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Abstract. We present a constructive method to translate small quan-
tum circuits into their optical analogues, using linear components of
present-day quantum optics technology only. These optical circuits per-
form precisely the computation that the quantum circuits are designed
for, and can thus be used to test the performance of quantum algorithms.
The method relies on the representation of several quantum bits by a
single photon, and on the implementation of universal quantum gates
using simple optical components (beam splitters, phase shifters, etc.).
The optical implementation of Brassard et al.’s teleportation circuit, a
non-trivial 3-bit quantum computation, is presented as an illustration.

1 Introduction

The promise of ultrafast computation using quantum mechanical logic raised by
Shor’s discovery of a polynomial algorithm for factoring [1] has yet to materialize
in physical implementations. While quantum logic has been implemented in a
number of different guises [2,3], the dynamics and behavior of a quantum circuit
subject to noise and quantum decoherence has only been tested in simulations
on a classical computer [4,5] (but see [6]). There is little controversy about the
realization that it is the quantum mechanical superposition principle, and the
entangled, nonlocal, states it engenders, that are at the origin of the speed-up of
quantum algorithms with respect to their classical counterparts. Still, effective
quantum algorithms are few and far between, and even those that are known
today have yet to be tested in a physical realization (but see [7].)

In anticipation of physical realizations that implement quantum superposi-
tions between physical states, we present here a method of constructing circuits
based on non-local superpositions of “eventualities”, rather than physical ob-
jects. More precisely, we simulate quantum superpositions, “qubits”, as “which-
path” eventualities in linear optics, implementable on standard optical benches.
While the “support” of these qubits is decidedly classical (the optical devices
such as beam splitters, polarizers, etc.) the wave function at the exit of the
optical circuit can be made to coincide arbitrarily well with the outcome of the
anticipated computation, thus implementing the quantum circuit. Naturally, this
“classical” implementation of quantum logic has its drawbacks, as we comment
on further below. Still, it should provide an excellent (and cost effective) means
for testing small circuits for quantum error correction or quantum algorithms.
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As we point out below, the realization that optical which-path eventualities
of single photons can simulate qubits is not new in itself. Here, we focus on
protocols to translate any quantum circuit diagram into linear optics networks,
which puts the realization of simple circuits decidedly within reach. Quantum
computation can be described as the task of performing a specific unitary trans-
formation on a set of quantum bits (qubits) followed by measurement, so that
the outcome of the measurement provides the result of the computation. This
unitary transformation can be constructed with a finite number of 4× 4 unitary
matrices, that is, using a quantum circuit utilizing only 1-bit and 2-bit quantum
gates (see, e.g., [8,9]). The universality of 1- and 2-bit gates in the realization of
an arbitrary quantum computation was shown in [10]. Furthermore, it was real-
ized recently that an optical realization exists for any N ×N unitary matrix [11],
a result which generalizes the well-known implementation of U(2) matrices us-
ing a lossless beam splitter and a phase shifter (see, e.g., [12]). Accordingly,
each element of U(N) can be constructed using an array of O(N2) beam split-
ters that form an optical multiport with N input and N output beams. As we
shall see below, this result together with the universality of (1- and 2-bit) gates,
can be exploited constructively, providing a systematic method for assembling
optically-simulated gates to build simple quantum circuits.

2 Logical Qubits in Optics

Let us start by considering the equivalence between traditional linear optics
elements (such as beam splitters or phase shifters) and 1-bit quantum gates
(see, e.g., [13]). This equivalence is inspired by the standard two-slit experiment
of quantum mechanics, in which a single quantum can interfere with itself to
produce fringes on a screen. Accordingly, a quantum on the other side of the slit
is in a superposition of paths, and the quantum mechanical uncertainty principle
is in full effect with respect to location and phase [14].

