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We present an analysis of the quantum adiabatic algorithm for solving hard instances of (B&+8NP-
complete problemin terms of random matrix theofRMT). We determine the global regularity of the spectral
fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting
Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest.
At each interpolation point, we quantify tteegree of regularityof the average spectral distribution via its
Brody parametera measure that distinguishes reguliae., Poissonianfrom chaotic(i.e., Wigner-type dis-
tributions of normalized nearest-neighbor spacings. We find that for hard problem instances—i.e., those having
acritical ratio of clauses to variables—the spectral fluctuations typically become irregular across a contiguous
region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region,
RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and
concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our
model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum
adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem
size.
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[. INTRODUCTION In this paper we develop such an analysis based on ran-
dom matrix theory(RMT) [6—8], which is a statistical de-
pription of complex quantum systems in which detailed
nowledge about particle interactions is abandoned in favor

Can quantum computers solve NP-complete problems u
ing physical resources of time, space, and energy that are i

bounded bypolynomialsin the size of the problem? Most - OV . ;
computer scientists are skeptical of such a possibity of a description in terms of random interactions. Such a de-
cription is typically found to be applicable to complex

However, recently a more physics-inspired perspective hascption 8 . :
y phy P petsp amiltonians without fundamental symmetries and with very

arisen that is causing some to rethink this question. In 2002, . . : :
Farhiet al. presented a quantum adiabatic algorithm for solv-a/9€ phase spadéigh dimension In this case the nearest-
eighbor spacingNN$S) distribution assumes a universal

ing an NP-complete problem and showed via numerica 7 .
w, and only thestatistical properties of the levels are of

simulations on a sequence of progressively larger proble oot - .
instances that the running time of this algorithm appears t§terest. Such Hamiltonian systems are usually highly iregu-
ar, disordered, and chaotic.

grow only as a polynomial in problem sif2]. By contrast, -
all known classical algorithms for solving NP-complete  RMT has proven to be a successful method for predicting

problems require a running time that scales exponentiallProperties of complex quantum systems that look superfi-
with problem size in the worst cagg]. If the polynomial cially very different in terms of their energy eigenspectra. By

scaling of the adiabatic algorithm is correct, this would rep-WOrking with the nearest-neighbor level spacing fluctuations
resent a monumental result for the field of quantum computf@ther than the raw eigenspectra, deep similarities between

ing, as it would bring a host of useful but hard computations2PParently different physical systems have been revealed and

within the domain of computational tasks that can be per_several hard to calculate properties, such as transition rates,

formed exponentially faster on quantum computers than cladi2ve been determined. In essence, a tractable model Hamil-

sical ones. With such extraordinary promise, it behooves ulonian can be used to make predictions about an intractable
to understand the adiabatic algorithm in full detail. Unfortu- ON€ Provided their energy spectra can be described by similar

