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Abstract

This article introduces the physics of information in the context of molecular biology and genomics. E
and information, the two central concepts of Shannon’s theory of information and communication, are oft
fused with each other but play transparent roles when applied to statisticalensembles(i.e., identically prepared
sets) of symbolic sequences. Such an approach can distinguish between entropy and information in gene
the secondary structure of ribozymes, and detect the covariation between residues in folded proteins. W
view applications to molecular sequence and structure analysis, and introduce new tools in the character
resistance mutations, and in drug design.
 2004 Elsevier B.V. All rights reserved.
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In a curious twist of history, the dawn of the age of genomics has both seen the rise of the sci
bioinformatics as a tool to cope with the enormous amounts of data being generated daily, and the
of thetheoryof information as applied to molecular biology. Hailed as a harbinger of a “new movem
[35] along with Cybernetics, the principles of information theory were thought to be applicable
higher functions of living organisms, and able to analyze such functions as metabolism, grow
differentiation [35]. Today, the metaphors and the jargon of information theory are still widely
[30,31], as opposed to the mathematical formalism, which is too often considered to be inapplic
biological information.

Clearly, looking back it appears that too much hope was laid upon this theory’s relevance fo
ogy. However, there was well-founded optimism that information theory ought to be able to addr
complex issues associated with the storage of information in the genetic code, only to be rep
questioned and rebuked (see, e.g., [38,55]). In this article, I outline the concepts of entropy and in
tion (as defined by Shannon) in the context of molecular biology. We shall see that not only ar
terms well-defined and useful, they also coincide precisely with what we intuitively mean when we
about information stored in genes, for example. I then present examples of applications of the th
measure the information content of biomolecules, the identification of polymorphisms, RNA and p
secondary structure prediction, the prediction and analysis of molecular interactions, and drug de

1. Entropy and information

Entropy and information are often used in conflicting manners in the literature. A precise unde
ing, both mathematical and intuitive, of the notion of information (and its relationship to entrop
crucial for applications in molecular biology. Therefore, let us begin by outlining Shannon’s or
entropy concept [48].

1.1. Shannon’s uncertainty measure

Entropy in Shannon’s theory (defined mathematically below) is a measure of uncertainty ab
identity of objects in an ensemble. Thus, while “entropy” and “uncertainty” can be used interchang
they cannevermean information. There is a simple relationship between the entropy concept in
mation theory and the Boltzmann–Gibbs entropy concept in thermodynamics, briefly pointed out
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Shannon entropy or uncertainty is usually defined with respect to a particular observer. More precisely,
the entropy of a system represents the amount of uncertaintyone particular observerhas about the state
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of this system. The simplest example of a system is arandom variable, a mathematical object that can
thought of as anN -sided die that is uneven, i.e., the probability of it landing in any of itsN states is no
equal for allN states. For our purposes, we can conveniently think of a polymer of fixed length
number of monomers), which can take on any one ofN possible states, where each possible sequ
corresponds to one possible state. Thus, for a sequence made ofL monomers taken from an alphab
of sizeD, we would haveN = DL. The uncertainty we calculate below then describes the obser
uncertainty about the true identity of the molecule (among a very large number of identically pr
molecules: anensemble), given that he only has a certain amount of probabilistic knowledge, as expl
below.

This hypothetical molecule plays the role of a random variable if we are given itsprobability distri-
bution: the set of probabilitiesp1, . . . , pN to find it in its N possible states. Let us thus call our rand
variable (random molecule) “X”, and give the namesx1, . . . , xN to its N states. IfX will be found in
statexi with probabilitypi , then the entropyH of X is given by Shannon’s formula

(1)H(X) = −
N∑

i=1

pi logpi.

I have not here specified the basis of the log to be taken in the above formula. Specifying it assig
to the uncertainty. It is sometimes convenient to use the number of possible states ofX as the base o
the logarithm (in which case the entropy is between zero and one), in other cases base 2 is co
(leading to an entropy in units “bits”). For biomolecular sequences, a convenient unit obtains by
logarithms to the basis of the alphabet size, leading to an entropy whose units we shall call “mers
the maximal entropy equals the length of the sequence in mers.

Let us examine Eq. (1) more closely. If measured in bits, a standard interpretation ofH(X) as an
uncertainty function connects it to the smallest number of “yes-no” questions necessary, on ave
identify the state of random variableX. Because this series of yes/no questions can be thought o
descriptionof the random variable, the entropyH(X) can also be viewed as thelength of the shortes
description ofX [15]. In case nothing is known aboutX, this entropy isH(X) = logN , the maximal
value thatH(X) can take on. This occurs if all states are equally likely:pi = 1/N; i = 1, . . . ,N . If
something (beyond the possible number of statesN ) is known aboutX, this reduces our necessary nu
ber of questions, or the length of tape necessary to describeX. If I know that stateX = x7, for example,
is highly unlikely, then my uncertainty aboutX is going to be smaller.

