
Optical simulation of quantum logic

N. J. Cerf,1 C. Adami,1,2 and P. G. Kwiat3
1W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125
2Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125

3Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 23 September 1997!

A constructive method for simulating small-scale quantum circuits by use of linear optical devices is
presented. It relies on the representation of several quantum bits by a single photon, and on the implementation
of universal quantum gates using simple optical components ~beam splitters, phase shifters, etc.!. This suggests
that the optical realization of small quantum networks with present-day quantum optics technology is a
reasonable goal. This technique could be useful for demonstrating basic concepts of simple quantum algo-
rithms or error-correction schemes. The optical analog of a nontrivial three-bit quantum circuit is presented as
an illustration. @S1050-2947~98!50403-9#

PACS number~s!: 03.67.Lx, 03.65.Bz, 42.50.2p, 42.79.Ta

Quantum computation can be described as the task of per-
forming a specific unitary transformation on a set of quantum
bits ~qubits! followed by measurement, so that the outcome
of the measurement provides the result of the computation.
This unitary transformation can be constructed with a finite
number of 434 unitary matrices, that is, using a quantum
circuit utilizing only one-bit and two-bit quantum gates ~see,
e.g., @1,2#!. The universality of one- and two-bit gates in the
realization of an arbitrary quantum computation has been
proven in @2,3#. It has been shown recently that an optical
realization exists for any N3N unitary matrix @4#, a result
that generalizes the well-known implementation of U(2)
matrices using a lossless beam splitter and a phase shifter
~see, e.g., @5#!. Accordingly, each element of U(N) can be
constructed using an array of O(N2) beam splitters that form
an optical multiport with N input and N output beams. As a
consequence, the simulation of universal quantum gates us-
ing linear optics components should be feasible, and we pro-
pose a systematic method for assembling these optically
simulated gates to build simple quantum circuits.
In this Rapid Communication, we discuss a correspon-

dence between quantum networks and linear optical setups,
and present as an example the optical realization of a three-
bit quantum computation. This is achieved by introducing a
single-photon representation of several quantum bits, build-
ing on the equivalence between traditional linear optics ele-
ments ~such as beam splitters or phase shifters! and one-bit
quantum gates ~see, e.g., @6#!. For example, in quantum cir-
cuit terminology, an optical symmetric beam splitter is
known to act as a quantum ANOT gate ~up to a phase of p/4!
if we use the pair of input modes u01& ~or u10&! to represent
the logical 0 ~or 1! state of the qubit. If one input port is in
the vacuum state u0& and the second one is in a single-photon
state u1&, the output ports are indeed in a superposition state
u01&1iu10&. Similarly, a quantum phase gate can be ob-
tained by use of a phase shifter acting on one mode of the
photon. In other words, single-photon interferometry experi-
ments can be interpreted in quantum circuit language, the
‘‘which-path’’ variable being substituted with a quantum bit.
Although a general proof for the existence of an optical re-
alization of an arbitrary quantum circuit is implicitly given in

Ref. @4#, the simple duality between quantum logic and
single-photon optical experiments has not been exploited in
the literature. Here, we use the fact that several ~say n! quan-
tum bits can be represented by a single photon in an inter-
ferometric setup involving essentially 2n paths, so that quan-
tum conditional dynamics can easily be implemented by
using different optical elements in distinct paths. The appro-
priate cascading of beam splitters and other linear optical
devices entails the possibility of simulating networks of one-
and two-bit quantum gates ~such as the Hadamard or the
controlled-NOT gate; see Fig. 1!, and thereby in principle
achieving universal n-bit quantum computations. This is in
contrast with traditional optical models of quantum logic,
where in general n photons interacting through nonlinear de-
vices ~acting as two-bit quantum gates! are required to rep-
resent n qubits ~see, e.g., @6#!. Such models typically make
use of the Kerr nonlinearity to produce intensity-dependent
phase shifts, so that the presence of a photon in one path
induces a phase shift to a second photon ~see, e.g., the optical
realization of a Fredkin gate @7#!. Instead, the model pro-
posed here yields a straightforward method for ‘‘translating’’
any n-bit quantum circuit into a single-photon optical setup,
whenever n is not too large. The price to pay is the expo-
nential growth of the number of optical paths, and, conse-

