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We introduce a separability criterion based on the positive map #:$˜(Tr $)!$ , where $ is a trace-class
Hermitian operator. Any separable state is mapped by the tensor product of # and the identity into a non-
negative operator, which provides a simple necessary condition for separability. This condition is generally not
sufficient because it is vulnerable to the dilution of entanglement. In the special case where one subsystem is
a quantum bit, # reduces to time reversal, so that this separability condition is equivalent to partial transpo-
sition. It is therefore also sufficient for 2"2 and 2"3 systems. Finally, a simple connection between this map
for two qubits and complex conjugation in the ‘‘magic’’ basis %Phys. Rev. Lett. 78, 5022 !1997"& is displayed.
%S1050-2947!99"00708-8&

PACS number!s": 03.67.!a, 03.65.Bz, 89.70.#c

I. INTRODUCTION

The state of a quantum bipartite system AB is described
as separable !or classically correlated" if it can be obtained
by two parties A and B that prepare their subsystem accord-
ing to some common instructions !see, e.g., Refs. %1,2&".
Mathematically, this means that the density operator $ char-
acterizing the state of the bipartite system can be written as a
convex sum of product states, that is,

$$'
i
wi!$ i

(A)
! $ i

(B)" , !1"

where the weights wi satisfy ' iwi$1 and 0(wi(1. The
wi’s can be viewed as the probability distribution of a clas-
sical random variable that is known to both parties A and B
and used by them to prepare their subsystem. Namely, if the
subsystem A !and B" is prepared in state $ i

(A) !and $ i
(B))

when the classical variable takes on value i, the state of the
joint system AB is given by Eq. !1". A separable state $
satisfies several interesting properties. The joint statistics of
any pair of local observables OA and OB !measured sepa-
rately on each subsystem" can be described classically, based
on an underlying global ‘‘hidden’’ variable. For example, the
quantum expectation value of the product OAOB is given by

Tr%$!OA!OB"&$'
i
wi)a* i)b* i , !2"

where )a* i$Tr%$ i
(A)OA& and )b* i$Tr%$ i

(B)OB& . In other
words, the joint statistics of OA and OB can be understood
classically, by assuming that the local statistics of the out-
comes can be described separately for each $ i

(A) and $ i
(B) ,

and that the correlations originate from a hidden variable i
distributed according to wi . Moreover, a separable system
always satisfies Bell’s inequalities !the converse is not true",
so that the latter represent a necessary condition for separa-
bility !see, e.g., Ref. %1&". Note that any joint probability
distribution can be represented as a convex combination of
product distributions, so that classical probabilities are al-
ways separable in the above sense.
The decomposition of a separable state $ into a convex

mixture of product states is not unique in general, but the

fact that $ is separable implies that there must exist at least
one such decomposition. If no such decomposition can be
found, then $ is termed inseparable or entangled, and it can
be viewed as quantum correlated. Except for the special case
where $ describes a pure state, the distinction between sepa-
rable and inseparable states appears to be an extraordinarily
difficult problem. More precisely, some mixed states can be
‘‘weakly’’ inseparable, in the sense that it is very hard to
establish with certainty their inseparability. This is basically
due to the difficulty of enumerating explicitly all the possible
convex combinations of product states in order to detect that
a state is actually inseparable. Still, it is possible to find some
conditions that all separable states must satisfy, therefore
allowing the detection of inseparability when a state violates
one such condition. The most common example of such a
necessary condition for separability is the satisfaction of
Bell’s inequalities. A state that violates Bell’s inequalities is
inseparable, while a state satisfying them may be separable
or weakly inseparable %1&.
More recently, a surprisingly simple necessary condition

for separability has been discovered by Peres %2&, which has
been shown by Horodecki et al. %3& to be strong enough to
guarantee separability for bipartite systems of dimension 2
"2 and 2"3. If the state $ is separable, then the operator
obtained by applying a partial transposition with respect to
subsystem A !or B" to $ must be positive, that is,

$TA$!$TB"*+0. !3"

Thus, this criterion amounts to checking that all the eigen-
values of the partial transposition of $ are non-negative,
which must be so for all separable states. In Hilbert spaces of
dimensions 2"2 and 2"3, this condition is actually suffi-
cient, that is, it suffices for ruling out all inseparable states
%3&. In larger dimensions, however, it is provably not suffi-
cient, in the sense that it does not detect some weakly insepa-
rable states %3,4&. A general necessary and sufficient condi-
tion for separability in arbitrary dimensions has been found
by Horodecki et al. %3&, which states that $ is separable if
and only if the tensor product of any positive map !a map is
defined as positive if it maps positive operators into positive
operators" acting on A and the identity acting on B maps $
into a positive operator. Although very important in
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theory, this criterion is hardly more practical than the defini-
tion of separability itself since it involves the characteriza-
tion of the set of all positive maps. It appears to be useful
mainly for 2"2 and 2"3 bipartite systems, where such a
general characterization has been found %3&.
In this paper, we introduce a positive map, #:$˜(Tr $)

!$ , inspired by the structure of the conditional amplitude
operator discussed in Refs. %5,6&. This map gives rise to a
simple necessary condition for separability in arbitrary di-
mensions. More specifically, it is shown in Sec. II that any
separable state is mapped by the tensor product of # !acting
on one subsystem A" and the identity !acting on the other B"
into a non-negative operator. In other words, the eigenvalues
of the operator (# ! I)$$(1A!TrA $)!$ must all be non-
negative if the !unit-trace" operator $ is separable, which
provides a simple test for separability called reduction crite-
rion. This separability criterion has been independently de-
rived by Horodecki and Horodecki in Ref. %7&. In the case
where # is applied to a two-state system !quantum bit or
spin-1/2 particle", as studied in Sec. III, this criterion corre-
sponds to the time-reversal operation applied on one system
with respect to the other one. As Peres’ criterion has been
shown to be unitarily equivalent to such a ‘‘local’’ time-
reversal by Sanpera et al. %8&, this reduction criterion is sim-
ply equivalent to Peres’ for 2"n composite systems. There-
fore, it also results in a sufficient condition for 2"2 and
2"3 systems, according to Ref. %3&. It also has a very simple
geometric representation in the Hilbert-Schmidt representa-
tion of a 2"2 bipartite state. Finally, we demonstrate that the
map # is connected to the complex conjugation operation in
the ‘‘magic’’ basis for two qubits introduced recently by Hill
and Wootters %9&, which underlies an interesting connection
with the entropy of formation %10&. In Appendix A, we illus-
trate the reduction separability condition by applying it to
several separable or inseparable states, and compare it to the
separability criterion based on partial transposition.