How do we ever learn anything about a system? There are two choices. Either we obtain the pro
distribution usingprior knowledge(for example, by taking the system apart and predicting its s
theoretically) or by making measurements on it, which for example might reveal that not all sta
fact, are taken on with the same probability. In both cases, the difference between the maximal
and the remaining entropy after we have either done our measurements or examined the syste
amount of information we have about the system. Before I write this into a formula, let me remar
by its very definition, information is arelativequantity. It measures thedifference of uncertainty, in the
previous case the entropy before and after the measurement, and thus can never be absolute, in
sense as potential energy in physics is not absolute. In fact, it is not a bad analogy to refer to en
“potential information”, because potentially all of a system’s entropy can be transformed into inform
(for example by measurement).
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1.2. Information
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In the above case, information was the difference between the maximal and the actual entro
system. This is not the most general definition as I have alluded to. More generally, information me
the amount ofcorrelationbetween two systems, and reduces to a difference in entropies in special
To define information properly, let me introduce another random variable or molecule (call it “Y ”), which
can be in statesy1, . . . , yM with probabilitiesp1, . . . , pM . We can then, along with the entropyH(Y ),
introduce the joint entropyH(XY), which measures my uncertainty about the joint systemXY (which
can be inN ·M states). IfX andY areindependentrandom variables (like, e.g., two dice that are thro
independently) the joint entropy will be just the sum of the entropy of each of the random variable
so if X andY are somehow connected. Imagine, for example, two coins that are glued together
face. Then, heads for one of the coins will always imply tails for the other, and vice versa. By
them together, the two coins can only take on two states, not four, and the joint entropy is equa
entropy of one of the coins.

The same is true for two molecules that can bind to each other. First, remark that random mo
do not bind. Second, binding is effected by mutual specificity, which requires that part of the se
of one of the molecules is interacting with the sequence of the other, so that the joint entropy of t
is much less than the sum of entropies of each. Quite clearly, this binding introduces strong corr
between the states ofX andY : if I know the state of one, I can make strong predictions about the
of the other. The information that one molecule hasaboutthe other is given by

(2)I (X : Y ) = H(X) + H(Y ) − H(XY),

i.e., it is the difference between the sum of the entropies of each, and the joint entropy. The co
tweenX andY in the notation for the information is standard; it is supposed to remind the reade
information is a symmetric quantity: whatX knows aboutY , Y also knows aboutX. For later reference
let me introduce some more jargon. When more than one random variable is involved, we can de
concept ofconditional entropy. This is straightforward. The entropy ofX conditional onY is the entropy
of X givenY , that is, if I know which stateY is in. It is denoted byH(X|Y ) (read “H of X givenY ”)
and is calculated as

(3)H(X|Y ) = H(XY) − H(Y ).

This formula is self-explanatory: the uncertainty I have aboutX if Y is known is the uncertainty abou
the joint system minus the uncertainty aboutY alone. The latter, namely the entropy ofY without regard
to X (as opposed to “conditional onX”) is sometimes called amarginal entropy. Using the concept o
conditional entropy, we can rewrite Eq. (2) as

(4)I (X : Y ) = H(X) − H(X|Y ).

We have seen earlier that for independent variablesH(XY) = H(X) + H(Y ), so information mea
sures thedeviationfrom independence. In fact, it measures exactly the amount by which the entropX

or Y is reduced by knowing the other,Y or X. If I is non-zero, knowing one of the molecules allo
you to make more accurate predictions about the other: quite clearly this is exactly what we m
information in ordinary language. Note that this definition reduces to the example given earlier (in
tion as difference between entropies), if the only possible correlations arebetweenX andY , while in the
absence of the other each molecule is equiprobable (meaning that any sequence is equally likely
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case, the marginal entropyH(X) must be maximal (H = logN ) and the information is the difference
between maximal and actual (i.e., conditional) entropy, as before.
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1.3. Entropy in thermodynamics

I will briefly comment about the relationship between Shannon’s theory and thermodynamics [
the present purpose it should suffice to remark that Boltzmann–Gibbs thermodynamic entropy is
Shannon entropy, only that the probability distributionpi is given by the Boltzmann distribution of th
relevant degrees of freedom (position and momentum):

(5)ρ(p, q) = 1

Z
e−E(p,q)/kT ,

and the thermodynamic quantity is made dimensional by multiplying Shannon’s dimensionless
tainty by Boltzmann’s constant. It should not worry us that the degrees of freedom in thermodynam
continuous, because any particular measurement device that is used to measure these quantities
a finite resolution, rendering these variables effectively discrete through coarse-graining. More
tantly, equilibrium thermodynamics assumes that all entropies of isolated systems are at their ma
so there are no correlations in equilibrium thermodynamic systems, and therefore there isno information.
This is important for our purposes, because it implies, a fortiori, that the information stored in biol
genomes guarantees that living systems are far away from thermodynamical equilibrium. Infor
theory can thus be viewed as a type of non-equilibrium thermodynamics.