nately, it has proven to be exceedingly difficult to obtain NNS distributions. o

analytic results on the scaling behavior of the quantum adia- !n standard RMT, Hamiltonians are drawn from an en-
batic algorithm. Instead, for the most part, researchers havgemble of orthogonal or unitary Gaussian matri¢ése
relied upon numerical simulations of small problem in- Gaussian orthogonal or unitary ensembl€OE or GUH],
stances, typically involving 23 variables or |d€3. By com-  Which corresponds to Hamiltonians with interactions of all
parison, a modern-day classical algorithm for solvingpossible particle ranksi (d-body interactions In other
3-satisfiability(3-SAT) can routinely solve instances contain- words, every element of Hilbert space is assumed to be con-
ing several thousand variablggl,5]. It is questionable nected to every other by an interaction strength that is given
whether numerical results based on 23-variable simulationsy a random number. The level density corresponding to
can be extrapolated reliably to 2000-variable instances. Thusuch a model is the celebrated “semicircle law” of Wigner
a more analytic approach is needed. [7], which predicts a power dependence between the density
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of states and energy. Physical complex quantum systems
(such as large atoms or nugledn the other hand, are better
described by interactions of rank 2—that is, two-body inter-
actions at the most. Such Hamiltonians can be obtained from
the so-called “two-body random ensemblé&,10] (or em-
bedded GOE) that well describes complex nuclear and
atomic level spectra, but gives rise to a Gaussian, rather than
polynomial, density of states. For Hamiltonians drawn from
either a GOE or an embedded GOE, the distribution of
nearest-neighbor level separations is unimodal with a long
tail, known as theWigner distribution [6,8]. Such distribu-
tions are typical for complex systems without symmetries,
which results in highly irregular energy spectra and chaotic FIG. 1. Avoided level crossings can occur when adjacent levels
dynamics. Conversely, Hamiltonians corresponding to physiassume the geometry of converging hyperbolas. Both the slope dif-
cal systems subject to symmetries and conservation lawierenceAm and minimum gap\E affect the probability of a tran-
typically display regular energy spectra andPoissonian  sition occurring.
nearest-neighbor level separations. Such distributions fall off
much faster than the Wigner distribution and decay mono- \wjith these assumptions and the use of RMT, we can then
tonically. The Brody distribution [11] interpolates between getermine the transition rate from the ground state averaged
those two distributions with a single Brody parameter gyer an ensemble of problem instances having the same ratio
where the limitq=0 corresponds to the Poissonian limit ¢ clauses to variables. There are two model-dependent
while g=1 gives the Wigner distribution. _ quantities in this result: the average ground-state level spac-
A priori, the Hamiltonians arising in computational prob- jhg and the typical size of LZ asymptotic slopes. Ultimately,
lems such a&-SAT appear to have such a special structurgnese quantities are related to the parameters characterizing
that they are unlikely to be described by random interactiorny,ophlem instances of the type being solved—i.e., the ratio of
matrices. We can assess this by characterizing the irregularir&auses to variables. Hence the transition rate, at a given
of the NNS distribution of the instantaneous Hamiltonian Ofpoint in the interpolation, is related to the difficulty of the
the adiabatic algorithm. If we find a Brody parameter closeyroplem instances at that point. The rest of the paper is or-
to zero, RMT cannot be used, while a Brody parameteyanized as follows. Section Il describes the quantum adia-
closer to 1 indicates that RMT can predict global propertiegatic algorithm and the Landau-Zener transition probability.
of the Hamiltonian dynamics reliably. Note that the scalingsection 111 summarizes prior research on the scaling proper-
of the level density itselfpolynomial for GOE, exponential jes of the algorithm—i.e., whether the adiabatic criterion
for embedded GOFis irrelevant for this determination. can be met if the interpolation is completed in polynomial
We determine the NNS distribution of the instantaneousjme. Section IV introduces the concepts of random matrix
Hamiltonians solving 3-SAT problems by generating randomneory and Landau-Zener transitions needed for our analysis.
soluble problem instancewith exactly one solutionwith a  gection Vv reports on our numerical experiments and the gap
fixed ratio of clauses to variables, determining for each thectuation phenomena they reveal. Section VI uses the phe-
eigenvalue distribution, from which the fluctuations can bepomena to justify a random matrix analysis of the adiabatic
obtained. In short, the results reveal a systematic change igorithm and describes the implications on the scaling of the

the spectral regularity of the instantaneous Hamiltonians durQUantum adiabatic algorithm. We discuss the distribution of
ing the course of the adiabatic algorithm. In the initial phasegap energies in the Appendix.

of the interpolation for especially hard problem instances, the
statistical NNS fluctuations conform to a regular, Poisson-
type distribution. Later in the interpolation, the fluctuations Il. ADIABATIC ALGORITHM

conform to an _|rregular Wigner-type distribution mstead._We The idea behind the quantum adiabatic algorithm is as
also find that irregular spectra only occur for computation-

ally hard problem instances. follows. If a quantum system is prepared in the ground state

