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Abstract. An investigation of Einstein’s “physical” reality and the con-
cept of quantum reality in terms of information theory suggests a solution
to quantum paradoxes such as the Einstein-Podolsky-Rosen (EPR) and
the Schrödinger-cat paradoxes. Quantum reality, the picture based on
unitarily evolving wavefunctions, is complete, but appears incomplete
from the observer’s point of view for fundamental reasons arising from
the quantum information theory of measurement. Physical reality, the
picture based on classically accessible observables is, in the worst case
of EPR experiments, unrelated to the quantum reality it purports to re-
flect. Thus, quantum information theory implies that only correlations,
not the correlata, are physically accessible: the mantra of the Ithaca
interpretation of quantum mechanics.

1 Introduction

The concept of “physical reality” as championed by Einstein [1]—the postulate
that the objective state of a system is specified by a set of real-valued parameters
independently of our knowledge of them—has been an object of contention ever
since the inception of quantum theory (see, e.g., [2,3,4,5,6,7]). The most prevail-
ing views assert either that the “quantum reality” suggested by wavefunctions
and non-local correlations is only a mathematical construction necessary for a
consistent theory (Bohr’s view), or else that physical reality is deterministic but
incompletely described by quantum mechanics (Einstein’s view). A popular in-
terpretation of the latter view is that physical reality is obscured by inaccessible
hidden variables [8], a stance that appears to be discredited by the violation of
Bell’s inequalities in quantum mechanics [9]. Bohr’s view of complementarity, on
the other hand, assigns a special status to classical physics as an essential ingre-
dient in measurement since it requires the measurement device to be classical. As
recognized by von Neumann [10], this undermines the foundations of quantum
mechanics as a complete and consistent theory. Here, we suggest that Einstein
realism and Bohr’s complementarity principle can be reconciled within a frame-
work that consistently describes the concept of information in quantum mechan-
ics. This is exemplified by the quantum information theoretic treatment of the
Einstein-Podolsky-Rosen (EPR) experiment [1] and the Schrödinger-cat para-
dox [11], which has recently attracted increasing attention (see, e.g., [12]). We
propose that, in general, the perceived physical reality and quantum reality can
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be disjoint, that is, the result of a quantum measurement conceivably might not
carry any information—in the sense of Shannon theory [13]—which would allow
the observer to infer the state of the measured system. While counterintuitive, we
shall show that this picture is a direct consequence of an information-theoretic
reinterpretation of quantum measurement. Moreover, such a view effortlessly re-
solves the EPR paradox which has inspired the discussions on reality, as well as
other quantum paradoxes rooted in the measurement problem.

The gedankenexperiment that constitutes the EPR paradox was created by
Einstein, Podolsky, and Rosen to demonstrate their dissatisfaction with “un-
knowables” [1]. In that experiment, it appears that two complementary vari-
ables (such as position and momentum) are in principle measurable by exploit-
ing the quantum correlations between the two particles, in contradiction with
Heisenberg’s uncertainty principle. Their conclusion, namely that the quantum
mechanical description of reality must therefore be incomplete, was based on a
criterion for reality which they considered “reasonable” (see below). This crite-
rion was faulted by Bohr [14] in his reply to the EPR paper, insisting rather that
physical variables are never independent of the way they are measured owing to
the complementarity principle, and therefore that measurements do not confer
reality to properties of quantum objects. We shall show here, using quantum
information theory only, that, while indeed an element of reality is not created
for the measured quantum system, the result of a quantum measurement cre-
ates an element of reality for the result of another measurement, i.e., it allows
you to predict the state of another measurement device without revealing the
state of the quantum system itself. Thus, physical reality is reflected in cor-
relations between classical objects only. This view, which we arrived at from
a quantum information-theoretic examination of quantum measurement [15,16]
essentially coincides with Mermin’s “Ithaca Interpretation of Quantum Mechan-
ics”, Ref. [17].

