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Abstract

We present a model of decentralized growth for Artifi-
cial Neural Networks (ANNs) inspired by the develop-
ment and the physiology of real nervous systems. In
this model, each individual artificial neuron is an au-
tonomous unit whose behavior is determined only by
the genetic information it harbors and local concentra-
tions of substrates modeled by a simple artificial chem-
istry. Gene expression is manifested as axon and den-
drite growth, cell division and differentiation, substrate
production and cell stimulation. We demonstrate the
model’s power with a hand-written genome that leads
to the growth of a simple network which performs clas-
sical conditioning. To evolve more complex structures,
we implemented a platform-independent, asynchronous,
distributed Genetic Algorithm (GA) that allows users to
participate in evolutionary experiments via the World
Wide Web.

1 Introduction

Ever since computational neuroscience was born with the
introduction of the abstract neuron by McCulloch and
Pitts in 1943 [1], we have witnessed a gap between the
mathematical modeling of neurons—inspired by Turing’s
notions of universal computation—and the physiology of
biological neurons and the networks they form. The cur-
rent state of affairs reflects this dichotomy: neurophysio-
logical simulation test beds [2] cannot solve engineering
problems, while sophisticated ANN models [3] do not
explain the miracle of biological information processing.

Compared to real nervous systems, classical ANN
models have a serious shortcoming owing to the fact
that they are engineered to solve particular classifica-
tion problems, and analyzed according to standard the-
ory based mainly on statistics and global error reduc-
tion. As such, they can hardly be considered universal.
Hence, such models define the network architecture a
priori which is in most cases a fixed structure of homo-
geneous computation units.

Some models support problem-dependent network
∗!On leave from Dept. of Medical Informatics, University

of Heidelberg/School of Technology, Heilbronn, Germany,
jastor@stud.fh-heilbronn.de

changes during simulation [4,3]. In these models, global
decisions lead to network structures adapted to the prob-
lem at hand. Other approaches try to shape networks
for a particular problem by evolving ANNs either di-
rectly [5], or indirectly via a growth process [6]. More
recently, approaches like Ref. [7] include a kind of ar-
tificial chemistry which allows a more natural develop-
ment. Still, in these models neurons are unevolvable
homogeneous structures in a more or less fixed architec-
ture which, we believe, limits their relevance to natural
nervous systems.

In this paper we investigate the idea that interesting
information-processing structures can be grown from a
model which follows four basic principles of molecular
and evolutionary biology, listed below. While models for
ANNs currently exist that implement a selection of them,
the inclusion of all four opens the possibility that, given
enough evolutionary time, novel structures can emerge
that are comparable to natural nervous systems.

• Coding. The model should encode ANNs in such way
that evolutionary principles can be applied.

• Development. The model should be capable of
growing an ANN by a completely decentralized de-
velopmental process, based exclusively on the cell and
its interactions.

• Locality. Each neuron must act autonomously and
be determined only by its genetic code and the state
of its local environment.

• Heterogeneity. The model must have the capabil-
ity to describe different, heterogeneous neurons in the
same ANN.

One of the key features of a model implementing those
principles will be the absence of explicit activity func-
tions, learning rules, or connection structures. Rather,
such characteristics should emerge in the adaptive pro-
cess and lead to ANNs with open architectures and more
universal artificial neurogenesis.

While keeping in mind that the model is not designed
to reproduce real neural systems, we posit that an ad-
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herence to the fundamental tenets of molecular and evo-
lutionary principles—albeit in an artificial medium—
represents the most promising unexplored avenue in the
search for intelligent information-processing structures.

2 Model

In this section we introduce our model of neurogenesis
starting with the artificial physics and biochemistry, and
go on to explain how local gene expression ultimately
results in information-processing structures. This gene
expression takes place exclusively in artificial neurons
which are embedded in a tissue-like structure. As this
model is inspired by the concepts of molecular cell biol-
ogy, we use the nomenclature of this science unabashedly
while issuing the caveat that they are analogical in na-
ture only.

