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Complex Langevin equation and the many-fermion problem

Chris Adami* and Steven E. Koonin
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

~Received 19 October 2000; published 20 February 2001!

We study the utility of a complex Langevin~CL! equation as an alternative for the Monte Carlo~MC!
procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a
CL approach is natural in cases where nonpositive definite probability measures occur, and remains accurate
even when the corresponding MC calculation develops a severe ‘‘sign problem.’’ While the convergence of CL
averages cannot be guaranteed in principle, we show how convergent results can be obtained in two simple
quantum mechanical models, as well as a nontrivial schematic shell model path integral with multiple particles
and a noncommuting interaction~the Lipkin model!.

DOI: 10.1103/PhysRevC.63.034319 PACS number~s!: 02.70.Rr, 05.30.Fk, 02.50.Ey, 21.60.Ka
rg
th

e
ie
a

on

le

ta
sic
d
ns

o
i

um
a
rs

C

n

ng
l-
o

es
ha
ic
or

t
e

ow
and
ich
m-

e
xt
CL
rom
ec.
r-

he

ta-
ich

.e
I. INTRODUCTION

There has been recent significant progress in the la
scale numerical computation of nuclear properties in
shell model, using the auxiliary field path-integral~AFPI!
Monte Carlo method@1#. Due to the benign scaling of th
computational effort with the single-particle basis, propert
of large nuclei can now be calculated that are out of the re
of conventional diagonalization methods@2,3#.

Quite generally, AFPI treatments of interacting fermi
systems with the Monte Carlo~MC! method are difficult for
certain realistic Hamiltonians, and for odd-partic
configurations.1 This difficulty, also known as the ‘‘sign
problem,’’ is the prime impediment to large scale compu
tional efforts both in nuclear and condensed matter phy
calculations. Briefly, repulsive interactions and/or od
particle configurations can lead to probability distributio
~integration measures for the auxiliary fields! that are nega-
tive, or even complex. As the MC update algorithm relies
a positive-definite measure, the sign of the distribution
made part of the observable being calculated. Under circ
stances where the average sign of the distribution is sm
the expectation value is the ratio of two very small numbe
that converges only asymptotically.

A number of alternatives to or extensions of the M
method have been proposed over the years, among them
brid methods combining the MC method with replicatio
mechanisms for importance sampling@5#, random-walk
branching@6#, and diagonalization over optimal bases usi
variational techniques@7#. Here, we investigate the possibi
ity of replacing the MC method altogether with one based
the complex Langevin~CL! equation, at least in those cas
where the sign problem is prominent. The CL equation
received considerable attention in connection with latt
gauge theory calculations, where either static charges
nonzero chemical potential give rise to complex actions@8#.
It has been abandoned mostly because of the perception
complex Langevin averages ought not to be trusted, du

*Corresponding author. Electronic address: adami@caltech
Phone~1! 626 395-4256. Fax~1! 626 564-8708.

1See for example@4#.
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the possibility that they can be nonstationary. Here, we sh
that the problem of nonstationarity can often be avoided,
does not play a role in a large class of Hamiltonians wh
give rise to Langevin equations with fixed points in the co
plex plane.

By way of introduction and to establish notation, w
briefly review the AFPI Monte Carlo method in the ne
section. Section III discusses the application of the
method to simple one-dimensional integrals abstracted f
those occurring in fermionic many-body systems, while S
IV expands this to a simple toy Hamiltonian with characte
istics reminiscent of shell models. In Sec. V we apply t
method to the Lipkin model~the MC treatment of which is
similar in character to the full shell model!, and close with
conclusions, in Sec. VI.

II. AUXILIARY FIELD PATH-INTEGRAL
MONTE CARLO

In the AFPI method, the significant savings in compu
tional effort are obtained through a Hubbard-Stratonov
~HS! transformation@9# ~see below! of the imaginary-time
evolution operator

Û5exp~2bĤ !. ~2.1!

The thermal expectation value of an operatorÔ is given by

^Ô&b5Z21 T̂r@Ô exp~2bĤ !#, ~2.2!

where

Z5T̂r exp~2bĤ ! ~2.3!

is the partition function, Tˆ r is the many-body trace, andb is
the inverse temperature. Ground-state~zero-temperature!
properties are obtained in the limitb→`.

