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Abstract—We suggest that the framework of quantum information theory, which has been developing
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1. INTRODUCTION

The classical statistical theory of thermodynamical phenomena, due largely to Boltzmann,
Maxwell, and Gibbs, is one of the cornerstones of 20th century physics. It describes equilibrium
phenomena ranging from gas dynamics over steam engines to crystals, while its quantum exten-
sion accurately describes radiation phenomena, metals, and superconductivity, to name but a few
examples. Nature’s tendency to move towards equilibrium following a perturbation—captured
by Boltzmann’s second law—implies that most everyday-life phenomena are indeed taking place
in an equilibrated system, for which this theory is applicable and eminently successful. For the
brief transitory periods, however, the time during which a system approaches equilibrium, our
bag of tricks—containing the tools of statistical mechanics—is of little use. The canonical phe-
nomena of this type are relaxation or transport processes, phenomena which are usually termed
“irreversible”, and phase transitions for which the entropy is not a constant.

The standard approach to deal with such situations is to study the N-body dynamics of the sys-
tem, with a Hamiltonian that includes an interaction term (in equilibrium statistical mechanics
the Hamiltonian is a sum of non-interacting one-body terms) and the construction of equations
that follow the N-particle distribution function through time: the Boltzmann equation (see, e.g.,
[1]). This approach suffers from the drawback that it can only be solved in perturbation the-
ory, which obscures the relation to the “exact” formalism of thermodynamics. In this paper, we
would like to explore the possibility that a formalism well-known from engineering—Shannon’s
statistical theory of information—provides a bridge between equilibrium and non-equilibrium
statistical phenomena, and that its quantum extension (developed primarily in support of the
recent efforts in quantum computation and communication) represents an adequate framework
to investigate certain quantum statistical phenomena that have so far resisted a satisfying treat-
ment. Naturally, however, we should not expect that the classical and quantum theory of infor-
mation provides a complete theory of all non-equilibrium phenomena. For most dynamics with
complicated time-dependent interactions and many-body correlations, a transport-equation ap-
proach will still be the only tractable alternative.

Standard non-equilibrium phenomena are usually termed “irreversible”, an adjective that cap-
tures a practical aspect—a direction of time—which, however, we know not to be fundamental.
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Rather, time-reversal invariance guarantees that all dynamics can, in principle, be reversed as
long as the participating degrees of freedom can be controlled. Even though this is clearly not
always possible in practice, it may appear as an oversight that a practical limitation seems to
be at the origin of a theorem—the second law of thermodynamics. Indeed, as irreversibility is
only practical, so must be the second law. If we were, then, able to devise a formalism in which
the second law is replaced by a conservation law for entropy (and in which case the second law
would appear as a corollary) we may then be in possession of a formalism that can quantitatively
describe even the approach to equilibrium and other non-equilibrium statistical phenomena. It
is the purpose of this paper to point out that this formalism exists in the form of the classical
theory of information, introduced by Shannon [2]. Its extension to the quantum regime (see,
e.g., [3] and references therein) is particularly interesting as it consistently describes quantum
unitary dynamics which dictates that the von Neumann entropy—the quantum extension of the
Shannon entropy—is a constant.

In the next section we begin by describing the classical statistical theory of information in phys-
ical terms (as opposed to the more engineering-oriented approach given in most textbooks [4]).
We then apply it to two classical non-equilibrium statistical processes—measurement, and equi-
libration of an ideal gas—to demonstrate the use of the formalism in physics. In Section 3 we for-
mulate the quantum theory with special emphasis on those aspects that differ from the classical
theory, and discuss the EPR paradox as an illustration. We present an application to black hole
formation and evaporation—a quintessential non-equilibrium scenario—in Section 4. We close
with conclusions and comments in Section 5. Readers familiar with the information-theoretic
approach to classical and quantum statistical phenomena may skip directly ahead to Section 4.

2. CLASSICAL THEORY

The intimate relation between information theory and statistical mechanics has been pointed
out earlier by Jaynes [5] in order to justify statistical mechanics via information theory. Here, we
use information theory to extend statistical mechanics to the non-equilibrium regime.