Before exploring the uses of these concepts in molecular biology, let me reiterate the most im
points which tend to be obscured when discussing information. Information is defined as the am
correlation between two systems. It measures the amount of entropysharedbetween two systems, an
this shared entropy is the information that one system hasabout the other. Perhaps this is the key insig
that I would like to convey: Information is alwaysabout something. If it cannot be specified what th
information is about, then we are dealing with entropy, not information. Indeed, entropy is som
called, in what borders on an abuse of language, “useless information”. The previous discuss
implies that information is only definedrelative to the system it is information about, and is theref
neverabsolute. This will be particularly clear in the discussion of the information content of geno
which we now enter.

2. Information in genomes

There is a long history of applying information theory to symbolic sequences. Most of this w
concerned with the randomness, or, conversely, regularity, of the sequence. Ascertaining the prob
with which symbols are found on a sequence or message will allow us to estimate the entropy
source of symbols, but not what they stand for. In other words, information cannot be accessed
manner. It should be noted, however, that studyinghorizontal correlations, i.e., correlations betwe
symbols along a sequence rather than across sequences, can be useful for distinguishing cod
non-coding regions in DNA [22], and can serve as a distance measure between DNA sequences
be used to assemble fragments obtained from shotgun-sequencing [34].

In terms of the jargon introduced above, measuring the probabilities with which symbols (or g
of symbols) appearanywherein a sequence will reveal themarginal entropy of the sequence, i.e., t
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entropywithout regard to the environment or context. The entropywith regard to the environment is the
entropygiventhe environment, a conditional entropy, which we shall calculate below. This will involve
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obtaining the probability to find a symbol at aspecificpoint in the sequence, as opposed to anywher
it. We sometimes refer to this as obtaining thevertical correlations between symbols.

2.1. Meaning from correlations

Obtaining the marginal entropy of a genetic sequence can be quite involved (in particular if
symbol probabilities are required), but a very good approximative answer can be given without an
at all: This entropy (for DNA sequences) is about two bits per base. There are deviations of inter
example in GC-rich genes, etc.) but overall this is what the (non-conditional) entropy of most of
is (see, e.g., [42]). The reason for this is immediately clear: DNA is acode, and codes do not reve
information from sequence alone. Optimal codes, e.g., are such that the encoded sequences c
compressed any further [15]. While DNA is not optimal (there are some correlations between s
along the sequence), it is nearly so. The same seems to hold true for proteins: a random prote
have log2(20) = 4.32 bits of entropy per site (or 1 mer, the entropy of a random monomer introd
above), while the actual entropy is somewhat lower due to biases in the overall abundance (leucin
three times as abundant as tyrosine, for example), and due to pair and triplet correlations. Depen
the data set used, the protein entropy per site is between 2.5 [52] and 4.17 bits [57], or between
0.97 mers. Indeed, it seems that protein sequences can only be compressed by about 1% [57
a pretty good code! But this entropy per symbol only allows us to quantify our uncertainty abo
sequence identity, but it will not reveal to us thefunction of the genes. If this is all that informatio
theory could do, we would have to agree with the critics that information theory is nearly use
molecular biology. Yet, I have promised that information theoryis relevant, and I shall presently poi
out how. First of all, let us return to the concept of information. How should we decide whether
potential information(a.k.a entropy) is inactuality information, i.e., whether it is shared with anoth
variable?

The key to information lies in its use to make predictionsaboutother systems. Only inreferenceto
another ensemble can entropy become information, i.e., be promoted from useless to useful, from
tial to actual. Information therefore is clearly not storedwithin a sequence, but rather in thecorrelations
between the sequence and what it describes, or what itcorresponds to. What do biomolecular sequenc
correspond to? What is themeaningof a genomic sequence, what information does it represent?
depends, quite naturally, on what environment the sequence is to be interpreted within. Accor
the arguments advanced here, no sequence has an intrinsic meaning, but only a relative (or con
one with respect to an environment. So, for example, the genome ofMycoplasma pneumoniae(a bac-
terium that causes pneumonia-like respiratory illnesses) has an entropy of almost a million bas
which is its genome length. Within the soft tissues that it relies on for survival, most of these bas
(about 89%) are information [16]. Indeed, Mycoplasmas are obligate parasites in these soft tissu
ing shed from 50% to three quarters of the genome of their bacterial ancestors (theBacillae). Within
these soft tissues that make many metabolites readily available, what was information for aBacillushad
become entropy for theMycoplasma. With respect toother environments, theMycoplasmainformation
might mean very little, i.e., it might notcorrespondto anything there. Whether or not a sequence me
something in its environment determines whether or not the organism hosting it lives or dies ther
will allow us to find a way to distinguish entropy from information in genomes.
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2.2. Physical complexity
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In practice, how can we determine whether a particular base’s entropy is shared, i.e., wheth
cleotide carries entropy or information? At first glance one might fear that we would have to k
gene’s function (i.e., know what it corresponds to within its surrounding) before we can determi
information content; that, for example, we might need to know that a gene codes for an alcoho
drogenase before we can ascertain which base pairs code for it. Fortunately, this is not true.
clear, however, is that we may never distinguish entropy from information if we are only givensin-
gle sequence to make this determination, because, in a single sequence, symbols that carry inf
are indistinguishable from those that do not. The trick lies in studyingfunctionally equivalent setsof
sequences, and the substitution patterns at each aligned position. In an equilibrated population,
where sufficient time has passed since the last evolutionary innovation or bottleneck, we expect a
that codes for information to be nearly uniformacrossthe population (meaning that the same base
will be found at that position in all sequences of that population), because a mutation at that p
would detrimentally affect the fitness of the bearer, and, over time, be purged from the ensemb
holds in its precise form only for asexual populations). Positions that do not code for information,
other hand, are selectively neutral, and, with time, will take on all possible symbols at that position
we may think of each position on the genome as a four-sided die. A priori, the uncertainty (entro
each position is two bits, the maximal entropy:

(6)H = −
∑

i=G,C,A,T

p(i) log2 p(i) = log2 4 = 2 bits

because, a priori,p(i) = 1/4. For theactual entropy, we need the actual probabilitiespj(i), for each
positionj on the sequence. In a pool ofN sequences,pj (i) is estimated by counting the numbernj (i) of
occurrences of nucleotidei at positionj , so thatpj(i) = nj(i)/N . This should be done for all position
j = 1, . . . ,L of the sequence, whereL is the sequence length. Ignoring correlationsbetweenpositionsj
on a sequence (so-called “epistatic” correlations, to which we shall return below), the information
in the sequence is then (with logs to base 2)

(7)I = Hmax− H = 2L − H bits,

where

(8)H = −
L∑

j=1

∑
i=G,C,A,T

pj(i) log2 pj (i).

Note that this estimate, because it relies on the difference of maximal and actual entropy, does no
us to know which variables in the environment cause some nucleotides to be uniform, or “fixed”.
probabilities are set by mutation–selection balance in the environment. I have argued earlier [5
the information stored in a sequence is a good proxy for the sequences’s complexity (called “p
complexity”), which itself might be a good predictor of functional complexity. And indeed, it seem
correspond to the quantity that increases during Darwinian evolution [1]. We will encounter bel
evolutionary experiment that seems to corroborate these notions.
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In general (for sequences taken from any monomer alphabet of sizeD), the information stored in the
sequence is
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(9)I = Hmax− H = L −
(

−
L∑

j=1

D∑
i=1

pj(i) logD pj(i)

)

(10)= L − J mers,

whereJ can be thought of as the number ofnon-functional(i.e., “junk”) instructions, and I remind th
reader that we defined the “mer” as the entropy of a random monomer, normalized to lie betwe
and one.

2.3. Application to DNA and RNA

In the simplest case, the environment is essentially given by the intra-cellular binding proteins,
measure (7) can be used to investigate the information content of DNA binding sites (this use of in
tion theory was pioneered by Schneider et al. [43]). Here, the sample of sequences can be provi
sample of equivalent binding sites within a single genome. For example, the latter authors aligned
quences of 149E. coliand coliphage ribosome binding sites in order to calculate the substitution pro
ities at each position of a 44 base pair region (which encompasses the 34 positions that can be sa
stitute the binding site). Fig. 1 shows the information content as a function of position [43], where p
L = 0 is the first base of the initiation codon. The information content is highest near the initiation c
and shows several distinct peaks. The peak atL = −10 corresponds to the Shine–Dalgarno sequence

When the information content of a base is zero we must assume that it has no function, i.e., it is
expressed nor does anything bind to it. Regions with positive information content1 carry information
about the binding protein, just as the binding protein carries information about the binding site.

Fig. 1. Information content (in bits) of anE. coli ribosome binding site, aligned at thef Met–tRNAf initiation site (L = 0),
from [43].

1 Finite sampling of the substitution probabilities introduces a systematic error in the information content, which can b
corrected [8,32,43]. In the present case, the correction ensures that the information content is approximately zero at th
right edge of the binding site.
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It is important to emphasize that the reason that sitesL = 1 andL = 2, for example, have maximal in-
formation content is a consequence of the fact that theirconditionalentropy Eq. (8) vanishes. The entropy
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is conditional because onlygiventhe environment of binding proteins in which it functions inE. coli or a
coliphage, is the entropy zero. If there were, say, two different proteins which could initiate transla
the same site (two different environments), the conditional entropy of these sites could be highe
mediate information content (between zero and 2 bits) signals the presence ofpolymorphismsimplying
either non-specific binding to one protein or competition between more than one protein for that

A polymorphism is a deviation from the consensus sequence that is not, as a rule, detrimenta
organism carrying it. If it was, we would call it a “deleterious mutation” (or just “mutation”). The la
should be very infrequent as it implies disease or death for the carrier. On the contrary, polymor
can establish themselves in the population, leading either to no change in the phenotype whats
which case we may term them “strictly neutral”, or they may be deleterious by themselves but
if associated with a commensurate (compensatory) mutation either on the same sequence or so
else.