For a many-body operatorĤ in the quadratic form

Ĥ5(
a

eaÔa1
1

2 (
a

VaÔa
2 ~2.4!

du
©2001 The American Physical Society19-1
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CHRIS ADAMI AND STEVEN E. KOONIN PHYSICAL REVIEW C63 034319
containing one-body operatorsÔa and two-body operators

Ôa
2 , a HS transformation of the imaginary-time evolutio

operator~2.1! leads to

exp~2bĤ !'E
2`

`

)
a,n

dsa,nS DbuVau
2p D 1/2

3G~s!)
n

exp@2Dbĥ~sW n!#, ~2.5!

by splitting b into Nt time slices such thatDb5b/Nt .
Here, sW n denotes a set of auxiliary fields@one for each

two-body operator appearing in Eq.~2.4!# at time-slicen,
ands stands for the totality of fields at all time-slices. Fu
thermore,G(s) is the Gaussian weight factor

G~s!5expS 2(
a,n

1

2
DbuVausan

2 D , ~2.6!

and ĥ(sW n) is theone-bodyHamiltonian

ĥ~sW n!5(
a

~ea1saVasan!Ôa , ~2.7!

wheresa561(56 i) if Va,0(.0). Thus, the HS trans
formation has the effect of replacing the quadratic dep

dence onÔa in Eq. ~2.4! with a linear one, at the expense
an integral over auxiliary fields.

Let Ûs denote theone-bodyevolution operator

Ûs5exp@2Dbĥ~sW n!# ~2.8!

andF(s) its trace:

F~s!5T̂r~Ûs!. ~2.9!

Expectation values can then be written using the above p
integral decomposition of the partition function:

^Ô&b5

E D@s#G~s!T̂r~ÔÛs!

E D@s#G~s!F~s!

. ~2.10!

An effective actionSs can be defined such that Eq.~2.10!
appears as a simple expectation value:

^Ô&b5

E D@s#e2Ss^Ô&s

E D@s#e2Ss

~2.11!

with

Ss5(
a,n

1

2
DbuVausa,n

2 2 ln F~s!, ~2.12!

where^Ô&s5T̂r(ÔÛs)/F(s).
03431
-

h-

Further, since exp(2Ss) is not positive definite, we define
the sign function

Fs5
F~s!

uF~s!u
. ~2.13!

Then, writinge2Ss5F(s)e2S̃s with a real S̃s , the expec-
tation value~2.10! appears as aratio of expectation values

^Ô&b5

E D@s#e2S̃sF~s!^Ô&s

E D@s#e2S̃sF~s!

5
^̂ Fs^Ô&s&&

^̂ Fs&&

~2.14!

each calculated with a positive definite probability distrib
tion e2S̃s. The Monte Carlo average over samples is deno
as ^̂ . . . &&. If the functionF(s) is negative on a substantia
part of the s-field manifold, the expectation value

^̂ Fs^Ô&s&& and ^̂ Fs&& can each become very small, and t
ratio only converges asymptotically. This is the essence
the sign problem in quantum Monte Carlo calculations. B
low, we construct expectation values susceptible to the s
problem, in order to gain insight into the circumstances
which a CL equation approach can be applied successfu

III. COMPLEX LANGEVIN EQUATION AND SIMPLE
INTEGRALS

The HS transformation is nothing but the Gaussian in
gral identity

e2(1/2)z2
5

1

A2p
E

2`

`

dse2(1/2)s2
e6 isz. ~3.1!

Note that this case corresponds to a repulsive interac
@V.0 in Eq. ~2.7!#. As Eq.~3.1! has no imaginary part, this
reduces to

e2(1/2)z2
5

1

A2p
E

2`

`

dse2(1/2)s2
cos~zs!. ~3.2!

This is precisely the form appearing in the denominator
Eq. ~2.10!, but in one dimension, with cos(zs) playing the
role of F(s).

