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Abstract

We investigate the evolutionary dynamics of a %nite population of sequences adapting to NK
%tness landscapes. We %nd that, unlike in the case of an in%nite population, the average %tness
in a %nite population is maximized at a small but %nite, rather than vanishing, mutation rate.
The highest local maxima in the landscape are visited for even larger mutation rates, close to
a transition point at which the population delocalizes (i.e., leaves the %tness peak at which it
was localized) and starts traversing the sequence space. If the mutation rate is increased even
further, the population undergoes a second transition and loses all sensitivity to %tness peaks.
This second transition corresponds to the standard error threshold transition %rst described by
Eigen. We discuss the implications of our results for biological evolution and for evolutionary
optimization techniques. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The evolution of a %nite population in a rugged, multi-peaked %tness landscape is an
important area of research in theoretical biology. Although thoroughly studied over the
last 15 years, we are still far from a complete understanding of the intricate dynamics
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that unfold. Most analytical results deal with very simple %tness landscapes, such as the
Bat landscape [1], the single peak landscape [2–4], multiplicative [5,6] or additive [7]
landscapes, or other landscapes that contain a high degree of symmetries, such as the
Royal Road landscape [8]. Numerically, one may study more complicated situations,
such as RNA folding landscapes [9,10] or self-replicating computer programs [11].
Here, we are interested in the family of NK landscapes [12,13]. The NK landscapes
are interesting because their ruggedness can be tuned, from a single smooth peak to a
completely random landscape, so that the inBuence of ruggedness on the dynamics of
an evolving population can be studied systematically.

Traditionally, NK landscapes have been studied in the context of an adaptive walker,
which is essentially a population of size one. If the product of population size M and
mutation rate u is small, uM�1, the adaptive walk is a reasonable approximation of
the full population dynamics. For larger products uM , however, quasispecies eGects
such as error thresholds [14] or selection for mutational robustness [15,16] are to be
expected. Here, we are mainly interested in the change of the population dynamics as
the mutation rate is increased, so that uM cannot be considered small.

We investigate the adaptive performance of a %nite population on an NK landscape as
a function of the mutation rate. Depending on whether we consider the mean population
%tness or the maximum %tness in the population, we %nd diGerent optimal mutation
rates. The mean %tness is optimized at a mutation rate that is just suIciently high to
prevent a complete collapse of the population into isogeny (a single genotype). At such
a mutation rate, sequence diversity is increased to a value which allows a population
to explore the genotype space more eIciently, without losing too much %tness via
accumulating deleterious mutations. The maximum %tness, on the other hand, is highest
when the mutation rate is so high that the population is on the verge of delocalization.
At such a mutation rate, a population is just barely able to maintain the information
discovered about the landscape, while at the same time it can explore genotype space
at an optimal speed.

2. The NK model

The NK model was introduced by KauGman [12] in order to study the inBuence of
landscape ruggedness on adaptive evolution. The model is similar to certain physical
models of spin-glasses, in particular to the random-energy model [17].

The model is de%ned as follows. We assume that each organism in the population
is composed of N segments, or genes, each of which can be in one of two possible
states, designated by 0 or 1. The %tness value of an organisms is then given by the
average value of the selective contribution of each of its N genes,

F =
1
N

N∑

i=1

fi ; (1)

where fi denotes the contribution of gene i to the %tness value and is a function of
its own state and of the state of K other genes randomly chosen from the remaining
N−1 ones. The values fi itself are drawn randomly from a uniform distribution on the
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Fig. 1. Auto-correlation function in NK landscape with N = 32.

interval (0; 1]. All random variables in the NK model are quenched, i.e., they are chosen
once at the beginning of a simulation run, and then held %xed. Since the functions fi
depend on the state of K diGerent genes at a time, the genes in the NK model are
not independent, they interact (i.e., the model assumes epistasis between genes). By
changing the number of genes K participating in the epistatic interaction, we can shape
the %tness landscape. The parameter K controls the ruggedness of the landscape. For
small values of K the landscape is smooth, becoming increasingly rugged for higher
values of K .