The concept of entropy was introduced by Shannon with respect to random variables. For a
random variable X that can take on values x1, · · · , xN with probabilities p1, · · · , pN respectively,
the Shannon uncertainty (or entropy) is given by

H(X ) = −
N∑

i=1

pi log pi . (1)

Instead of random variables, however, we may imagine any physical system with enumerable
degrees of freedom and enumerable states xi. As is well-known and we show below, the Shannon
entropy then represents the physical entropy of the system. In fact, this concept of entropy
can be expanded to cover continuous variables, where it will suffer from the same ambiguity
(redefinition up to a constant) as standard thermodynamical entropy. For the moment, let us
confine ourselves to discrete degrees of freedom and imagine that any continuous variables are
coarse-grained (either by assuming appropriate boundary conditions, or else artificially.)

The relation to Boltzmann–Gibbs entropy becomes manifest if we consider not general prob-
ability distributions

{
pi
}

, but an equilibrium distribution where the pi are given by the Gibbs
distribution:

pi =
1
Z

e−Ei/kT , (2)

where Ei is the energy of state xi, and pi then represents the probability of X to take on energy
Ei. Note that this probability is normalized by the partition function Z = ∑i e−Ei/kT . Inserting
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(2) into eqn (1) produces

H = 〈E〉
kT

+ log Z = 1
kT

(〈E〉 − F ) (3)

and confirms that the Shannon entropy is just the standard physical entropy in statistical me-
chanics and thermodynamics when rescaled by the Boltzmann constant k:

S = kH . (4)

Above, we defined the free energy F = −kT log Z in the usual manner. Similarly, thermody-
namical averages are obtained via

〈A〉 = 1
Z

N∑

i=1
Aie−Ei/kT (5)

for an observable A that takes on the value Ai in state xi.
Returning to random variables for a moment, imagine an additional variable Y that takes on

states y1, · · · , yN with probabilities p′1 · · · , p′N . We can then define the conditional probability
of finding X in state xi, given that Y is in state j

pi| j =
pi j

p′j
, (6)

where pi j is the joint probability to find X in state xi and simultaneously Y in state yj . This concept
will allow us to quantify correlations between degrees of freedom, a particularly important task
in non-equilibrium systems. Indeed, equilibrium can be defined as the state where “all ‘fast’
things have happened and all the ‘slow’ things not” [6], which implies that all non-permanent
correlations have vanished in equilibrium.

Armed with conditional probabilities, we can define the conditional entropy of system X given
that Y is in, say, state yj, i.e., the entropy of X if we are fully aware that Y is in state yj , or in
other words, the remaining entropy of X if Y is held fixed in state yj. Naturally, this is defined as

H(X |yj) = −
∑

i
pi| j log pi| j . (7)

Also, the average conditional entropy of X given Y is in any fixed state, or quite generally is
known, is then

H(X |Y ) = 〈H(X |yj)〉 = −
∑

i j
pi j log pi| j . (8)

The vertical bar in the expression H(X |Y ) denotes the conditional nature of the entropy, and
is usually read as “X given Y”, or “X knowing Y”.

Armed with the conditional (or remaining) entropy, we can find a measure for the amount of
correlation between two systems. This is just the ordinary entropy minus the remaining entropy
if one of the system’s variables are known: the shared entropy (also called correlation, or mutual,
entropy)

H(X : Y ) = H(X )−H(X |Y ) . (9)

This is the central quantity introduced by Shannon: the mathematical measure of information†.
The relation between unconditional (also called “marginal”) entropies such as H(X ) or H(Y ),

†The colon between X and Y is customarily used to indicate a shared entropy, and reminds us that correlation
entropy is symmetric: H(X : Y ) = H(Y : X ).
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H(X) H(Y)

H(Y|X)

H(XY)

H(X:Y)H(X|Y)

Fig. 1. Entropy Venn diagram for two random variables X and Y .

mutual, and conditional entropies are best visualized by Venn diagrams. In Fig. 1, the area of
each circle represents an entropy, whereas the union of both circles represents the joint entropy
H(XY ).

It is straightforward to see that these quantities can be translated into thermodynamics, by
replacing the arbitrary probability distributions by equilibrium ones. We can see immediately,
however, why they play no role in equilibrium thermodynamics. The probability of system X to
take on energy Ei if Y has energy Ej is trivial: it is just given by Z−1e−Ei/kT simply because X and
Y are in equilibrium. Thus, in equilibrium, H(X |Y ) = H(X ), and H(X : Y ) = 0. Away from
equilibrium, conditional and mutual thermodynamical entropies become crucial, as we now see.