Polymorphisms are easily detected if we plot the per-site entropies of a sequence vs residu
cleotide number in anentropy mapof a gene. Polymorphisms carry per-site entropies interme
between zero (perfectly conserved locus) and unity (strictly neutral locus). Mutations, on the othe
(because they are deleterious) are associated with very low entropy [37], so polymorphisms st
among conserved regions and even mutations. In principle, mutations can occur on sites which a
selves polymorphic; those can only be detected by a more in-depth analysis of substitution patte
as suggested in [44]. Because polymorphic sites in proteins are a clue to which sites can easily
tated, per-site entropies have also been calculated for the directed evolution of proteins and e
[39,56].

As mentioned earlier, the actual function of a sequence is irrelevant for determining its inform
content. In the previous example, the region investigated was a binding site. However, any gene
mation content can be measured in such a manner. In [5], the information content of the 76 ba
nucleic acid sequence that codes for bacterial tRNA was investigated. In this case the analysis
plicated by the fact that the tRNA sequence displays secondary and tertiary structure, so that the
of those sites that bind in Watson–Crick pairs, for example, are shared, reducing the information
estimate based on Eq. (2) significantly. In Fig. 2, I show the entropy (in bits) derived from 33 struc
similar sequences ofE. coli tRNA (upper panel) and 32 sequences ofB. subtilistRNA, respectively, ob-
tained from the EMBL nucleotide sequence library [51]. Note how similar these entropy maps are
species (even though they last shared an ancestor over 1.6 billion years ago), indicating that the
are characteristic of thefunctionof the molecule, and thus statistically stable.

Because of base-pairing, we should not expect to be able to simply sum up the per-site e
of the sequence to obtain the (conditional) sequence entropy. The pairing in the stacks (the lad
arrangement of bases that bind in pairs) of the secondary structure (see Fig. 3) reduces the actua
because two nucleotides that are bound togethersharetheir entropy. This is an example whereepistatic
correlationsare important. Two sites (loci) are called epistatic if their contributions to the seque
fitness are not independent, in other words, if the probability to find a particular base at one p
depends on the identity of a base at another position. Watson–Crick-binding in stacks is the s
such example; it is also a typical example of the maintenance of polymorphisms in a population b
of functional association. Indeed, the fact that polymorphisms are correlated in stacks makes it po
deduce the secondary structure of an RNA molecule from sequence information alone. Take, for e
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Fig. 2. Entropy (in bits) ofE. coli tRNA (upper panel) from 5′ (L = 0) to 3′ (L = 76), from 33 structurally similar sequenc
obtained from [51], where we arbitrarily set the entropy of the anti-codon to zero. Lower panel: Same for 32 seque
B. subtilistRNA.

nucleotideL = 28 (in the anti-codon stack) which is bound to nucleotideL = 42, and let us measur
entropies in mers (by taking logarithms to the base 4). The mutual entropy betweenL = 28 andL = 42
(in E. coli) can be calculated using Eq. (4):

(11)I (28 : 42) = H(28) + H(42) − H(28,42) = 0.78.

Thus indeed, these two bases share almost all of their entropy. We can see furthermore that they s
little entropy with any other base. Note that, in order to estimate the entropies in Eq. (11), we ap
first-order correction that takes into account a bias due to the finite size of the sample, as described
This correction amounts to�H1 = 3/(132 ln 2) for single nucleotide entropies, and�H2 = 15/(132 ln 2)
for the joint entropy. In Fig. 4, I plot the mutual entropy of base 28 with bases 39 to 45, respec
showing that base 42 is picked out unambiguously. Such an analysis can be carried out for all
nucleotides, so that the secondary structure of the molecule is revealed unambiguously (see, e.
In Fig. 5, I show the entropy (in bits) for all pairs of bases of the set ofE. coli sequences used to produ
the entropy map in Fig. 2, which demonstrates how the paired bases in the four stems stand out.
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timate can
Fig. 3. Secondary structure of tRNA molecule, with bases colored black for low entropy (0� H � 0.3 mers), grey for inter-
mediate (0.3 < H � 0.7 mers), and white for maximal entropy (0.7 < H � 1.0 mers), numbered 1–76 (entropies fromE. coli
sequences).

Fig. 4. Mutual entropy (information) between base 28 and bases 39 to 45 (information is normalized toImax = 1 by taking
logarithms to base 4). Because finite sample size corrections of higher order have been neglected, the information es
appear to be negative by an amount of the order of this error.
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Fig. 5. Mutual entropy (information) between all bases (in bits), colored according to the color bar on the right, f
sequences ofE. coli tRNA. The four stems are readily identified by their correlations as indicated.