For example, in quantum circuit terminology, an optical symmetric beam
splitter is known to act as a quantum

√
NOT gate (up to a phase of π/4) if we

use the pair of input modes |01〉 (or |10〉) to represent the logical 0 (or 1) state
of the qubit. If one input port is in the vacuum state |0〉 (absence of a photon)
and the second one is in a single-photon state |1〉, the output ports will then be
in a superposition state |01〉 + i|10〉. Thus, with the identification of the logical
qubits |0L〉 ≡ |01〉 and |1L〉 ≡ |10〉, we produce the wavefunction

|Ψ〉 =
1√
2

(|0L〉 + i|1L〉) , (1)

from the initial state |0L〉 just by running a photon through a beam splitter.
(The factor i arises from the π/2 phase shift between the transmitted and the
reflected wave in a lossless symmetric beam splitter [?].)

Similarly, a quantum phase gate can be obtained by use of a phase shifter
acting on one mode of the photon. In other words, single-photon interferometry
experiments can be interpreted in quantum circuit language, the “which-path”
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Fig. 1. Example of optical simulation of basic quantum logic gates. (a)
Hadamard gate on a “location” qubit, using a lossless symmetric beam split-
ter. (b) Controlled-NOT gate using a polarization rotator. The location and
polarization are the control and target qubit, respectively. (c) Same as (b) but
the control and target qubits are interchanged by the use of a polarizing beam
splitter.
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variable being substituted with a quantum bit. Although a general proof for the
existence of an optical realization of an arbitrary quantum circuit is implicitly
given in Ref. [11], the simple duality between quantum logic and single-photon
optical experiments has not been exploited. Here (and in [16]) it is shown that a
single-photon representation of several qubits can be used to exploit this duality:
as several (say n) quantum bits can be represented by a single photon in an inter-
ferometric setup involving essentially 2n paths, quantum conditional dynamics
can easily be implemented by using different optical elements in distinct paths.
The appropriate cascading of beam splitters and other linear optical devices en-
tails the possibility of simulating networks of 1- and 2-bit quantum gates (such
as the Hadamard or the controlled-NOT gate, see Fig. 1), and thereby in prin-
ciple achieving universal n-bit quantum computations [16]. This is in contrast
with traditional optical models of quantum logic, where in general n photons
interacting through nonlinear devices (acting as 2-bit quantum gates) are re-
quired to represent n qubits (see, e.g., [13]). Such models typically make use of
the Kerr nonlinearity to produce intensity-dependent phase shifts, so that the
presence of a photon in one path induces a phase shift to a second photon (see,
e.g., the optical realization of a Fredkin gate [17]). Instead, the method proposed
here yields a straightforward method for “translating” any n-bit quantum circuit
into a single-photon optical setup, whenever n is not too large. The price to pay
is the exponential growth of the number of optical paths, and, consequently, of
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Fig. 2. Implementation of two sequential Hadamard transformations as a bal-
anced Mach-Zehnder interferometer using lossless symmetric beam splitters only.
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optical devices that are required. This will most likely limit the applicability of
the proposed technique to the implementation of relatively simple circuits.

First, let us consider a single-photon experiment with a Mach-Zehnder in-
terferometer in order to illustrate the optical simulation of elementary quantum
gates (see Fig. 1). One qubit is involved in the description of the interferometer in
terms of a quantum circuit: the “location” qubit, characterizing the information
about “which path” is taken by the photon. Rather than using the occupation
number representation for the photon, here we label the two input modes enter-
ing the beam splitter by |0〉 and |1〉 (“mode description” representation). The
quantum state of the photon exiting the beam splitter then is |0′〉 + i|1′〉 or
|1′〉+ i|0′〉 depending on the input mode of the photon. This is the

√
NOT gate

discussed earlier. Placing phase shifters at the input and output ports as shown
in Fig. 1a, the beam splitter can be shown to perform a Hadamard transforma-
tion between input and output modes, i.e.,

(

|0′〉
|1′〉

)

=
1√
2

(

1 1
1 −1

) (

|0〉
|1〉

)

. (2)