2.1. Measurement

We first treat the dynamics of classical measurement. A measurement involves the contact
between two equilibrated systems, usually at different temperatures. The measurement device
is constructed in such a manner as to induce correlations between some of its variables—
the “pointer”—and the measured system’s degrees of freedom (those which we desire to mea-
sure). After the initial contact between the systems and subsequent relaxation, equilibrium is
re-established but thermodynamics seems to offer a paradox: the entropy of the measured sys-
tem appears to have been reduced. Furthermore, this reduced entropy can be used to perform
work—in apparent violation of the second law (this puzzle is usually termed the Maxwell demon
paradox, see, e.g., [7]). While this dynamics is again practically irreversible, we can describe what
happens in terms of the entropies introduced above.

Before the measurement, the system (denoted by S) is independent of the measurement device
(denoted by M, see Fig.2a). They do not share any entropy, which implies that knowledge of
any one of the systems will not allow any predictions about the other. Bringing the two systems
into contact introduces correlations, and reduces the conditional entropy of both S and M. Note
that before measurement, H(S|M) ≡ H(S). The amount by which the conditional entropy is
reduced is of course just the acquired information, or shared entropy H(S : M) (see Fig. 2b).
This shared entropy plays a fundamental thermodynamical role: for example it can be shown
that erasing it requires the dissipation of an equal amount of heat [8]. Needless to say, the
marginal entropy did not really decrease in this process, but rather stayed constant. In contrast,
the conditional entropy of S is reduced, as can be seen by inspection of the diagram in Fig. 2b,

H(S) !→ H(S|M) = H(S) −H(S : M) . (10)

Turning eqn (10) around:

H(S) = H(S|M)+H(S : M) (11)

demonstrates that non-equilibrium dynamics affects only the distribution of H(S) into either
(conditional) entropy or information, that the two however always add up to H(S).
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H(S) 0 H(M)

(a) S M

H(S:M) H(M|S)H(S|M)

(b) S M

Fig. 2. Rearrangement of entropies in the measurement process. (a) System S and device M are uncorrelated (H(S :
M) = 0). (b) Device and system share entropy H(S : M) and the conditional entropy of both system and device are

reduced.

2.2. Equilibration

Another example of irreversible dynamics is the notorious “perfume bottle” experiment, in
which a diffusive substance (let’s say, an ideal gas) is allowed to escape from a small container
into a larger one. Both the initial and the final state of the system is in equilibrium; common
wisdom however states that the entropy of the gas is increasing during the process, reflecting the
non-equilibrium dynamics. We shall now show that this is not the case, by describing the gas in
the smaller container by a set of variables A1, · · · , An, one for each molecule. The entropy H(Ai)
thus represents the entropy per molecule. The entire volume, on the other hand, is described by
the joint entropy

Hgas = H(A1 · · ·An) , (12)

which can be much smaller than the sum of per-particle entropies, the standard (equilibrium)
thermodynamical entropy Seq

H(A1 · · ·An)(
n∑

i=1

H(Ai) = Seq . (13)

The difference is given by the n-body correlation entropy

Hcorr =
n∑

i=1

H(Ai)−H(A1 · · ·An) (14)

which can be calculated in principle, but becomes cumbersome already for more than three
particles.

We see that in this description the molecules after occupying the larger volume cannot be
independent of each other, as their locations are in principle correlated (as they all used to occupy
a smaller volume, see Fig. 3a). These correlations are not manifest in two– or even three-body
correlations, but are complicated n-body correlations which imply that their positions are not
independent, but linked by the fact that they share initial conditions. Again, this state of affairs
can be summarized by turning around eqn (14)

H(A1 · · ·An) =
n∑

i=1
H(Ai)−Hcorr . (15)

We assume that before the molecules are allowed to escape, they are uncorrelated with respect
to each other: Hcorr = 0, and all the entropy is given by the extensive sum of the per-molecule
entropies. After expansion into the larger volume, the standard entropy increases because of the
increase in available phase space, but this increase is balanced by an increase in the correlation
entropy Hcorr in such a manner that the actual joint entropy of the gas, Hgas, remains unchanged.
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Fig. 3. Diffusion of an ideal gas from a small into a larger container. (a) The molecules with entropy H(A1 · · ·An)
occupy the smaller volume, and their correlation entropy is zero. (b) The molecules have escaped into the larger
container, which increases the sum of the per-particle entropies and increases the correlation entropy commensurately

such that the overall entropy remains unchanged.

