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Abstract

This article introduces the physics of information in the context of molecular biology and genomics. Entropy
and information, the two central concepts of Shannon’s theory of information and communication, are often con-
fused with each other but play transeat roles when applied to statistiomhsemblegi.e., identically prepared
sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predic
the secondary structure of ribozymes, and detect the covariation between residues in folded proteins. We also re-
view applications to molecular sequence and structure analysis, and introduce new tools in the characterization of
resistance mutations, and in drug design.
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In a curious twist of history, the dawn of the age of genomics has both seen the rise of the science of
bioinformatics as a tool to cope with the enormous amounts of data being generated daily, and the decline
of thetheoryof information as applied to molecular biology. Hailed as a harbinger of a “new movement”
[35] along with Cybernetics, the principles of information theory were thought to be applicable to the
higher functions of living organisms, and able to analyze such functions as metabolism, growth, and
differentiation [35]. Today, the metaphors and the jargon of information theory are still widely used
[30,31], as opposed to the mathematical formalism, which is too often considered to be inapplicable to
biological information.

Clearly, looking back it appears that too much hope was laid upon this theory’s relevance for biol-
ogy. However, there was well-founded optimism that information theory ought to be able to address the
complex issues associated with the storage of information in the genetic code, only to be repeatedly
guestioned and rebuked (see, e.g., [38,55]). In this article, | outline the concepts of entropy and informa-
tion (as defined by Shannon) in the context of molecular biology. We shall see that not only are these
terms well-defined and useful, they also coincide precisely with what we intuitively mean when we speak
about information stored in genes, for example. | then present examples of applications of the theory to
measure the information content of biomolecules, the identification of polymorphisms, RNA and protein
secondary structure prediction, the prediction and analysis of molecular interactions, and drug design.

1. Entropy and information

Entropy and information are often used in conflicting manners in the literature. A precise understand-
ing, both mathematical and intuitive, of the notion of information (and its relationship to entropy) is
crucial for applications in molecular biology. Therefore, let us begin by outlining Shannon’s original
entropy concept [48].

1.1. Shannon’s uncertainty measure

Entropy in Shannon’s theory (defined mathematically below) is a measure of uncertainty about the
identity of objects in an ensemble. Thus, while “entropy” and “uncertainty” can be used interchangeably,
they cannevermean information. There is a simple relationship between the entropy concept in infor-
mation theory and the Boltzmann—Gibbs entropy concept in thermodynamics, briefly pointed out below.
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Shannon entropy or uncertainty is usually defined with respect to a particular observer. More precisely,
the entropy of a system represents the amount of uncerwirgyarticular observehas about the state
of this system. The simplest example of a systemranaom variablea mathematical object that can be
thought of as arv-sided die that is uneven, i.e., the probability of it landing in any oMtstates is not
equal for allN states. For our purposes, we can conveniently think of a polymer of fixed length (fixed
number of monomers), which can take on any oné&/gbossible states, where each possible sequence
corresponds to one possible state. Thus, for a sequence mddenohomers taken from an alphabet
of size D, we would haveN = D*. The uncertainty we calculate below then describes the observer’s
uncertainty about the true identity of the molecule (among a very large number of identically prepared
molecules: amnsemblg given that he only has a certain amount of probabilistic knowledge, as explained
below.

This hypothetical molecule plays the role of a random variable if we are givgmab&bility distri-
bution the set of probabilitieg, ..., py to find it in its N possible states. Let us thus call our random
variable (random molecule)X”, and give the names;, ..., xy to its N states. IfX will be found in
statex; with probability p;, then the entropyd of X is given by Shannon’s formula

N
H(X)=~) pilogp:. (1)

i=1
I have not here specified the basis of the log to be taken in the above formula. Specifying it assigns units
to the uncertainty. It is sometimes convenient to use the number of possible statemsdhe base of
the logarithm (in which case the entropy is between zero and one), in other cases base 2 is convenien
(leading to an entropy in units “bits”). For biomolecular sequences, a convenient unit obtains by taking
logarithms to the basis of the alphabet size, leading to an entropy whose units we shall call “mers”. Then,
the maximal entropy equals the length of the sequence in mers.

Let us examine Eq. (1) more closely. If measured in bits, a standard interpretati@iaXof as an
uncertainty function connects it to the smallest number of “yes-no” questions necessary, on average, to
identify the state of random variablé. Because this series of yes/no questions can be thought of as a
descriptionof the random variable, the entro@y(X) can also be viewed as thength of the shortest
description ofX [15]. In case nothing is known abow, this entropy isH (X) = log N, the maximal
value thatH (X) can take on. This occurs if all states are equally likely=1/N; i =1,...,N. If
something (beyond the possible number of stat@$s known aboutX, this reduces our necessary num-
ber of questions, or the length of tape necessary to deskriliiel know that stateX = x7, for example,
is highly unlikely, then my uncertainty aboiit is going to be smaller.