In this sense, a lossless symmetric beam splitter (supplemented with two −π/2
phase shifters) can be viewed as a Hadamard gate acting on a location qubit.
Recombining the two beams using a second beam splitter (see Fig. 2) in or-
der to form a balanced Mach-Zehnder interferometer corresponds therefore, in
this quantum circuit language, to having a second Hadamard gate acting subse-
quently on the qubit1. Since H2 = 1, it is not a surprise that the location qubit
returns to the initial basis state (|0〉 or |1〉) after two beam splitters (with the
appropriate phase shifter). This sequence of two Hadamard gates simply con-
veys the fact that the contributions of the two paths interfere destructively in

1 Here and below, it is understood that the path lengths are adjusted so that the
difference between dynamical phases vanishes.
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Fig. 3. Implementation of two sequential Hadamard transformations with inter-
mediate conditional operation on the polarization. This circuit produces an en-
tangled state |0〉pol|0〉loc + |1〉pol|1〉loc between the polarization (which is initally
in a product thate with the location qubit at the input port of the interferom-
eter) and the location qubit (denoted by |0〉 and |1〉 in the figure) just before
the final beam splitter, preventing the observation of interference fringes at the
output of this interferometer.
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one of the output ports, so that the photon always leaves the interferometer in
the other.

More interestingly, consider now the same interferometer using polarized pho-
tons (the photon is horizontally polarized at the input). Assuming that none of
the devices acts on polarization, the photon exits the interferometer with the
same polarization. In a circuit terminology, this corresponds to introducing a
“polarization” qubit (|0〉pol stands for horizontal polarization) which remains in
a product state with the location qubit throughout the circuit. If a polarization
rotator is placed in one of the branches of the interferometer, flipping the polar-
ization from horizontal |0〉pol to vertical |1〉pol, it is well known that interference
disappears since both paths become distinguishable. This corresponds to placing
a 2-bit controlled-NOT gate (represented in Fig. 1b) between the two Hadamard
gates, where the location qubit is the control and polarization is the target bit
(see Fig. 3). The circuit in Fig. 3 thus simply implements the dynamics

|0〉pol|0〉loc →
1√
2

(|0〉pol|0〉loc + |1〉pol|1〉loc) (3a)

→ 1
2

(|0〉pol|0〉loc + |1〉pol|0〉loc + |0〉pol|1〉loc − |1〉pol|1〉loc) . (3b)

which “tags” each path with a particular polarization just before the final beam
splitter in the sense that the polarization of the photon is flipped conditionally
on its location. The disappearance of interference fringes then simply reflects
the entanglement between location and polarization qubits (the reduced density
matrix obtained by tracing over polarization shows that the photon ends up in
a mixed “location” state, i.e., it has a 50% chance of being detected in one or
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the other exit port). This suggests that Feynman’s rule of thumb (namely that
interference and which-path information are complementary) is a manifestation
of the quantum no-cloning theorem: the location qubit cannot be “cloned” into
a polarization qubit. However, the fringes can be resurrected via a quantum era-
sure procedure [18] (which involves placing polarizing beam-splitters, introduced
below, at the exit ports of the construction).

The optical analogue of other basic quantum gates can be devised following
the same lines. For example, a polarizing beam splitter achieves a controlled-
NOT gate where the location qubit is flipped or not (the photon is reflected or
not) conditionally on its state of polarization, as shown in Fig. 1c. Fredkin, Tof-
foli, as well as controlled-phase gates can easily be simulated in the same manner
but will not be considered here. The central point is that, in principle, a universal
quantum computation can be simulated using these optical substitutes for the
universal quantum gates. The optical setup is constructed straightforwardly by
inspection of the quantum circuit. A circuit involving n qubits requires in general
n successive splitting stages of the incoming beam, that is, 2n optical paths are
obtained via 2n − 1 beam splitters. (The use of polarization of the photon as a
qubit allows using 2n−1 paths only.) This technique is thus limited to the sim-
ulation of quantum networks involving a relatively small number of qubits (say
less than 5-6 with present technology). The key idea of a quantum computer,
however, is to avoid just such an exponential size of the apparatus by having n
physical qubits performing unitary transformations in a 2n-dimensional space.
In this respect, it can be argued that an optical setup requiring ∼ 2n optical
elements to perform an n-bit quantum computation represents a classical optical
computer (see, e.g., [9]). Accordingly, the issue of whether non-locality (which
is at the heart of entanglement) is physically present in the optical realization is
a matter of debate.