Note that this description is not, strictly speaking, a redefinition of thermodynamical entropy.
While in the standard theory entropy is an extensive, i.e., additive quantity for uncorrelated
systems, the concept of a thermodynamical entropy in the absence of equilibrium distributions
has been formulated as the number of ways to realize a given set of occupation numbers of
states of the joint system (which gives rise to (1) by use of Stirling’s approximation, see, e.g.,
[9]) and is thus fundamentally non-extensive. Assuming the systems Ai are uncorrelated reduces
H(A1 · · ·An) to the extensive sum

∑n
i=1 H(Ai), and thus to an entropy proportional to the

volume the systems inhabit. From a calculational point of view the present formalism does not
represent a great advantage in this case, as the correlation entropy Hcorr can only be obtained
in special situations, when only few-body correlations are important.

The examples of non-equilibrium processes treated here (measurement and equilibration)
suggest that:

In a thermodynamical equilibrium or non-equilibrium process, the unconditional (joint)
entropy of a closed system remains a constant.

This formulation of the second law directly reflects probability conservation (in the sense
of the Liouville theorem), and allows a quantitative description of the amount by which the
conditional entropy is decreased in a measurement, or the amount of per-particle entropy is
increased in an equilibration process.

3. QUANTUM THEORY

As the classical non-equilibrium mechanics described above is founded on the classical theory
of information, its quantum extension is built on the quantum theory of information introduced
recently [10–12].

3.1. Equilibrium

For our purposes, equilibrium quantum statistical mechanics can be summarized in a few
equations. For a system described by Hamiltonian† H and partition function (we set β = 1/kT
from now on)

Z = Tr e−βH , (16)

†In the following, H stands for the Hamiltonian, while entropies are denoted by the symbol S.
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the density matrix can be written as

" = e−βH

Z
(17)

while the free energy is

F = − 1
β

log Z . (18)

Accordingly,

log" = βF − βH (19)

and, defining the internal energy U = Tr"H , we obtain the equivalent of eqn (3)

S = β(U − F ) (20)

where

S(") = −Tr" log" . (21)

is the quantum entropy of the state described by the density matrix ", introduced by von
Neumann [13]. While we used equilibrium expressions to motivate (21), it is in fact valid even
when an equilibrium expression such as (17) does not exist. Just as the classical entropy (12), this
entropy remains a constant under any dynamics, reversible or irreversible. This is in fact more
obvious in the quantum case, as the density matrix " is known to evolve in a unitary manner

"(t) =U (t)"(0)U †(t) (22)

which immediately implies, using (21) and the cyclic property of the trace, that

d
dt

S(t) = 0 . (23)

Inserting (17) into (21) on the other hand allows us to recover the Boltzmann–Gibbs–Shannon
entropy (1), with the probabilities given by

pi =
1
Z

e−βEi (24)

with Ei the eigenvalues of H . In general, when considering the diagonal elements of " in a
basis distinct from the eigenbasis of H , the von Neumann entropy is a lower bound on the
Boltzmann–Gibbs–Shannon entropy

S(") ≤ −
∑

i
pi log pi , (25)

where the equality holds for density matrices " that are diagonal, in which case quantum sta-
tistical mechanics is formally identical to the classical description. Differences arise for non-
diagonal ". The off-diagonal terms signal the presence of quantum superpositions and the po-
tential for entanglement—a form of “super-correlation”. As we shall see, entanglement requires
a radical departure from the classical description, and an extension of the above formalism to
a non-equilibrium quantum statistical mechanics.
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3.2. Non-equilibrium

As mentioned earlier, in classical mechanics equilibrium between two ensembles A and B
implies that all “fast” degrees of freedom are independent (no correlations) whereas the “slow”
degrees are considered to be static. This is usually achieved by waiting for times larger than the
relaxation time. The situation is dramatically different in quantum mechanics. As we shall see,
entanglement introduces a type of super-correlation that cannot be undone by letting the system
equilibrate, not even if the two systems are separated by space-like distances.