2 The EPR Paradox

The EPR experiment in the version of Bohm [18] involves the preparation of a
quantum system such as the one created by the decay of a spinless particle into
two half-integral-spin particles:

|ΨEPR〉 =
1√
2

(| ↑ ↓ 〉 − | ↓ ↑ 〉) . (1)

This state represents the superposition of the two possible situations: “left-
particle spin-up, right-particle spin-down”, and “right-particle spin-up, left-par-
ticle spin-down”. Let us now imagine that the pair so-created is separated suf-
ficiently far that classical information would take a long time to travel between
them. Then, we measure for example the z-component of the spin of one of
the particles (say, the left one). This measurement has two possible outcomes,
which occur with probability one-half each, implying that the von Neumann un-
certainty of the density matrix describing any one of the particles (denoted by
subscripts L and R),
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ρL,R =
1
2
| ↑〉〈↑ | + 1

2
| ↓〉〈↓ | (2)

is one bit
S(ρL,R) = −TrR,L (ρL,R log2 ρL,R) = 1 (3)

in spite of the fact that entropy of the combined system vanishes. The latter
is of course well-known: for a quantum mechanical “pure state” (ρ2

EPR = ρEPR,
where ρEPR = |ΨEPR〉〈ΨEPR|) the von-Neumann entropy vanishes S(ρEPR) = 0,
i.e., the state is perfectly well-known.

Clearly then, the quantum nature of the EPR state is very peculiar since
the uncertainty of a part of this system can be larger than the uncertainty of
the pair. Classically, this is impossible. Indeed, if we describe uncertainties using
(classical) Shannon entropies, the Shannon entropy of a system A, say, with
A ⊂ AB, is

H(A) ≤ H(AB) . (4)

This property of monotonicity of entropies is violated in quantum mechan-
ics [19]. This violation, on the other hand, can be described consistently in
an information-theoretic formalism which allows for negative conditional en-
tropies [20,21]. In other words, there exists an information theory, extended to
the quantum regime, in which the violation of classical laws such as monotonicity
are inevitable consequences.

Quantum entanglement situations, such as encountered in EPR pairs, are pro-
totype systems to examine the classically forbidden regime of negative entropies.
In the case at hand, the joint, conditional, mutual, and marginal entropies of the
EPR pair can be summarized by the entropy diagram in Fig. 1. Such diagrams
are used extensively in classical information theory and serve as mental scratch
pads to remind us of the separation of unconditional entropies into conditional
and mutual pieces. While in the past the violation of monotonicity prevented
the use of Venn diagrams in quantum information theory, the introduction of
negative entropies has reinstated this useful tool [20,21,15,16]. In particular, we
can see how

S(L) )≤ S(LR) . (5)

is possible in Fig. 1 if S(L|R) is negative.
The repercussions of such an information-theoretic description of entangle-

ment for the extraction of information from such a state (a measurement) are
manifold. Here, we focus on EPR experiments and other quantum paradoxes,
and on implications for physical as well as quantum pictures of reality.

3 Information Theory of EPR Experiments

In order to assess the relation between quantum and physical reality in an EPR
measurement, we need to describe both the quantum system (the EPR wave-
function) and the classical devices it becomes entangled with, using information
theory.
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Fig. 1. Quantum entropy diagrams. (a) Definition of joint [S(LR)] (the total
area), marginal [S(L) or S(R)], conditional [S(L|R) or S(R|L)] and mutual
[S(L : R)] entropies for a quantum system LR separated into two subsystems L
and R; (b) their respective values for the EPR pair.
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(a) (b)
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Fig. 2. Measurement of EPR pair Q1Q2 by devices A1 and A2.
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Let A1 and A2 denote measurement devices, each of the devices measuring
the z component of one member of an EPR pair, for example (see Fig. 2).

It is an experimental fact that the measurement of the state of one of the
particles (say, σz) allows a 100% accurate prediction of what the outcome of the
measurement of the other one will be. Thus, the outcomes of the measurement
of σz are perfectly correlated, a situation described by the entropy diagram in
Fig. 3a, which appears perfectly classical (no negative numbers appear).