How do we ever learn anything about a system? There are two choices. Either we obtain the probability
distribution usingprior knowledge(for example, by taking the system apart and predicting its states
theoretically) or by making measurements on it, which for example might reveal that not all states, in
fact, are taken on with the same probability. In both cases, the difference between the maximal entropy
and the remaining entropy after we have either done our measurements or examined the system, is the
amount of information we have about the system. Before | write this into a formula, let me remark that,
by its very definition, information is eelative quantity. It measures thdifference of uncertaintyin the
previous case the entropy before and after the measurement, and thus can never be absolute, in the san
sense as potential energy in physics is not absolute. In fact, it is not a bad analogy to refer to entropy as
“potential information”, because potentially all of a system’s entropy can be transformed into information
(for example by measurement).
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1.2. Information

In the above case, information was the difference between the maximal and the actual entropy of a
system. This is not the most general definition as | have alluded to. More generally, information measures
the amount otorrelation between two systems, and reduces to a difference in entropies in special cases.
To define information properly, let me introduce another random variable or molecule (&&l),itvhich
can be in statesy, ..., yy with probabilitiespy, ..., py. We can then, along with the entro@y(Y),
introduce the joint entropy (XY, which measures my uncertainty about the joint syskérm(which
can be inN - M states). IfX andY areindependentandom variables (like, e.g., two dice that are thrown
independently) the joint entropy will be just the sum of the entropy of each of the random variables. Not
so if X andY are somehow connected. Imagine, for example, two coins that are glued together at one
face. Then, heads for one of the coins will always imply tails for the other, and vice versa. By gluing
them together, the two coins can only take on two states, not four, and the joint entropy is equal to the
entropy of one of the coins.

The same is true for two molecules that can bind to each other. First, remark that random molecules
do not bind. Second, binding is effected by mutual specificity, which requires that part of the sequence
of one of the molecules is interacting with the sequence of the other, so that the joint entropy of the pair
is much less than the sum of entropies of each. Quite clearly, this binding introduces strong correlations
between the states &f andY: if | know the state of one, | can make strong predictions about the state
of the other. The information that one molecule hhsutthe other is given by

I(X:Y)=H(X)+ H()— H(XY), )

i.e., it is the difference between the sum of the entropies of each, and the joint entropy. The colon be-
tweenX andY in the notation for the information is standard; it is supposed to remind the reader that
information is a symmetric quantity: what knows about’, Y also knows abouk . For later reference,

let me introduce some more jargon. When more than one random variable is involved, we can define the
concept ofconditional entropy This is straightforward. The entropy &f conditional onY is the entropy

of X givenY, that is, if | know which stat& is in. It is denoted byH (X|Y) (read “H of X givenY™)

and is calculated as

H(X|Y)=H(XY)— H(Y). (3)

This formula is self-explanatory: the uncertainty | have ab®ut Y is known is the uncertainty about
the joint system minus the uncertainty ab&ualone. The latter, namely the entropylofvithout regard
to X (as opposed to “conditional ok”) is sometimes called enarginal entropy. Using the concept of
conditional entropy, we can rewrite Eqg. (2) as

[(X:Y)=HX)— HX|Y). (4)

We have seen earlier that for independent variabléXY) = H(X) + H(Y), so information mea-
sures thaleviationfrom independence. In fact, it measures exactly the amount by which the entr&py of
or Y is reduced by knowing the other, or X. If I is non-zero, knowing one of the molecules allows
you to make more accurate predictions about the other: quite clearly this is exactly what we mean by
information in ordinary language. Note that this definition reduces to the example given earlier (informa-
tion as difference between entropies), if the only possible correlationseameeny andY, while in the
absence of the other each molecule is equiprobable (meaning that any sequence is equally likely). In that
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case, the marginal entropy (X) must be maximal ¥ = log N) and the information is the difference
between maximal and actual (i.e., conditional) entropy, as before.

1.3. Entropy in thermodynamics

I will briefly comment about the relationship between Shannon’s theory and thermodynamics [3]. For
the present purpose it should suffice to remark that Boltzmann—Gibbs thermodynamic entropy is just like
Shannon entropy, only that the probability distributipnis given by the Boltzmann distribution of the
relevant degrees of freedom (position and momentum):

1
p(p,q) = Ee’E(Psq)/kT’ .

and the thermodynamic quantity is made dimensional by multiplying Shannon’s dimensionless uncer-
tainty by Boltzmann’s constant. It should not worry us that the degrees of freedom in thermodynamics are
continuous, because any particular measurement device that is used to measure these quantities will hav
a finite resolution, rendering these variables effectively discrete through coarse-graining. More impor-
tantly, equilibrium thermodynamics assumes that all entropies of isolated systems are at their maximum,
so there are no correlations in equilibrium thermodynamic systems, and therefore tieergagmation

This is important for our purposes, because it implies, a fortiori, that the information stored in biological
genomes guarantees that living systems are far away from thermodynamical equilibrium. Information
theory can thus be viewed as a type of non-equilibrium thermodynamics.

Before exploring the uses of these concepts in molecular biology, let me reiterate the most important
points which tend to be obscured when discussing information. Information is defined as the amount of
correlation between two systems. It measures the amount of erdhgpgdbetween two systems, and
this shared entropy is the information that one systenmabast the otherPerhaps this is the key insight
that | would like to convey: Information is alwaysout somethinglf it cannot be specified what the
information is about, then we are dealing with entropy, not information. Indeed, entropy is sometimes
called, in what borders on an abuse of language, “useless information”. The previous discussion also
implies that information is only definelative to the system it is information about, and is therefore
neverabsolute. This will be particularly clear in the discussion of the information content of genomes,
which we now enter.