FIG. 1. Example of optical simulation of basic quantum logic
gates. ~a! Hadamard gate on a ‘‘location’’ qubit, using a lossless
symmetric beam splitter. ~b! Controlled-NOT gate using a polariza-
tion rotator. The location and polarization are the control and target
qubit, respectively. ~c! Same as ~b! but the control and target qubits
are interchanged by the use of a polarizing beam splitter.
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quently, of optical devices that are required. This will most
likely limit the applicability of the proposed technique to the
simulation of relatively simple circuits.
First, let us consider a single-photon experiment with a

Mach-Zehnder interferometer in order to illustrate the optical
simulation of elementary quantum gates ~see Fig. 1!. One
qubit is involved in the description of the interferometer in
terms of a quantum circuit: the ‘‘location’’ qubit, character-
izing the information about ‘‘which path’’ is taken by the
photon. Rather than using the occupation number represen-
tation for the photon, here we label the two input modes
entering the beam splitter by u0& and u1& ~‘‘mode description’’
representation!. The quantum state of the photon exiting the
beam splitter then is u08&1iu18& or u18&1iu08&, depending
on the input mode of the photon. ~The factor i arises from the
p/2 phase shift between the transmitted and the reflected
wave in a lossless symmetric beam splitter @8#.! This is the
ANOT gate discussed earlier. Placing phase shifters at the
input and output ports as shown in Fig. 1~a!, the beam split-
ter can be shown to perform a Hadamard transformation be-
tween input and output modes, i.e.,

S u08&
u18& D5

1
&

S 1 1
1 21 D S u0&

u1& D . ~1!

In this sense, a lossless symmetric beam splitter ~supple-
mented with two 2p/2 phase shifters! can be viewed as a
Hadamard gate acting on a location qubit. Recombining the
two beams using a second beam splitter in order to form a
balanced Mach-Zehnder interferometer corresponds there-
fore, in this quantum circuit language, to having a second
Hadamard gate acting subsequently on the qubit @9#. Since
H251, it is not a surprise that the location qubit returns to
the initial basis state ~u0& or u1&! after two beam splitters. This
sequence of two Hadamard gates simply conveys the fact
that the contributions of the two paths interfere destructively
in one of the output ports, so that the photon always leaves
the interferometer in the same direction as it entered.
More interestingly, consider now the same interferometer

using polarized photons ~the photon is horizontally polarized
at the input!. Assuming that none of the devices act on po-
larization, the photon exits the interferometer with the same
polarization. In a circuit terminology, this corresponds to in-
troducing a ‘‘polarization’’ qubit ~u0& stands for horizontal
polarization!, which remains in a product state with the lo-
cation qubit throughout the circuit. If a polarization rotator is
placed in one of the branches of the interferometer, flipping
the polarization from horizontal u0& to vertical u1&, it is well
known that interference disappears since both paths become
distinguishable. This corresponds to placing a two-bit
controlled-NOT gate @represented in Fig. 1~b!# between the
two Hadamard gates, where the location qubit is the control
and polarization is the target bit. Conditional dynamics is
achieved in the sense that the polarization of the photon is
flipped conditionally on its location. The disappearance of
interference fringes then simply reflects the entanglement be-
tween location and polarization qubits ~the reduced density
matrix obtained by tracing over polarization shows that the
photon ends up in a mixed ‘‘location’’ state, i.e., it has a
50% chance of being detected in one or the other exit port!.
This suggests that Feynman’s rule of thumb ~namely, that

interference and which-path information are complementary!
is a manifestation of the quantum no-cloning theorem: the
location qubit cannot be ‘‘cloned’’ into a polarization qubit.
The optical analog of other basic quantum gates can be