2.1 Artificial Physics

The physical world is a two-dimensional grid of
hexagons. Each such site harbors certain concentrations
of substrates, measured as percentage values of satura-
tion between 0 and 1. As cells are equidistant in a hexag-
onal lattice, the diffusion of substrate k in cell i can be
modeled discretely as

Cik(t + 1) =
D

6

6
∑

j=1

(

Cik(t) − CNi,jk(t)
)

(1)

where Cik(t) is the concentration of substrate k in site
i, D is a diffusion coefficient (D < 0.5 to avoid substrate
oscillation), and Ni,j represents the jth neighbor of grid
element i.

Figure 1: Hexagonal grid with boundary elements. Diffusion
occurs from a local concentration peak at grid element N .

Accordingly, a local concentration of substrate will dif-
fuse through the tissue under conservation of mass. The
tissue itself is surrounded by special boundary elements

which absorb substrates (Figure 1), thus modeling diffu-
sion in infinite space. We caution at this point that the
hexagons are sites that may harbor cells, but otherwise
only represent a convenient equidistant discretization of
space to facilitate the distribution of chemicals via dif-
fusion.

2.2 Artificial Biochemistry

We distinguish four different classes of substrates:

• External proteins: Diffusive substrates which can
be produced by neurons if expressed.

• Internal proteins : Produced by neurons, but non-
diffusive as they cannot cross cell membranes.

• Cell-type proteins: Each neural cell harbors an
external protein that defines its type. Like any exter-
nal protein it is diffusive.

• Neurotransmitter: Special type of internal pro-
tein used for directed information exchange between
neurons.

2.3 Artificial Cell

Cell types We distinguish three kinds of neurons on
the cellular level: actuator cells, sensor cells, and com-
mon neurons. The first two types are special versions of
the third and are used as interface to a (simulated) en-
vironment to which the network adapts and on which it
computes. These neurons can be excited to a real-valued
level between 0 and 1, and take part in the information
transfer via dendritic or axonal connections, respectively
(see below). Each type of cell is also characterized by its
own cell-type protein, which it produces continuously at
a certain rate. These cell-type proteins diffuse over the
tissue (Figure 1) and therefore signal cell existence to
other cells. They can be compared to growth factors
known from the development of real nervous systems.

Actuator and sensor cells do not carry genetic infor-
mation; they are used solely as interfaces to the environ-
ment (input-output units, see Section 2.4.) They rep-
resent sources and sinks of signal. Consequently, their
behavior is hardwired and does not depend on transcrip-
tion as for common neurons. The latter can receive a
flux of neurotransmitter from dendrites with a particu-
lar weight. However, this does not imply an automatic
stimulation of activity unless such behavior is explicitly
encoded in the neuron’s genome. Table 1 summarizes
the cell types and how they interact with other compu-
tational elements used in our model.
Genetic code and gene expression in artificial
neurons Each neural cell carries a genome which com-
pletely encodes its behavior. Genomes consist of genes
which can be viewed as a genetic program that can ei-
ther be executed (expressed) or not, depending on a gene
condition (akin to the regulator/operator genes in the
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Type [1] [2] [3] [4] [5] [6]
Neuron x x x x x x
Sensor x x x x
Actuator x x x x
Grid element x
Boundary element

Table 1: Features of different cell types building the ar-
tificial organic tissue: [1] participates in diffusion, [2]
can be stimulated, [3] depends on gene expression, [4]
can have axons, [5] can have dendrites, [6] produces a
diffusible cell-type protein.