II. SEPARABILITY OF BIPARTITE MIXED STATES
OF ARBITRARY DIMENSION

We consider a bipartite quantum system characterized by
the density operator $AB defined in the joint Hilbert space
HAB$HA!HB , where HA and HB have arbitrary dimen-
sions dA and dB .
Definition 1. Define a linear map , which maps Hermit-

ian operators on HAB into Hermitian operators on HAB :

,:$AB˜-AB.1A! $B!$AB with $B$TrA%$AB& . !4"

This map commutes with a unitary transformation acting lo-
cally on A and B. Indeed, if $AB undergoes a unitary trans-
formation of the product form, i.e.,

$AB˜$AB! $!UA!UB"$AB!UA
†

!UB
† " , !5"

it is easy to check that $B!$TrA%$AB! &$UB$BUB
† , so that

-AB˜-AB! $!UA!UB"-AB!UA
†

!UB
† ", !6"

i.e., -AB transforms just like $AB . As a consequence, the
spectrum of -AB is invariant under a UA!UB isomorphism
on $AB .

Theorem 1. A necessary condition for the separability of
the state $AB of a bipartite system AB is that it is mapped by
, into a positive semidefinite operator, i.e., ,$AB+0.
We need to prove that any separable state is mapped into

a positive semidefinite operator -AB . Consider a separable
bipartite system AB characterized by a convex combination
of product states:

$AB$'
i
wi!$A

(i)
! $B

(i)" with '
i
wi$1 and 0(wi(1,

!7"

where $A
(i) and $B

(i) are states in HA and HB , respectively. It
is easy to verify that the operator -AB$,$AB is positive
semidefinite,

-AB$'
i
wi%!1A!$A

(i)" ! $B
(i)&+0 !8"

since a sum of positive operators is a positive operator. In-
deed, the two terms in square brackets are each +0. "
In short, the map , reveals nonseparability: if -AB+” 0,

then $AB is inseparable. This necessary condition for the
separability of mixed states is directly related to that based
on the conditional amplitude operator !although it is simpler
as it does not require the calculation of the latter operator"
%6&. Moreover, it is easy to see that , conserves separability
since it is linear and maps product states into product opera-
tors: if $AB is separable, then -AB+0 is also separable !or, in
general, written as a convex sum of direct products". Let us
now calculate the partial traces of -AB :

-A$TrB%-AB&$1A!$A , !9"

-B$TrA%-AB&$!dA!1 "$B , !10"

where dA is the dimension of HA . This shows that , does
not preserve the trace in general. Indeed, the trace is scaled
by an integer factor under , , that is, Tr%-AB&$(dA
!1)Tr%$AB& . Thus, , is trace preserving only in the special
case where A is a two-state system !i.e., dA$2). It is also
interesting to note that , is always reversible, the inverse
map being given by

,!1:-AB˜!dA!1 "!1!1A! -B"!-AB$$AB , !11"

where -B is defined as above. Note that , is equal to its
inverse ,!1 only if dA$2. In that case, if -AB is separable,
then ,!1:-AB˜$AB+0. !The fact that the inverse map re-
veals inseparability is true in this case only."
The separability condition based on , is illustrated in

Appendix A, where we consider several separable and in-
separable states. As we will show in Sec. III, -AB+0 results
in the same condition as Peres’ in the case of two quantum
bits, in which case it is sufficient !see theorem 4"; for larger
dimensions, it is only necessary.
Remark 1. Following the approach of Horodecki et al. %3&,

the map , can be written as the tensor product of a positive
linear map # and the identity, that is,

,$# ! I with #:$˜!Tr $"!$ , !12"
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where # acts on Hermitian operators in HA and the identity
acts on operators in HB . Since # is a positive map, ,$#
! I maps separable states into positive operators %3&. It there-
fore results in a necessary condition for separability, accord-
ing to theorem 1. The map # commutes with an arbitrary
unitary transformation U, that is,

#!U$U†"$U!#$"U† , !13"

which makes the separability condition based on ,$# ! I
independent on the basis chosen for A and B. In the same
manner, the inverse map ,!1 can be written as

,!1$#!1
! I with #!1:$˜ Tr $

d!1!$ , !14"

where d is the dimension of the Hilbert space of $ . Note that
#!1 is not a positive map for d%2, so that ,!1 is in general
useless as far as detecting inseparability is concerned. This
emphasizes that the reduction separability criterion is quite
special in two dimensions !e.g., for a spin-1/2 particle or a
quantum bit", as will be studied in Sec. III. Specifically, we
will show that # applied to a two-dimensional system can be
interpreted as time reversal. Consequently, the map ,
amounts to applying time reversal on subsystem A, while
leaving subsystem B unchanged. Such a link between ‘‘lo-
cal’’ time reversal and separability has recently been pointed
out by Sanpera et al. %8&.
Remark 2. It is interesting to consider the classical analog

of the maps # and ,$# ! I to gain some insight into their
physical meaning. First, applying # to a classical probability
distribution pi !diagonal $) corresponds to the transforma-
tion

pi˜qi$'
k
pk!pi . !15"

!Obviously, q j+0 is not normalized except for a binary dis-
tribution." The classical analog of ,$# ! I is

pi j˜qi j$! '
k
pk" j!pi" j # p j$p j!pi j . !16"

Since pi" j is a probability distribution in i, we always have
1!pi" j+0 so that qi j+0 and the separability criterion is
fulfilled. This emphasizes that quantum inseparability !‘‘qi j
&0’’" may be viewed as resulting from a conditional prob-
ability that exceeds 1 !more precisely, an eigenvalue of $A"B
which exceeds 1" %6&.
Definition 2. Two additional maps from operators on HAB

to operators on HAB can be defined: the dual map

,̃:$AB˜-̃AB$$A! 1B!$AB !17"

and the symmetric map

M :$AB˜/AB$1A! 1B!$A! 1B!1A! $B#$AB , !18"

where $A$TrB%$AB& and $B$TrA%$AB& .
The map , which we considered until now is related to

the conditional amplitude operator of A conditionally on B,
that is $A"B %6&. Of course, a similar linear map can be de-

fined using the amplitude operator $B"A , and exactly the
same conclusions follow. This is the dual map ,̃ defined in
Eq. !17". It is trace preserving and self-inverse in the case
where dB$2. It can obviously be written as the tensor prod-
uct ,̃$I! # , where # now acts on operators on HB , and
therefore commutes with a UA!UB isomorphism. Since # is
positive, ,̃ maps separable states into positive !separable"
operators, which results in another separability condition,
i.e., -̃AB+0. As we will see in Sec. III, the operators -AB

and -̃AB can be shown to have the same spectrum when dA
$dB$2, in which case they result in the same separability
condition. However, this property does not hold in larger
dimensions, i.e., -AB and -̃AB do not have the same spectrum
in general !see Appendix A".
We can also construct another linear map by cascading ,

and ,̃ !the order is irrelevant", which results in the symmet-
ric map M$,̃,$# ! # defined in Eq. !18". Any separable
$AB is mapped by M into a separable operator /AB+0, as
expected. The symmetric map also commutes with a UA
!UB isomorphism