In this paper, we predict the scaling of the failure rate ofOf a time-independent Hamiltonia, and if we then cause

the adiabatic algorithm for a fixed ratio of clauses to vari—the Hamiltonian t_o_chqnge frol, to a final formHy in T
steps, e.g., by driving it linearly,

ables at a given point in the interpolation process, as larger
and larger problem instances are considered. The adiabatic t t t
algorithm fails when the system spontaneously transitions H(}) = (1 ‘_>H0+ —Hy,
from its ground state into any excited state. If we make the

conservative assumption that the only source of nonadiabatitien the adiabatic theorem of quantum mechafié$ guar-
transitions are of the Landau-ZengiZ) type[12]—i.e., lo-  antees that the system will remain in the ground state of the
calized transitions between adjacent levels at avoided cros#istantaneous Hamiltoniansl(t), provided the change is
ings where the energy levels locally assume the geometry ahade sufficiently slowly—i.e., adiabatically. Thus, if the fi-
hyperbolagsee Fig. J—then we can obtain a lower bound nal Hamiltonian can be made to encode a computational
on the transition probability using RMT. Additional failure problem such that the ground stateHbf corresponds to the
modes can only make the failure rate of the algorithm worsesolution to this problem, then the natural quantum mechani-

(1)
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cal evolution of the system under the slowly changing[18] challenged the inevitability of such results by arguing
Hamiltonian H(t) would carry our initial state into a final that they might be circumvented by choosing a different in-
state corresponding to the solution. A final-state measurgerpolation path between the initial Hamiltonian and the one
ment would then reveal the solution. The key question isencoding the problem to be solved. To date, the most sophis-
how quickly can one drive the interpolation between the ini-ticated analysis of the running time of the adiabatic algo-
tial and final Hamiltonians while keeping the system in therithm on NP-complete problems was provided by Roland
ground state of the instantaneous Hamiltonians passeahd Cerf{19]. They found that by nesting one quantum adia-
through. If the shortest feasible interpolation time scaledatic search algorithm within another, one can solve NP-
polynomially with increasing problem size, the guantumcomplete problems more efficiently than naive use of an
adiabatic algorithm would be deemed “efficient”; otherwise,adiabatic version of Grover’s algorithm. Nevertheless, the
it would be deemed “inefficient'14]. An alternative way of run-time scaling is still exponential in problem size, albeit
stating this is to ask under what conditions the passage frometter than what is possible classically.

Ho andH; can be performed adiabaticall§3]. If the mini-
mum eigenvalue gap between the ground skjeand first
excited stateE; of the instantaneous Hamiltonians is given

By Imin, Where Random matrix theory is a statistical approach to Hamil-
= mi _ tonian systems that are otherwise analytically intractable. For
gm'n_oggT[El(t) Eo(®)], @ example, RMT focuses on universal model-independent
roperties of the system under study, such as the distribution
f the spectralfluctuations Many superficially different

physical systems are found to have distributions of spectral

dH ‘ > fluctuations that fall into just a handful of categories. Such a

Eoit /,

IV. APPLICABILITY OF RANDOM MATRIX THEORY

and the matrix element between the corresponding pair og

eigenstates is
dH i ar .
d =\ Euit (3)  characterization of spectra originated in the context of
t/1o dt : :
: nuclear physic$20] and was applied later to complex many-
then the adiabatic theorem asserts that the final state will beody systems and quantum systems having a chaotic classi-

very close to the ground state Bf(T), i.e., cal analod21]. Once the distribution of spectral fluctuations
5 of a physical system has been identifigshd deemed to be
KEgTIUT)>=1-¢€, (4) irregulan, RMT can be applied to make predictions about
provided that properties of interest, such as transition rates between differ-

ent levels. For example, the problem of estimating transition
dH rates has been examined in the context of nuclear dissipation,

m 10 and the use of the LZ transition as a mechanism for nuclear

—— S, (5  dissipation was suggested originally by Hill and Wheeler
Yrmin [22]. The combination of the LZ transition probability with
wheree< 1. If this criterion is met, we can be sure the sys-the RMT statistical approach was examined by Wilkinson
tem will evolve into the desired state. But it is not immedi- [23,24], whose results we apply to the current problem. Al-
ately clear how quickly we can interpolate betwag¢pnand though the LZ assumption is reasonable for adiabatic sys-
H, while ensuring this adiabaticity criterion is not violated. tems[25], the mechanism for dissipation in complex spectra
continues to be investigated in the context of RMT, with
Ill. PRIOR ANALYTIC RESULTS more recent approaches using a non-LZ, propagator ap-
proach[26].

