
the Brody parameterqP f0,1g. When q=0, the distribution re-
sembles an exponential distribution, but changes to unimodal asq is
increased.

FIG. 3. sColor onlined Upper plot shows the mean computa-
tional cost of solvingn=20, 40, and 50 variable 3-SAT problems
using the Davis-Putnam algorithmsthe data on the scaling of this
algorithm are due to Bart Selman; seef28gd. The data show that for
small problemssi.e., n,50d the phase transition region is smeared
out. The lower plot shows the mean computational cost of solving
1000 random instances of guaranteed soluble 3-SAT problems hav-
ing n=8 variables andm=8–80 clauses, using theGSAT algorithm.
Again, for such small-sized problems the region of hard problem
instancessrelative to other instancesd is quite spread out, but
roughly centered onm/n=6, rather than the asymptotic value of
4.2.
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trum to unit average local level densityf6,8g for an ensemble
of easy cases and for an ensemble of hard cases. The regu-
larity of the spectrum is determined at each point in the adia-
batic evolution by fitting it to Eq.s6d and obtaining the
Brody parameterqssd of the NNS distribution at that point.
We begin by determining the spectral distribution of an en-
semble of easy problems as the interpolation parameter in the
quantum adiabatic algorithm ranges froms=0 to s=1, for
instances of soluble 3-SAT havingn=8 variables andm=4
clauses—i.e., problems for whichm/n=0.5. Each histogram
in Fig. 4 is based on the spectral behavior of an ensemble of
20 problem instances having fixed values ofn andm. For the
easy problems, the spectrum of each instantaneous Hamil-
tonian conforms to a Poissonsregulard spectral fluctuation
distribution and small Brody parameterq=0. Hence, we con-
clude that RMT is not applicable in the easy region—i.e., for
m/n,5 sn=8d.

In contrast, Fig. 5 shows the eigenvalue gap fluctuations
of instantaneous Hamiltonians induced from “hard” in-
stances of soluble 3-SAT withn=8 variables andm=48
clauses. Again, our ensemble averages over 20 instances of a
fixed n andm. Form/n=6 shard problemsd we observe Pois-
son behavior fors,0.5, but fors.0.5 the spectra become
increasingly irregular and the Brody parameter becomes sig-
nificant. In other words, the instantaneous Hamiltonians in-
duced by random, hard 3-SAT instances appear to have a
qualitatively different spectrum from those of easy problems
of the same size. In particular, at a certain point in the inter-
polation process between the initial and final Hamiltonians,
the spectrum becomes irregular and the NNS distribution
resembles a Wigner distribution with a relatively large Brody

parameter. Here, RMT can be applied to estimate transition
rates between levels.

Finally, one can repeat these experiments for problems
having n=8 variables at a clause to variable ratio ofm/n
=9 seasy region again—data not shownd. Here, we observe
results similar tom/n=6, but with a slightly smaller maxi-
mum Brody parameter. We attribute this to the fact that
m/n=9 is easier to solve thanm/n=6, although forn=8
variables, this difference is slight.

Figure 6 summarizes the Brody parameter as a function of
the interpolation parameters for easy and hard problems
with n=8 variables and from 4 to 72 clauses. The critical
question in deciding if the quantum adiabatic algorithm can
be completed in polynomial time is whether such asfastd
interpolation would induce level transitions. If they do occur,
the system will not reside in the ground state ofH1 upon
completion of the adiabatic path, and the algorithm will have
failed to find the solution. In the next section, we compute
the probability that level transitions occur during the course
of the interpolation fromH0 to H1 using RMT, for problems
of a given degree of difficulty.

VI. RANDOM MATRIX ANALYSIS OF QUANTUM
ADIABATIC ALGORITHM

Previous analyses of the adiabatic algorithmssummarized
in Sec. IIId placed the greatest significance on the scaling of
the E1−E0 gap with increasing problem size. However, as
Eq. s5d shows, it is the ratio of the matrix elementkdH/dtl1,0

to the square of the minimum gap that determines whether

FIG. 4. Distribution of eigenvalue gaps in the unfolded spectra
of the instantaneous Hamiltonians during the course of the adiabatic
algorithm solving easy instances of 3-SAT havingn=8 variables
andm=4 clauses, as the interpolation parameter varies from 0 to 1.
As s increases, the Brody parameter remains zero, implying that
RMT is not applicable to easy problem instances. The horizontal
axes are nearest-neighbor eigenvalue spacingssNNSd, expressed in
tenths of the mean local spacing.