Generalizing this, we would like to examine expectati
values

^s2&N5

E dss2e2(1/2)s2
@cos~sz!#N

E dse2(1/2)s2
@cos~sz!#N

~3.3!

as a function of the real numberz and the ‘‘particle number’’
N, using MC evaluation and the complex Langevin equat
approach.

Clearly, the MC procedure will suffer from the sign prob
lem only for odd N. Figure 1 shows a straightforwar
9-2
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COMPLEX LANGEVIN EQUATION AND THE MANY- . . . PHYSICAL REVIEW C 63 034319
MC evaluation of this integral forN51, where the inset
shows the development of the average signF(s)
5cos(zs)/ucos(zs)u. As expected, the accuracy of the M
estimate deteriorates asF(s)→0.

As an alternative to the MC procedure, consider
Langevin equation. For systems with real actions, expe
tion values such as

^O&5
1

ZE dsO~s!e2S(s) ~3.4!

with the partition function

Z5E dse2S(s) ~3.5!

can be calculated by creating a stochastic process using
Langevin equation, with an equilibrium distributionP0(s)
5Z21 exp@2S(s)#.

The Langevin equation is given by

ds~ t !

dt
52

1

2

]S

]s
1h~ t !, ~3.6!

wheret is a fictitious time andh(t) is stochastic noise with
zero mean and unit variance:

^h~ t !h~ t8!&5d~ t2t8!. ~3.7!

To each Langevin equation corresponds a Fokker-Pla
equation for the probability densityP(s,t)

]P~s,t !

]t
5HFPP~s,t ! ~3.8!

with a Hermitian Fokker-Planck Hamiltonian

HFP5
1

2

]

]s S ]

]s
1

]S

]s D . ~3.9!

For solutions with exponential time dependence,

P~s,t !5e2EtPE~s!, ~3.10!

FIG. 1. Monte Carlo average of integral^s2&N51 Eq. ~3.3!
~squares!, the exact solution~solid line!, and the sign of the calcu
lation ~inset!.
03431
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Eq. ~3.8! reverts to an eigenvalue equation. Fort→`,
P(s,t)→P0(s), the solution for the lowest eigenvalueE
50. Accordingly, for t→`, if s0(t) is the solution to the
Langevin equation~3.6!,

O„s0~ t !…→^O& ~ t→`! ~3.11!

with ^O& given by Eq.~3.4!. Finally, ergodicity assures tha
^O& is also obtained by averaging over the paths0(t):

^O&5 ^̂ O~s0!&&5 lim
T→`

1

TE0

T

O„s0~ t !…dt. ~3.12!

In principle, nothing prevents us from using the Langev
equation in the case where the action is complex:

S~s!5SR~s!1 iSI~s!. ~3.13!

Then, we obtain two equations, for the real and the ima
nary part ofs:

]sR~ t !

]t
52

1

2
ReS ]S

]s D1h~ t !, ~3.14!

]s I~ t !

]t
52

1

2
ImS ]S

]s D . ~3.15!

However, the Fokker-Planck Hamiltonian loses its Hermit
ity, and the eigenvalues can acquire imaginary parts. A
consequence, the probability distributionP(sR ,s I ,t) need
not converge anymore, nor does the expectation value^O&.
While the lowest eigenvalue is stillE050, the En with n
.0 are in general complex, and the asymptotic condit
P(s)→P0 is violated whenever there are anyEn with
Re En.0 (n.0) @10#. As a rule of thumb then, expectatio
values obtained via the CL equation should only be truste
the ensemble averages become time independent@11#.

For the numerical solution of Eqs.~3.14!,~3.15! we use
the two-step algorithm of Greenside and Helfand@12#. De-
fining the complex gradient as

¹S~ t !5
]S

]s
@sR~ t !,s I~ t !#, ~3.16!

the stochastic differential equation is discretized via

sR~ t1/2!5sR~ t0!2Dt Re@¹S~ t0!#1ADth~ t0!,
~3.17!

sR~ t1!5sR~ t0!2
1

2
Dt Re@¹S~ t0!1¹S~ t1/2!#1ADth~ t0!

~3.18!

and analogously for the imaginary part.2

For the expectation value~3.3!, the effective action is

2For this particular choice of variables, the corresponding eq
tion for the imaginary part does not include a noise term. For ot
choices, see, e.g.,@13#.
9-3
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CHRIS ADAMI AND STEVEN E. KOONIN PHYSICAL REVIEW C63 034319
SN5 1
2 s22N ln@cos~sz!#, ~3.19!

while the associated Langevin equation reads

ṡ52 1
2 @s1Nz tan~zs!#1h. ~3.20!