Prior analytic studies of the adiabatic quantum algorithm To determine the applicability of RMT, the regularity of
have yielded mixed results. Farki al. analyze several mod- the entire spectrum at each adiabatic interpolation point is
els in which the gap behavior can be computed analyticallyneasured by the Brody parametédefined below. The
and be shown to decrease polynomially in the problem siz@earest-neighbor spacing distribution is the most common
[15]. However, they caution that the particular problems theymeasure of spectral regularity in quantum systems. This
studied have a high degree of structure that would also makeeasure is quantified by the Brody parametdiat interpo-
them easy to solve classically. Nevertheless, the results sholates between a regular Poisson spectfgm0) and an ir-
that the adiabatic algorithm scales favorably at least on easygular(quantum chaoticWigner distribution(q=1) [11]. A
problems. To show the gap is, at the very least, nonvanishrenormalized spectrum with a Brody paramedes charac-

ing, Ruskai 16] provides a clever proof that the ground stateterized by the following NNS probability distribution for
of the instantaneous Hamiltonian must be unique. Howevekpacing level spacing:

as she points out, this tells us nothing about the magnitude of - 14

the gap and how it scales with problem size. A less encour- _ o+ _ q

aging result was obtained by van Dam, Mosca, and Vazirani Po(9) = (1 +Q)pSexpl= p5™),  f= {F<1 +q>] '

[17], who were able to construct a family of minimization (6)
problems for which they could prove an exponential lower

bound on the running time of th@riginal) adiabatic algo- The form of this distribution, for different values of the
rithm on these problems. A subsequent paper by Fetrbi.  Brody parameter, is shown in Fig. 2.
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FIG. 2. (Color onling Nearest-neighbor probability distribution
Ppq(8) for eigenvalue spacing8, in unfolded spectra for values of
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the Brody parameteqe[0,1]. When gq=0, the distribution re- -40
sembles an exponential distribution, but changes to unimodgisas 2 3 4 5 7 8
increased. Ratio of Clauses-to-Variables

. FIG. 3. (Color online Upper plot shows the mean computa-
Irregular RMT spectra are characterized by an abundanct’iaonal cost of solvingn=20, 40, and 50 variable 3-SAT problems

of avoided level crossings and a lack of level degeneraciegi,g the Davis-Putnam algorithtthe data on the scaling of this
We now proceed to determine whether or not the distributionyyoithm are due to Bart Selman; §@8]). The data show that for
of spectral fluctuations is anywhere irregular during the in-smay problemsi.e., n<50) the phase transition region is smeared

terpolation process. out. The lower plot shows the mean computational cost of solving
1000 random instances of guaranteed soluble 3-SAT problems hav-
V. SPECTRAL FLUCTUATION EXPERIMENTS ing n=8 variables anan=8-80 clauses, using thesAT algorithm.

