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Physical complexity of symbolic sequences
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Abstract

A practical measure for the complexity of sequences of symbols (“strings”) is introduced that is rooted in automata theory
but avoids the problems of Kolmogorov–Chaitin complexity. This physical complexity can be estimated forensemblesof
sequences, for which it reverts to the difference between the maximal entropy of the ensemble and the actual entropy given
the specific environment within which the sequence is to be interpreted. Thus, the physical complexity measures the amount
of information about the environment that is coded in the sequence, and is conditional on such an environment. In practice, an
estimate of the complexity of a string can be obtained by counting the number of loci per string that are fixed in the ensemble,
while the volatile positions represent, again with respect to the environment, randomness. We apply this measure to tRNA
sequence data. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of “complex systems”, or more generally
the science of “complexity”, has enjoyed tremen-
dous growth in the last decade, despite the fact that
complexity itself is only vaguely defined, and many
alternatives have been proposed over the years (see,
e.g., [1–7], or [8] for a review). In the study of com-
plex systems, an important part is played bysymbolic
sequences, as it is believed that most systems whose
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complexity we would like to estimate can be reduced
to them.

In searching for an adequate measure for the com-
plexity of sequences, two limiting cases must be con-
sidered: the regular strings (such as a sequence of re-
peated symbols) and the random ones. A good measure
of physical complexity is expected to yield a vanishing
complexity for both cases, while the “intermediate”
strings that appear to encode a lot of information are
thought to be complex. Surprisingly, such a measure
has been difficult to define consistently. In particular,
measures of complexity that are based on thecom-
pressibility of a sequence (such as the Kolmogorov
complexity as well as grammar-based “syntactic”
complexities [15] or the Lempel–Ziv complexity [16])
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while useful in signal analysis, turn out to be measures
of randomnessrather than complexity. Indeed, as dis-
cussed below, such measures focus on the correlations
within a sequence while casting aside the important
correlation of the string with what it describes.

Here we propose a measure ofphysicalcomplexity
which closely corresponds to our intuition (it assigns
high complexity to strings with “meaning”, while as-
signing zero complexity to random ones) but can con-
sistently be defined within automata theory and infor-
mation theory. Contrary to the idea that theregularity
of a string is in any way connected to its complex-
ity (as in Kolmogorov–Chaitin theory), we will argue
here that such a classification is, in the absence of
an environment within which the string is to be inter-
preted, thoroughly meaningless. Clearly, it is possible
to invent a coding system, for example, such that all of
Shakespeare’s “Hamlet” is represented by a uniform
(and thus “regular”) string of vanishing Kolmogorov
complexity. Evidently, in such a case the complexity of
the string is hidden in the coding rules which relate the
string to its environment: the ensemble of books. Thus,
we propose that the complexity of a string should,
rather than focusing on its regularity, be determined by
analyzing itscorrelationwith a physical environment.
Similarly, “randomness” is then a meaningless concept
without reference to this environment. In general, we
will find that a sequence can be random with respect
to one environment while perfectly “meaningful” with
respect to another. In all cases, however, estimating
the complexity requires an ensemble of sequences and
an environment with which it is correlated.

In the next section we briefly review Kolmogorov–
Chaitin complexity to establish our notation and
point out its well-known shortcomings as a mea-
sure of physical complexity. Physical complexity is
introduced in Section 3, and its relation to notions
from conventional (Shannon) information theory is
pointed out in Section 4. Practical considerations for
the estimation of complexities are presented in the
subsequent section. A real-life example is offered in
Section 6, by giving an estimate of the complexity of a
tRNA sequence. Section 7 contains some speculations
about the evolution of complexity in simple living
systems.

2. Kolmogorov complexity

Kolmogorov–Chaitin (KC) complexity [1–4] is
rooted in automata theory [9], and provides a mea-
sure for theregularity of a symbolic string. Roughly,
a string is said to be “regular” if the algorithm neces-
sary to produce it on a universal (Turing) automaton
is shorter (with length measured in bits) than the
string itself. A simple example is a bit string with a
repetitive pattern, such as 1010101010. . . The mini-
mal “program” enabling a Turing automaton to write
this string only requires the pattern 10, the length
of the string, and “repeat, write” instructions. A less
obvious example is the binary equivalent of, say, the
first one hundred digits ofπ . While randomprima
facie, a succinct algorithm for a Turing machine can
be written; as a consequence such a string is classified
as regular. Technically, the KC-complexity of a string
s is defined (in the limit of long strings) as the length
(in bits) of the shortest programp producings when
run on universal Turing machineT :