M %!UA!UB"$AB!UA
†

!UB
† "&

$!UA!UB"!M$AB"!UA
†

!UB
† " !19"

so that the spectrum of /AB$M$AB is invariant under local
transformations on $AB . It is also reversible, its inverse map
M!1$#!1

! #!1 being given by

M!1:/AB˜1A! 1B!!dB!1 "!1!/A! 1B"

!!dA!1 "!1!1A! /B"#/AB$$AB , !20"

where /A$TrB%/AB&$(dB!1)(1A!$A) and /B
$TrA%/AB&$(dA!1)(1B!$B). As expected, this map is
trace preserving and self-inverse only in the case where dA
$dB$2. It corresponds then to a time-reversal operation
applied to the joint system AB . In this case, M by itself is not
useful as far as revealing inseparability is concerned since it
is positive, i.e., M$AB+0. Therefore, all inseparable states
of two quantum bits are mapped into positive operators just
as are separable states. Still, M plays a role when analyzing
the separability of two quantum bits as it is equivalent to the
complex conjugation operation in the ‘‘magic’’ basis intro-
duced by Hill and Wootters %9& !see theorem 6". Whether the
positivity of M holds in arbitrary dimensions is not known.
Theorem 2. The reduction separability criterion (,$AB

+0) is not a sufficient condition for the separability of $AB .
In order to prove that this criterion is not sufficient, we

show that it is possible to find an inseparable system with
-AB+0, i.e., such that its inseparability is not revealed by , .
We will construct such an inseparable system by extending
an inseparable component with a separable one, ‘‘diluting’’
the inseparability %6&. Consider an inseparable system A!B!
with -A!B!+” 0. Let us extend A!B! with a separable system
A"B", and apply the reduction criterion to the joint system
AB where A.A!A" and B.B!B". Since the joint system is
characterized by $AB$$A!B!! $A"B" , its associated operator
under the map , is given by
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-AB$,$AB$!1A!! $B!" ! !1A"! $B""!$A!B!! $A"B" .
!21"

Using the operators -A!B!$,$A!B!$1A!! $B!!$A!B! and
-A"B"$,$A"B"$1A"! $B"!$A"B" corresponding to , ap-
plied to each component system, we obtain

-AB$-A!B!! -A"B"#-A!B!! $A"B"#$A!B!! -A"B"
!22"

with -A!B!+” 0 and -A"B"+0 !since A"B" is separable". The
dilution of entanglement comes from the fact that the third
term on the right-hand side of Eq. !22" is +0. As a conse-
quence, Eq. !22" cannot guarantee that -AB+” 0 even though
the composite system AB contains an inseparable component
as -A!B!+” 0 %i.e., even though the sum of the first two terms
on the right-hand side of Eq. !22" is +” 0&. "
Note that, even when both components are inseparable

with -A!B! ,-A"B"+” 0, then -AB+” 0 is not necessarily true, so
that the inseparability of the joint system AB is not always
revealed by , . This property contrasts with the situation
prevailing when using the conditional amplitude matrix if the
conditional amplitude operator of each component admits an
eigenvalue %1, then so does the corresponding operator for
the whole system %6&". Conversely, Eq. !22" implies that if
both components have -A!B!+0 and -A"B"+0, then -AB
+0.
It is not difficult to find examples of such inseparable

states AB whose inseparability is masked !i.e., -AB+0) by
extending an inseparable component A!B! that satisfies
-A!B!+” 0 with a separable one A"B". For example, let A!B!
be one of the Bell states, e.g., $A!B!$"0#*)0#" with
"0#*$2!1/2("00*#"11*), and let A"B" be a product of two
random quantum bits, i.e., $A"B"$(1A"! 1B")/4. Since $B!
$1B!/2, we have -A!B!$1A!B!/2!$A!B!+” 0, as expected.
Using -A"B"$$A"B" , we see that Eq. !22" yields

-AB$!1A!B!!$A!B!" ! $A"B" , !23"

which is obviously a non-negative operator, so that the in-
separability of AB is hidden. The example of weakly insepa-
rable states with a positive partial transpose !see Ref. %4&" is
treated in Appendix A, to illustrate that -AB+0 is not a
sufficient condition in general.
Remark 1. The mechanism of dilution of inseparability

can be understood by examining the action of the map # on
product states. Indeed, when applying ,$# ! I on the state
$AB$$A!B!! $A"B" , # acts on the state $A!! $A" !B and B!
are left unchanged by I". Let us consider a density operator
of the product form $$$!! $". Since we have Tr($)
$Tr($!)Tr($"), we see that it is mapped to

#!$!! $""$Tr!$!"Tr!$""!$!! $"

$%Tr!$!"!$!& ! %Tr!$""!$"&

#Tr!$!" ! $"#$!!Tr!$""!2$!! $"

$#$!! #$"##$!! $"#$!! #$" , !24"

which implies the relation

#$#!! #"##!! I"#I!! #", !25"

where #! !or #") stands for the same map but acting on the
subspace of $! !or $") while # acts on the joint space. Using
the same notation for , !i.e., ,! acts on the subspace of
A!B! while ," acts on the subspace of A"B"), the latter
equation gives

,$# ! I$,!! ,"#,!! I"#I!! ," , !26"

which implies Eq. !22". The same reasoning can be applied
to the dual map ,̃$I! # and the symmetric map M$#
! # . Thus, even if the maps ,! and ," reveal inseparability
by themselves, the combined map, Eq. !26", is not guaran-
teed to do so because the nonpositivity of (,!! ,")$
$(,!$!)! (,"$") can be masked by one of the last two
terms !the one where , is applied to the separable compo-
nent".
Remark 2. It is worth noting that the separability criterion

based on the partial transposition %2& does not suffer from
this dilution of inseparability !even though it is not a suffi-
cient condition in general". Consider, as before, a system AB
characterized by $AB$$A!B!! $A"B" , where the inseparable
component A!B! is detected by partial transposition, i.e.,
($A!B!)