2. Information in genomes

There is a long history of applying information theory to symbolic sequences. Most of this work is
concerned with the randomness, or, conversely, regularity, of the sequence. Ascertaining the probabilities
with which symbols are found on a sequence or message will allow us to estimate the entropy of the
source of symbo]sut not what they stand for. In other words, information cannot be accessed in this
manner. It should be noted, however, that studyogizontal correlations, i.e., correlations between
symbols along a sequence rather than across sequences, can be useful for distinguishing coding fron
non-coding regions in DNA [22], and can serve as a distance measure between DNA sequences that cal
be used to assemble fragments obtained from shotgun-sequencing [34].

In terms of the jargon introduced above, measuring the probabilities with which symbols (or groups
of symbols) appeaanywherein a sequence will reveal thmarginal entropy of the sequence, i.e., the
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entropywithout regard to the environment or context. The entragth regard to the environment is the
entropygiventhe environment, a conditional entropy, which we shall calculate below. This will involve
obtaining the probability to find a symbol aspecificpoint in the sequence, as opposed to anywhere on
it. We sometimes refer to this as obtaining thegtical correlations between symbols.

2.1. Meaning from correlations

Obtaining the marginal entropy of a genetic sequence can be quite involved (in particular if multi-
symbol probabilities are required), but a very good approximative answer can be given without any work
at all: This entropy (for DNA sequences) is about two bits per base. There are deviations of interest (for
example in GC-rich genes, etc.) but overall this is what the (non-conditional) entropy of most of DNA
is (see, e.g., [42]). The reason for this is immediately clear: DNA ¢é®@de and codes do not reveal
information from sequence alone. Optimal codes, e.g., are such that the encoded sequences cannot k
compressed any further [15]. While DNA is not optimal (there are some correlations between symbols
along the sequence), it is nearly so. The same seems to hold true for proteins: a random protein would
have log(20) = 4.32 bits of entropy per site (or 1 mer, the entropy of a random monomer introduced
above), while the actual entropy is somewhat lower due to biases in the overall abundance (leucine is over
three times as abundant as tyrosine, for example), and due to pair and triplet correlations. Depending on
the data set used, the protein entropy per site is between 2.5 [52] and 4.17 bits [57], or between 0.6 and
0.97 mers. Indeed, it seems that protein sequences can only be compressed by about 1% [57]. This is
a pretty good code! But this entropy per symbol only allows us to quantify our uncertainty about the
sequence identity, but it will not reveal to us thenction of the genes. If this is all that information
theory could do, we would have to agree with the critics that information theory is nearly useless in
molecular biology. Yet, | have promised that information theisrgelevant, and | shall presently point
out how. First of all, let us return to the concept of information. How should we decide whether or not
potential information(a.k.a entropy) is iractuality information, i.e., whether it is shared with another
variable?

The key to information lies in its use to make predicti@mutother systems. Only ireferenceto
another ensemble can entropy become information, i.e., be promoted from useless to useful, from poten-
tial to actual. Information therefore is clearly not stoxithin a sequence, but rather in therrelations
between the sequence and what it describes, or whatriégsponds toWhat do biomolecular sequences
correspond to? What is thmeaningof a genomic sequence, what information does it represent? This
depends, quite naturally, on what environment the sequence is to be interpreted within. According to
the arguments advanced here, no sequence has an intrinsic meaning, but only a relative (or conditional)
one with respect to an environment. So, for example, the genorivyadplasma pneumonig@ bac-
terium that causes pneumonia-like respiratory illnesses) has an entropy of almost a million base pairs,
which is its genome length. Within the soft tissues that it relies on for survival, most of these base pairs
(about 89%) are information [16]. Indeed, Mycoplasmas are obligate parasites in these soft tissues, hav-
ing shed from 50% to three quarters of the genome of their bacterial ancestoBaftitiae). Within
these soft tissues that make many metabolites readily available, what was informatiddaftlias had
become entropy for thlycoplasmaWith respect tmther environments, thélycoplasmanformation
might mean very little, i.e., it might natorrespondto anything there. Whether or not a sequence means
something in its environment determines whether or not the organism hosting it lives or dies there. This
will allow us to find a way to distinguish entropy from information in genomes.
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2.2. Physical complexity