The inBuence of the parameter K on the ruggedness of the NK landscape can be
visualized with the aid of the auto-correlation function, derived in the appendix:

	(d) =
(N − K)!(N − d)!
N !(N − K − d)! : (2)

A fast decay of 	(d) indicates a high degree of ruggedness, because in that case even
sequences that are only a few mutations apart contain hardly any information about
each other. If 	(d) decays slowly, on the other hand, information is preserved over
large distances in genotype space, which is only possible if the %tness peaks in the
landscape are very broad and smooth. In Fig. 1, we have displayed 	(d) for N = 32
and various choices of K . We %nd that for K = 1, the auto-correlation function decays
very slowly, in agreement with a smooth %tness landscape. As K is increased, 	(d)
decays increasingly faster, and the landscape becomes more rugged. In the extreme
case of K = N − 1 (not displayed), 	(d) decays to zero at d = 1, indicating that the
landscape has become completely random at that point.

In order to simulate a population evolving in an NK landscape, we use the follow-
ing algorithm, which has been used previously by Sibani and Pedersen [18], and is
described in detail in Ref. [19]. First, we select 50% of the M sequences in the pop-
ulation for reproduction. An organism is selected with probability proportional to its
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%tness, so that the most %t individuals contribute most to the composition of the pop-
ulation in the next time step. After reproduction, the population has then reached a
size of 1:5M . Now, we randomly remove one third of the individuals, so that the pop-
ulation after replication and removal consists again of M individuals. The replication
mechanism is assumed to be imperfect, and the probability of mutation for a single
gene is given by the rate u. Recombination is not taken into account in the present
work.

3. Results

Our main interest in this work lies in identifying the mutation rate at which a %nite
population performs “best” in an NK landscape. By “best”, we mean that in equilibrium,
and averaged over many independent runs, either the mean or the maximum %tness of
the population is maximized. For an in%nite population, this question is trivial, since
the mean %tness in equilibrium is always maximized at zero mutation rate, and can
only decay as the mutation rate increases. For a %nite population, however, a mutation
rate that is too small leads to a premature standstill in the progress of adaptation,
as the population gets trapped in local optima. A mutation rate that is too large, on
the other hand, drives the population away from very narrow but high peaks. The
optimum mutation rate, therefore, strikes the right balance between the potential for
barrier crossing and the risk of destabilizing Buctuations once a peak has been reached.

Fig. 2 shows the mean %tness as a function of time, for various values of K and the
mutation rate u. The results for diGerent values of K are very similar. We observe an
optimal mutation rate (in terms of mean %tness) around u=10−4 (a genomic mutation
rate of �=Nu= 0:0064). For mutation rates below that value, the mean %tness grows
much more slowly. If we increase the mutation rate beyond this value, we %nd that
while the initial adaptation during the %rst 1000–2000 time steps is signi%cantly faster,
mean %tness actually drops. This is due to the more eIcient exploration of genetic
space that a higher mutation rate entails. Initially, when the population starts out in a
valley of low %tness, the higher genetic diversity of a population at a higher mutation
rate results in more frequent discoveries of higher %tness genotypes. However, when
equilibration is reached, the high mutation rate creates a constant inBux of deleterious
mutations, which reduce the mean %tness in equilibrium.

In order to obtain a more detailed picture of this dynamics, we studied the case of
K = 8 more thoroughly. We recorded mean and maximum %tness after 20 000 time
steps, averaged over 50 independent runs. In addition, we recorded the average Ham-
ming distance to the population’s consensus sequence, in order to obtain a deeper
understanding of the population structure that forms at diGerent mutation rates.