As an example, consider the joint system AB where A and B are half-integral spin states with
eigenstates | ↑〉 and | ↓〉. It is then possible to construct a wavefunction for the joint system AB
which makes it mathematically and logically impossible to attribute a state to either A or B by
itself: the well-known EPR state

|ΨAB〉 =
1√
2
(| ↑↑〉 − | ↓↓〉) . (26)

However, both A and B can be described by reduced density matrices, obtained by tracing B or
A out of the joint matrix "AB

"A(B) = TrB(A)"AB =
1
2

(
| ↑〉〈↑ | + | ↓〉〈↓ |

)
, (27)

where TrB(A) denotes the partial trace over B(A). As these density matrices are diagonal, the
quantum entropy is just equal to the classical one

S(A) = S(B) = 1 (28)

if we agree to take base-2 logarithms and count entropy in “bits”. The joint entropy S(AB)
on the other hand is not equal to 2, i.e., the entropy is non-extensive. As we mentioned earlier,
this implies that correlations are present and calls for a non-equilibrium formalism. Things are
worse here. For this wavefunction, the quantum entropy vanishes (it is a pure state: the only non-
vanishing eigenvalue of the density matrix "AB = |ΨAB〉〈ΨAB| is 1.) This well-known property
of quantum mechanically entangled systems is known as the non-monotonicity of quantum
entropy (see, e.g., [14]) and forces us to rethink the equilibrium formalism that we recapitulated
earlier. We will proceed in a manner similar to the non-equilibrium classical mechanics of the
previous section, by introducing quantum conditional and mutual entropies. As in the classical
case, the conditional quantum entropy then would reveal to us the entropy of a quantum system
given we know the state of another system it is entangled with, while the quantum mutual
entropy would reflect the amount of correlation between the systems. In contrast to the classical
situation, quantum conditional entropies can be negative, while the mutual entropy can exceed
the classically allowed limit (hence the term super-correlation.) This formalism has turned out
to be useful in the information-theoretic analysis of quantum measurement [12,15], as well as
the description of the non-equilibrium physics of quantum information transmission [16].

Guided by the classical case, we are tempted to define the conditional quantum entropy of
system A given the state of B by

S(A|B) = S(AB)− S(B) , (29)

i.e., the quantum entropy of the joint system minus the entropy of B (as that is given). This
structure then suggests an expression for the conditional amplitude matrix "A|B, which we need
to formulate the non-equilibrium dynamics. This matrix, first introduced in [11], is a well-defined
Hermitian operator on the joint Hilbert space of A and B (see [17]) defined by

"A|B = exp[log"AB − log(1A ⊗ "B)] (30)
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2 -1-1

(a) (b)
S(B)S(A) S(B)

S(A|B) S(A:B) S(A|B)

S(A)

Fig. 4. Quantum entropy Venn diagrams. (a) Definition of joint [S(AB)] (the total area), marginal [S(A) or S(B)],
conditional [S(A|B) or S(B|A)] and mutual [S(A : B)] entropies for a quantum system AB separated into two

subsystems A and B; (b) their respective values for the EPR pair.

EPR

2Q1

1A A2

Q

Fig. 5. Measurement of EPR pair Q1Q2 by devices A1 and A2.

which allows us to write

S(A|B) = −Tr"AB log"A|B (31)

in analogy with (8). In contrast to the classical conditional probability pi| j, the conditional
amplitude matrix can have eigenvalues exceeding unity, which reflect the quantum inseparability
of the system.

The mutual quantum entropy can be defined in an analogous manner

S(A : B) = S(A)− S(A|B) (32)

as the marginal (unconditional) quantum entropy of A minus the “remaining” entropy S(A|B).
Consequently, we can extend the useful Venn diagram technique (Fig. 1) to the quantum regime,
and just replace H by S (Fig. 4a). The peculiarity of quantum superpositions such as the EPR
wavefunction eqn (26) is immediately apparent in its Venn diagram (Fig. 4b).