It is immediately apparent that the fixed points of this eq
tion (ṡ50) lie on the real axis. On the other hand it is al
clear that, since for examplês2&N51512z2, the correct
solutions0(t) needs to spend a considerable amount of ti
away from the real line, at least for oddN. Analytically, this
must happen because~for odd N) there is a delta-function
like drift term that has been ignored in Eq.~3.20! which is
due to the imaginary part ofSN . The additional drift term is

d¹SN56 ipd„cos~zs!… ~3.21!

but cannot be adequately modeled numerically. As a con
quence, the solution spends most of its time on the real
between the first turning points, and the resulting averag
inaccurate, as has been noted previously@14#. The solution to
this dilemma is also not new. Going back to Eq.~3.1! and
N51 we see that the action can also be written as

S15 1
2 s26 izs, ~3.22!

in which case the fixed point is away from the real line in t
complex plane: s I56z. Since then P(sR ,s I)
→exp(21

2sR
2)d(sI7z), the complex average reduces to

^s2&N515

E
2`

`

s2P~sR ,s I !dsRds I

E
2`

`

P~sR ,s I !dsRds I

5

E
2`7 iz

`6 iz

dss2 exp~2 1
2 s2!

E
2`7 iz

`6 iz

ds exp~2 1
2 s2!

. ~3.23!

The integral over the complex path removed from the r
line by 6 iz equals the one over the real line if the observa
has no poles in the enclosed area.

In Fig. 2 we show the result of a CL evaluation
^s2&N51 using the ‘‘extended’’ action~3.22! ~squares! and
the original action~3.19! ~triangles!. The solid line repre-
sents the exact result. As expected, a complex Lang
simulation with fixed points on the real line does not co
verge, while the calculation with the extended action is
bust even in the regime where the MC~Fig. 1! fails.

Can this procedure be extended to arbitraryN? A canoni-
cal extension of the method exists, where cosN(sz) is decom-
posed into single powers of cosines at multiples ofsz. Sub-
sequently, the cosines are replaced by exponent
However, this procedure results in a shift of the fixed po
away from the real lineonly for odd N. Figure 3 shows
results for the casesN52 andN53, with exact results
03431
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^s2&N52512
4z2

11e2z2 , ~3.24!

^s2&N53512z2
113e24z2

11 1
3 e24z2 . ~3.25!

For evenN the complex Langevin equation does not co
verge at allz due to the problems described. We do not ne
to worry about this, however, as the MC procedure is v
accurate there.

IV. QUANTUM MECHANICAL TOY MODEL

In this section we show how shifting the fixed points in
CL evaluation of integrals can be used in a quantum m
chanical model which describes a single shell of angular m
mentumj with variable filling. This toy model is defined by
the Hamiltonian

Ĥ52 1
2 eN̂21 1

2 VĴz
2 , ~4.1!

FIG. 2. Langevin average of̂s2&N51. Squares: extended ac
tion; triangles: original action; solid line: exact solution.

FIG. 3. Complex Langevin average of^s2&N for N52 and
N53.
9-4
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COMPLEX LANGEVIN EQUATION AND THE MANY- . . . PHYSICAL REVIEW C 63 034319
whereN̂ is the number operator andĴz the third component
of the angular momentum. A HS transformation on t
imaginary-time evolution operator yields

T̂rN~e2bĤ!

}E ds0ds1e2(1/2)(s0
2
1s1

2)T̂rN~eAbeN̂s02 iAbVĴzs1!,

~4.2!

where T̂rN is the many-body trace for fixed particle numb
N and angular momentumj:

T̂rN~Ô!5 (
miÞmj

m11 . . . 1mN52 j

j

^m1 . . . mNuÔum1 . . . mN&.