Since we found that most bases in stacks share almost all of their entropy with their binding p
it is easy to correct formula (10) to account for the epistatic effects of stack-binding: We only n
subtract from the total length of the molecule (in mers) the number of bases involved in stack bind
a tRNA molecule (with a secondary structure as in Fig. 3) there are 21 such bases, so the sum in
should only go over the 52 “reference positions”.2 For E. coli, the entropy summed over the referen
positions givesH ≈ 24 mers, while theB. subtilisset givesH ≈ 21 mers. We thus conclude that bacte
tRNA stores between 52 and 55 mers of information about its environment (104–110 bits).

This type of sequence analysis combining structural and complexity information has recentl
used to quantify the information gain during in vitro evolution of catalytic RNA molecules (riboz
ligases) [12]. The authors evolved RNA aptamers that bind GTP (guanine triphosphate) with d
catalytic effectiveness (different functional capacity) from a mutagenized sequence library. They
11 different classes of ribozymes, whose structure they determined using the correlation analysis

2 We exclude the three anticodon-specifying bases from the entropy calculation because they have zero conditional entro
by definition(they cannot vary among a tRNA-type because it would change the type). However, the substitution probabilities
are obtained from mixtures ofdifferenttRNA-types, and therefore appear to deviate from zero or one.
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above. They subsequently measured the amount of information in each structure (using Eq. (7) and
correcting for stack binding as described above) and showed that ligases with higher affinity for the
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substrate had more complex secondary structureand stored more information. Furthermore, they fou
that the information estimate based on Eq. (7) was consistent with an interpretation in terms of the
of information necessary to specify the particular structure in the given environment. Thus, at leas
restricted biochemical example, structural, functional, and informational complexity seem to go h
hand.

2.4. Application to proteins

If the secondary structure of RNA and DNA enzymes can be predicted based on correlations
what about protein secondary structure? Because proteins fold and function via the interactions
the amino acids they are made of, these interactions should, in evolutionary time, lead to corr
between residues so that the fitness effect of an amino acid substitution at one position will dep
the residue at another position. (Care must be taken to avoid contamination from correlations that
entirely to a common evolutionary path, see [21,58].) Such an analysis has been carried out on a
of different molecule families, such as the V3 loop region of HIV-1 [24] that shows high variability (
entropy) and strong correlations between residues (leading to shared entropy) that are due to fu
constraints. These correlations have also been modelled [20].

A similar analysis for the homeodomain sequence family was performed by Clarke [14], wh
able to detect 16 strongly co-varying pairs in this 60 amino acid binding motif. However, determ
secondary structure based on these correlations alone is much more difficult, because proteins do
neatly into stacks and loops as does RNA. Also, residue covariation does not necessarily indicate
proximity [14], even though the strongest correlations are often due to salt-bridges. But the corre
can at least help in eliminating some models of protein structure [14].

Atchley et al. [7] carried out a detailed analysis of correlated mutations in the bHLH (basic helix
helix) protein domain of a family of transcription factors. Their set covered 242 proteins across
number of vertebrates that could be aligned to detect covariation. They found that amino acid sites
to pack against each other showed low entropy, whereas exposed non-contact sites exhibited sig
larger entropy. Furthermore, they determined that a significant amount of the observed correlat
tween sites was due to functional or structural constraints that could help in elucidating the stru
functional, and evolutionary dynamics of these proteins [7].

Some attempts have been made to study thethermodynamicsof protein structures and relate it to th
sequence entropy [17], by studying the mutual entropy between protein sequence andstructure. This
line of thought is inspired by our concept of the genotype–phenotype map, which implies that se
should predict structure. If we hypothesize a structural entropy of proteinsH(str), obtained for example
as the logarithm of the possible stable protein structures for a given chain length (and a given e
ment), then we can write down the mutual entropy between structure and sequence simply as

(12)I (seq: str) = H(seq) − H(seq|str),

whereH(seq) is the entropy of sequences of lengthL, given byL, andH(seq|str) is the entropy of
sequencesgiventhe structure. If we assume that the environment perfectly dictates structure (i.e.
assume that only one particular structure will perform any given function) then

(13)H(seq|str) ≈ H(seq|env)
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andI (str : seq) is then roughly equal to the physical complexity defined earlier. BecauseH(str|seq) = 0
(per the above assumption that any given sequence gives rise to exactly one structure), we can rewrite (12)
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(14)I (seq: env) ≈ I (seq: str) = H(str) − H(str|seq)︸ ︷︷ ︸
=0

,

i.e., the mutual entropy between sequence and structure only tells us that the thermodynamical
of possible protein structures is limited by the amount of information about the environment coded
the sequence. This is interesting because it implies that sequences that encode more informati
the environment are also potentially more complex, a relationship we discussed earlier in connect
ribozymes [12]. Note, however, that the assumption that only one particular structure will perfor
given function need not hold. Szostak [53], for example, advocates a definition offunctional information
that allows for different structures carrying out an equivalent biochemical function.