K(s) = min {|p| : s = CT (p)} , (1)

where |p| denotes the length of the program in bits
andCT (p) is the result of running programp on Tur-
ing machineT . While KC-complexity is only defined
modulo the number of prefix instructions (to be added
to the program) necessary to simulate any other com-
puter, it becomes exact in the limit of infinite strings.2

A simple consequence of (1) is that algorithmically
regular strings have vanishing KC-complexity in the
limit of infinite strings, while “random” strings (such
as binary strings obtained from a coin-flip procedure)
are assignedmaximumKC-complexity, i.e., for a ran-
dom stringr:

K(r) ≈ |r|. (2)

Physically, and intuitively, this is unsatisfactory, and
requires us to rethink the very definition of “ran-

2 A program executable on Turing machineT can also be exe-
cuted (with the same result) on any other universal computerT ′,
provided that it is preceded by aprefix code. The relative dif-
ference in size of the minimal program onT and T ′ due to the
length of the prefix can be string dependent, but vanishes in the
limit of infinite strings.
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dom” in a physical world. Our intuition demands
that the complexity of a random string ought to be
zero, as it is somehow “empty”. Furthermore, it has
been known for some time that randomness, from
an automata-theoretic point of view, must beun-
decidable, owing to Gödel’s undecidability theorem
applied to the halting problem: No halting computa-
tion can possibly determine that a string is random,
simply because such a computation would render the
string non-random [10]. In Eq. (2), this problem is
circumvented by allowing a random string to be com-
puted by a Turing machine if it is includedverbatim
on the program tape. Besides redefining the concept
of randomness, such a definition implies the (physi-
cally unsatisfactory) property that random strings are
maximally complex. Below, we show how all these
problems can be averted by insisting thatphysical
Turing machines never operate without context, i.e.,
without an environment.

3. Physical complexity

In order to define physical complexity, we first
need to recall the notion of “conditional complexity”
defined earlier by Kolmogorov. The idea implements
precisely what we have called for earlier: that the
determination of the complexity of a sequence should
depend — be conditional on — the environment that
the sequence is interpreted within. The traditional
Kolmogorov complexity, however, is only conditional
on the implicit rules of mathematics, and nothing else.
These rules are necessary to interpret the program on
the tape, but are usually not sufficient, as we shall see
below. Instead, let us imagine a Turing machine that
takes a tapee as input (which represent itsphysical
environment) and that includes the particular rules of
mathematics of this “world”. Without such a tape,
this Turing machine is incapable of computing any-
thing, except for writing to the output what it reads
in the input. Thus, in the absence of tapee all strings
have maximal complexity. In other words, the afore-
mentioned string that representsπ also has maximal
complexity if it is unconditional on any rules (in
contrast with the KC construction).

In this spirit, we can define the conditional com-
plexity K(s|u) [1,2,11,12] as the length of the small-
est program that computess from e:

K(s|e) = min{|p| : s = CT (p, e)}, (3)

whereCT (p, e) denotes the result of running program
p on Turing machineT given input stringe. This is
not yet a physical complexity. Rather, the smallest pro-
gram that computess from e, in the limit of infinite
strings, will only contain bits that are entirelyunre-
lated to e, since, if they were not, they could be ob-
tained frome with a program of size tending to zero.
Thus,K(s|e) represents those bits ins that are random
with respect toe. If e were to represent the usual rules
of mathematics only, the complexity ofπ (for exam-
ple) conditionalon e reduces to the KC complexity of
π , i.e., zero.

The physical complexity can now be defined as the
number of bits that are meaningful ins (that can be
obtained frome with a program of vanishing size) and
is given by the “mutual complexity” [1,2,11,12]

K(s : e) = K0(s) − K(s|e). (4)

Here, we have introduced theunconditional com-
plexity K0(s), i.e., the complexity given an empty
input tapee ≡ ∅. This is different from the Kol-
mogorov complexityK(s) described above because,
in Kolmogorov’s construction, the rules of mathe-
matics were given to the automaton. As argued for
above,everystring is random if noe is specified, as
non-randomness can only exist with respect to a spe-
cific world, or environment. Thus,K0(s) is always
maximal, given by the length ofs:

K0(s) = |s|. (5)