Fig. 3(a) shows mean and maximum %tness in the population as a function of the
mutation rate u. For comparison, we have also displayed the average height of local
maxima in the landscape, obtained as the average over the %nal %tness of repeated adap-
tive walks starting from random positions in the landscape. The mean %tness reaches
its maximum value around u = 0:001 (� = 0:032), and the maximum %tness around
u = 0:005 (� = 0:16). At u = 0:1, the mean %tness has reached the value 0.5, which
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Fig. 2. Mean %tness as a function of time, averaged over 50 independent simulation runs, for N = 64 and
M = 5000. From left to right, and top to bottom, K = 2; K = 4; K = 8, and K = 16.

corresponds to the average %tness of an arbitrary sequence in a NK landscape. At this
mutation rate, selection has ceased to have any inBuence on the population.

For a very low mutation rate, u=10−5, we observe that both the mean and the max-
imum %tness lie below the average height of local maxima in the landscape. However,
we expect them to lie exactly on the average height of local maxima in perfect equi-
libration, because a %nite population behaves like an adaptive walker if the mutation
rate is suIciently low. The discrepancy we observe is caused by the %nite time of the
experiment (20 000 time steps). The lower the mutation rate, the longer it takes until
a local maximum is reached, because the rate at which advantageous mutations are
discovered is directly proportional to u for small u. In the particular case of u= 10−5,
the time allotted for the simulations was not suIcient to allow complete equilibration.

For mutation rates above u = 10−4, both mean and maximum %tness lie above the
height of the local maxima. This demonstrates that a %nite population, evolving at
the appropriate mutation rate, can perform truly better than an adaptive walk, due to
the fact that it can cross %tness barriers in situations where an adaptive walker would
simply get stuck in a local sub-optimum.

Fig. 3(b) shows the mean Hamming distance to the consensus sequence as a func-
tion of the mutation rate. For small u, we witness the collapse of the population to
an isogenic one, reBected in an average Hamming distance of zero. In that regime,
the dynamics of the population is only determined by the rate at which advantageous
mutations are found, as discussed above. For larger u, the Hamming distance between
sequences increases. At about u = 0:005, which is the value at which a population
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Fig. 3. (a) Maximum and mean %tness after 20 000 time steps, averaged over 50 independent runs, as a
function of the mutation rate, for N=32; K=8, and M=1000. (b) Hamming distance to consensus sequence
in the same simulations.

discovers the highest local optima, the average Hamming distance to the consensus
sequence is already about three. Beyond u = 0:005, the Hamming distance increases
quickly, until it reaches approximately 16 at u = 0:1. The value of 16 is exactly half
the sequence length N = 32, which means that the population is completely random at
this point. This is in agreement with the mean %tness of 0.5 that we %nd at this muta-
tion rate. At u= 0:1, the population transitions from order to disorder. This transition
corresponds to the error threshold, which was %rst observed by Eigen [20], and later
found in a large variety of diGerent evolutionary settings [21–25].

Fig. 4 shows the population structure at various mutation rates in more detail, as
a histogram of the sequences’ distances to the consensus sequence. We %nd that for
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Fig. 4. Histogram for the Hamming distance between the sequences in the population and the consensus
sequence at time t= 20000. In these simulations M = 5000; N = 32 and K = 8. The probability of mutation
per digit is: (a) u = 0:001, (b) u = 0:005, (c) u = 0:01 e (d) u = 0:1.