More generally, a mixed state " = ∑
i pi|i〉〈i| can always be “purified”, i.e., written as the

partial trace over a pure state |ψ〉 =
∑

i
√
(pi)|i〉|i〉 by means of the Schmidt decomposition,

while being represented by a Venn diagram such as Fig. 4b but with entries {−S, 2S,−S} instead
of {−1, 2,−1}, where S = −

∑
i pi log pi. Furthermore, the diagram technique and the use of

quantum entropies can easily be extended to understand the quantum correlations between three
systems. An instructive example is the description of the EPR paradox [18], which we briefly
summarize as it is relevant to the discussion of black holes which follows.

Imagine a wavefunction such as (26), with the particles in question separated by space-like
distances. Imagine further that at each of these separated locations, measurements of the spin-
projection are performed in either the x or the z direction. Beyond the quantum bipartite
system described by eqn (26), which we denote by Q1Q2 in the following, we introduce Hilbert
spaces for the measurement devices, the “ancillae” A1 and A2 rigged to measure the polarization
of Q1 and Q2 respectively (see Fig. 5). Depending on whether same (Fig. 6) or orthogonal
(Fig. 7) polarizations are measured at the remote locations, the measurement devices are either
correlated or independent. However, in both cases, the entanglement between quantum systems
and measurement devices is more complicated, and even in case the measurement devices appear
uncorrelated (Fig. 7b), subtle entanglement persists.
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1Q2

A2

Q1Q2

A2
1A σz

Q

[    ]

(b)

A1
σz[    ] σz[    ] σz[    ]

1

1 1
-1 -1

0
0

-1 -1 0 1

(a)

Fig. 6. (a) Quantum entropy diagram for the EPR measurement of same spin-projections: e.g., A1 and A2 both
measure σz. (b) Reduced diagram obtained by tracing over the quantum states Q1 and Q2 (the dashed line surrounds

degrees of freedom traced out, i.e., averaged over) reflecting the correlation between the measurement devices.

1Q2

A2

Q1Q2

A2
A1 σz

Q

[    ]

0
σx[    ] σx[    ]σz[    ]A1

-2 -2

-1 -1 1 1
0
0

2 2

(a) (b)

Fig. 7. (a) Quantum entropy diagram for the EPR measurement of orthogonal spin-projections, e.g., A1 measures
σz while A2 records σx. (b) Reduced diagram as above. In this case the measurement devices show zero correlation,

while entanglement persists between quantum system and measurement devices.

4. BLACK HOLE FORMATION AND EVAPORATION

The discovery of Hawking radiation [19] appears to have plunged quantum mechanics into a
deep crisis, as it seems to imply that the evaporation of black holes violates unitarity (for a review,
see, e.g., [20]). Below, we formulate the “information-loss” problem in terms of the formalism
described here, and argue for a consistent description in terms of quantum non-equilibrium
thermodynamics.

4.1. Black hole entropy and information paradox

Black holes have the remarkable property that they are fully described by very few variables—
a non-rotating non-charged black hole by only one, its mass. Bekenstein [21] and Hawking [19]
determined that an entropy can be defined for a Schwarzschild black hole which is given entirely
in terms of the area A inside the event horizon

SBH =
1
4

A . (33)

This area, in turn, is just A = 4πR2 where R is the radius of the black hole given (in units where
" = G = 1) by R = 2M, so that the black hole entropy is specified entirely in terms of the black
hole mass M

SBH = 4πM2 . (34)

While a number of reasonings lead to this expression, including the counting of microscopic
quantum states that give rise to a black hole, Hawking [22] pointed out that the process of
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BH

−Δ S

2ΔS

-SBH2S

PBH

0

R

−Σ −Σ2Σ

(a) (b)

R’

BH

−Σ

R

0

Fig. 8. Venn diagrams for black hole formation. (a) Just before collapse. (b) After collapse. Σ denotes the entropy of
the proto-black-hole, while SBH is the Bekenstein-Hawking entropy, and ∆S is the entropy deficit.

thermal evaporation of a black hole leads to an “information paradox”. If we assume that the
black hole is formed from a quantum mechanically pure state S = 0, the entropy of the purely
thermal blackbody radiation left behind after evaporation should be of the order ∼ M2, i.e.,
a pure state evolved to a mixed one. This contradicts the unitary evolution of quantum states
eqn (22), according to which (as we have pointed out repeatedly) the entropy of a closed system
is a constant, in this particular case the constant zero.