Consequently, as Eq. (4) represents the length of the
string minus those bits thatcannotbe obtained from
e, K(s : e) represents the number of bits thatcan
be obtained, by a computation withvanishingpro-
gram size, frome. Thus, this represents the physical
complexity ofs. Let us investigate the connection of
these results to standard Shannon information theory
[13].
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4. Physical complexity and information theory

In fact, a moment’s reflection reveals thatK(s : e),
the complexity of strings given a description of the
environmente, is not practical, meaning that it can-
not, in general, be determined by inspection. In other
words, it is impossible to determine which, and how
many, of the bits of strings correspond to information
aboute. The reason is that in general, we are unaware
of the codingused to code information aboute in s,
and as a consequence coding and non-coding bits look
entirely alike. However, it is possible to distinguish
coding from non-coding bits if we are givenmultiple
copies of a symbolic sequence that have adapted inde-
pendently to the environment within which it is to be
interpreted, or more generally, if a statisticalensemble
of strings is available to us. In that case, coding bits
are revealed by non-uniform probability distributions
across the ensemble (“conserved sites”), whereas ran-
dom bits sport uniform distributions (“volatile sites”).
The determination of complexity then becomes an
exercise in information theory. Indeed, the link be-
tween automata theory and information theory has
been pointed out quite early, as it was realized [14] that
the average complexity〈K〉, in the limit of infinitely
long strings tends to the entropy of the ensemble of
stringsS 3

〈K(s)〉S =
∑

s

p(s)K(s) ≈ H(S)

= −
∑

s

p(s)logp(s), (6)

where strings appears in the ensembleS with proba-
bility p(s). Note that this is consistent with our deter-
mination thatK(s), in the absence of an environment
e, must equal the string’s length. Indeed, if nothing
is known about the environment that strings pertains
to, the probability distributionp(s) must be uniform
(principle of insufficient reason). As a consequence (if
logarithms are taken to base 2),H(S) = |s|, where
|...| as before denotes the size of a string. On the
other hand, if an environmente is given we have some

3 This holds for near-optimal coding. For stringss that do not
code perfectly we have〈K〉 ≥ H (see, e.g., [17]).

information about the system, and the probability dis-
tribution is non-uniform. Indeed, it can be shown that
for every probability distributionp(s|e) to finds given
e, we have

H(S|e) ≤ H(S) = |s|. (7)

as a result of the concavity of Shannon entropy. The
difference between the maximal entropyH(S) = |s|
and H(S|e), according to the construction outlined
above, should then represent the average number of
bits in strings taken from the ensembleS that can be
obtained by zero-length universal programs frome:

〈K(s : e)〉S =
∑

s

p(s) K(s : e)

≈ H(S) − H(S|e) ≡ I (S : e). (8)

In Eq. (8), we used the usual definition of information
theory that the difference between the “marginal” en-
tropy H(S) and the entropy ofS given e, H(S|e), is
just the information aboute contained in the ensem-
ble S. Note that strictly speaking,I (S : e) is not an
information. Rather, an information is obtained only
if I (S : e) is averaged over possible occurrences ofe

in an ensembleE

I (S : E) =
∑

e

p(e) I (S : e). (9)

Despite this, we shall in the following continue to refer
to I (S : e) as the information aboute stored inS. We
now ask the question whether the physical complexity
I (S : e) is a measurable quantity.

5. Estimating entropies in finite ensembles

The entropy of symbolic sequences (in particular
genetic ones) is difficult to obtain accurately if there
are correlationsamongsites which span more than a
few symbols. This is a well-known problem (see, e.g.,
[18] and references therein) and is usually addressed
using sophisticated statistical methods and models.
Here, we demonstrate an approximate method which
allows us to estimate this entropy using a represen-
tative ensembleS (given environmente) of such
sequences.
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In general, the entropy

H(S|e) = −
∑

s

p(s|e) logp(s|e) (10)

can be estimated by sampling the probability distribu-
tion p(s|e). In a population ofN strings in environ-
mente, the quantityn(s)/N , wheren(s) denotes the
number of strings of types, approximatesp(s|e) ar-
bitrarily well asN → ∞. However, if the number of
different strings is very large as is typically the case
for genetic strings, the sampling error incurred from a
population that is not exponentially large can be over-
whelming. Indeed, it is known [19] that for symbolic
strings that can take onM states, the sampling error
in the entropy, to first order in 1/N , is