~4.3!

Since N̂ and Ĵz commute, the evolution operator does n
need to be decomposed into time-slices. Also, the contr
tion from the number operator is a constant factor

T̂rN~e2bĤ!5exp~ANbe!T̂rN~Us1
! ~4.4!

that drops out of the ratios, and will thus be ignored in t
following. Above, we defined the one-body evolution ope
tor

Us1
5e2 iAbVĴzs1. ~4.5!

Defining f5AbVs1 and as before

FN~f!5T̂rN~Us1
!, ~4.6!

we can write theN-particle traces in terms of the one-partic
trace:

F1~f!5F~f!5
sin~ j 1 1

2 !f

sin~f/2!
, ~4.7!

F2~f!5F2~f!2F~2f!, ~4.8!

F3~f!5F3~f!23F~2f!F~f!12F~3f!, ~4.9!

and so on. Note that unlike in the previous section, the ev
N trace is not positive-definite, while still being most
positive.

We shall focus on the expectation value3

^Jz
2&N5

E dse2(1/2)s2
T̂rN~ Ĵz

2Us!

E dse2(1/2)s2
FN~s!

~4.10!

which we rewrite in terms of an effective action as follow

3Note that we now writes instead ofs1 for simplicity.
03431
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^Ĵz
2&5

E dse2(1/2)s2
^Ĵz

2&se2SN(s)

E dse2(1/2)s2
e2SN(s)

, ~4.11!

where

^Ĵz
2&s5

T̂rN~ Ĵz
2Ub!

FN~s!
~4.12!

and

SN5 1
2 s22 ln„FN~s!…. ~4.13!

For N51 and arbitraryj, we find for the observable (f
5AbVs)

^Ĵz
2&s5 j ~ j 11!1cot

f

2 F S j 1
1

2D cotS j 1
1

2Df2
1

2
cot

f

2 G
~4.14!

while the Langevin equation is

ṡ52
1

2
s1

1

2
AbVF S j 1

1

2D cotS j 1
1

2Df2
1

2
cot

f

2 G1h.

~4.15!

From the oscillatory nature ofF(f) we expect that the
MC procedure will become imprecise at largeb. In Fig. 4
~left panel! we show the result of a MC calculation of^Ĵz

2&b

for a j 55/2 shell and particle numbersN51, N52, and
N53. Note thatN53 corresponds to half-filling, so tha
higher N’s can be described in terms of ‘‘hole’’ number
and revert to the cases displayed. For this simple case
sign ~not shown! does not deteriorate too much before t
ground state has been reached (b large!, and the calculation
is consequently reliable. Let us test nevertheless how a c
plex Langevin approach fares.

The CL approach based on the Langevin equation~4.15!
with the observable~4.14! suffers from the same problem
that we noted with the simple integral: the fixed points a
real and the results are consequently unreliable. Again,
remedy is to shift the fixed points such that the effective p
of integration lies in the complex plane. However, here
encounter another difficulty~which is also common in more
refined shell-model calculations!: the expectation value
~4.14! has poles@at the zeros ofF(f)#. Consequently, the
expectation value calculated for a shifted path will equal
real-path result plus the sum over the poles on the real-l
of which there are infinitely many. For this simple to
Hamiltonian, this can be shown to hold true exactly by c
culating the residues. In more realistic models, however,
sum over the poles is not readily available. Fortunately,
most Hamiltonians the observable Tˆ rN(OUs) can be ob-
tained by calculating moments of Tˆ rN Us . Here, for ex-
ample,
9-5
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CHRIS ADAMI AND STEVEN E. KOONIN PHYSICAL REVIEW C63 034319
T̂rN~ Ĵz
2Us!52

1

bV

]2

]s2
T̂rN Us ~4.16!

and integrating by parts twice yields

^Ĵz
2&5

E dse2(1/2)s2
^Ĵz

2&se2SN(s)

E dse2(1/2)s2
e2SN(s)

5
1

bV S 12

E dse2(1/2)s2
s2e2SN(s)

E dse2(1/2)s2
e2SN(s)

D
5

1

bV
~12^s2&!. ~4.17!