TA!+” 0. Since ($AB)TA$($A!B!)
TA!! ($A"B")

TA", we
have TrA"B"%($AB)

TA&$($A!B!)
TA!+” 0. Since the partial

trace of a non-negative operator is a non-negative operator,
this implies that ($AB)TA+” 0, so that the inseparability of the
extended system AB is detected provided that the insepara-
bility of a component of it !here A!B!) is detected.

III. SEPARABILITY OF TWO
TWO-DIMENSIONAL SYSTEMS

Theorem 3. The map # acting on a two-dimensional sys-
tem corresponds to time reversal, and is therefore equivalent
to applying the complex conjugation operator K followed by
a rotation Ry by an angle 1 about the y axis, that is, #
$RyK .
Let us write the arbitrary state of a two-dimensional quan-

tum system !a quantum bit" in the Bloch-sphere picture:

$$
1
2 !1#r!•2! ", !27"

where 2! represent the three Pauli matrices and r!$Tr($2! ) is
a real vector in the Bloch sphere !of radius 1". The vector r!
describes the statistics of measurements on the system, as,
for example, the quantum expectation value of the spin
component along an axis defined by the vector v! is
Tr%$(v! •2! )&$(v! ,r!). Using Eq. !27", it is straightforward to
check that

#$$1!$$
1
2 !1!r!•2! ". !28"

Thus, # performs a spin flip, or, equivalently, performs a
parity transformation on the Bloch vector r!˜!r! . This can
be viewed as time reversal, and therefore can be decomposed
into a complex conjugation K followed by a rotation Ry of
an angle 1 about the y axis, that is, #$T$RyK %11&. "
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Remark 1. In order to see this explicitly, consider the
action of the map ,$# ! I on a product state "3*$"a*
! "b*. Using $AB$Pa!Pb with Pa$"a*)a" and Pb
$"b*)b", we have

-AB$Pa
#

!Pb , !29"

where Pa
#$#("a*)a")$1A!"a*)a" is the projector on the

subspace orthogonal to "a*. In the case where dA$2, Pa
# is

a rank-one projector as the total trace is preserved. Then,
Pa

#$"a#*)a#", where "a#* is a state vector orthogonal to
"a*. !Note that it is impossible to construct a state "a#* that is
orthogonal to an arbitrary state "a* by applying a unitary
transformation alone." It is easy to check that "a#* can be
obtained by applying a complex conjugation K on the com-
ponents of "a* followed by a rotation Ry of angle 1 about
the y axis. Indeed, any state "a*$4"0*#5"1* !with "4"2
#"5"2$1) is transformed into "a#*$!5*"0*#4*"1* by
applying the rotation

Uy$exp!!i12y/2"$!i2y$2x2z$! 0 !1
1 0 # !30"

!that is, a bit and phase flip" to the state vector 4*"0*
#5*"1* . The transformed state "a#* is such that )a#"a*
$0 and "a#*)a#"$1A!"a*)a", as expected. Thus, # coin-
cides with time reversal for a spin-1/2 system (dA$2) as the
latter is equal to complex conjugation K followed by the
rotation Ry , i.e., T$RyK %11&. Consequently, # is an anti-
unitary operation on state vectors in a two-dimensional Hil-
bert space !see Appendix B". !For any two state vectors "a*
and "ã*, we have )ã#"a#*$) ã"a**.)
Corollary. For the Hilbert-Schmidt decomposition of

$AB , the map ,$# ! I corresponds to a sign flip of the Pauli
matrices acting on A while leaving those acting on B un-
changed.
Let us consider the Hilbert-Schmidt decomposition of an

arbitrary state of two quantum bits !or spin-1/2 particles"
%12&:

$AB$
1
4 ! 1A! 1B#r!•2! A! 1B#1A! s!•2! B

# '
m ,n$1

3

tn ,m2A
(n)

! 2B
(m)# , !31"

where 2A
(n) and 2B

(m) stand for the Pauli matrices !with n
$1,2,3) in the A and B space, respectively. Equation !31"
depends on 15 real parameters, the two three-dimensional
vectors r! and s! , and the 3"3 real matrix tn ,m . The vectors r!
and s! correspond to the reduced state of A and B in the Bloch
sphere since we have

$A$TrB%$AB&$
1
2 !1A#r!•2! A", !32"

$B$TrA%$AB&$
1
2 !1B#s!•2! B". !33"

They characterize the reduced systems A and B, that is, the
local !marginal" statistics of any observable on A or B. The
matrix tn ,m$Tr%$AB(2A

(n)
! 2B

(m))& describes the joint statis-
tics of A and B as it characterizes the correlation between the
measured spin components along two axes !defined by the
vectors a! and b! ): Tr%$(a! •2! A!b! •2! B)&$(a! ,tb! ). Using Eqs.
!31" and !33", it is checked by straightforward calculation
that , simply flips the sign of the terms in 2! A :

-AB$
1
4 ! 1A! 1B!r!•2! A! 1B#1A! s!•2! B

! '
m ,n$1

3

tn ,m2A
(n)

! 2B
(m)# . !34"

This implies that ,$# ! I applied to a 2"n system corre-
sponds simply to ‘‘local’’ time reversal T! I , that is, per-
forming time reversal on the subsystem A while leaving the
subsystem B unchanged %8&.
Remark 2. The dual map ,̃$I! # flips the sign of the

Pauli matrices acting on B while leaving the sign of those
acting on A unchanged. The action of the symmetric map
M$# ! # on the Hilbert-Schmidt decomposition of $AB is to
flip the sign of the Pauli matrices 2! A and 2! B . This operation
corresponds therefore to time reversal applied to A and B
simultaneously, and is equivalent to complex conjugation in
the ‘‘magic’’ basis !see theorem 6". It is worth noting that the
set of states that remain invariant under the symmetric map
M are those with r!$s!$0, that is, mixtures of generalized
Bell states !the latter being defined as the states obtained by
applying any local transformation to the four Bell states".
These states are called ‘‘T states’’ by Horodecki et al. %12&,
and are such that the entropy of A and B is maximal, that is
S($A)$S($B)$1. !The only pure states in this set are the
fully entangled states of two qubits, i.e., the generalized Bell
states." Thus, in particular, the !generalized" Bell states are
left unchanged by the action of M. In contrast, a !separable"
product state $A! $B is mapped into the distinct !non-
negative" state /AB$(1A!$A)! (1B!$B). Because of this
property, /AB by itself is uninteresting as far as revealing
inseparability is concerned, as mentioned earlier.
Theorem 4. A bipartite system of two-dimensional com-

ponents A and B characterized by an arbitrary joint density
operator $AB is separable if and only if the operator -AB
$,$AB is positive semidefinite.
It is enough to show that , is equivalent to a partial

transposition up to a completely positive map !in fact, a uni-
tary transformation", since Peres’ separability criterion is
known to be necessary and sufficient in this case %3&. Since
we are dealing with Hermitian operators, the map T! I ,
where T is the standard transposition of operators on HA , is
equivalent to the ‘‘partial conjugation’’ operation K! I ,
where K is the complex conjugation operator acting on states
on HA . !Note that, although K is well defined, partial con-
jugation K! I is only defined for product state vectors in
HAB %4&." Thus, theorem 3 reads #$RyT . We can now use
the fact that any positive map 6 acting on density operators
in a two-dimensional Hilbert space can be written as %3&
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6$61
CP#62