1H = M − 1

2N
, (11)

if we agree to take logarithms to the base of the
alphabet-size. Thus, for strings of lengthl constructed
from an alphabet of sizeD only populations of the or-
derN ' Dl will ensure that the finite-size error of the
entropy is of order 1. In most practical cases, such en-
sembles are unrealistic. Still, we may attempt to esti-
mate the entropy by summing theper-siteentropies of
the string. Random sites, identified by a nearly uniform
probability distribution, contribute positively to the en-
tropy whereas non-random sites (which have strongly
peaked distributions) contribute very little. Thus,

H(S|e) ≈
∑

i

H(xi |e). (12)

Using this estimate, however, introduces a systematic
error which is due to the fact that the particular code
used to encode the sequence may not be optimal, in
other words, there may be correlationswithin a se-
quence. Let us consider as an example a sequence of
length two with positionsa andb, or more generally
a sequences arbitrarily partitioned into subsequences
a andb: s = ab (see Fig. 1). The physical complexity
in an environmente is, according to Eq. (8), given by

I (S : e) = H(ab) − H(ab|e), (13)

i.e., the entropy of strings irrespective of any envi-
ronment (or, equivalently, averaged over all possible

Fig. 1. Entropy diagram for a strings = ab (with subsequences
a and b) in environmente, with notations. The shaded region is
the complexityI (ab : e). The areas that are not filled-in in this
diagram are irrelevant for the determination of complexity.

environments) minus the entropy given the particular
environment (see shaded region in Fig. 1). This can
be rewritten as

I (S : e) = H(a) + H(b) − H(a|e)
−H(b|e) − H(a : b : e)

= |s| −
∑

i

H(xi |e) − H(a : b : e), (14)

where we introduced the short hand|s| = H(a) +
H(b), i.e., the sum of the unconditional per-site
entropies is just the length of the sequence, and∑

iH(xi |e) is the sum of the per-site conditional en-
tropies. It is the latter which can be measured in actual
populations. Approximating the physical complexity
by

C ' |s| −
∑

i

H(xi |e), (15)

(i.e., replacing the true entropy as in Eq. (12)) thus
misses a pieceH(a : b : e), the center of the dia-
gram in Fig. 1. Now, for perfect codesH(a : b : e)

actually vanishes, because all bits ofs must be inde-
pendent of each other when ignoring the environment
(i.e., the particular coding rules)e. This implies that
the information is optimally stored ins (it is perfectly
compressed), which is the case when taking the av-
erage of mutual KC-complexity (see Eq. (8)), as the
limit of perfect codes is always implied there. In phys-
ical ensembles, the error remains, and can only be
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minimized by reducing the influence of correlations
in

∑
iH(xi |e). How this can be done approximately

will be shown below using tRNA as an example. Note
that H(a : b : e) can be positive as well as negative,
implying thatC is neither a lower nor an upper bound
on the complexity.

6. Complexity of genomes

As an example, let us find an approximation for
the complexity of biological sequences. Our purpose
here is to outline the practical aspects of such a de-
termination based on the complexity measure pro-
posed, rather than an examination of the feasibility
of this method with current technology. Consider for
the purpose of illustration the molecule tRNA, which
consists out of 76 nucleotides that contort into the
well-known clover-leaf secondary structure (see Fig.
2), and whose tertiary structure is essential for the
translation of codons to amino acids. If the complex-
ity of this molecule is represented by the genomic
complexity of its sequencesRNA, then the complexity
of tRNA can be obtained by identifying the shortest
description of the random part ofsRNA (as this rep-
resentsK(S|e)) and subtracting it from the length of
the molecule. ReplacingK by its average, the phys-

Fig. 2. Secondary structure of tRNA with 76 common positions,
of which 52 are independent and thus useful in the determination
of the sequence complexity. Fixed positions are black, moderately
diverged ones are grey, and highly volatile ones are colored white
(from [20]).

Fig. 3. Entropies for nucleotide positions 27 and 43 in the anticodon
stem. The error in the entropy of the pair (27,43) contributing
to the error in the complexityI (S : e) is given by the center of
the diagram. Not counting one of the two in the sum of per-site
entropies eliminates this error. Entropies are measured in base 4.

ical complexity is then the length of the string mi-
nus the remaining randomness according to Eq. (15),
and should represent theessencewhich generates the
RNA’s function.