With this observable, the action can now be extended
the complex plane. This is achieved as in the simple integ
treated previously, by writing the trace in terms of cosin
and replacing cos(f)→exp(if). Quantum mechanically, thi
amounts to retaining only those terms in the trace~4.3! for
which the sum of the magnetic quantum numbersm11m2
1•••mN ~with miÞmj ) is either non-negative or non
positive. In this manner, we break time-reversal invarian
by hand, since we know that it will be taken care of by t

FIG. 4. Averagê Jz
2& for a j 55/2 shell withN51,2,3 obtained

with a Monte Carlo approach~left panel! and the complex Langevin
equation ~right panel!. For both cases we took ten samples
10 000 updates each.
03431
to
ls
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e

symmetry of the integral. Results of the CL calculation a
shown in the right panel of Fig. 4. The CL averages a
stable and accurate at largeb while accuracy deteriorate
only for small b where large cancellations must occur. O
course, a partial integration can also be performed for
Monte Carlo integral, which improves performance ma
edly because of better sampling. In that case, the Mo
Carlo results are comparable to those obtained with
Langevin equation.

This changes when the action is forced to acquire subs
tial complex pieces by ‘‘cranking’’ the Hamiltonian~4.1!,
which corresponds to a toy nucleus with a single shell
dergoing a collective rotation. Ignoring the term involvin
the number operator and again settingV251, the Hamil-
tonian becomes

Ĥc5Ĥ2v Ĵz, ~4.18!

which breaks time-reversal invariance explicitly. Cranking
notoriously difficult for quantum MC calculations becau
the sign-problem is exacerbated in these cases. In fac
straightforward MC is hopeless because the sign drops v
quickly with increasingv. In Fig. 5 we shoŵ Jz

2& as well as

FIG. 5. Straightforward Monte Carlo average of^Jz
2& for two

particles in a crankedj 55/2 shell atb51, and the sign~inset!.

FIG. 6. Monte Carlo witĥ Jz
2& from partial integration, as in

Fig. 5.
9-6
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COMPLEX LANGEVIN EQUATION AND THE MANY- . . . PHYSICAL REVIEW C 63 034319
the sign for two particles in aj 55/2 shell forv,1.5, be-
yond which the MC calculation becomes useless. Conv
gence improves markedly if the observable is simplified
partial integration~Fig. 6!, but of course the sign is still the
same and the MC approach fails.

Let us calculate this observable with the CL approach
Fig. 7 we plot the expectation value~4.10! as a function of
cranking frequency for aj 55/2 shell withN51,2,3 andb
51.0. While the sign in the MC calculation essentially d
appears forv.3, the accuracy of the CL calculation
maintained even as the average sign is small.

V. LIPKIN MODEL

To test the CL equation approach in a more realistic s
ation for a system that can be exactly diagonalized, we
the Lipkin model @15#. The Lipkin model is a nontrivial
schematic shell model capable of describing collective
fects in nuclei. It describesN distinguishable particles la
beled 1,2, . . . ,N, each of which can occupy one of two o
bitals with energies (61/2) ~up or down!. The total number
of states therefore is 2N.

The Hamiltonian has a one-body term and two two-bo
terms, and suffers from the sign-problem as we shall
below. If written in terms of quasispin operatorsĴ, it be-
comes

FIG. 7. Complex Langevin average of^Jz
2& for a crankedj

55/2 shell, atb51.0.
03431
r-
y

n

-
se

f-

y
e

Ĥ5 Ĵz2
1
2 V~ Ĵ1

2 1 Ĵ2
2 !5 Ĵz2V~ Ĵx

22 Ĵy
2!. ~5.1!

The eigenstates can be labeled by the total quasispinj, and
classified into nondegenerate multiplets of 2j 11 states each
~see, e.g.,@16#!, from spin j 5N/2 down to 0 or1

2 , depending
on whetherN is even or odd.