In practice, how can we determine whether a particular base’s entropy is shared, i.e., whether a nu-
cleotide carries entropy or information? At first glance one might fear that we would have to know a
gene’s function (i.e., know what it corresponds to within its surrounding) before we can determine the
information content; that, for example, we might need to know that a gene codes for an alcoholdehy-
drogenase before we can ascertain which base pairs code for it. Fortunately, this is not true. What is
clear, however, is that we may never distinguish entropy from information if we are only gisen a
gle sequence to make this determination, because, in a single sequence, symbols that carry informatior
are indistinguishable from those that do not. The trick lies in studfumgtionally equivalent setsf
sequences, and the substitution patterns at each aligned position. In an equilibrated population, i.e., one
where sufficient time has passed since the last evolutionary innovation or bottleneck, we expect a position
that codes for information to be nearly uniformwrossthe population (meaning that the same base pair
will be found at that position in all sequences of that population), because a mutation at that position
would detrimentally affect the fithess of the bearer, and, over time, be purged from the ensemble (this
holds in its precise form only for asexual populations). Positions that do not code for information, on the
other hand, are selectively neutral, and, with time, will take on all possible symbols at that position. Thus,
we may think of each position on the genome as a four-sided die. A priori, the uncertainty (entropy) at
each position is two bits, the maximal entropy:

H=- Z p(i)log, p(i) =log, 4 = 2 bits ©6)
i=G,C,A,T

because, a priorip(i) = 1/4. For theactual entropy, we need the actual probabilitips(i), for each
position j on the sequence. In a pool &fsequencesy; (i) is estimated by counting the numbei(i) of
occurrences of nucleotideat positionj, so thatp;(i) =n;(i)/N. This should be done for all positions
j=1,..., L of the sequence, whelkis the sequence length. Ignoring correlatibesweerpositions

on a sequence (so-called “epistatic” correlations, to which we shall return below), the information stored
in the sequence is then (with logs to base 2)

| = Hmnax— H = 2L — H bits, (7)

where

H=_Z pi(i)log, p;(i). (8)

L
j=1 i=G,CA,T

Note that this estimate, because it relies on the difference of maximal and actual entropy, does not require
us to know which variables in the environment cause some nucleotides to be uniform, or “fixed”. These
probabilities are set by mutation—selection balance in the environment. | have argued earlier [5,6] that
the information stored in a sequence is a good proxy for the sequences’s complexity (called “physical
complexity”), which itself might be a good predictor of functional complexity. And indeed, it seems to
correspond to the quantity that increases during Darwinian evolution [1]. We will encounter below an
evolutionary experiment that seems to corroborate these notions.
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In general (for sequences taken from any monomer alphabet ob3izbe information stored in the
sequence is

L D

> " pi@logy, p; (i)) €)
j=1i=1
=L —J mers (10)

whereJ can be thought of as the numberrain-functional(i.e., “junk”) instructions, and | remind the
reader that we defined the “mer” as the entropy of a random monomer, normalized to lie between zero

and one.

I:HmaX_H:L_<_

2.3. Application to DNA and RNA

In the simplest case, the environment is essentially given by the intra-cellular binding proteins, and the
measure (7) can be used to investigate the information content of DNA binding sites (this use of informa-
tion theory was pioneered by Schneider et al. [43]). Here, the sample of sequences can be provided by &
sample of equivalent binding sites within a single genome. For example, the latter authors aligned the se-
quences of 14&. coliand coliphage ribosome binding sites in order to calculate the substitution probabil-
ities at each position of a 44 base pair region (which encompasses the 34 positions that can be said to con
stitute the binding site). Fig. 1 shows the information content as a function of position [43], where position
L =0 is the first base of the initiation codon. The information content is highest near the initiation codon,
and shows several distinct peaks. The pedkat—10 corresponds to the Shine—Dalgarno sequence [50].

When the information content of a base is zero we must assume that it has no function, i.e., it is neither
expressed nor does anything bind to it. Regions with positive information cérgamy information
about the binding protein, just as the binding protein carries information about the binding site.

20 F T T T |

05 b

10 20

OO | | |
—-20 -10 0
L (base)

Fig. 1. Information content (in bits) of al. coli ribosome binding site, aligned at thMet—tRNA/ initiation site L = 0),
from [43].

1 Finite sampling of the substitution prdtiities introduces a systematic error in thddrmation content, which can be
corrected [8,32,43]. In the present case, the correction ensures that the information content is approximately zero at the left and

right edge of the binding site.
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It is important to emphasize that the reason that dites1 andL = 2, for example, have maximal in-
formation content is a consequence of the fact that ttwiditionalentropy Eq. (8) vanishes. The entropy
is conditional because onbjiventhe environment of binding proteins in which it functionssncoli or a
coliphage, is the entropy zero. If there were, say, two different proteins which could initiate translation at
the same site (two different environments), the conditional entropy of these sites could be higher. Inter-
mediate information content (between zero and 2 bits) signals the presepolyrobrphismsmplying
either non-specific binding to one protein or competition between more than one protein for that site.

A polymorphism is a deviation from the consensus sequence that is not, as a rule, detrimental to the
organism carrying it. If it was, we would call it a “deleterious mutation” (or just “mutation”). The latter
should be very infrequent as it implies disease or death for the carrier. On the contrary, polymorphisms
can establish themselves in the population, leading either to no change in the phenotype whatsoever, ir
which case we may term them “strictly neutral”, or they may be deleterious by themselves but neutral
if associated with a commensurate (compensatory) mutation either on the same sequence or somewher
else.