Again, for such small-sized problems the region of hard problem

Our first task is to determine an appropriate ensemble Ghstances(relative to other instancksis quite spread out, but
random soluble 3-SAT problem instances to use. We wouldoughly centered om/n=6, rather than the asymptotic value of
like to use computationally hard problem instances, because?2.
we are most interested in assessing the scaling of the failure
rate of the adiabatic algorithm on hard problems. Hard, inbegin by first determining thactual location of the hardest
this sense, is a relative term. When solving random instancgsroblems for 3-SAT problems involving a more tractable
of soluble 3-SAT problems havingvariables anan clauses, =8 variables, rather than relying on the asymptotically
typically the hardest instances are encountered at a critic&known result whose applicability is suspect at snmalSpe-
value of the clause to variable ratim/n. For the 3-SAT cifically, we generated 72 000 random 3-SAT problem in-
problem asn— <, the hardest instances are clustered aroundtances all havingi=8 variables, but with the number of
the ratiom/n=4.2. However, small problem instancg®v-  clauses ranging froom=8 to 80, corresponding totm/n
ing, say,n<<40), typically, have a somewhat displaced tran- <10, and solved them using tlesAT algorithm. Each data
sition point. Figure 3 shows the mean computational cost opoint was computed from an average of 1000 problem in-
solving 3-SAT problems containing from=8 ton=50 vari-  stances. The results are shown in the lower portion of Fig. 3.
ables using either the Davis-Putnd®P) algorithm[27] or  Although the difference between easy cases and hard cases is
the GsAT algorithm[4]. Regardless of the algorithm used, an not as pronounced as it is for much largenevertheless the
easy-hard-easy pattern is apparent when the number ofata suggest that problem instances centered arouwfmd
clauses is increased at fixed number of variables. In the limit6 will yield relatively hard case§29]. We will use such
of infinite problem size, the easy and hard instances are sepproblem instances to create the ensemble we need in our
rated by a phase transitidisee, e.g.[28]). But as can be numerical studies of the distribution of spectral fluctuations
seen from Fig. 3, the location of the phase transition point i®f the instantaneous Hamiltonians encountered during the
extremely ill defined for problem instances having<20. interpolation phase of the adiabatic algorithm.
Thus inferring any reliable cost scaling by extrapolating Next we turn our attention to the global spectral proper-
costs from such small instances would be exceedingly unreties of the instantaneous Hamiltonians encountered in the
liable. As the simulation of the adiabatic algorithm solving quantum adiabatic algorithm for easy and hard problem in-
ann-variable 3-SAT problem involve@" X 2")-dimensional  stances. Specifically, we obtain the NNS distribution of the
matrices, we cannot simulate very large cases. Hence, wadiabatic Hamiltoniami(s) after renormalization of the spec-
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FIG. 4. Distribution of eigenvalue gaps in the unfolded spectra
of the instantaneous Hamiltonians during the course of the adiabatic T . .
FIG. 5. Distribution of eigenvalue gaps in the unfolded spectra

algorithm solving easy mstances .Of 3-SAT havmgS_ variables of the instantaneous Hamiltonians during the course of the adiabatic
andm=4 clauses, as the interpolation parameter varies from 0 to 1

As s increases, the Brody parameter remains zero, implying tha?lgomhwI solving hard instances of 3-SAT having8 variables

. . . . ndm=48 clauses, as the interpolation parameter varies from 0 to
RMT is not applicable to easy problem instances. The horizontaj ' P P

. . . . As s increases, the Brody parameter varies from 0 to 0.49 and
axes are nearest-neighbor eigenvalue spadiNyES), expressed in ) - -
: back to 0. The horizontal axes are nearest-neighbor eigenvalue
tenths of the mean local spacing.

spacinggNNS), expressed in tenths of the mean local spacing.

trum to unit average local level denslty,8] for an ensemble
of easy cases and for an ensemble of hard cases. The re
larity of the spectrum is determined at each point in the adia-

batic evolution by fitting it to Eq.(6) and obtaining the having n=8 variables at a clause to variable ratio rafn

Brody parameten(s) of the NNS distribution at that point. =9 (easy region again—data not showhiere, we observe

We begin by determining the spectral distribution of an €N asults similar tom/n=6, but with a slightly smaller maxi-