devised following the same lines. For example, a polarizing
beam splitter achieves a controlled-NOT gate where the loca-
tion qubit is flipped or not ~the photon is reflected or not!
conditionally on its state of polarization, as shown in Fig.
1~c!. Fredkin, Toffoli, as well as controlled-phase gates can
easily be simulated in the same manner but will not be con-
sidered here. The central point is that, in principle, a univer-
sal quantum computation can be simulated using these opti-
cal substitutes for the universal quantum gates. The optical
setup is constructed straightforwardly by inspection of the
quantum circuit. A circuit involving n qubits requires in gen-
eral n successive splitting stages of the incoming beam, that
is, 2n optical paths are obtained via 2n21 beam splitters.
~The use of polarization of the photon as a qubit allows using
2n21 paths only.! This technique is thus limited to the simu-
lation of quantum networks involving a relatively small
number of qubits ~say less than 5–6 with present technol-
ogy!. The key idea of a quantum computer, however, is to
avoid just such an exponential size of the apparatus by hav-
ing n physical qubits performing unitary transformations in a
2n-dimensional space. In this respect, it can be argued that an
optical setup requiring ;2n optical elements to perform an
n-bit quantum computation represents a classical optical
computer ~see, e.g., @2#!. Accordingly, the issue of whether
nonlocality ~which is at the heart of entanglement! is physi-
cally present in the optical realization is a matter of debate.
However that may be, our focus here is to provide an explicit
constructive method for simulating small-n quantum circuits
using standard linear optics, which should prove to be useful
for experimentally testing nontrivial quantum circuits or
simple quantum algorithms.
As an illustration, we show that a quantum circuit involv-

ing three qubits and eight quantum gates ~see Fig. 2! can be
simulated optically using essentially nine beam splitters.
This circuit has the property that the arbitrary initial state uc&
of qubit L is ‘‘teleported’’ to the state in which qubit l is left
after the process.1 In the original teleportation scheme @11#,
two classical bits ~resulting from a Bell measurement! are
sent by the emitter, while the receiver performs a specific
unitary operation on l depending on these two bits. How-

1The term teleportation is used in the literature to refer to the
transfer of the state of a qubit to another.

FIG. 2. Quantum circuit for teleportation ~from @10#!. The initial
state of qubit L is teleported to the state of qubit l. Qubits s and l
must be initially in state u0&. Qubits L and s, if measured at the end
of the circuit, yield two classical ~random! bits that are uniformly
distributed.
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ever, it is shown in @10# that these unitary operations can be
performed at the quantum level as well, by using quantum
logic gates and postponing the measurement of the two bits
to the end of the circuit. The resulting quantum circuit ~Fig.
2! is formally equivalent to the original teleportation scheme
~although no classical bits are communicated!, as exactly the
same unitary transformations and quantum gates are in-
volved. While we do not claim that an optical realization
gives rise to ‘‘genuine’’ teleportation, this example circuit is
instructive to demonstrate the correspondence between quan-
tum logic and optical devices.
In the optical counterpart of this circuit ~see Fig. 3!, qubits

L and l correspond to the location of the photon at the first
and second splitting level, while s stands for the polarization
qubit. Note that the photons are initially horizontally polar-
ized, i.e., in polarization state u0&. The first beam splitter A in
Fig. 3 acts as a Hadamard gate on L, as explained previ-
ously. For convenience, we depict the teleportation of state
uc&5u0&, so that the incident photon enters this beam splitter
in the input port labeled u0&. However, as any operation in
U(2) can be realized optically, an arbitrary state of L can be
prepared ~and then teleported! by having an additional beam
splitter ~with tunable phase shifters! connected to both input
ports of beam splitter A. The second level of beam splitters
B ~and B’ @12#! corresponds to the Hadamard gate B on l in
Fig. 2. The four paths at this point ~Ll500, 01, 10, and 11!
label the four components of the state vector characterizing
qubits L and l. The probability amplitude for observing the
photon in each of these four paths, given the fact the photon
enters the u0& port of beam splitters A and B, is then simply
the corresponding component of the wave vector. The com-
bined action of both controlled-NOT gates C in Fig. 2 is to

flip the polarization state of the photon ~qubit s! condition-
ally on the parity of L1l ~mod 2!, which is achieved by
inserting polarization rotators C at the appropriate positions.
In other words, the polarization is flipped on path 01 or 10,
while it is unchanged on path 00 or 11.
The Hadamard gate D in Fig. 2 acts on qubit L, irrespec-

tive of l. This is achieved in Fig. 3 by grouping the paths in
pairs with the same value of l ~i.e., crossing the paths! and
using two beam splitters D in order to effect a Hadamard
transformation on L ~one for each value of l!. Similarly, the
controlled-NOT gate E acting on l ~conditionally on the po-
larization! is simulated by the use of two polarizing beam
splitters E after crossing the paths again @13#. The last Had-
amard gate F in Fig. 2 corresponds to the last two beam
splitters F, and the final controlled-NOT gate G is simply
achieved by crossing the paths (l50,1) in the lower arm
(L51) versus the upper arm (L50). In fact, the setup
could be simplified by noting that the conditional crossing of
paths achieved by G simply reduces to relabeling the output
ports of beam splitter F in the L51 arm. In Fig. 3, only
those phase shifters associated with the Hadamard gates @Fig.
1~a!# that are relevant in the final detection are indicated.
The interpretation of this optical circuit in the language of