Polymorphisms are easily detected if we plot the per-site entropies of a sequence vs residue or nu-
cleotide number in arntropy mapof a gene. Polymorphisms carry per-site entropies intermediate
between zero (perfectly conserved locus) and unity (strictly neutral locus). Mutations, on the other hand,
(because they are deleterious) are associated with very low entropy [37], so polymorphisms stand out
among conserved regions and even mutations. In principle, mutations can occur on sites which are them-
selves polymorphic; those can only be detected by a more in-depth analysis of substitution patterns such
as suggested in [44]. Because polymorphic sites in proteins are a clue to which sites can easily be mu-
tated, per-site entropies have also been calculated for the directed evolution of proteins and enzymes
[39,56].

As mentioned earlier, the actual function of a sequence is irrelevant for determining its information
content. In the previous example, the region investigated was a binding site. However, any gene’s infor-
mation content can be measured in such a manner. In [5], the information content of the 76 base pair
nucleic acid sequence that codes for bacterial tRNA was investigated. In this case the analysis is com-
plicated by the fact that the tRNA sequence displays secondary and tertiary structure, so that the entropy
of those sites that bind in Watson—Crick pairs, for example, are shared, reducing the information content
estimate based on Eq. (2) significantly. In Fig. 2, | show the entropy (in bits) derived from 33 structurally
similar sequences @. coli tRNA (upper panel) and 32 sequenceBokubtilistRNA, respectively, ob-
tained from the EMBL nucleotide sequence library [51]. Note how similar these entropy maps are across
species (even though they last shared an ancestor over 1.6 billion years ago), indicating that the profiles
are characteristic of thieinctionof the molecule, and thus statistically stable.

Because of base-pairing, we should not expect to be able to simply sum up the per-site entropies
of the sequence to obtain the (conditional) sequence entropy. The pairing in the stacks (the ladder-like
arrangement of bases that bind in pairs) of the secondary structure (see Fig. 3) reduces the actual entropy
because two nucleotides that are bound togetharetheir entropy. This is an example whexpistatic
correlationsare important. Two sites (loci) are called epistatic if their contributions to the sequence’s
fitness are not independent, in other words, if the probability to find a particular base at one position
depends on the identity of a base at another position. Watson—Crick-binding in stacks is the simplest
such example; it is also a typical example of the maintenance of polymaorphisms in a population because
of functional association. Indeed, the fact that polymorphisms are correlated in stacks makes it possible to
deduce the secondary structure of an RNA molecule from sequence information alone. Take, for example,
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20 F T T T ]
E. coli
15 j\[\ -
o
2,10 F i
T
05 | i
0.0 L ' '
20 40 60
L (base)
20 ~ T T T -
B. subtilis
15 -
o
5,10 | i
s
0.5 i
0.0 . L
20 40 60
L (base)

Fig. 2. Entropy (in bits) oE. coli tRNA (upper panel) from’5(L = 0) to 3 (L = 76), from 33 structurally similar sequences
obtained from [51], where we arbitrarily set the entropy of the anti-codon to zero. Lower panel: Same for 32 sequences of

B. subtilistRNA.

nucleotideL = 28 (in the anti-codon stack) which is bound to nucleotide- 42, and let us measure
entropies in mers (by taking logarithms to the base 4). The mutual entropy beiwe@®8 andL = 42
(in E. coli) can be calculated using Eq. (4):

1(28:42) = H(28) + H(42) — H (28,42 = 0.78 (11)

Thus indeed, these two bases share almost all of their entropy. We can see furthermore that they share ver
little entropy with any other base. Note that, in order to estimate the entropies in Eq. (11), we applied a
first-order correction that takes into account a bias due to the finite size of the sample, as described in [32].
This correction amounts ta H; = 3/(132In 2 for single nucleotide entropies, andH, = 15/(132In 2

for the joint entropy. In Fig. 4, | plot the mutual entropy of base 28 with bases 39 to 45, respectively,
showing that base 42 is picked out unambiguously. Such an analysis can be carried out for all pairs of
nucleotides, so that the secondary structure of the molecule is revealed unambiguously (see, e.g., [18])
In Fig. 5, | show the entropy (in bits) for all pairs of bases of the sé&.afoli sequences used to produce

the entropy map in Fig. 2, which demonstrates how the paired bases in the four stems stand out.
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Sl

6

70002095000

5O@LEEO

Fig. 3. Secondary structure of tRNA molecule, with bases colored black for low entropyH{G< 0.3 mers), grey for inter-
mediate (B < H < 0.7 mers), and white for maximal entropy.{0< H < 1.0 mers), numbered 1-76 (entropies fr&mcoli

sequences).

I(base:28) [mers]
o )
IN o

o
)

0.0

39 40 41 42 43 44 45
base

Fig. 4. Mutual entropy (information) between base 28 and bases 39 to 45 (information is normalizeg to1 by taking
logarithms to base 4). Because finite sample size corrections of higher order have been neglected, the information estimate car

appear to be negative by an amount of the order of this error.
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Information (bits)

1 10 20 30 40 50 60 70 7
Sites

Fig. 5. Mutual entropy (information) between all bases (in bits), colored according to the color bar on the right, from 33
sequences dE. colitRNA. The four stems are readily identified by their correlations as indicated.