FIG. 5. Distribution of eigenvalue gaps in the unfolded spectra
of the instantaneous Hamiltonians during the course of the adiabatic
algorithm solving hard instances of 3-SAT havingn=8 variables
andm=48 clauses, as the interpolation parameter varies from 0 to
1. As s increases, the Brody parameter varies from 0 to 0.49 and
back to 0. The horizontal axes are nearest-neighbor eigenvalue
spacingssNNSd, expressed in tenths of the mean local spacing.
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the adiabatic theorem applies. Here, we calculate instead the
probability of a transitionfrom the ground state, which is a
reliable proxy for the failure rate of the adiabatic algorithm.
In regions where the Brody parameter is significant, we as-
sume that any nonadiabatic transitions are of Landau-Zener
type—i.e., confined to adjacent levels at avoided crossings
where the energy levels assume the geometry of convergent
hyperbolasf12g ssee Fig. 1d. When approached in this man-
ner, the probability for a single transition, anywhere in the
spectrum, can be parametrized by the minimum gap sizeDE,
the difference in the asymptotic slopesDm, and the rate of
change of the adiabatic evolution parameterds/dt= ṡ. Spe-
cifically, the transition probability isf12g

P = e−2pg, g =
1

4"

DE2

uDmuṡ
. s7d

Typical values for the parametersDE andDm will vary with
the difficulty of the problem instance being solvedsreflected
by the clause to variable ratiom/nd as well as with the in-
terpolation parameter.

In order to exploit this transition probability to predict the
rate of transition from the ground state, we need to verify
that theE0−E1 gap fluctuations follow the same distribution
as those in the body of the spectrum. In the Appendix, we
show that the distribution of gap fluctuations is characterized
by a Brody parameter comparable to the typical fluctuations
in the body of the spectrum, establishing this point. To incor-
porate the model dependencesnonuniversalityd of the prob-
lem, the average local level density of the spectral region of
interestshere the levelsd is included. Thus, the RMT-LZ cal-
culation results in an ensemble-averaged transition rate with
the LZ process as the principle transition mechanism.

The transition rate from theith eigenstate of the instanta-
neous Hamiltonian with energyEi, dPi /dt, can be written in
terms of the second moment of the occupation probability
distribution Pistd f23g because it essentially is the rate of

diffusion of the occupation probability. As discussed in the
Introduction, the appropriate RMT ensemble to use for
physical systems with exponential densities of states is the
embedded GOE, consisting of real, orthogonal matrices hav-
ing Gaussian-distributed random matrix elements with at
most two-body interactions. Since in the calculation of tran-
sition rates in RMT only the fluctuation properties of the
spectrumsrather than the density of states properd enterf23g,
we can safely substitute a GOE to obtain the probability to
transition from the ground state

dP0

dt
~ s3/2r2uṡu3/2, s8d

wherer is the level density ofE0−E1 levels averaged over
an ensemble of problem instances having the same clause to
variable ratio ands is the typical size of the asymptotic
slopes of the LZ avoided level crossings in the region of
interest. Indeed, as shown in Ref.f24g, embedded GOE’s
give rise to NNS distributions very similar to those arising in
a GOE, except that the maximal Brody parameter is limited
to q<0.8. Note that this is also implied by anumericalcal-
culation f25g of the dissipation rate of probability distribu-
tions of physical instantaneous Hamiltonianssi.e., those
drawn from and embedded GOEd, which agree with the scal-
ing in Eq. s8d.

We emphasize that Eq.s8d expresses the transition rate
from the ground state in terms of the averageE0−E1 level
density, rather than the minimum gapsi.e., the maximum
level densityd. The average level density is the more relevant
parameter for assessing the typical behavior of the adiabatic
algorithm. As the adiabatic algorithm fails if the system tran-
sitions from the ground state, Eq.s8d can be interpreted as
the average failure rate of the adiabatic algorithm when
driven with uniform interpolation velocityds/dt.

Finally, we need to determine the scaling of the transition
rate from the ground statesi.e., the failure rated with increas-

FIG. 6. Brody parameter as a function of the interpolation parameters, for easy and hard instances of 3-SAT withn=8 variables from
m=4 to 72 clauses. Note that the largest values of the Brody parameter coincides with the hardest problems. For soluble 3-SAT problems of
sizen=8, these are found aroundm/n=6 rather than atm/n=4.2, which is the asymptotically valid transition point for 3-SAT asn→`.
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ing problem size. We do this in two stages: first we show
how the transition rate must scale withr in order to keep the
transition rate bounded then, we show howr scales with
problem size. Although the values ofr and s are model-
dependent quantities, we note thats is the characteristic
slope in the energy-parameter spacesi.e., s<dE/dsd. To
make explicit the dependence on level density, we work with
unfolded energiessEi =D3eid where D is the mean-level
spacingsD=1/rd andei are the unfolded energy levels hav-
ing mean-level spacing 1. Under this transformation,s3/2