teleportation is the following. After being ‘‘processed’’ in
this quantum circuit, a photon that was initially horizontally
polarized can reach one of the two ‘‘light’’ detectors ~solid
line in Fig. 3! with horizontal or vertical polarization. This
corresponds to the final measurement of qubits L and s in
Fig. 2, yielding two classical ~random! bits: upper or lower
arm, horizontal or vertical polarization. The third qubit, l,
contains the teleported quantum bit, that is, the initial arbi-
trary state of L. Since the location state of the photon is
initially u0& in the setup represented in Fig. 3, it always exits
to the ‘‘light’’ detector and never reaches the ‘‘dark’’ one
~dashed line!. For any measured value of L ~photon detected
in the upper or lower arm! and s ~horizontally or vertically
polarized photon!, the entire setup forms a simple balanced
Mach-Zehnder interferometer. Indeed, there are exactly two
indistinguishable paths leading to each of the eight possible
outcomes ~four detectors, two polarizations!; these interfere
pairwise, just as in a standard Mach-Zehnder interferometer,
explaining the fact that the photon always reaches the
‘‘light’’ detector ~in both L50 and L51 arms and for both
polarizations!. In this sense, the initial ‘‘which-arm’’ qubit L
has been teleported to the final ‘‘which-path’’ qubit l. Note
that, as no photodetection coincidence is required in this op-
tical experiment, the setup is actually not limited to single-
photon interferometry. This largely simplifies the realization
of the optical source since classical light fields ~such as those
from a laser! can be used rather than number states. In this
case, the optical circuit achieves a classical simulation of
quantum teleportation.
An actual experimental realization of the setup in Fig. 3

should be straightforward, if nontrivial. First, in order to
avoid unwanted polarization effects at any of the mirrors and
nonpolarizing beam splitters, one would want to arrange the
optics so that the various reflections occur at near-normal
incidence ~thereby removing the distinction between s and p
polarizations!. The main difficulty in the setup is that various
path lengths in the system should be the same. This could be
achieved by adjusting for white-light fringes in each of the

FIG. 3. Optical realization of the quantum circuit for teleporta-
tion using polarized photons. The location qubit L characterizes the
‘‘which-arm’’ information at the first beam splitter, while qubit l
stands for the ‘‘which-path’’ information at the second level of
splitting. The initial location qubit L is teleported to qubit l and
probed via the interference pattern observed at the upper or lower
(L50,1) final beam splitter, for both polarization states (s50,1)
of the detected photon.
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subinterferometers ~e.g., the Mach-Zehnder interferometer
formed by the beam splitters A and lower D; the interferom-
eter formed by the beam splitters B and upper E, etc.!, with-
out the additional phase shifters or polarization rotators.
These latter elements could then be ‘‘added’’ by simply ro-
tating appropriate birefringent wave plates already in the sys-
tem. For example, an exact p phase shift is produced by
simply rotating the slow axis of a half-wave retardation plate
from horizontal to vertical @14#; a 90° polarization flip is
caused by rotating a half-wave plate from horizontal to 45°.
Finally, when each of the subsystems is properly adjusted,
and the extra phase and polarization-rotation elements cor-
rectly set, the entire system should perform as indicated, i.e.,
a photon incident from the left should only exit via the right-
directed output ports.
We have proposed a general technique for simulating

small-scale quantum networks using optical setups com-
posed of linear optical elements. This avoids the recourse to

nonlinear Kerr media to effect quantum conditional dynam-
ics, a severe constraint in the usual optical realization of
quantum circuits. A drawback of this technique is clearly the
exponential increase of the resources ~optical devices! with
the size of the circuit. Nevertheless, as optical components
that simulate one- and two-bit universal quantum gates can
be cascaded straightforwardly, a nontrivial quantum comput-
ing optical device can easily be constructed if the number of
component qubits is not too large. We believe this technique
can be applied without fundamental difficulties to the encod-
ing and decoding circuits that are involved in the simplest
quantum error-correcting schemes @15#, opening up the pos-
sibility for an experimental simulation of them.
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