Since we found that most bases in stacks share almost all of their entropy with their binding partner,
it is easy to correct formula (10) to account for the epistatic effects of stack-binding: We only need to
subtract from the total length of the molecule (in mers) the number of bases involved in stack binding. In
a tRNA molecule (with a secondary structure as in Fig. 3) there are 21 such bases, so the sum in Eq. (8)
should only go over the 52 “reference positioAsFor E. coli, the entropy summed over the reference
positions givedd ~ 24 mers, while th@®. subtilisset givesH ~ 21 mers. We thus conclude that bacterial
tRNA stores between 52 and 55 mers of information about its environment (104-110 bits).

This type of sequence analysis combining structural and complexity information has recently been
used to quantify the information gain during in vitro evolution of catalytic RNA molecules (ribozyme
ligases) [12]. The authors evolved RNA aptamers that bind GTP (guanine triphosphate) with different
catalytic effectiveness (different functional capacity) from a mutagenized sequence library. They found
11 different classes of ribozymes, whose structure they determined using the correlation analysis outlined

2 We exclude the three anticodon-specifyibases from the entropy calculatioadause they have zero conditional entropy
by definition(they cannot vary among a tRNA-type because it wolldnge the type). However,dlsubstitution pbabilities
are obtained from mixtures dfifferenttRNA-types, and therefore appear to deviate from zero or one.
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above. They subsequently measured the amount of information in each structure (using Eq. (7) and
correcting for stack binding as described above) and showed that ligases with higher affinity for the

substrate had more complex secondary struaagestored more information. Furthermore, they found

that the information estimate based on Eq. (7) was consistent with an interpretation in terms of the amount
of information necessary to specify the particular structure in the given environment. Thus, at least in this
restricted biochemical example, structural, functional, and informational complexity seem to go hand in

hand.

2.4. Application to proteins

If the secondary structure of RNA and DNA enzymes can be predicted based on correlations alone,
what about protein secondary structure? Because proteins fold and function via the interactions among
the amino acids they are made of, these interactions should, in evolutionary time, lead to correlations
between residues so that the fitness effect of an amino acid substitution at one position will depend on
the residue at another position. (Care must be taken to avoid contamination from correlations that are due
entirely to a common evolutionary path, see [21,58].) Such an analysis has been carried out on a number
of different molecule families, such as the V3 loop region of HIV-1 [24] that shows high variability (high
entropy) and strong correlations between residues (leading to shared entropy) that are due to functional
constraints. These correlations have also been modelled [20].

A similar analysis for the homeodomain sequence family was performed by Clarke [14], who was
able to detect 16 strongly co-varying pairs in this 60 amino acid binding motif. However, determining
secondary structure based on these correlations alone is much more difficult, because proteins do not folc
neatly into stacks and loops as does RNA. Also, residue covariation does not necessarily indicate physical
proximity [14], even though the strongest correlations are often due to salt-bridges. But the correlations
can at least help in eliminating some models of protein structure [14].

Atchley et al. [7] carried out a detailed analysis of correlated mutations in the bHLH (basic helix-loop-
helix) protein domain of a family of transcription factors. Their set covered 242 proteins across a large
number of vertebrates that could be aligned to detect covariation. They found that amino acid sites known
to pack against each other showed low entropy, whereas exposed non-contact sites exhibited significantly
larger entropy. Furthermore, they determined that a significant amount of the observed correlations be-
tween sites was due to functional or structural constraints that could help in elucidating the structural,
functional, and evolutionary dynamics of these proteins [7].

Some attempts have been made to studythibemodynamicsf protein structures and relate it to the
sequence entropy [17], by studying the mutual entropy between protein sequensguatte This
line of thought is inspired by our concept of the genotype—phenotype map, which implies that sequence
should predict structure. If we hypothesize a structural entropy of profe{sg), obtained for example
as the logarithm of the possible stable protein structures for a given chain length (and a given environ-
ment), then we can write down the mutual entropy between structure and sequence simply as

I(seq: str) = H(seqQ — H(seqdstr), (12)

where H(seq is the entropy of sequences of length given by L, and H (sedstr) is the entropy of
sequencegiventhe structure. If we assume that the environment perfectly dictates structure (i.e., if we
assume that only one particular structure will perform any given function) then

H (sedstn ~ H(segenv) (13)
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and/ (str: seq is then roughly equal to the physical complexity defined earlier. BecHiis&|seq = 0
(per the above assumption that any given sequence gives rise to exactly one structure), we can rewrite (12
as

I1(seq: enV) ~ I (seq: str) = H (str) — H (str|seq, (14)
=0

i.e., the mutual entropy between sequence and structure only tells us that the thermodynamical entropy
of possible protein structures is limited by the amount of information about the environment coded for by
the sequence. This is interesting because it implies that sequences that encode more information abou
the environment are also potentially more complex, a relationship we discussed earlier in connection with
ribozymes [12]. Note, however, that the assumption that only one particular structure will perform any
given function need not hold. Szostak [53], for example, advocates a definitfanatfonal information
that allows for different structures carrying out an equivalent biochemical function.