CPT , !35"

where 61
CP and 62

CP are completely positive maps !which
therefore do not reveal inseparability". With the identifica-
tion 61

CP$0 and 62
CP$Ry , we see that the map # can be

used rather than the transposition operator T !or K" in order
to test the positivity of the operator resulting from applying
any element of the set of maps 6 ! I on $AB !this follows
from the reasoning used in Ref. %3&". Thus, using the fact that
the complex conjugation operator K is unitarily equivalent to
# , we have shown that ,$AB+0 results in a necessary and
sufficient condition for the separability of 2"2 systems. "
Remark 1. The map # applied to a two-dimensional sys-

tem is unitarily equivalent to the transposition operator T.
Since the spectrum of an operator is conserved by a unitary
transformation (Ry), the spectrum of the operator obtained
by partial transposition in subspace A, (T! I)$AB$$AB

TA , is
the same as the spectrum of -AB$,$AB . Therefore, testing
Peres’ separability condition or the positivity of -AB is op-
erationally equivalent, and these conditions can be used in-
terchangeably in the case of two quantum bits, as illustrated
in Appendix A. Moreover, -AB and $AB

TA have the same spec-
trum for 2"n systems, so that the conditions are also
equivalent if # is applied on the two-dimensional subsystem.
As a consequence, the separability condition based on , is
necessary and sufficient for 2"3 systems, while it is only
necessary for 2"n systems with larger n, just as Peres’ con-
dition %3&. Numerical evidence suggests that, for systems
with dA ,dB%2, the reduction condition is weaker than !or
equivalent to" the one based on partial transposition !this has
been later proven in Ref. %7&".
Remark 2. It is instructive to illustrate theorem 4 for T

states %12&, that is, in the case where A and B have a maximal
reduced entropy. The T states (r!$s!$0) are such that the
reduced density operators are given by $A$$B$1/2, so that
the reduced entropies are S($A)$S($B)$1. These states are
thus completely characterized by the matrix tn ,m . It has been
shown in Ref. %12& that any T state can be transformed by a
unitary transformation of the product form UA!UB into a
state for which tn ,m is diagonal. As far as separability is
concerned, we can thus restrict ourselves to the class of all
states with diagonal t, since these are representative of the
entire set of T states !up to a UA!UB isomorphism".
The class of states with diagonal t is a convex subset of

the set of T states, and any state belonging to this subset can
be characterized by the real vector t!$(t11 ,t22 ,t33) made out
of the diagonal elements of t. It was proven in Ref. %12& that
an operator $AB of the form given by Eq. !31" with r!$s!
$0 and diagonal t corresponds to a state !i.e., a positive
unit-trace operator" if and only if the vector t! belongs to a
tetrahedron with vertices t!1$(!1,1,1), t!2$(1,!1,1), t!3
$(1,1,!1), and t!4$(!1,!1,!1). In other words, any
state of this class can be represented by a point inside this
tetrahedron. In this representation, the four Bell states
"0'*$2!1/2("00*'"11*) and "7'*$2!1/2("01*'"10*)
correspond to the vertices of the tetrahedron, that is,

t!1 : "0!*)0!"$
1
4 !1A! 1B!2A

(x)
! 2B

(x)

#2A
(y)

! 2B
(y)#2A

(z)
! 2B

(z)",

t!2 : "0#*)0#"$
1
4 !1A! 1B#2A

(x)
! 2B

(x)

!2A
(y)

! 2B
(y)#2A

(z)
! 2B

(z)",

t!3 : "7#*)7#"$
1
4 !1A! 1B#2A

(x)
! 2B

(x)

#2A
(y)

! 2B
(y)!2A

(z)
! 2B

(z)",

t!4 : "7!*)7!"$
1
4 !1A! 1B!2A

(x)
! 2B

(x)

!2A
(y)

! 2B
(y)!2A

(z)
! 2B

(z)". !36"

In Ref. %12&, it is also shown that a state $AB of this
T-diagonal class is separable if and only if the vector t! char-
acterizing $AB belongs to an octahedron with vertices o! 1

'

$('1,0,0), o! 2
'$(0,'1,0), and o! 3

'$(0,0,'1). Let us
consider the action of , in this representation. As shown
earlier, , flips the ‘‘spin’’ 2! A . Within the set of T states,
this amounts to changing the sign of the tn ,m matrix, that is,
to flipping the sign of the vector t! for T-diagonal states.
Therefore, the criterion for separability -AB$,$AB+0
translates, in this representation, to the condition that the
‘‘parity’’ operation on the vector t! characterizing a separable
state results in a positive operator !i.e., a legitimate state".
Hence, ! t! must belong to the tetrahedron. It is easy to see
that the set of points of the tetrahedron which are such that
their image under parity still belongs to the tetrahedron cor-
responds exactly to the octahedron defined above. Therefore,
no inseparable state exists that satisfies ,$AB+0, so that ,
provides a necessary and sufficient condition for separability
within the class of T states, as expected.
Theorem 5. The symmetric map M acting on two two-

dimensional systems conserves the spectrum, so that the
separability criteria resulting from the map , and its dual ,̃
are equivalent. "
As a consequence of theorem 3, M$# ! # amounts to

performing a complex conjugation K !or transposition" of the
joint density operator in HAB , followed by a tensor product
of the rotation Ry defined by Uy$exp(!i12y/2)$!i2y ,
that is, Uy!Uy$!2y! 2y . Note that, as we are dealing
with Hermitian !density" operators, their spectrum is un-
changed by K. The same is true for the rotation Uy!Uy .
Therefore, /AB$M$AB has the same spectrum as $AB when
dA$dB$2. As # is self-inverse (#2$I) when dA$dB$2,
we have the relation I! #$(# ! I)(# ! #) or in short ,̃
$,M . This implies that