u=0:005, the rate at which the population discovers the highest local optima, the con-
sensus sequence still makes up a signi%cant proportion of the population, although the
population’s center has already moved away from the consensus sequence, to a dis-
tance of about two. For a slightly higher mutation rate, u=0:01, the population’s center
moves even further away from the consensus sequence, which in turn is represented
by only 1% or 2% of the sequences in the population or else disappears completely. A
more detailed analysis of this regime reveals that in addition to being almost extinct,
the consensus sequence also starts to wander about in sequence space. This can be seen
in Fig. 5, where we have displayed the average distance to the consensus sequence
and the average distance to the consensus sequence of 100 time steps past, as a func-
tion of time. While for u= 0:005 and lower, the two curves lie exactly on top of each
other, there are signi%cant deviations between the two curves for larger u, which shows
that the consensus sequence moves for these mutation rates. However, the population
has not yet crossed the error threshold at u = 0:01, since its structure is still clearly
diGerent from complete randomness, and the mean %tness is still above 0.5. Instead,
it Bees the %tness peak it used to inhabit (delocalizes) and settles on many adjacent,
most likely “Batter” [26] ones. The population thus undergoes an additional transition
prior to experiencing the error threshold. This transition is a purely stochastic eGect
(i.e., it depends crucially on a %nite population size). We will refer to it as the delocal-
ization transition, since the population becomes delocalized and starts to drift through
sequence space, re-localizing on adjacent (lower %tness) maxima. A similar transition
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Fig. 5. The probability of mutation per digit is: (a) u = 0:001, (b) u = 0:005, (c) u = 0:01 e (d) u = 0:1.

was previously observed by BonhoeGer and Stadler [27] in two diGerent landscapes,
the Sherrington Kirkpatrick spin glass and the Graph Bi-partitioning landscape, and
seems to be a generic %nite population eGect on rugged %tness landscapes.

4. Discussion

In the present work, we have considered both mean and maximum %tness as crite-
ria for optimal adaptive performance. Which one of the two is the more appropriate
depends on the context. In biological evolution, the mean population %tness is what
determines long-term evolutionary success. A population centered around a particularly
high local maximum can easily be driven to extinction if it carries a high load of dele-
terious mutations and has to compete with another population that has a higher mean,
but lower maximum %tness [26]. In evolutionary optimization, on the other hand, we
are interested in a single particularly good solution, and the mean %tness is rather
meaningless. In that context, optimization of the maximum %tness is more interesting.
In the following, we will discuss our results both in the context of biological evolution
and evolutionary optimization. We begin with biological evolution.

It has been conjectured by Eigen [28] that optimal adaptation is realized at the verge
of the error threshold, and that natural populations should, therefore, evolve towards the
error threshold. Here, we have found that this is clearly not the case in NK landscapes.
Rather, the mean %tness (which is the relevant quantity for natural populations, see
above) is maximized at mutation rates that generate only a moderate sequence diversity,
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far away from the error threshold. Maximum rate of evolution also occurs before the
error threshold, and before the loss of the consensus sequence. The true error threshold,
when sequences diGuse through sequence space without relocalization, occurs at much
higher mutation rates, after the consensus sequence is long gone.

The delocalization phase for mutation rates below the error transition corresponds
to the situation of Muller’s ratchet in classical population genetics [29,30]. Muller’s
ratchet is a stochastic eGect that occurs when either the population size becomes too
small, or the mutation rate too high, to sustain a %nite population in equilibrium. The
population then starts to lose the highest %tness individuals, a process that continues
unabated until the population dies out [31]. In contrast to that, here we do not observe
a continued loss of %tness, we rather %nd that the population sustains itself in the
neighborhood of high local optima. The diGerence between our situation and Muller’s
ratchet model is that the ratchet model assumes a single peak landscape, where only
extremely rare back mutations can compensate for the loss in %tness that the forward
mutations carry. In a rugged landscape such as the NK landscape, on the other hand,
there are a large number of local optima nearby, which leads to a signi%cant number
of compensatory mutations (which, in eGect, delocalize the population). Therefore,
although the population becomes delocalized, it can nevertheless evade continued %tness
loss and extinction.

Let us now discuss the implications of our %ndings for evolutionary optimization. As
we have mentioned above, in evolutionary optimization we are interested in the highest
possible maximum %tness in the population. We have found that in NK landscapes,
this is realized for mutation rates close to the delocalization transition. This could be
utilized for evolutionary optimization in the following way. A number of short initial
runs could be used to %nd the regime in which the delocalization transition takes place.
Production runs would then be run at a mutation rate slightly below that regime.