3. Molecular interactions and resistance

One of the more pressing concerns in bioinformatics is the identification of DNA protein-binding
regions, such as promoters, regulatory regions, and splice junctions. The common method to find such
regions is througlsequence identityi.e., known promoter or binding sites are compared to the region
being scanned (e.qg., via freely available bioinformatics software such as BLAST), and a “hit” results
if the scanned region is sufficiently identical according to a user-specified threshold. Such a method
cannot, of course, findnknownbinding sites, nor can it detect interactions between proteins, which is
another one of bioinformatics’ holy grails (see, e.g., [54]). Information theory can in principle detect
interactions between different molecules (such as DNA—protein or protein—protein interactions) from
sequence heterogeneityecause interacting pairs shamrelated mutationsthat arise as follows.

3.1. Detecting protein—protein and DNA—protein interactions

Imagine two proteins bound to each other, while each protein has some entropy in its binding motif
(substitutions that do not affect structure). If a mutation in one of the proteins leads to severely reduced
interaction specificity, the substitution is strongly selected against. It is possible, howeverctimt a
pensatorymutation in the binding partner restores specificity, such thap#ireof mutations together is
neutral (and will persist in the population), while each mutation by itself is deleterious. Over evolution-
ary time, such pairs of correlated mutations will establish themselves in populations and in homologous
genes across species, and could be used to identify interacting pairs. This effect has been seen previousl
in the Cytochrome c¢/Cytochrome oxidase (CYC/COX) heterodimer [36] of the marine copéapdd
opus californicus In Ref. [36] authors performed crosses between the San Diego (SD) and Santa Cruz
(SC) variants from two natural allopatric populations that have long, independent evolutionary histories.
Inter-population crosses produced strongly reduced activity of the cytochrome complex, while intra-
population crosses were vigorous. Indeed, the SD and SC variants of COX differ by at least 30 amino
acid substitutions, while the smaller CYC has up to 5 substitutions. But can these correlated mutations
be found from sequence data alone? This turns out to be a difficult computational problem unless it is
known precisely which member of a set@fsequences of one binding partner binds to which member
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of a set of N of the other. Unless we are in possession of figo N assignment, we cannot calculate
the joint probabilitiesp;; that go into the calculation of the mutual entropies such as Eq. (11) that reveal
correlated mutations.

Of course, if we have one pair of sequences fridirspecies of organisms with the same homolo-
gous gene, the assignment is automatically implied. In the absence of such an assignment, it may be
possible to recover the correct matches from two set¥ gequences by searching for the assignment
with the highest mutual entropy, because we can safely assume that the correct assignment maximize:
the correlations [4]. However, this is a difficult search problem because the number of possible assign-
ments scales lik&v factorial. Still, because correlated mutations due to coevolution seem to be relatively
common [10], this would be a useful tool for revealing those residues involved in binding, or even in
protein—protein interaction prediction.

In principle, the information-theoretical method described above can potentially idemidyown
binding sites by identifying complementary patterns (between binding sites and protein coding regions),
if the binding regions are not well-conserved, i.e., when the binding site and the corresponding transcrip-
tion factor carry a reasonable amount of polymorphisms, and if enough annotation exists to identify the
genomic partners that correspond to each other in a set. If sufficient pairs of transcription-factor/binding-
domain pairs can be sequenced, an information—theoretic analysis could conceivably reveal genomic
regulatory regions that standard sequence analysis methods miss. For example, it was suggested recent
[11] that the cAMP response protein (CRP, a transcription factor that regulatesiEneolygenes) binds
to a number of entropic sites iB. coli, i.e., sites that are not strictly conserved, but that still retain
functionality (see also [9]).

3.2. Tracking drug resistance

An interesting pattern of mutations can be observed in the protease of HIV-1, a protein that binds to
particular motifs on a virus polyprotein, and then cuts it into functional pieces. Resistance to protease
inhibitors (small molecules designed to bind to the “business end” of the protease, thereby preventing
its function) occurs via mutations in the protease that do not change the protease’s cutting function
(proteolysis), while preventing the inhibitor to bind to it. Information theory can be used to study whether
mutations are involved in drug resistance or whether they are purely neutral, and to discover correlated
resistance mutations.

The emergence of resistance mutations in the protease after exposure to antiviral drugs has been wel
studied [33,41]. The entropy map of HIV protease in Fig.(6n the level of amino acids) reveals a
distinctive pattern of polymorphisms and only two strictly conserved regions. HIV protedgsgposed
to inhibitory drugs, on the other hand, shows three such conserved regions [28]. It is believed that the
polymorphisms contribute to resistance mutatiamslved in HAART (Highly Active Antiretroviral
Therapy) failure patients [47]. But, as a matter of fact, many of the observed polymorphisms can be
observed in treatment-naive patients [25,26] so it is not immediately clear which of the polymorphic
sites are involved in drug resistance.