semble of easy prpblems_as the interpolation parameterintf}%um Brody parameter. We attribute this to the fact that
quantum adiabatic algorithm ranges frCB?:'O to s=1, for m/n=9 is easier to solve tham/n=6, although forn=8
instances of soluble 3-SAT having=8 variables andn=4 variables, this difference is slight
_clau_ses—_l.e., problems for whlah/n:0.5_. Each histogram Figure 6 summarizes the Brody parameter as a function of
in Fig. 4 is pased on the s_pec'gral behavior of an ensemble %e interpolation parametes for easy and hard problems
20 problem instances having fixed value_mcdndm. For the ith n=8 variables and from 4 to 72 clauses. The critical
easy problems, the spectrum of each mstantaneous.Ham juestion in deciding if the quantum adiabatic algorithm can
tqmqn cpnforms to a Poissamegulay spectral fluctuation be completed in polynomial time is whether suchfasb
distribution and _small Brod_y parametm:O. Hence_, we con- interpolation would induce level transitions. If they do occur,
clude that RMT is not applicable in the easy region—i.e., forthe system will not reside in the ground statekbf upon
m/n<5 (n=8). . . ._completion of the adiabatic path, and the algorithm will have
In contrast, Fig. 5 shows the eigenvalue gap fluctuationg,jieq 1o find the solution. In the next section, we compute
of instantaneous Hamiltonians induced from “hard” in- e yronapility that level transitions occur during the course

stances of soluble 3-SAT witin=8 variables andn=48 ot ihe interpolation fromH, to H, using RMT, for problems
clauses. Again, our ensemble averages over 20 instances Og?‘a given degree of difficulty.

fixed n andm. Form/n=6 (hard problempswe observe Pois-

son behavior fois<0.5, but fors>0.5 the spectra become

increasingly irregular and the Brody parameter becomes sig- ;| RANDOM MATRIX ANALYSIS OF QUANTUM

nificant. In other words, the instantaneous Hamiltonians in- ADIABATIC ALGORITHM

duced by random, hard 3-SAT instances appear to have a

qualitatively different spectrum from those of easy problems Previous analyses of the adiabatic algorittsummarized

of the same size. In particular, at a certain point in the interin Sec. lll) placed the greatest significance on the scaling of
polation process between the initial and final Hamiltoniansthe E;—E, gap with increasing problem size. However, as
the spectrum becomes irregular and the NNS distributiorEq. (5) shows, it is the ratio of the matrix eleme(atH/dt); ,
resembles a Wigner distribution with a relatively large Brodyto the square of the minimum gap that determines whether

arameter. Here, RMT can be applied to estimate transition
Ytes between levels.
Finally, one can repeat these experiments for problems
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FIG. 6. Brody parameter as a function of the interpolation paransefer easy and hard instances of 3-SAT with 8 variables from
m=4 to 72 clauses. Note that the largest values of the Brody parameter coincides with the hardest problems. For soluble 3-SAT problems of
sizen=8, these are found aroumd/n=6 rather than am/n=4.2, which is the asymptotically valid transition point for 3-SATras> «.

the adiabatic theorem applies. Here, we calculate instead th#ffusion of the occupation probability. As discussed in the
probability of a transitionfrom the ground state, which is a Introduction, the appropriate RMT ensemble to use for
reliable proxy for the failure rate of the adiabatic algorithm. physical systems with exponential densities of states is the
In regions where the Brody parameter is significant, we asembedded GOE, consisting of real, orthogonal matrices hav-
sume that any nonadiabatic transitions are of Landau-Zenéng Gaussian-distributed random matrix elements with at
type—i.e., confined to adjacent levels at avoided crossingmost two-body interactions. Since in the calculation of tran-
where the energy levels assume the geometry of convergesttion rates in RMT only the fluctuation properties of the
hyperbolag12] (see Fig. 1. When approached in this man- spectrum(rather than the density of states propemter[23],

ner, the probability for a single transition, anywhere in thewe can safely substitute a GOE to obtain the probability to
spectrum, can be parametrized by the minimum gapsize  transition from the ground state

the difference in the asymptotic slopAsn, and the rate of

change of the adiabatic evolution paramedstdt=s. Spe- oL o o¥22|532 ®)
cifically, the transition probability i$12] dt p '
b= 277 _1 AE? (7 wherep is the level density oEy—E; levels averaged over
€T = 47 [Am|s’ ) an ensemble of problem instances having the same clause to

variable ratio ando is the typical size of the asymptotic
Typical values for the parametefd and Am will vary with slopes of the LZ avoided level crossings in the region of

