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Current trends in software development indicate that we will soon reach the point where 
program size, together with the increasingly intricate ways in which software needs to 
interact with other programs, will lead to an impasse. This impasse, observable from the 
outside by catastrophic system failures with decreasing “uptime” in between, is not 
unlike what must have befallen the earliest self-replicating molecular systems in the era 
of the putative RNA world [1]. For self-replicating molecules, the number of copy-errors 
per molecule scales with the length of the sequence, and puts a stop to further evolution if 
the average number of errors per sequence becomes too large starts to exceed one. In 
software design, a constant rate of “bugs” introduced by the programmer also puts a limit 
on program size, which we may already have approached in certain areas. 
 
While the origin of errors is different in the two kinds of “software” just described, the 
end result is the same because in both cases the maladapted programs’ “fitness” cannot be 
improved without a major paradigm change in the design process. For self-replicating 
molecules, the selective pressure to survive in noisy environments has pierced size-
limiting boundaries several times in the history of evolution, from the evolution of DNA-
based coding and sophisticated molecular error correction mechanisms to perhaps even 
the evolution of sexual cross-over [1]. Standard software design, meaning the single-
author or group efforts to create large packages such as operating systems and office 
suites, must adjust to the limits of human design capabilities with a major shift in the 
engineering process of its own. The dilemma created by the “complexity wall”, 
moreover, is not limited to the office domain. The software that operates and controls 
complex machinery such as planes and spacecraft (flight software) is perhaps even more 
sensitive to the looming barrier because its failure can translate to the loss of sizeable 
investments and human life.  
 
From the software engineering point of view, that a 3 billion-line program with roughly 
30,000 or more subroutines (such as the human genome) can function at all is a miracle 
beyond comprehension. However, this software suite is not a product of design, but rather 
a product of evolution. While the mechanisms enabling the evolution of biocomplexity 
have been studied since the Darwinian revolution, software evolution in the 
computational rather than biochemical realm is still in its embryonic stage.  
 



The first cautious steps towards wholesale software evolution are now being taken, and  
corporate research and development, as well as governmental funding agencies, are 
awakening to the promise, as well as the difficulties, of such an endeavor. Microsoft 
Research started funding limited research into the evolvability of computer programs in 
the mid-nineties, whereas NASA has recently initiated a massive effort geared at creating 
a Center of Bioengineering for the Exploration of Space (CBEES), one of whose 
objectives is the exploration of the principles underlying the evolution of complex 
hardware and software systems 
 
Historically, genetic mechanisms in Computer Science have been used in search as well 
as in synthesis, via the paradigms of Genetic Algorithms and Evolutionary Computation. 
However, these branches have delivered only limited success because of their limited 
scope and the often-unquestioned usage of “black box” evolution algorithms that ignore 
some of the enabling mechanisms that make biological evolution so extraordinarily 
successful. For example, we now have preliminary evidence that a good percentage of the 
genes of complex organisms code not for organismic function per se but rather ensure 
their fault tolerance [2]. While extra robustness genes thus increase genome size, their 
presence appears to be much more valuable than their contribution to the genetic load, 
and even may contribute to evolvability. On the contrary, robustness is not a target in 
standard genetic algorithm fitness functions, resulting in fragile code that is difficult to 
evolve past its initial adaptation. Equally importantly, the main mechanism creating 
diversity in Genetic Algorithms, code cross-over, may even reduce fitness via loss of 
alleles if deleterious mutations interact antagonistically [3] or if the supply of beneficial 
mutations is low-. Thus, a concerted effort in software evolution must have at its basis a 
sound understanding of the selective pressures that affect genomes, as well as the 
interactions between populations of genomes and the environment in which they evolve.  
 
At the California Institute of Technology’s Digital Life Laboratory [4], we have been 
using populations of computer programs to study the basic mechanisms of genetic 
evolution in silico. Digital Life, inspired by the metaphorical similarity between genetic 
codes and computer programs [5], in fact achieves their logical synthesis. Populations of 
programs live in and adapt to an artificial world created entirely by the researcher, but 
they must replicate their code in a very real manner in the memory of the computer. 
Programs grow in complexity by acquiring computational genes for survival [6], and 
develop mutational robustness [7]. Complex programs evolved in this manner are 
virtually unintelligible to human programmers because their fitness function is implicit 
and involves much more than the target a human programmer might set. At the same 
time, these programs achieve a level of success, in the world to which they are adapting, 
that is far beyond what human design can achieve.    
 
The de novo synthesis of functional programs in simulated environments is not the only 
alternative to conventional software design. Bio-inspired software-testing environments 
and human-assisted code evolution are precursors to the pure bioengineering of software 
that could significantly improve the standard methods. Similarly, “open-source” software 
development seems to owe its success, according to Linux creator Linus Torvalds, to the 
conspiracy of “sheer luck” and “survival of the fittest”, operating on a pool of 



programmers that modify the freely available source code. Indeed, he insists that 
“…(Linux) wasn’t designed”, but instead “(it) grew.  It grew with a lot of mutations, and 
because the mutations were less than random, they were faster and more directed than 
(…) in DNA” [8].  
 
Whatever the incarnation, it is evolution that must someday come to the rescue of design 
in software engineering. Because of this inevitability, we need to extract universal 
features from the enabling and limiting factors in the evolution of biocomplexity, and 
apply them to code evolution.  Otherwise, society has to face living with size-limited 
software, as many viruses still do.  
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