Note that the correlations between the devices are quite unlike those of the
quantum system that is measured, a peculiarity that is quantitatively manifested
when comparing Figs. 1b and 3a. The reason why the correlations between the
measurement devices (Fig. 3a) incompletely mirror the entanglement present
in the quantum state (Fig. 1b) must be due to the device’s classical nature:
classical conditional entropies cannot be negative. However, classicality must
not be assumed for the devices, it is a mathematical result of the information-
theoretic treatment of measurement (which gives rise to Fig. 3a) [16].

Assume now that orthogonal spin projections are measured on the two halves
of the EPR pair, say σz on the left particle, and σx on the right one. If we as-
sume that measuring the state of one partner confers reality to the state of the
measured system, we must conclude that the experiment just described would
allow us to infer the z and x projections simultaneously, a state of affairs strictly
forbidden by the uncertainty relation. In their landmark paper [1] EPR there-
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fore conclude that, since conventional quantum mechanics cannot describe this
peculiar situation, the theory must necessarily be incomplete. This is the essence
of the EPR paradox. It relies on a definition of reality based on “certain predic-
tion”1 according to which the state of the second particle would acquire physical
reality after measuring its EPR partner. In fact, for this particular experiment
(measuring σz on the left and σx on the right particle) it is found that the
outcomes recorded by the devices are completely uncorrelated as depicted by
the classical entropy diagram for the devices pictured in Fig. 3b. Rather than
reflecting an incompleteness of the formalism, these outcomes are predicted by
quantum information theory, and imply that physical reality is attributed to the
state of the second measurement device, or more precisely the relative state of
the devices, while there cannot be any correlation between the apparatus and
the quantum state proper (as we show below). In view of the importance of this
conclusion, let us repeat it once more. Quantum information theory predicts that
in EPR-type measurements, the measurement device cannot reflect the state of
of the quantum system. In the language of Mermin [17], the correlations between
the devices are real, i.e., possess physical reality, while the quantum system itself
does not.

Fig. 3. Entropy diagram for the devices: (a) recording σz for each of the entan-
gled particles, or (b) recording σz for one and σx for the other particle.

1 A2 A1 A2A
(a)

10 0

(b)

01 1

Let us show this in more detail. For a proper quantum information-theoretic
analysis, we need to consider four systems: a quantum pair Q1Q2 and a pair
of ancillae A1A2. The ancillae can be thought of as classical devices that are
built to reflect the quantum states. From a measurement point of view, we are
interested in the correlations between the ancillae, as only such correlations are
experimentally accessible (relative states). Before we analyze them using quan-
tum entropy diagrams, let us ponder what we expect to find from an orthodox
point of view.

One of the fundamental tenets of classical measurement theory is that a
measurement device is constructed such as to mirror the state of the object
to be measured as accurately as possible. In other words, measurement entails

1 EPR wrote in [1]: “If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical quantity.”
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the transfer of this information to a macroscopic system that is more suited to
accurate observation, without altering the state of the system. While it is well-
known that quantum measurements cannot be made without altering the quan-
tum state [22], the general belief is that the quantum state after measurement
is truthfully portrayed by the device. In other words, it is believed that correla-
tions between the quantum state and the ancillae in the measurement situation
allow the extraction of information about the quantum system. Let us consider
the “orthodox” (classical) entropy diagram (Fig. 4) for an EPR measurement,
drawing the quantum system Q1Q2 as one system, measured by the ancillae A1