→ sD3s̃d3/2, and we therefore write

dP

dt
= ~ s̃3/2r1/2uṡu3/2. s9d

In general, while the unfolded level slopes̃ and the aver-
age level densityr are model-dependent quantitiesf30g, Eq.
s9d nevertheless exhibits the explicit dependence of the tran-
sition rate onr. We can establish a lower bound on the
interpolation time required to evolve the system through the
irregular region by noting first that

dP

dt
sṡ,rd ù

dP

dt
sṡ,rmind, s10d

where we definedrmin=minsrssd and where the minimization
is carried out over only those values ofs that give rise to an
irregular spectrum. It is important to note thatrmin is not the
minimum of a particular problem instance; it is an average
level density at a particular value ofs, whose value is con-
stant for a given problem parameter set. The failure probabil-
ity during an evolution path of lengthT is then bounded by

P ù const3 s̃3/2Ds3/2Frmin

T
G1/2

. s11d

To ensure a given transition probability over a given range
Ds in an irregular region, the interpolation timeT must scale
asrmin. If we can now estimate howrmin san average quan-
tityd scales with increasing problem size, we can estimate
how the time needed to complete a particular part of the
adiabatic algorithm must scale in order to keep the transition
rate from the ground state small. This part is precisely the
region where one would need to go most slowly to avoid an
unwanted transition from the ground state. What can we say
about the scaling ofrmin with problem size? As pointed out
by Ruskaif16g, in regions characterized by a lack of level
degeneraciesssuch as irregular spectral regionsd the interpo-
lating HamiltonianHssd must fit 2n eigenvalues into a range
that is polynomial inn, and consequently the level density
must scaleexponentiallywith problem size. Our numerical
simulations provide strong evidence for the existence of such
irregular spectral regions by the fact that we obtain signifi-
cant values of the Brody parameter for distributions averaged
over instances that have a sizable degree of difficultysas
measured by their clause to variable ratiod. In other words,
difficult problem instances display spectra characterized by a
large Brody parameter and few level degeneracies, and there-
fore show a lack of symmetry. Thus, with the final assump-
tion that nondegenerate spectrasirregular spectra having a
large Brody parameterd have a minimum average level den-

sity that scales exponentially with problem size, we find the
transition rates11d out of the ground statesthe algorithmic
failure rated and thus that the adiabatic evolution time cannot
scale polynomially with problem size.

The information regarding the parameter regions having
significant transition probability may be used in a variable-
speed approach to the adiabatic quantum algorithm in a man-
ner similar to f19g. In this way, a speed-up over classical
algorithms for solving NP-complete problems still appears
possible. We wish to emphasize that Eq.s11d and the entire
RMT analysis hold only in those regions of the interpolation
process where we find irregular spectra—i.e., nontrivial
Brody parameters. In particular, the formula does not apply
to those regions of the interpolation with a small Brody pa-
rameter, which typically occur in the very early and very late
stages of a hard problem or at all stages of an easy problem.
Therefore, our formula is not inconsistent with previous re-
sults se.g., those mentioned in Sec. III, which find that the
adiabatic algorithm scales favorably on easy problemsd, be-
cause in such cases Eq.s11d is invalid.

VII. CONCLUSION

Our approach to the analysis of adiabatic quantum com-
putation is statistical in nature and relies on the applicability
of random matrix theory to large Hamiltonians. With such an
approach, we examine the behavior of an averaged failure
rate and interpolation time when averaged over an ensemble
of problem instances of a given difficulty. We find a spectral
transition from orderly to disorderly as problem difficulty is
increased. Our analysis of these results suggests using the
Landau-Zener transition probability in a statistical RMT ap-
proach. For those regions where RMT applies, degeneracies
are lacking and we show that the average failure rate and
average interpolation time do not scale polynomially with
problem size. Nevertheless, the quantum adiabatic algorithm
appears to be more efficient than any known classical algo-
rithm for solving NP-complete problems, with a speed-up
commensurate with Grover’s search algorithm. Moreover,
the insights we gain from the spectral fluctuation analysis

FIG. 7. NNS distribution ofE0−E1 gaps for 1000 random prob-
lem instances in the hard region for problems of sizen=8. The
horizontal axis is the eigenvalue spacing in tenths of the mean-level
spacing.
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may be used to design avariable interpolation rate, which
has the potential to improve the adiabatic algorithm over its
performance using a uniform interpolation rate.

Finally, we believe the connection shown here between
difficult computational problems and physical spectral ir-
regularity is a powerful path towards understanding and clas-
sifying physical approaches to computation.
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APPENDIX

Figure 7 shows the ground-state level distribution ofE0
−E1 gaps for 1000 random problem instances in the hard
region for problems of sizen=8. The horizontal axis is the
eigenvalue spacingsi =E0−E1 normalized by the mean-level
spacing. The distribution shows that spectral irregularity
definitely extends to the lowest-lying levels for hard in-
stances of 3-SAT problems, implying that RMT is applicable
to hard instances of 3-SAT across the entire spectrum of
levels, including theE0−E1 gap, which is the relevant gap
for assessing the scaling of the quantum adiabatic algorithm.
Therefore, our use of RMT to characterize the transition rate
out of the ground state and, hence, to estimate the cost scal-
ing of the quantum adiabatic algorithm, is valid.
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