the difficulty of the problem instance being solv@dflected interest. Indeed, as shown in R¢R4], embedded GOE'’s
by the clause to variable ratim/n) as well as with the in- give rise to NNS distributions very similar to those arising in
terpolation parameter. a GOE, except that the maximal Brody parameter is limited
In order to exploit this transition probability to predict the to g=0.8. Note that this is also implied byraumericalcal-
rate of transition from the ground state, we need to verifyculation[25] of the dissipation rate of probability distribu-
that theEy—E; gap fluctuations follow the same distribution tions of physical instantaneous Hamiltoniafise., those
as those in the body of the spectrum. In the Appendix, wedrawn from and embedded GQEvhich agree with the scal-
show that the distribution of gap fluctuations is characterizedng in Eq. (8).
by a Brody parameter comparable to the typical fluctuations We emphasize that Eq8) expresses the transition rate
in the body of the spectrum, establishing this point. To incorfrom the ground state in terms of the averdge-E; level
porate the model dependeng®nuniversality of the prob-  density, rather than the minimum gdpe., the maximum
lem, the average local level density of the spectral region ofevel density. The average level density is the more relevant
interest(here the levelsis included. Thus, the RMT-LZ cal- parameter for assessing the typical behavior of the adiabatic
culation results in an ensemble-averaged transition rate withlgorithm. As the adiabatic algorithm fails if the system tran-
the LZ process as the principle transition mechanism. sitions from the ground state, E(B) can be interpreted as
The transition rate from thgh eigenstate of the instanta- the average failure rate of the adiabatic algorithm when
neous Hamiltonian with enerdy;, dP,/dt, can be written in  driven with uniform interpolation velocitygs/dt.
terms of the second moment of the occupation probability Finally, we need to determine the scaling of the transition
distribution P;(t) [23] because it essentially is the rate of rate from the ground statge., the failure ratewith increas-
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ing problem size. We do this in two stages: first we show p[i]
how the transition rate must scale wjghn order to keep the s

transition rate bounded then, we show hpwscales with 1

problem size. Although the values pf and o are model-

dependent quantities, we note thatis the characteristic 0.8

slope in the energy-parameter spdce., o=dE/ds). To

make explicit the dependence on level density, we work with 0.8

unfolded energiedE;=A X ¢) where A is the mean-level 0.4

spacing(A=1/p) and; are the unfolded energy levels hav- '

ing mean-level spacing 1. Under this transformatior? 6.2

— (A X 0)%? and we therefore write .

i

(jj_ItD = o G232, ) 5 10 15 20 25 30%

FIG. 7. NNS distribution oEy—E; gaps for 1000 random prob-

In general, while the unfolded level slopeand the aver- lem instances in the hard region for problems of size8. The
age level density are model-dependent quantitigd9], Eq. horizontal axis is the eigenvalue spacing in tenths of the mean-level
(9) nevertheless exhibits the explicit dependence of the trarpacing.
sition rate onp. We can establish a lower bound on the
interpolation time required to evolve the system through thesity that scales exponentially with problem size, we find the

irregular region by noting first that transition rate(11) out of the ground staté&he algorithmic
dp dp failure rate and thus that the adiabatic evolution time cannot
a('s,p) = E(s,pmin), (100  scale polynomially with problem size.

The information regarding the parameter regions having

where we defineg,,;,=ming(s) and where the minimization significant transition probfibility may be used ir_1 a v_ariable-
is carried out over only those values ofhat give rise to an  SP€ed approach to the adiabatic quantum algorithm in a man-
irregular spectrum. It is important to note that,, is not the ~ Ner similar to[19]. In this way, a speed-up over classical
minimum of a particular problem instance; it is an average?!9orithms for solving NP-complete problems still appears
level density at a particular value ef whose value is con- POssible. We wish to emphasize that E#1) and the entire
stant for a given problem parameter set. The failure probabilRMT analysis hold only in those regions of the interpolation

ity during an evolution path of length is then bounded by ~Process where we find jrregular spectra—i.e., nontrivial
Brody parameters. In particular, the formula does not apply

P = constx 332As32 Pmin 12 (11) to those regions of the interpolation with a small Brody pa-
T ' rameter, which typically occur in the very early and very late

stages of a hard problem or at all stages of an easy problem.