We should also point out that the genomic mutation rates found for the NK landscape
are by no means meant to be universal. We expect to %nd diGerent rates for diGerent
%tness landscapes, although we expect the order of events (highest mean %tness, high-
est maximum %tness, delocalization, error threshold) with increasing mutation rate to
remain the same (some of the events may coincide). For example, it is suspected that
the mutation rate of RNA viruses is optimal at around � ≈ 0:76 [32] while it appears to
be much lower for DNA viruses (� ≈ 0:003 [33]). The optimal rate for %nding %tness
maxima in the “Royal Road” landscape [34] was found to be of the order of �= 0:5,
and around �= 1:0 for digital organisms [11]. In general, optimal rates depend on the
supply of advantageous mutations, and on the average height of maxima with respect
to random sequences. The presence of a delocalization transition depends on whether
or not a fair supply of “secondary” maxima can be found near the initial %tness peak.

It is interesting to compare the delocalization transition of the present work to the
behavior of an adaptive walker in a dynamic %tness landscape. In Ref. [35], it was
shown that an adaptive walker can traverse the entire sequence space if the %tness
landscape is changing slowly. The average %tness encountered on such walks (from
peak to peak) lies above the average height of local optima in such landscapes if the
landscape changes slowly enough. Here, we %nd that a population can even traverse
a static landscape if the mutation rate is suIciently high. The local maxima visited
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by the population (after delocalization) are of similarly high %tness, as can be seen
from Fig. 3(a) for u = 0:01. The main diGerence between the two processes is that
the adaptive walker corresponds to a population evolving at a very low mutation rate,
such that the mean %tness and the maximum %tness in the population coincide. The
high mutation rate necessary for delocalization, on the other hand, implies that the
average %tness lies far below the maximum %tness. Therefore, it is unclear to what
extent a natural population could utilize these local optima, if at the same time the
population has to suGer from a high load of deleterious mutations. Nevertheless, as
we have mentioned above, these local optima may present an eGective means to halt
Muller’s ratchet.
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Appendix A. Auto-correlation function in NK landscapes

The auto-correlation function 	 (d) at Hamming distance d can be calculated with
the following reasoning: we only have to calculate the probability that the %tness
contribution of a single gene remains unchanged after d mutations [36]. For d = 1,
this probability is (N − K)=N , since there are N − K of the total N genes that will
not aGect the state of the particular gene we are interested in. For d = 2, we have
then (N − K) (N − K − 1)=[N (N − 1)], since the second mutation may hit any of the
N − K − 1 genes among the N − 1 remaining ones. Clearly, for arbitrary d, we have

	 (d) =
(N − K) (N − K − 1) · · · (N − K − d+ 1)

N (N − 1) · · · (N − d+ 1)

=
(N − K)!(N − d)!
N !(N − K − d)! : (A.1)

Note that this derivation does not depend on whether the K − 1 interacting genes
are chosen randomly (as we assumed throughout the present paper) or as the nearest
neighbors of the gene they interact with. Even if all K genes are chosen completely
randomly for every fi (the “purely random” version of the NK model), the result
remains unaltered.

Eq. (A.1) diGers from previously reported results for the autocorrelation function in
NK landscapes. In Ref. [36], three diGerent functional forms for 	 (d) are reported for
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the three diGerent types of NK landscapes. Similar results are given in Refs. [37–39].
The results given in Ref. [36] for the random neighbor and purely random model are
of a very simple functional form, and clearly disagree with Eq. (A.1). The result for
the nearest neighbor model, on the other hand, is more complicated and involves a
sum over combinatorial terms. A detailed analysis reveals that the sum can actually be
taken, and the resulting expression simpli%es to ours. Hence, the previously published
correlation function for the nearest neighbor case is correct, though awkward, while
the other two cases are incorrect.
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