3. Molecular interactions and resistance

One of the more pressing concerns in bioinformatics is the identification of DNA protein-bin
regions, such as promoters, regulatory regions, and splice junctions. The common method to fi
regions is throughsequence identity, i.e., known promoter or binding sites are compared to the re
being scanned (e.g., via freely available bioinformatics software such as BLAST), and a “hit” r
if the scanned region is sufficiently identical according to a user-specified threshold. Such a
cannot, of course, findunknownbinding sites, nor can it detect interactions between proteins, whi
another one of bioinformatics’ holy grails (see, e.g., [54]). Information theory can in principle d
interactions between different molecules (such as DNA–protein or protein–protein interactions
sequence heterogeneity, because interacting pairs sharecorrelated mutations, that arise as follows.

3.1. Detecting protein–protein and DNA–protein interactions

Imagine two proteins bound to each other, while each protein has some entropy in its binding
(substitutions that do not affect structure). If a mutation in one of the proteins leads to severely r
interaction specificity, the substitution is strongly selected against. It is possible, however, thatcom-
pensatorymutation in the binding partner restores specificity, such that thepair of mutations together i
neutral (and will persist in the population), while each mutation by itself is deleterious. Over evol
ary time, such pairs of correlated mutations will establish themselves in populations and in homo
genes across species, and could be used to identify interacting pairs. This effect has been seen p
in the Cytochrome c/Cytochrome oxidase (CYC/COX) heterodimer [36] of the marine copepodTigri-
opus californicus. In Ref. [36] authors performed crosses between the San Diego (SD) and Sant
(SC) variants from two natural allopatric populations that have long, independent evolutionary his
Inter-population crosses produced strongly reduced activity of the cytochrome complex, while
population crosses were vigorous. Indeed, the SD and SC variants of COX differ by at least 30
acid substitutions, while the smaller CYC has up to 5 substitutions. But can these correlated m
be found from sequence data alone? This turns out to be a difficult computational problem unle
known precisely which member of a set ofN sequences of one binding partner binds to which mem
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of a set ofN of the other. Unless we are in possession of thisN to N assignment, we cannot calculate
the joint probabilitiespij that go into the calculation of the mutual entropies such as Eq. (11) that reveal
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correlated mutations.
Of course, if we have one pair of sequences fromN species of organisms with the same homo

gous gene, the assignment is automatically implied. In the absence of such an assignment, it
possible to recover the correct matches from two sets ofN sequences by searching for the assignm
with the highest mutual entropy, because we can safely assume that the correct assignment m
the correlations [4]. However, this is a difficult search problem because the number of possible
ments scales likeN factorial. Still, because correlated mutations due to coevolution seem to be rela
common [10], this would be a useful tool for revealing those residues involved in binding, or e
protein–protein interaction prediction.

In principle, the information-theoretical method described above can potentially identifyunknown
binding sites by identifying complementary patterns (between binding sites and protein coding re
if the binding regions are not well-conserved, i.e., when the binding site and the corresponding tra
tion factor carry a reasonable amount of polymorphisms, and if enough annotation exists to iden
genomic partners that correspond to each other in a set. If sufficient pairs of transcription-factor/b
domain pairs can be sequenced, an information–theoretic analysis could conceivably reveal g
regulatory regions that standard sequence analysis methods miss. For example, it was suggeste
[11] that the cAMP response protein (CRP, a transcription factor that regulates manyE. coli genes) binds
to a number of entropic sites inE. coli, i.e., sites that are not strictly conserved, but that still re
functionality (see also [9]).

3.2. Tracking drug resistance

An interesting pattern of mutations can be observed in the protease of HIV-1, a protein that b
particular motifs on a virus polyprotein, and then cuts it into functional pieces. Resistance to pr
inhibitors (small molecules designed to bind to the “business end” of the protease, thereby pre
its function) occurs via mutations in the protease that do not change the protease’s cutting f
(proteolysis), while preventing the inhibitor to bind to it. Information theory can be used to study wh
mutations are involved in drug resistance or whether they are purely neutral, and to discover co
resistance mutations.

The emergence of resistance mutations in the protease after exposure to antiviral drugs has b
studied [33,41]. The entropy map of HIV protease in Fig. 63 (on the level of amino acids) reveals
distinctive pattern of polymorphisms and only two strictly conserved regions. HIV proteasenot exposed
to inhibitory drugs, on the other hand, shows three such conserved regions [28]. It is believed
polymorphisms contribute to resistance mutationsinvolved in HAART (Highly Active Antiretroviral
Therapy) failure patients [47]. But, as a matter of fact, many of the observed polymorphisms
observed in treatment-naive patients [25,26] so it is not immediately clear which of the polym
sites are involved in drug resistance.