To ensure a given transition probability over a given rangerperefore, our formula is not inconsistent with previous re-
Asin an irregular region, the interpolation tiffemust scale g5 (e g., those mentioned in Sec. Iil, which find that the

as pmin- If we can now estimate how,, (an average quan- 4 gianatic algorithm scales favorably on easy probleibe-
tity) scales with increasing problem size, we can estimate ;se in such cases Hd) is invalid.

how the time needed to complete a particular part of the
adiabatic algorithm must scale in order to keep the transition
rate from the ground state small. This part is precisely the
region where one would need to go most slowly to avoid an
unwanted transition from the ground state. What can we say Our approach to the analysis of adiabatic quantum com-
about the scaling o, with problem size? As pointed out putation is statistical in nature and relies on the applicability
by Ruskai[16], in regions characterized by a lack of level of random matrix theory to large Hamiltonians. With such an
degeneracietsuch as irregular spectral regigrie interpo-  approach, we examine the behavior of an averaged failure
lating HamiltonianH(s) must fit 2' eigenvalues into a range rate and interpolation time when averaged over an ensemble
that is polynomial inn, and consequently the level density of problem instances of a given difficulty. We find a spectral
must scaleexponentiallywith problem size. Our numerical transition from orderly to disorderly as problem difficulty is
simulations provide strong evidence for the existence of sucincreased. Our analysis of these results suggests using the
irregular spectral regions by the fact that we obtain signifi-Landau-Zener transition probability in a statistical RMT ap-
cant values of the Brody parameter for distributions averagegroach. For those regions where RMT applies, degeneracies
over instances that have a sizable degree of diffic(dty are lacking and we show that the average failure rate and
measured by their clause to variable ratim other words, average interpolation time do not scale polynomially with
difficult problem instances display spectra characterized by aroblem size. Nevertheless, the quantum adiabatic algorithm
large Brody parameter and few level degeneracies, and therappears to be more efficient than any known classical algo-
fore show a lack of symmetry. Thus, with the final assump-rithm for solving NP-complete problems, with a speed-up
tion that nondegenerate spectieregular spectra having a commensurate with Grover’s search algorithm. Moreover,
large Brody parametghave a minimum average level den- the insights we gain from the spectral fluctuation analysis

VII. CONCLUSION
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may be used to design\ariable interpolation rate, which supported by the Army Research Office's Grant No.
has the potential to improve the adiabatic algorithm over itsDAAD19-03-1-0207.
performance using a uniform interpolation rate.

Finally, we believe the connection shown here between APPENDIX
difficult computational problems and physical spectral ir- ) o
regularity is a powerful path towards understanding and clas- Figure 7 shows the ground-state level distributionEgf

sifying physical approaches to computation. —E; gaps for 1000 random problem instances in the hard
region for problems of size=8. The horizontal axis is the

eigenvalue spacing=Ey—E; normalized by the mean-level
spacing. The distribution shows that spectral irregularity

The research described in this paper was performed at traefinitely extends to the lowest-lying levels for hard in-
Jet Propulsion LaboratoiPL), California Institute of Tech- stances of 3-SAT problems, implying that RMT is applicable
nology, under contract with the National Aeronautics andto hard instances of 3-SAT across the entire spectrum of
Space AdministratiofNASA). We thank the JPL Supercom- levels, including theE,—E; gap, which is the relevant gap
puting Project for the use of the Cray supercomputer used ifor assessing the scaling of the quantum adiabatic algorithm.
computations. D.M. received support through from NASA. Therefore, our use of RMT to characterize the transition rate
C.P.W. thanks the Advanced Research and Development Aout of the ground state and, hence, to estimate the cost scal-
tivity and the National Security Agency for support. C.A. is ing of the quantum adiabatic algorithm, is valid.
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