,̃$AB$,%!Uy!Uy"$AB* !Uy
†

!Uy
†"& , !37"

which in turn results in
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-̃AB$!Uy!Uy"-AB* !Uy
†

!Uy
†" !38"

as , commutes with Uy!Uy and complex conjugation.
Since -AB is Hermitian !just as $AB), the latter expression
shows that the spectrum of -̃AB and -AB are identical, so that
the resulting criteria for separability are equivalent.
Theorem 6. The symmetric map M applied to a bipartite

system of two-dimensional components !i.e., global time re-
versal" is equivalent to complex conjugation in the ‘‘magic’’
basis introduced in Ref. %10& !this was pointed out indepen-
dently in Ref. %13&, which was brought to our attention after
completion of this work".
Since #$RyK , the symmetric map M$# ! # applied to

the state $AB of a bipartite system results in

M$AB$!Uy!Uy"$AB* !Uy
†

!Uy
†", !39"

where Uy!Uy$!2y! 2y . Since M is antiunitary and self-
inverse (M 2$I), it is a conjugation %14&. It can be written as
the complex conjugation operator if expressed in a specific
basis. Let us assume that V is the unitary operator !in the
joint space" that transforms the product states into the states
8"ei*9 that form this specific basis, that is,

"e1*$V"00* , "e2*$V"01* ,

"e3*$V"10* , "e4*$V"11* . !40"

We would like to show that M is equivalent to rotating the
states "ei* into the product states, taking the complex conju-
gation of the density matrix !in the product basis", and then
rotating the product states back to the "ei*’s:

M$AB$V!V†$ABV "*V†$!VVT"$AB* !VVT"†, !41"

where VT is the transpose of the unitary matrix V. Identifying
Eqs. !39" and !41", we obtain

VVT$Uy!Uy$!2y! 2y$! 0 0 0 1
0 0 !1 0
0 !1 0 0
1 0 0 0

# .
!42"

It is easy to prove that, if V is unitary, then VVT is unitary
and symmetric !but not necessarily Hermitian". In order to
find a solution for V that satisfies Eq. !42", we first diagonal-
ize the matrix 2y! 2y . Consider the unitary matrix

W.exp! !
i1
4 !1!2x" ! !1!2x" #

$!1!1#1! 2x#2x!1!2x! 2x"/2. !43"

It is in fact a real orthogonal matrix, so that W!1$W†

$WT. It can easily be shown that W diagonalizes 2y! 2y ,
that is,

W!2y! 2y"WT$2z! 2z . !44"

It is not the only such matrix, as 2y! 2y is obviously also
diagonalized by exp%!i(1/4)2x& ! exp%!i(1/4)2x& . How-

ever, we are looking here for a !real" rotation matrix rather
than a general unitary matrix. Note that the matrix W is self-
inverse, i.e., W2$1, so that it is also symmetric (WT$W).
By multiplying Eq. !42" by W on the left and the right, we
obtain

WV!WV "T$!2z! 2z$! !1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 !1

# !45"

which implies that the product WV can be written as a diag-
onal matrix D:

WV$D.! 'i 0 0 0
0 '1 0 0
0 0 '1 0
0 0 0 'i

# . !46"

This yields a !nonunique" solution for the unitary matrix V
$WTD$WD that defines the basis 8"ei*9. The states "ei* are
thus obtained by applying the rotation matrix W to the prod-
uct states 'i"00*, '"01*, '"10*, and 'i"11*. It is worth
noticing at this point that the rotation matrix

W$
1
2 ! 1 1 1 !1

1 1 !1 1
1 !1 1 1

!1 1 1 1
# !47"

transforms the product states into the four maximally en-
tangled states which are obtained by applying a local trans-
formation H!1 on the four Bell states, i.e.,

W"00*$!H!1 ""0#*$! "00*#"01*#"10*!"11*)/2,

W"01*$!H!1 ""7#*$! "00*#"01*!"10*#"11*)/2,

W"10*$!H!1 ""0!*$! "00*!"01*#"10*#"11*)/2,

W"11*$!H!1 ""7!*$!!"00*#"01*#"10*#"11*)/2, !48"

where H is the Hadamard transform. !As a matter of fact, the
unitary transformation W corresponds simply to a controlled-
NOT gate where the control is in the dual basis 8"0*
#"1*,"0*!"1*9 rather than the standard basis." Therefore,
the unitary transformation V$WD is such that the product
states are rotated into the four generalized Bell states with
the appropriate phases

"e1*$V"00*$'i!H!1 ""0#*,

"e2*$V"01*$'1!H!1 ""7#*,

"e3*$V"10*$'1!H!1 ""0!* ,

"e4*$V"11*$'i!H!1 ""7!* . !49"

These states "ei* are therefore equivalent, up to a local
change of basis H!1 and a phase i that are irrelevant here,
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to the ‘‘magic’’ states introduced in Ref. %10&. !Any four
states obtained from the "ei*’s up to an overall phase and a
unitary transformation acting locally on each quantum bit are
legitimate ‘‘magic’’ states." This implies that, when ex-
pressed in this basis, the symmetric map M$# ! # reduces
the complex conjugation operation that was used in the con-
text of the calculation of the entropy of formation of a pair of
quantum bits !see Refs. %9,13&". "
Theorem 7. A distinct necessary separability condition for

the bipartite state $AB is that its support can be spanned by a
set of product states which are such that the corresponding
product operators obtained by applying # to the state vector
in HA span the support of -AB$,$AB .
We only consider this condition in the case where dA

$2. Let us first show that if $AB is a separable state, then
-AB is a separable operator obtained by replacing the states
"a* in HA by projectors Pa

# orthogonal to them. Consider the
separable state

$AB$'
i
wi! "ai*)ai" ! "bi*)bi"", !50"

where the "ai* ! "bi* are pure product states %using the spec-
tral decomposition of $A

(i) and $B
(i) , it is easy to rewrite Eq.