and A2. These diagrams reveal the paradox inherent in this description. On the

Fig. 4. Classical entropy diagram for the EPR measurement of spin-projections:
(a) both devices measure σz, (b) one device measures σz , the other σx. Note that
the entropy of A1 and A2 have to be one bit in each case, as the measurement
outcomes are equiprobable, while Q1Q2 is thought to have two independent
equiprobable degrees of freedom.
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one hand, when the same projection of the spin (e.g., σz) is measured for both
particles (Fig. 4a) classical reasoning suggests that the quantum system and the
measurement devices share information (one bit in the center of the diagram).
On the other hand, when orthogonal polarizations are measured (Fig. 4b) the
measurement devices must appear uncorrelated. According to a “physical real-
ism” or “hidden variable” picture, both diagrams in Fig. 4 must have a common
underlying classical diagram relating five ensembles: the EPR pair Q1Q2 and the
four possible measurements A1[σz ], A1[σx], A2[σz ], and A2[σx]2. This underlying
diagram, however, is in contradiction with the Heisenberg uncertainty principle,
as it implies that the counterfactual variables σx and σz (of the same particle)
can be measured together. Thus, this classical treatment of information leads to
a paradox.

2 The diagrams in Fig. 4 are obtained from such an underlying diagram by ignoring
two out of the five variables: Fig. 4a by ignoring A1[σx] and A2[σx], Fig. 4b by
ignoring A1[σx] and A2[σz]. “Ignoring” a system is achieved by the mathematical
operation of tracing it out of the joint density matrix.



264 C. Adami and N.J. Cerf

Fig. 5. (a) Quantum entropy diagram for the EPR measurement of same spin-
projections: e.g., A1 and A2 both measure σz . (b) reduced diagram obtained by
tracing over the quantum states Q1 and Q2.
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The paradox is resolved by drawing the quantum entropy diagrams for the
measurements (Figs. 5 and 6). The values for the respective quantum entropies
entering these diagrams can be obtained by straightforward calculation [16]. In
Fig. 5 the entropy diagram representing the situation where the same polariza-
tions are measured is that of a GHZ state [23]: fully symmetric and maximum
quantum entanglement between three entities. As is well-known, tracing over
(ignoring) one member of such a triplet produces classical correlations (of the
type depicted in Fig. 3a) in the remaining doublet, as indicated in Fig. 5b. As
a consequence, the quantum entropy diagram of Fig. 5a correctly reproduces
the observed correlations between the detectors A1 and A2. Closer inspection of
Fig. 5a, however, reveals that while the measurement devices are perfectly corre-
lated as they should, their mutual entropy (the single bit of information gained
in the measurement) is not shared by the quantum system Q1Q2. In Figs. 5 and
6, this ternary mutual information3 is represented by the center of the diagram,
and measures how much of the correlations between the measurement devices
is shared by the quantum system. If the center of the diagram is zero, we must
conclude that no information is shared between quantum system and classical
devices.

The same is true for the measurement situation in Fig. 6a, where incompatible
polarizations are measured. Again, the (four part) system is fully entangled, and
ignoring the quantum state produces the experimentally observed independence
of the measurement results (Fig. 6b, compare Fig. 3b). Yet, the correlation be-
tween quantum state and measurement device (the mutual information between

3 Just like any entropy, information, which is the mutual entropy between two sys-
tems, can be split up into a conditional and a mutual piece with respect to a third
system [13].
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the measuring and the measured system) is unchanged from the previous ar-
rangement, in fact, it vanishes in both cases4.

Fig. 6. (a) Quantum entropy diagram for the EPR measurement of orthogonal
spin-projections, e.g., A1 measures σx while A2 records σz . (b) Reduced diagram
as above.
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This situation leads us to suggest that we must abandon at least one cher-
ished notion of orthodox measurement theory: that the apparatus necessarily
reflects the state of the system it was built to measure, by being correlated with
it in the sense of Shannon. Rather, it is the correlations between the ancillae (the
reality of their relative state) that create the illusion of measurement. Indeed, any
subsequent measurement on each side (left or right), for example, would yield
the same result, over and over again, while still not implying anything about
the quantum wavefunction. Each observer that repeats a measurement becomes
classically correlated to the earlier outcome, whatever the outcome. Still, the
quantum reality of the superposition is unperturbed by these measurements:
none of the repeatable measurements yield any information about the quantum
state, while they are internally completely consistent. Note that the orthodox in-
terpretation of these correlations involves the concept of a wavefunction collapse:
the measurement of the first particle projects—or collapses—the wavefunction
of the other one, to account for the perfect correlation. Since the devices do
not reflect the state of the quantum system, however, no collapse is needed to
explain the correlations, nor does it actually occur, as we now show.