For tRNA from a given species, access to an ensem-
ble of sequences allows a classification of each posi-
tion according to its volatility. ForBacillus subtilisfor
example, we can use a sample of 32 aligned (struc-
turally similar) sequences4 to determine whether nu-
cleotide positions are volatile (white in Fig. 1), mod-
erately diverged (grey) or fixed (black) [20]. Counting
the black (and to some extent the grey) sites should
approximate the complexity of the sequence. But is
this code optimal for tRNA, or is there a substantial
piece of the typeH(a : b : e) mentioned above? Such
a piece represents correlations between sites in the
string which arealso correlated to the environment,
i.e., they are important for function. In fact, all those
sites that form Watson–Crick pairs in the secondary
structure of the molecule (and which show some vari-
ation) contribute to such an error, as their contribution
to the entropy in Eq. (15) will bedouble-counted.

An example of this is given in Fig. 3, which de-
picts the entropy diagram of positions 27 and 43 in
the sequence in Fig. 2 (nucleotide 27 is paired with
nucleotide 43 in the anticodon stem). Counting paired

4 Sequence data was obtained from the EMBL nucleotide se-
quence library [21].
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positions only once (the per-site entropy of base-paired
positions are usually equal) and ignoring the anticodon
leaves 52 “reference positions”. Using the sequence
data to calculateH(xi) for each of the 52 positions re-
veals that the sum of their entropies is approximately
29 nucleotides (58 bits). The complexity estimate for
this sequence is thus (ignoring the anticodon inl also)

C = l −
∑

i

′
H(xi |e) = 73− 29 = 44 nucleotides,

(16)

where
∑′

denotes the sum over reference positions
only. Naturally, only correlations due to base-pairing
are eliminated in this manner. Correlations due to other
epistatic effects remain. Note also that the estimate of
the entropyH ≈ 29 is subject to the finite sample
error (11), and is thus only accurate to 5%.

7. Evolution of complexity

We can also extend our horizon and ask whether the
evolution of physical complexity displays the trend of
evolution toward higher complexity that seems evident
in living systems (see, e.g., [22]). While we have an
intuitive feeling that such an evolution towards higher
complexity is responsible for the emergence of higher
and higher organisms throughout time, such a state-
ment must be questionable as long as there is no un-
ambiguous measure of complexity.

Evolution of complexity can be observed explicitly
in artificial living systems [23] which involve seg-
ments of (computer)-code self-replicating in a noisy
environment replete with information. In such sys-
tems, an information landscape is specified by the
user, and a population of self-replicating computer
programs is allowed to adapt to it without external in-
terference. More precisely, the “accidental” discovery
(via random mutations) of a sequence that benefits the
string is “frozen” in the genome owing to the higher
replication rate of its bearer. These sequences replicate
when their code is executed on a virtual computer. As
such, they are analogous to catalytically active RNA
sequences that serve as the templates of their own
reproduction.

The information-bearing sections of the code
become apparent in equilibrated populations of
self-replicating code as they arefixed, while the
volatile positions provide for genomic diversity with-
out storage of information. Again, the determination
of volatility of a site is only possible statistically,
i.e., by examining ensembles of members of the same
“species”. Adaptive events (in which the replication
rate increases) decrease the number of volatile in-
structions if the sequence length stays constant, while
a size increase without commensurate acquisition of
information increases that number [23]. Consequently,
physical complexity (measured sufficiently far away
from an adaptive event in order to allow equilibra-
tion) only increases in evolution in an unchanging
environment.

According to the above arguments, the number of
non-volatile instructions in a code within a given en-
vironment represents an estimate of the physical com-
plexity of a particular species of string. Placed in a dif-
ferent environment, the strings are meaningless; they
will not replicate anywhere except for the specific (real
or virtual) world they have evolved in. Furthermore, in
a different world all (previously) fixed positions will,
under the influence of noise, revert to volatile ones.
Thus, as emphasized throughout this paper, the infor-
mation content, or complexity, of a genomic stringby
itself (without referring to an environment) is a mean-
ingless concept. In artificial living systems, the in-
crease of physical complexity, which coincides with
increasing acquisition and storage of information, can
be monitored directly, and illustrates the usefulness of
this measure. Note that this process of acquisition of
information constitutes, in the language of thermody-
namics, to the operation of anaturalMaxwell-demon:
the population performs random measurements on its
environment, and stores those “results” that decrease
the entropy, but rejects all others. Thus, the process
can be likened to a semi-permeable “membrane” for
information, and the physical complexity increases as
a function of evolutionary time (given a fixed environ-
ment) as the strings store more and more information
about that environment. Naturally, a change in envi-
ronment (catastrophic or otherwise) generally leads
to a reduction in complexity. Such experiments sug-
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gest that physical complexity is indeed the “quantity
that increases when self-organizing systems organize
themselves” [24].
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