!7" into this form&. As a result of theorem 3, we see that $AB
it is mapped by , into the separable operator

-AB$'
i
wi!Pai

#
! "bi*)bi"". !51"

The operator -AB is a unit-trace operator in the case dA$2
since each component pure state "a* ! "b* is mapped into a
pure product state, "a#* ! "b*, in which case it simply reads

-AB$'
i
wi! "ai

#*)ai
#" ! "bi*)bi"". !52"

Let us show that Eq. !52" results in a simple necessary con-
dition for separability !distinct from -AB+0), inspired from
the condition recently proposed by Horodecki %4&. The cen-
tral point is to note that if $AB is separable, then the en-
semble of product states "ai* ! "bi* span the entire support of
$AB . !Conversely, any state "ai* ! "bi* must belong to the
support of $AB and cannot have a nonvanishing component
orthogonal to it." From Eq. !52", we see that the ensemble of
states "ai

#* ! "bi* span the entire support of the corresponding
separable state -AB obtained by applying , on $AB. Also,
any state "ai

#* ! "bi* cannot be outside the support of -AB .
This results in a necessary condition for separability which
can be stated as follows: if a state $AB is separable, then it
must be possible to span its support by a set of product states
"a*"b* which are such that their image !i.e., the product
states obtained by rotating the complex conjugate of state
vector "a* in the A space by an angle 1 about the y axis
while leaving the state vector "b* in the B space unchanged"
span the support of the mapped state -AB$,$AB . "

IV. CONCLUSION

Given a bipartite system characterized by a density opera-
tor $AB , we construct a simple separability criterion based
on the positive linear map #:$˜(Tr $)!$ . Any separable
state $AB is mapped by the tensor product of # !acting on A"
and the identity I !acting on B" into a positive operator.
Therefore, a necessary condition for separability is based on
checking the non-negativity of the operator (# ! I)$AB$1A
! $B!$AB . This reduction condition, along with the one
based on the dual map I! # , can be shown to be nonsuffi-
cient for a system of arbitrary dimension because entangle-
ment dilution can thwart the map’s sensitivity. Since # com-
mutes with any unitary transformation, the spectrum of the
operator (# ! I)$AB is invariant under a local unitary trans-
formation UA!UB , making this reduction criterion indepen-
dent of the basis in which A and B are expressed.
In the case of a two-dimensional system, # is shown to be

the time-reversal operator, which flips the sign of the spin
matrices !or, equivalently, reverses the Bloch vector charac-
terizing the state of the quantum bit", so that the map # ! I
amounts to changing the arrow of time for subsystem A with
respect to subsystem B. Such a relation between time-
reversal and Peres’ partial transposition has been pointed out
previously by Sanpera et al. %8&, who showed that the partial
transposition operator is unitarily equivalent to ‘‘local’’ time
reversal. Thus, our reduction criterion for separability based
on # ! I is equivalent to Peres’ criterion %2& for 2"n systems
!when applying # on the two-dimensional subsystem". As a
consequence, it is necessary and sufficient for 2"2 and 2
"3 systems while it is only necessary for larger systems,
just as is Peres’ %3&. For systems with dA ,dB%2, however,
the reduction condition is generally weaker than the one
based on partial transposition.
Finally, we consider the symmetric map (# ! #)$AB$1A

! 1B!$A! 1B!1A! $B#$AB . The 2"2 states which are left
invariant under this map are mixtures of generalized Bell
states, which include the maximally entangled pure states as
well as the product of two independent !unentangled" ran-
dom bits. It can be seen that # ! # is related to quantum
nonlocality even though it does not directly reveal insepara-
bility of two quantum bits. Indeed, it reduces to the complex
conjugation in the ‘‘magic’’ basis that has been introduced in
the context of the entropy of formation of a pair of quantum
bits !see Refs. %9,13&". It might therefore be interesting to
look for a simple relation between the map # !related to the
reduction criterion for inseparability" and the entropy of for-
mation.
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APPENDIX A: EXAMPLES

Here we consider several examples illustrating the sepa-
rability criterion -AB+0, and compare it to Peres’ criterion
%2&. Examples 1–4 deal with states of two quantum bits, and
illustrate the fact that the , criterion is necessary and suffi-
cient !the spectrum of -AB is identical to the spectrum of
$TA). Examples 5 and 6 illustrate that the , condition is not
sufficient for systems in larger dimensions (3"3 and 2
"4) whose partial transpose is positive !cf. Ref. %3&". In fact,
the , condition is equivalent to Peres’ condition for 2"n
systems, so that it is also necessary and sufficient for 2"3
systems %3& while it is only necessary for larger n.
Example 1. Consider a Werner state %1& with parameter x

(0(x(1), that is, a mixture of a fraction x of the singlet
state "7!* and a random fraction (1!x). We shall see that
-AB+0 is equivalent to Peres’ criterion, and is therefore suf-
ficient. Indeed, the joint density matrix

$AB$x"7!*)7!"#
!1!x "

4 !1! 1"

$! 1!x
4

0 0 0

0
1#x
4 !

x
2

0

0 !
x
2

1#x
4

0

0 0 0
1!x
4

# !A1"

is mapped by , into the matrix

-AB$! 1#x
4

0 0 0

0
1!x
4

x
2

0

0
x
2

1!x
4

0

0 0 0
1#x
4

# !A2"

which admits three eigenvalues equal to (1#x)/4 and a
fourth equal to (1!3x)/4. The latter becomes negative if x
%1/3, so that -AB is positive semidefinite only if x(1/3,
which has been proven to be the exact threshold for separa-
bility !any Werner state with x(1/3 is separable as it can be
written as a mixture of product states %15&". As expected, the
spectrum of -AB is equal to the spectrum of the partial trans-
pose of $AB , so that the , condition is sufficient to ensure
separability for Werner states.
Example 2. Consider a mixed state that is made out of a

fraction x of the entangled state "3*$a"01*#b"10* , and
fractions (1!x)/2 of the separable product states "00* and
"11* !see Ref. %16&". The joint density matrix is of the form

$AB$x"3*)3"#
1!x
2 "00*)00"#

1!x
2 "11*)11"

$! 1!x
2

0 0 0

0 x"a"2 xab* 0
0 xa*b x"b"2 0

0 0 0
1!x
2

# !A3"

with a and b satisfying "a"2#"b"2$1. It is mapped by , into
the matrix

-AB$! x"b"2 0 0 0

0
1!x
2

!xab* 0

0 !xa*b
1!x
2

0

0 0 0 x"a"2

# . !A4"

The eigenvalues of -AB are x"a"2, x"b"2, and (1!x
'2x"ab")/2. This implies that $AB is inseparable if x%(1
#2"ab")!1, exactly as predicted by Peres using the partial
transpose of $AB . Since we are dealing with two qubits, this
is the exact limit between separability and inseparability
%2,3&.
Example 3. In the simpler case where $AB is a mixture of

a fraction x of the singlet state "7!* and a fraction (1!x) of
the separable product state "00*,

$AB$x"3*)3"#!1!x ""00*)00"