4 Information Theory of Schrödinger Cats

The Schrödinger-cat paradox is of prime importance for the understanding of
quantum decoherence and the quantum-classical boundary. The latter have re-
ceived increased attention recently due to their importance for the design of
quantum computation and communication devices [24].
4 The mutual information between quantum system and both classical devices also

vanishes for any intermediate situation between Figs. 5 and 6, since the joint system
Q1Q2A1A2 is always a pure state [16].
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The Schrödinger-cat paradox explores the relationship between classical and
quantum variables by coupling them together in such a way that the decay of
a radioactive substance (say, one isolated atom) implies the demise of a cat
locked up with the deadly contraption in a sealed room. The quantum reality of
the (isolated) atomic system is that of a superposition of a decayed atom with
gamma ray, and an undecayed atom without. If brought into contact with the
cat, however, quantum mechanics forces us to include the cat in this entangled
wavefunction

|Ψ〉 =
1√
2

(|A!, 0, L〉 + |A, 1, D〉) , (6)

where |A!〉 and |0〉 refer to the excited atom and absent gamma, while |A〉 and
|1〉 are the wavefunctions of the decayed atom and the gamma. Furthermore,
|L〉 and |D〉 refer to the “live” and “dead” cat eigenstates. The paradox arises if
an observer peeks into the room to observe the state of the cat. Does the cat’s
wavefunction immediately collapse into one of its eigenstates (dead or alive) upon
observation? The preceding analysis teaches us that this is not necessary. The
observer can be thought of as a fourth system that is now quantum entangled
with the previous troika: atom, gamma, and cat

|Ψ〉 =
1√
2

(|A!, 0, L, l〉+ |A, 1, D, d〉) , (7)

introducing “observer eigenstates” |l〉 and |d〉. Then, upon tracing over the quan-
tum degrees of freedom of the atom (after all, this experiment involves moni-
toring the cat and not the atom), the cat (serving as the hapless gamma-ray
detector) appears perfectly correlated with the observer peeking into the room.
Cat and observer agree, so to speak, about the observation, and their state is
entirely classical. Yet, their agreement is completely decorrelated, disjoint, from
the quantum state, as their mutual information shared with the atomic sys-
tem vanishes. In other words, the classical reality displayed by cat and observer
does not imply anything about the quantum reality of atom and gamma ray, or
vice versa. Fundamentally, the reason why the observer does not register a cat
mired in a quantum superposition of the living and non-living states is because
the observer, having interacted with the cat, is entangled with, and thus part
of, the same wavefunction. As the wavefunction is indivisible, an observer (or
measurement device) would have to monitor itself in order to learn about the
wavefunction. This is logically impossible.

5 Conclusions

To summarize, we assert that quantum reality is “real” in the sense that quantum
mechanics completely and deterministically describes the evolution of a closed
system (not just its wavefunction), and that the statistical character arises from
the fact that an observer, because he is part of the closed system, is offered an
incomplete view of the quantum system he attempts to measure. Consequently,
the quantum universe is deterministic as Einstein’s physical reality demands,
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but must include the observer as one of its parts due to the inseparability of
entangled quantum states. The recent information-theoretic analysis of quantum
measurement [15,16] shows that such an observer indeed perceives the system
he is measuring as probabilistic, and thus that Bohr’s complementarity principle
emphasizing the importance of the system/observer relation therefore holds at
the same time. If quantum reality is so elusive, how then can we learn about
its nature? Fortunately, while negative entropy cannot be reflected in classical
instruments directly, it is possible to infer it from combined measurements and
comparison with classical bounds (a case in point are Bell inequalities [9], see
also [25]). Thus, quantum reality does leave its traces in experiments, while the
direct observation of superpositions is impossible.
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