3 Optical Quantum Teleportation

As an illustration, we show that a quantum circuit involving 3 qubits and 8
quantum gates (see Fig. 4) can be implemented optically using essentially 9
beam splitters [16]. This circuit2 has the property that the arbitrary initial state
|ψ〉 of qubit Λ is “teleported” to the state in which qubit λ is left after the
process. In the original teleportation scheme [20], two classical bits (resulting
from a Bell measurement) are sent by the emitter, while the receiver performs
a specific unitary operation on λ depending on these two bits. However, it is
shown in [21] that these unitary operations can be performed at the quantum
level as well, by using quantum logic gates and postponing the measurement of
the two bits to the end of the circuit. The resulting quantum circuit (Fig. 4) is
formally equivalent to the original teleportation scheme (although no classical
bits are communicated) as exactly the same unitary transformations and quan-
tum gates are involved. While we do not claim that an optical realization gives
rise to “genuine” teleportation, this example circuit is instructive to demonstrate
2 This teleportation circuit is equivalent to the one described in [19].
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Fig. 4. Quantum circuit for teleportation (from [19]). The initial state of qubit
Λ is teleported to the state of qubit λ. Qubits σ and λ must be initially in state
|0〉. Qubits Λ and σ, if measured at the end of the circuit, yield two classical
(random) bits that are uniformly distributed.

H

H

H

H

0

0

0 + 1

G

0 + 1y

y

L

s

l

DA

C

C

E FB

0,1

0,1

the correspondence between quantum logic and optical devices as it is small (3
qubits) but non-trivial.

In the optical counterpart of this circuit (see Fig. 5), qubits Λ and λ corre-
spond to the location of the photon at the first and second splitting level, while σ
stands for the polarization qubit. Note that the photons are initially horizontally
polarized, i.e., in polarization state |0〉. The first beam splitter A in Fig. 5 acts
as a Hadamard gate on Λ, as explained previously. For convenience, we depict
the teleportation of state |ψ〉 = |0〉, so that the incident photon enters this beam
splitter in the input port labeled |0〉. However, as any operation in U(2) can be
realized optically, an arbitrary state of Λ can be prepared (and then teleported)
by having an additional beam splitter (with tunable phase shifters) connected
to both input ports of beam splitter A. The second level of beam splitters B
(and B’)3 corresponds to the Hadamard gate B on λ in Fig. 4. The four paths
at this point (Λλ = 00, 01, 10, and 11) label the four components of the state
vector characterizing qubits Λ and λ. The probability amplitude for observing
the photon in each of these four paths, given the fact the photon enters the |0〉
port of beam splitters A and B, is then simply the corresponding component
of the wave vector. The combined action of both controlled-NOT gates C in
Fig. 4 is to flip the polarization state of the photon (qubit σ) conditionally on
the parity of Λ+λ (mod 2), which is achieved by inserting polarization rotators
C at the appropriate positions. In other words, the polarization is flipped on
path 01 or 10, while it is unchanged on path 00 or 11.