Several avenues have been proposed to escape this conclusion, and we will focus here on the
most conservative explanation, namely that Hawking radiation is effectively non-thermal (in the
sense that quantum correlations between the radiation and the state of the black hole exist
in principle), and that a pure state is formed after evaporation, only that it is impossible to
distinguish it from purity [23–25]. We first note that beyond the information paradox pointed
out by Hawking, as observed by Zurek [26] we also need to match the black hole entropy SBH
with the entropy of approximately thermal radiation Srad ∼ T 3

H with black hole temperature
TH = (8πM)−1. We then proceed to propose a scenario in which this might be achieved.

4.2. Black hole formation from a pure state

Of course, black holes do not form by the “collapse” of a pure state. Rather, we can imagine
that part of a pure state with marginal entropy Srad ≡ Σ disappears behind an event horizon.
Let us divide space just before the collapse into a region PBH (the proto-black-hole) and R, the
remainder. As the entire system is pure (S = 0), we know that Srad = SPBH . The entropy diagram
for this situation can be constructed as described in the previous section, and is shown in Fig. 8a.

The degrees of freedom in R are practically inaccessible after the collapse of the region PBH,
but we should keep in mind that they are entangled with PBH in such a manner that the entire
system, (R, PBH), is pure. In the language of quantum information theory, R is a “reference”
system that “purifies” PBH. The gravitational collapse of region PBH forms an intriguing
problem. While we can assume the radiation inside it to be purely thermal, with energy E ∼ T 4

and corresponding entropy Σ ∼ 4/3 T3, the entropy of the collapsed state is SBH = 4πM2, lower
than Σ. In fact, it was shown by Zurek [26] that the entropy dS accreted by a black hole (which
we can take to be of the radiation type) is larger than the corresponding entropy increase of the
black hole itself

dS ≈ 4/3 dSBH , (35)

and the same mismatch occurs in the evaporation process.
In statistical physics this is not an alarming state of affairs, but rather is the usual scenario in a

non-equilibrium phase transition. Here, we shall mask our ignorance about the dynamics which
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produces the black hole out of radiation by assigning a new phase to the black hole matter, and
discuss the process in which the radiation with entropy Σ condenses to a phase with entropy SBH .

During the condensation from the proto-black-hole state to the black-hole (BH) state, excess
entropy ∆S has to be radiated away (TH∆S is the equivalent of the latent heat in a first-order
phase transition) . While we cannot offer a detailed picture of this transition, we assume that
this radiation is emitted just outside the forming horizon, and represents the bremsstrahlung of
the accelerated particles accreting on the black hole. This gives rise, then, to the system depicted
in Fig. 4b, where the bremsstrahlung R′ is entangled with both R and the black hole BH, with
marginal entropy S(R′) = ∆S = Σ−SBH . During the phase transition, the entropy of the PBH
system remains constant, but is distributed over the joint system (BH,R′):

Σ = S(PBH) = S(R′, BH) = S(BH)+ S(R′|BH) = SBH +∆S . (36)

The “missing” entropy ∆S therefore is contained in radiation R′ emitted during the collapse.
This scenario, which is the time-reverse of the evaporation process considered next, naturally

leads to a radiation field R′ that is causally uncoupled from the black hole, as S(BH : R′) = 0.
Tracing over the “reference” field R leads to the trivial entropy diagram diagram {SBH , 0,∆S}.
We need to keep in mind, however, that just as in the EPR situation described previously, the
wavefunctions of R′ and the black hole are linked via entanglement with the quantum degrees
of freedom R.

4.3. Evaporation of black holes

The processes of black hole formation and evaporation can be considered time-reverse images
of each other. Evaporation of black holes occurs through the formation of virtual particle–anti-
particle pairs of energy 2dE close to the horizon due to quantum mechanical tunneling in the
strong gravitational field. If one of the members of the pair disappears behind the horizon while
the other manages to escape, the escaping particle appears to have a black-body spectrum with
temperature TH , while the energy of the black hole is reduced by dE . The paradox occurring
here thus appears to be the same as the one encountered in the condensation process. How does
the radiation pick up the extra entropy? In terms of quantum information theory, the creation
of a particle–anti-particle pair is akin to the creation of an EPR state with vanishing entropy,
described by the entropy diagram in Fig. 4b. However, just as in standard first-order “evapora-
tion” transitions, the black hole has to provide in addition the latent heat for “decondensation”,
i.e., the energy to create the entropy ∆S. Thus, a pair created with 2dE and temperature TH will
not reduce the black hole mass by an amount dE , but by