In principle, exposure of a population to a new environment can lead to fast adaptation if the mutation
rate is high enough. This is certainly the case with HIV. The adaptive changes generally fall into two

3 The map was created using 146 sequences obtained from a cohort in Luxembourg, and deposited in GenBank [45,46].
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Fig. 6. Normalized (6X H < 1) entropy of HIV-1 protease in mers, as a function of residue number, using 146 sequences
from patients exposed to a protease inhibitor drug (entropy is normalizHghig= 1 per amino acid by taking logarithms to
base 20).
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Fig. 7. Change in per-site entropy of HIV-1 protease after six months of exposure to saquiaviropy= Hog — Hp, where
Hyg is the entropy after 26 weeks of exposure. The entropies were obtained from 34 sequences before and after exposure,
available through GenBank [40]. The three highest (positive) spikes are associated to the well-known resistance mutations

G48V, T74(A,S), and L90M, respectively.

classes: mutations in regions that were previously conserved (true resistance mutations), and change
in the substitution pattern on sites that were previously polymorphic. In the case of HIV-1 protease,
both patterns seem to contribute. In Fig. 7, | showdhangesn the entropic profile of HIV-1 protease
obtained from a group of patients before and six months after treatment with high doses of saquinavir (a
protease inhibitor). Most spikes are positive, in particular the changes around residues 46-56, a region
that is well-conserved in treatment-naive proteases, and that is associatedflajihinathe molecule

that must be flexible and that extends over the substrate binding cleft [49]. Mutations in that region
indeed appeared on sites that were previously uniform, while some changes occurred on polymorphic
sites (negative spikes). For those, exposure to the new environment usually reduced the entropy at tha

site.



C. Adami / Physics of Life Reviews 1 (2004) 3-22 19

Some of the resistance mutations actually appear in pairs, indicating that they may be compensatory
in nature [23,27,59]. The strongest association occurs between residues 54 and 82, the former associate
with the flap, and the latter right within the binding cleft. This association does not occur in treatment-
naive patients, but stands out strongly after therapy (such correlations are easily detected by creating
mutual entropy graphs such as Fig. 5, data not shown). The common explanation for this covariation
is again compensation: while a mutation in the flap or in the cleft leads to reduced functionality of the
protease, both together restore function while evading the inhibitor.

3.3. Information-theoretic drug design

Because many of the protease polymorphisms are prevalent in treatment-naive patients, we must as
sume that they are either neutral, or that the steric changes they entail do not impede the protease’s
proteolytic activity while failing to bind the protease inhibitor. Thus, a typical protease population is a
mixture of polymorphic molecules (polymorphic both in genotype and in structure, see [29]) that can
outsmart a drug designed for a single protease type relatively easily. An interesting alternative in drug
design would therefore use an entropic mixture of polymorphisms, or “quasispecies” [19] as the drug
target. Such a drug wouligself form a quasispecies rather than a pure drug. Indeed, an analysis of the
information content of realistic ensembles shows that consensus sequences are exceedingly rare in ree
populations [44], and certainly absent in highly variable ones such as HIV proteases. The absence of a
consensus sequence is also predicted for molecules evolving atrtinghreshold[19], which is very
likely in these viruses.

The idealsuperdrugshould represent a mixture of inhibitors that is perfectly tuned to the mixture of
proteases. What this mixture is can be determined with information theory, by ensuring that the ensem-
ble of inhibitorsco-varieswith the protease, such as to produce tight binding even in the presence of
mutations (or more preciselyecausef the presence of mutations). The substitution probabilities of the
inhibitor ensemble would be obtained by maximizing the mutual entropy (information) between the pro-
tease and an inhibitor library obtained by combinatorial methods, either on a nucleotide or on the amino
acid level [2]. If such a procedure could create a drug that successfully inhibits resistance mutations, we
could no longer doubt the utility of information theory for molecular biology.

4. Conclusions

Information theory is not widely used in bioinformatics today even though, as the name suggests, it
should bethe relevant theory for investigating the information content of sequences. The reason for the
neglect appears to be a misunderstanding of the concepts of entropy versus information throughout mos
of the literature, which has led to the widespread perception of its incompetence. Instead, | point out
that Shannon’s theory precisely defines both entropy and information, and that our intuitive concept of
information coincides with the mathematical notion. Using these concepts, it is possible in principle to
distinguish information-coding regions from random ones in ensembles of genomes, and thus quantify
the information content. A thorough application of this program should resolve the C-paradox, that is,
the absence of a correlation between the size of the genome and the apparent complexity of an organisn
[13], by distinguishing information that contributes to complexity from non-functional stretches that do
not. However, this is a challenge for the future because of the dearth of multiply sequenced genomes.
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Another possible application of information theory in molecular biology is the association of regula-
tory molecules with their binding sites or even protein—protein interactions, in the case where transcrip-
tion factors and their corresponding binding site show a good amount of polymorphism (methods based
on correlated heterogeneity), and the binding association between pairs can be established. This approac
is complementary to sequence comparison of conserved regions (methods based on sequence identity
in which information theory methods cannot be used because zero (conditional) entropy regions cannot
share entropy. Conversely, sequence comparison methods must fail if polymorphisms are too pronounced
Finally, the recognition of the polymorphic (or quasispecies) nature of many viral proteins suggests an
information theory based approach to drug design in which the quasispecies of proteins—rather than the
consensus sequence—is the drug target, by maximizing the information shared between the target anc
drug ensembles.
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