The Hadamard gate D in Fig. 4 acts on qubit Λ, independently of λ. This is
achieved in Fig. 5 by grouping the paths in pairs with the same value of λ (i.e.,
crossing the paths) and using two beam splitters D in order to effect a Hadamard
transformation on Λ (one for each value of λ). Similarly, the controlled-NOT
gate E acting on λ (conditionally on the polarization) is implemented by the use

3 For convenience, two realizations (B and B’) of the Hadamard gate are used in Fig. 5,
where B’ is obtained from B by interchanging the |0′〉 and |1′〉 output ports in Fig. 1a.
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Fig. 5. Optical realization of the quantum circuit for teleportation using polar-
ized photons. The location qubit Λ characterizes the “which-arm” information
at the first beam splitter, while qubit λ stands for the “which-path” informa-
tion at the second level of splitting. The initial location qubit Λ is teleported
to qubit λ and probed via the interference pattern observed at the upper or
lower (Λ = 0, 1) final beam splitter, for both polarization states (σ = 0, 1) of the
detected photon.
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of two polarizing beam splitters E after crossing the paths again. A polarizing
beam splitter leaves a horizontally polarized photon (state |0〉)) unchanged, while
vertical polarization (state |1〉) is reflected. The last Hadamard gate F in Fig. 4
corresponds to the last two beam splitters F, and the final controlled-NOT gate
G is simply achieved by crossing the paths (λ = 0, 1) in the lower arm (Λ = 1)
versus the upper arm (Λ = 0). In fact, the setup could be simplified by noting
that the conditional crossing of paths achieved by G simply reduces to relabeling
the output ports of beam splitter F in the Λ = 1 arm. In Fig. 5, only those phase
shifters associated with the Hadamard gates (Fig. 1a) that are relevant in the
final detection are indicated.

The interpretation of this optical circuit in the language of teleportation is
the following. After being “processed” in this quantum circuit, a photon which
was initially horizontally polarized can reach one of the two “light” detectors
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(solid line in Fig. 5) with horizontal or vertical polarization. This corresponds to
the final measurement of qubits Λ and σ in Fig. 4, yielding two classical (random)
bits: upper or lower arm, horizontal or vertical polarization. The third qubit, λ,
contains the teleported quantum bit, that is, the initial arbitrary state of Λ.
Since the location state of the photon is initially |0〉 in the setup represented in
Fig. 5, it always exits to the “light” detector and never reaches the “dark” one
(dashed line). For any measured value of Λ (photon detected in the upper or
lower arm) and σ (horizontally or vertically polarized photon), the entire setup
forms a simple balanced Mach-Zehnder interferometer. Indeed, there are exactly
two indistinguishable paths leading to each of the eight possible outcomes (four
detectors, two polarizations); these interfere pairwise, just as in a standard Mach-
Zehnder interferometer, explaining the fact that the photon always reaches the
“light” detector (in both Λ = 0 and Λ = 1 arms and for both polarizations).
In this sense, the initial “which-arm” qubit Λ has been teleported to the final
“which path” qubit λ. Note that, as no photodetection coincidence is required
in this optical experiment, the setup is actually not limited to single-photon
interferometry. This largely simplifies the realization of the optical source since
classical light fields (such as those from a laser) can be used rather than number
states.

4 Conclusion

We have proposed a general technique for simulating small-scale quantum net-
works using optical setups composed of linear optical elements only. This avoids
the recourse to non-linear Kerr media to effect quantum conditional dynamics,
a severe constraint in the usual optical realization of quantum circuits. A draw-
back of this technique is clearly the exponential increase of the resources (optical
devices) with the size of the circuit. Nevertheless, as optical components that
simulate 1- and 2-bit universal quantum gates can be cascaded straightforwardly,
a non-trivial quantum computing optical device can easily be constructed if the
number of component qubits is not too large. We believe this technique can
be applied without fundamental difficulties to the encoding and decoding cir-
cuits that are involved in the simplest quantum error-correcting schemes [22],
opening up the possibility for an experimental simulation of them. Furthermore,
this technique promises a technologically simple way to test quantum algorithms
for performance and error stability. Last but not least, the correspondence be-
tween quantum circuits and optical (interferometric) setups suggests that new
and improved interferometers could be designed using the quantum circuit lan-
guage [23].
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