The two-body interaction term does not commute with t
free Hamiltonian, which necessitates the introduction
time-slices in the HS transformation. Writing the imaginar
time evolution operator as

Û5@exp~2DbĤ !#Nt, ~5.2!

where b5NtDb, we can apply the Hubbard-Stratonovic
transformation to obtain

e2DbĤ }E DsxDsy expS 2 1
2 DbV

3(
n

~sx
(n)21sy

(n)2! DPn exp~2Dbĥs
(n)!,

~5.3!

where

ĥs
(n)5 Ĵz1A2V~ Ĵxsx

(n)1 i Ĵysy
(n)!. ~5.4!

With this decomposition, exp(2Dbĥs) is accurate to order
(Db)2 andÛ to orderDb. Exact results are obtained in th
limit Db→0.

To obtain averages at finite temperature, we need to t
traces of such operators over the many-body basis. For s
N, the model can easily be diagonalized, which we use to
advantage to compare Monte Carlo and Langevin calc
tions of expectation values with the known exact results.
start with the expressions for the static-path approximat
~SPA!, i.e., for a single time-slice. With the representation

hs5S 1

2

V

A2
~sx2 isy!

V

A2
~sx1 isy! 2

1

2
D ~5.5!
e

FIG. 8. Monte Carlo~right panel! and com-
plex Langevin~left panel! averagê Jz& in a three
particle Lipkin model as a function of invers
temperature, withDb50.05.
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we have

T̂r1~e2Dbhs!52 coshS Db

2
WD , ~5.6!

where

W5A112V2~sx
22sy

2!, ~5.7!

and indeed quite generally

T̂rN exp~2Dbhs!5F2 coshS Db

2
WD GN

. ~5.8!

Similarly, we obtain, for example,

^ Ĵz&N52
N

2W
tanhS Db

2
WD . ~5.9!

The many-time-slice expressions are straightforward ex
sions. For time-slicen, define

exp~2Dbhs
(n)![A(n)5a0

(n)1aW (n)
•tW ~5.10!

and

Us5exp~2Dbhs
(1)!, . . . ,exp~2Dbhs

(Nt)![u01uW •tW ,
~5.11!

wheretW are the usual Pauli matrices and

a0
(n)5coshS Db

2
WnD , ~5.12!

aW (n)5
V

Wn sinhS Db

2
WnD S 2A2sx

(n)

2 iA2sy
(n)

2
1

V

D . ~5.13!

Then

T̂rN~Us!5~2u0!N, ~5.14!

and, for example,

Jz~s![T̂rN~ ĴzUs!/T̂rN~Us!5N
u3

2u0
. ~5.15!

The action can be written as

Ss5
DbV

2 S (
n

Nt

sx
(n)21sy

(n)2D 2 ln„T̂rN~Us!…, ~5.16!
03431
n-

and observables are obtained as usual. Here, we choo
examine

^Ĵz&b5

E DsxDsye
2SsJz~s!

E DsxDsye
2Ss

. ~5.17!

The complex Langevin equation requires the gradients
T̂r(Us) with respect tosx andsy for each time-slice:

]T̂r~Us!

]sx
(n)

5T̂r~A(1)
•••Ax8

(n)
•••A(Nt)!, ~5.18!

where Ax8
(n) is the derivative of thenth slice matrixA(n).

Thus,

ṡx
(n)~ t !52

1

2 S sx
(n)2N

]T̂r~Us!

]sx
(n) Y T̂r~Us!D 1h

~5.19!

FIG. 9. ~a! Monte Carlo calculation of Re(^Jz&) as in Fig. 8~ten
samples of 10 000 points!, at fixed inverse temperateb52.0 ~with
Db50.1) and as a function of cranking frequencyv. The inset
shows the real part of the sign functionFR . ~b! Complex Langevin
calculation of^Jz& with same parameters as~a!.
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since

]

]sx
(n)

T̂r~Ûs!N5N T̂r~A(1)
•••A8(n)

•••A(Nt)!•T̂r~Us!N21

~5.20!

if we choose a basis of multiparticle product states, and s
larly for sy . In this manner, all remaining traces are over t
two-dimensional single-particle space only. Naturally, t
equation has to be separated into its real and imaginary p
as earlier, since Tˆ rN(Us) can become negative ifN is odd.
This is most easily seen examining the single particle tr
~5.6!, which becomes oscillatory if the argumentW
5A112V2(sx

22sy
2) becomes complex.