∆E = dE − TH∆S , (37)

which restores the entropy and energy balance. The entropy of the escaping particle is dS ∼ T 3
H

while at the same time the entropy of the black hole is reduced by

dSBH = 4π
(

M2 − (M −∆E)2
)
= dE

TH
−∆S . (38)

Arguments have been raised (see the reviews [20] and in particular [27]) that seem to imply that
information stored in correlations and entanglement between the black hole and its surrounding
radiation field cannot be retrieved, even in principle. These arguments rest on the assumption that
the (low-energy) quantum fields live in a Hilbert space that is of the product form Hin⊗Hout, and
an application of the quantum no-cloning theorem. While the fields do live in a product Hilbert
space, the wavefunction of an EPR pair created at the event horizon of the black hole indirectly
becomes entangled with the hole the moment one of the particles crosses the horizon (even
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though the quantum fields are separated by space-like distances) and the combined quantum
state becomes inseparable. This situation is not unlike the scenario we noted in the formation
of the black hole, where the accreted particle and the radiation it emits when tumbling into the
black hole can be considered an entangled, EPR-type state (albeit with real rather than virtual
energy). Just as in that case the radiation R′ shared no entropy with the black hole, neither does
the Hawking radiation, while still being entangled with it. Thus, the Hawking radiation carries
“information” about the inside of the hole in the same manner as the measurement of EPR
partners separated by space-like distances reveals correlations in measurement devices that are
at space-like distances. Yet, a fundamental problem remains that is unlikely to be solved within
the present formalism. The Hawking radiation—while emitted in a unitary manner and while
information loss certainly does not take place—remains causally uncorrelated to the black hole
as long as the horizon separates the black hole entropy from the radiation field. In a sense,
we have to wait until the last moment—the disappearance of the black hole—for the entropy
balance to be restored. This appears to put a severe strain on current black hole models, as it
is hard to imagine that this much entropy can be stored in an ever-shrinking black hole. This
problem is likely due to our incomplete understanding of late-stage black holes, rather than a
problem intrinsic to quantum mechanics.

An alternative solution would present itself if the Bekenstein-Hawking entropy could be un-
derstood in terms of a conditional entropy. In that case, entropy flow from the black hole to
the outside via the formation of virtual pairs is understood easily, as the member of the pair
that crosses the horizon not only has negative energy but also negative conditional entropy
(see Fig. 4b). As a conditional entropy can become as negative as the marginal entropy of the
system it is a part of, we can circumvent the argument that “the black hole cannot store the
information until the end because it runs out of quantum states”, because the radiation could
“borrow” as much entropy as necessary from the black hole until the horizon has disappeared.
Within the present framework, there appears to be no physical picture which would suggest that
the Bekenstein-Hawking entropy is in fact conditional. It is not inconceivable, however, that a
quantum statistical information theory extended to curved space-time would reveal such a state
of affairs.

5. CONCLUSIONS

We have used a formalism developed in the exploration of quantum computers—quantum
information theory—to describe quantum processes away from thermodynamical equilibrium,
such as the formation and evaporation of black holes. The formalism emphasizes the conservation
of entropy, and is particularly useful in situations where entropy is distributed over two or
three systems. We emphasize that great care is needed in using the concepts of entropy and
information consistently: information, for example, can never be “stored” in one system (e.g., a
black hole). Rather, information is a measure of correlation between two systems, which implies
that information is always stored in correlations. The analysis of information storage in black
hole formation and evaporation presented here is a simple application of these rules to a scenario
in which black holes are considered special states of matter with an equation of state different
from that of radiation (or usual matter). Transitions between those states occur continuously
as the specific heat of black hole matter is negative [19]. As a consequence, radiation and black
hole matter are unstable at any time, and transitions must occur as long as matter of either kind
is present. Yet, a consistent formulation of the correlations between radiation and matter shows
that entropy is not created during the process, and consequently that information is conserved.
Still, the mechanism by which the pure state is restored in the last stages of black hole evaporation
may require deeper insights into quantum gravitational dynamics, and possibly an extension of
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information theory to curved space-time.
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