In principle, exposure of a population to a new environment can lead to fast adaptation if the m
rate is high enough. This is certainly the case with HIV. The adaptive changes generally fall in

3 The map was created using 146 sequences obtained from a cohort in Luxembourg, and deposited in GenBank [4
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Fig. 6. Normalized (0� H � 1) entropy of HIV-1 protease in mers, as a function of residue number, using 146 sequ
from patients exposed to a protease inhibitor drug (entropy is normalized toHmax= 1 per amino acid by taking logarithms
base 20).

Fig. 7. Change in per-site entropy of HIV-1 protease after six months of exposure to saquinavir,�Entropy= H26 − H0, where
H26 is the entropy after 26 weeks of exposure. The entropies were obtained from 34 sequences before and after
available through GenBank [40]. The three highest (positive) spikes are associated to the well-known resistance m
G48V, T74(A,S), and L90M, respectively.

classes: mutations in regions that were previously conserved (true resistance mutations), and
in the substitution pattern on sites that were previously polymorphic. In the case of HIV-1 pro
both patterns seem to contribute. In Fig. 7, I show thechangesin the entropic profile of HIV-1 proteas
obtained from a group of patients before and six months after treatment with high doses of saqui
protease inhibitor). Most spikes are positive, in particular the changes around residues 46–56,
that is well-conserved in treatment-naive proteases, and that is associated with aflap in the molecule
that must be flexible and that extends over the substrate binding cleft [49]. Mutations in that
indeed appeared on sites that were previously uniform, while some changes occurred on poly
sites (negative spikes). For those, exposure to the new environment usually reduced the entrop
site.
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Some of the resistance mutations actually appear in pairs, indicating that they may be compensatory
in nature [23,27,59]. The strongest association occurs between residues 54 and 82, the former associated
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with the flap, and the latter right within the binding cleft. This association does not occur in trea
naive patients, but stands out strongly after therapy (such correlations are easily detected by
mutual entropy graphs such as Fig. 5, data not shown). The common explanation for this cov
is again compensation: while a mutation in the flap or in the cleft leads to reduced functionality
protease, both together restore function while evading the inhibitor.

3.3. Information-theoretic drug design

Because many of the protease polymorphisms are prevalent in treatment-naive patients, we
sume that they are either neutral, or that the steric changes they entail do not impede the pr
proteolytic activity while failing to bind the protease inhibitor. Thus, a typical protease populatio
mixture of polymorphic molecules (polymorphic both in genotype and in structure, see [29]) th
outsmart a drug designed for a single protease type relatively easily. An interesting alternative
design would therefore use an entropic mixture of polymorphisms, or “quasispecies” [19] as th
target. Such a drug woulditself form a quasispecies rather than a pure drug. Indeed, an analysis
information content of realistic ensembles shows that consensus sequences are exceedingly ra
populations [44], and certainly absent in highly variable ones such as HIV proteases. The abse
consensus sequence is also predicted for molecules evolving at theerror threshold[19], which is very
likely in these viruses.

The idealsuperdrugshould represent a mixture of inhibitors that is perfectly tuned to the mixtu
proteases. What this mixture is can be determined with information theory, by ensuring that the
ble of inhibitorsco-varieswith the protease, such as to produce tight binding even in the presen
mutations (or more preciselybecauseof the presence of mutations). The substitution probabilities o
inhibitor ensemble would be obtained by maximizing the mutual entropy (information) between th
tease and an inhibitor library obtained by combinatorial methods, either on a nucleotide or on the
acid level [2]. If such a procedure could create a drug that successfully inhibits resistance mutati
could no longer doubt the utility of information theory for molecular biology.

4. Conclusions

Information theory is not widely used in bioinformatics today even though, as the name sugg
should bethe relevant theory for investigating the information content of sequences. The reason
neglect appears to be a misunderstanding of the concepts of entropy versus information through
of the literature, which has led to the widespread perception of its incompetence. Instead, I po
that Shannon’s theory precisely defines both entropy and information, and that our intuitive con
information coincides with the mathematical notion. Using these concepts, it is possible in princ
distinguish information-coding regions from random ones in ensembles of genomes, and thus q
the information content. A thorough application of this program should resolve the C-paradox,
the absence of a correlation between the size of the genome and the apparent complexity of an o
[13], by distinguishing information that contributes to complexity from non-functional stretches th
not. However, this is a challenge for the future because of the dearth of multiply sequenced geno
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Another possible application of information theory in molecular biology is the association of regula-
tory molecules with their binding sites or even protein–protein interactions, in the case where transcrip-
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tion factors and their corresponding binding site show a good amount of polymorphism (methods
on correlated heterogeneity), and the binding association between pairs can be established. This
is complementary to sequence comparison of conserved regions (methods based on sequence
in which information theory methods cannot be used because zero (conditional) entropy regions
share entropy. Conversely, sequence comparison methods must fail if polymorphisms are too pron
Finally, the recognition of the polymorphic (or quasispecies) nature of many viral proteins sugge
information theory based approach to drug design in which the quasispecies of proteins—rather
consensus sequence—is the drug target, by maximizing the information shared between the ta
drug ensembles.
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