In Fig. 8, we show Monte Carlo~right! and complex
Langevin ~left! calculations of the observablêJz&b as a
function of the inverse temperatureb, for the first non-trivial
caseN53. Even though the sign is not strictly positive, th
Monte Carlo simulation is very accurate in this case. T
Langevin averages converge well also, despite the fact
rs
on
he
fre
o
ge
ou

re
rs

tiv
an
b-
n

rit

th
a
h
ho
ha

03431
i-

rts

e

e
at

none of the tricks used in the previous examples~such as
partial integration and extending the action into the comp
plane! can be used for this model. In order to force a si
problem, we can revert to cranking as before.

The cranked Hamiltonian

H5H02v Ĵy ~5.21!

develops a sign-problem because the single particle~and
single time-slice! trace~5.6! becomes complex as the arg
ment ~5.7! becomes

W5A11v212V2~sx
22sy

2!22A2iVvsy. ~5.22!

Figure 9 compares Monte Carlo and complex Langevin c
culations of the same observable as in Fig. 8, at fixed inve
temperatureb52.0 and as a function of the cranking fre
quencyv. Because Tˆ r(Us) becomes complex~rather than
just nonpositive!, care must be given to the real and imag
nary parts of the sign-functionF. Indeed, forF5FR1 iF I
and the observableOR(s)1 iOI(s), the Monte Carlo aver-
age is
^O&5

E Dse2Ss~FROR2F IOI !1 iE Dse2Ss~F IOR1FROI !

E Dse2SsFR1 iE Dse2SsF I

. ~5.23!
g-
ird

e is
lex

ese
ble
ome

em
rtain
life
ay-
gh
ap-
s of

the
at

cu-

ce
4-
Figure 9~a! shows the real part of Eq.~5.23! as well as the
real part of the signFR in the inset. The sign disappea
quickly, both in the MC as well as the Langevin calculati
in Fig. 9~b!, but in the Langevin case the accuracy of t
average actually increases with increasing cranking
quency. Instead, for the MC calculation, this translates int
deteriorating signal-to-noise ratio. Also, the complex Lan
vin calculation does not necessitate the calculation of f
separate integrals such as in Eq.~5.23!. However, for small
cranking frequenciesv the complex Langevin averages a
noticeably nonstationary, which results in larger error ba

VI. CONCLUSIONS

The complex Langevin equation offers a new perspec
on the pervasiveness of the sign-problem in fermionic qu
tum many-body calculations. It is not without its own pro
lems, however, most notably the absence of a converge
proof of the Langevin averages. The root of non-stationa
for some complex Langevin averages lies in the structure
fixed points~attractors! and turning points~repellers! in the
complex plane. If both the attractors and repellers lie on
real line, it is just a matter of time until the trajectory hits
pole in the gradient, and the trajectory is thrown far into t
complex plane. The first two examples we have treated s
how this can be avoided by modifying the action such t
-
a
-
r

.

e
-

ce
y
of

e

e
w
t

the fixed points move into the complex plane, without chan
ing the value of the average or the pole structure. The th
example, the Lipkin model, showed that such a procedur
not necessary if the fixed points are naturally in the comp
plane~such as is the case at finite cranking frequencies! even
though the averages may become non-stationary. In th
cases, the Langevin equation continues to deliver relia
averages even when the Monte Carlo averages have bec
meaningless.

While this study certainly suggests that the sign-probl
can be overcome in particular cases, it is by no means ce
that the procedure will be as successful in so-called real-
applications, with realistic interactions. However, as the p
off is potentially large, we believe that there is now enou
evidence to try this approach. Another area where this
proach deserves to be tested is lattice gauge calculation
matter at finite chemical potentialm, which suffer from a
sign-problem because the action becomes complex. As
attractors would naturally move into the complex plane
about; im, the complex Langevin approach seems parti
larly natural in this case.
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