$! 1!x 0 0 0
0 x/2 !x/2 0
0 !x/2 x/2 0
0 0 0 0

# , !A5"

we obtain

-AB$! x/2 0 0 0
0 0 x/2 0
0 x/2 1!x 0
0 0 0 x/2

# . !A6"

The latter matrix admits two eigenvalues equal to x/2 and
two eigenvalues equal to %1!x'!(1!x)2#x2&/2, so that
its determinant is equal to !(x/2)4. Thus, this state is in-
separable whenever x%0, as expected. !It is separable only if
it is the pure product state "00*."
Example 4. Consider the class of two-qubit inseparable

states described by Horodecki et al. %3&, a mixture of two
entangled states:

$AB$p"31*)31"#!1!p ""32*)32", !A7"

where "31*$a"00*#b"11* and "32*$a"01*#b"10* , with
a ,b%0 and satisfying "a"2#"b"2$1. The joint density ma-
trix
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$AB$! pa2 0 0 pab
0 !1!p "a2 !1!p "ab 0
0 !1!p "ab !1!p "b2 0
pab 0 0 pb2

# !A8"

is mapped by , to

-AB$! !1!p "b2 0 0 !pab
0 pb2 !p!1 "ab 0
0 !p!1 "ab pa2 0

!pab 0 0 !1!p "a2
# . !A9"

The latter matrix admits two eigenvalues equal to %p'!p2#4a2b2(1!2p)&/2 and two eigenvalues equal to
%1!p'!(1!p)2#4a2b2(2p!1)&/2, so that its determinant is equal to !a4b4(1!2p)2. This state is therefore
inseparable whenever ab:0 and p:1/2, in perfect agreement with Ref. %3&.
Example 5. Consider the 3"3 system in a weakly inseparable state introduced by Horodecki %4&,

$AB$
1

1#8a$
a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0
1#a
2

0
!1!a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
!1!a2

2
0

1#a
2

% , !A10"

where a is a parameter (a:0,1). As shown in Ref. %4&, the partial transpose of this state is positive, although $AB is
inseparable, which makes the inseparability of $AB undetectable using Peres’ criterion. It is simple to check that the ,-mapped
matrix

-AB$
1

1#8a¨
1#3a
2

0
!1!a2

2
0 !a 0 0 0 !a

0 2a 0 0 0 0 0 0 0
!1!a2

2
0

1#3a
2

0 0 0 0 0 0

0 0 0
1#3a
2

0
!1!a2

2
0 0 0

!a 0 0 0 2a 0 0 0 !a

0 0 0
!1!a2

2
0

1#3a
2

0 0 0

0 0 0 0 0 0 2a 0 0
0 0 0 0 0 0 0 2a 0

!a 0 0 0 !a 0 0 0 2a

© !A11"

is positive !with a trace equal to 2", so that , cannot reveal the inseparability of $AB either. Accordingly, the determinant of
-AB is equal to 6a7(1!a)(5a#3)/(1#8a)9 and thus positive. Note that the dual map also yields a positive operator -̃AB !of
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trace 2", although the eigenvalues of -̃AB are distinct from those of -AB , as is its determinant Det(-̃AB)$24a7(1!a2)/(1
#8a)9. This example emphasizes that , does not result in a sufficient separability condition for 3"3 systems, just as Peres’
condition %3&.
Example 6. Following Horodecki %4&, we consider a 2"4 system in an inseparable state

$AB$
1

1#7b$
b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0
1#b
2

0 0
!1!b2

2
b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
!1!b2

2
0 0

1#b
2

% !A12"

that has a positive partial transpose, where b is a parameter (b:0,1). Applying , , we see that

-AB$
1

1#7b$
1#b
2

0 0
!1!b2

2
0 !b 0 0

0 b 0 0 0 0 !b 0
0 0 b 0 0 0 0 !b

!1!b2

2
0 0

1#b
2

0 0 0 0

0 0 0 0 b 0 0 0
!b 0 0 0 0 b 0 0
0 !b 0 0 0 0 b 0
0 0 !b 0 0 0 0 b

% !A13"

has eigenvalues 0, b, 2b , and %1#2b
'!(1#2b)2!2b(3#b)&/2 so that it is always non-
negative. Note that the spectrum of -AB is the same as the
spectrum of the partial transpose $AB

TA !cf. Ref. %4&", as ex-
pected. This confirms that the condition based on ,$# ! I
and Peres’ separability condition are equivalent for 2"n
systems !when # is applied to the two-dimensional system
and I to the n-dimensional one". In this example, applying
the dual map ,̃$I! # yields a positive operator which
traces to 3.

APPENDIX B: THE ANTIUNITARY MAP !

Consider the action of the map #:$˜(Tr $)!$ on the
density operator $ characterizing a two-dimensional system
!i.e., a quantum bit". Since $ can be written as a linear com-
bination of the unit matrix and the three Pauli matrices 2!
with real coefficients, it is sufficient to consider the action of
# on these !Hermitian" basis matrices. We find that # is an
antiunitary operator that leaves the unit matrix unchanged

and flips the sign of the Pauli matrices 2x ,y ,z ,

1˜
#

1, 2x˜
#

!2x , 2y˜
#

!2y , 2z˜
#

!2z . !B1"

The complex conjugation operator K !or equivalently the
transposition, as we deal with Hermitian operators" corre-
sponds to an antiunitary operator which acts on the four
basis matrices as

1˜
K
1, 2x˜

K
2x , 2y˜

K
!2y , 2z˜

K
2z . !B2"

!Remember that it is enough to consider the action of K on
the basis matrices as the coefficients are real." Also, Ry is a
rotation characterized by the unitary matrix Uy$exp
(!i12y/2)$!i2y$2x2z which maps $ into Uy$Uy

†

$2y$2y , so that the basis matrices are transformed accord-
ing to
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1˜
Ry

1, 2x˜
Ry

!2x , 2y˜
Ry

2y , 2z˜
Ry

!2z . !B3"

It is straightforward to check, using Eqs. !B1", !B2", and
!B3", that # is the product of K and Ry . !It is a general
property of an antiunitary transformation that it can be writ-
ten as the product of a unitary transformation and a fixed
antiunitary operator such as time reversal." This can also be
verified easily by applying RyK to a system in a state given
by Eq. !27". We get

Uy$*Uy
†$2y$*2y

$
1
2 %1#2y!r!•2! *"2y&

$
1
2 !1!r!•2! "$#$ , !B4"

where we have used the fact that r! is a real vector and that
2y2! 2y$!2! *. This generalizes what was shown in Sec. III
for pure states, namely that if "a*$4"0*#5"1* and "a#*
$Uy(4*"0*#5*"1*)$!5*"0*#4*"1* , then we have

"a#*)a#"$#! "a*)a"". !B5"
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