Condition Description
ADD [EP] Φnew=Φbefore + [EP]
MUL [eNT] Φnew=Φbefore × [eNT]
SUP [CTP0] suppresses gene if cell not of type CTP0
AND [IP] fuzzy AND: Φnew = max([IP], Φbefore)

Table 2: Condition atoms and their interpretation. Con-
dition atoms build a gene condition, which is obtained by
evaluating its condition atoms in the given order. Here,
[XY] means ‘the current local concentration of substrate
XY inside of the cell to which the gene condition belongs’.
Φ is the evaluation result of this gene condition.

Jacob-Monod-model). A gene condition is a combina-
tion of several condition atoms, usually related to local
concentrations of substrates. The expression of a gene
can result in different behaviors such as the production of
a protein, cell division, axon/dendrite growth, cell stim-
ulation, etc. Figure 2 clarifies the structure of the ge-
netic code. Thus, gene conditions model the influence
of external concentrations on the expression level of the
gene, i.e., they model activation and suppression sites.
To evaluate a gene condition, each element of its chain of

Condition 3

Expression 1      Expression 2

Condition 1 Condition 2

Gene 2
Gene 1

Gene 4

Gene 3

Gene 2
N

Genome

Figure 2: Genetic structure of neural cells. Local con-
centrations of substrates (condition atoms) trigger gene
expression.

condition atoms contributes to obtain a real-valued ex-
pression level between 0 and 1, describing the strength
with which the respective gene expression will take place.

t=0 cycles:

t=10 cycles:

t=6 cycles:

t=8 cycles:

Figure 3: Development of the network for classical condi-
tioning.
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Expression Command Description Influence of
Condition Value

PRD[XY] produce substrate XY production quantity
GDR[XY] grow dendrite following gradient of XY growing probability
GRA[XY] grow axon following gradient of XY growing probability
SPL[CTPx] divide to CTPx-type cell probability
EXT excitatory stimulus increase rate
INH inhibitory stimulus decrease rate
MOD+ increase connection weights strengthening factor
MOD- decrease connection weights weakening factor

Table 3: Overview of expression commands. Growing axons/dendrites follow the substrate gradient until the local
maximum is reached, then connect to the cell (if it exists). Strengthening/weakening is a percentage increase/decrease
of connection weights, determined by the product of the last neurotransmitter influx at each connection and the value
of the gene condition. The cell-type protein assigned to a cell division command determines the future type of the
offspring cell. In this example, the daughter will be of type CTPx and therefore produce cell-type protein CTPx
continuously.

Consider for example substrates with local concen-
trations [ep0, ip, ep1]=(0.3, 0.5, 0.5). Then, the
evaluation of gene condition ADD[ep0] ADD[ip] MUL[ep1]

would lead to an overall expression level 0.4 (this value is
modded back into range between 0 and 1 if it falls outside
it). Table 2 illustrates a few examples of such conditions,
while Table 3 gives an overview about the different gene
expression commands. The evaluation result of the gene
condition has different meanings depending on the gene
expression command.

2.4 Simulation of the Artificial Organism

The tissue of cells produced by gene expression and cell
growth is termed the artificial organism. It receives in-
put from the environment (the outside world) and can
act on it by signaling to the environment via its actu-
ators. In the simplest case, thus, the organism receives
and generates patterns.

A simulation always starts by creating sensor and ac-
tuator cells. Their number is determined only by the
complexity of the outside world and is not coded for in
the genome. In other words, these cells really represent
possible signals and actuations in the world, not actual
signals and actuations performed by the organism. An
organism chooses to receive input or perform an actua-
tion by connecting to these cells. If needed, an additional
reinforcement cell can be created. This is a special sen-
sor cell (with its own cell-type protein) used to provide a
reinforcement signal from the world about the behavior
of the organism. Whether or not this signal is used is
determined by the organism’s genome. Furthermore, at
the start of each simulation, one initial neuron is placed
in the center of the grid. After initialization, the simula-
tion can begin. Input from the world is provided to the
sensor cells, diffusion of produced cell-type proteins and
external proteins takes place, and neurons execute their

genetic code synchronously.
Depending on its gene expression, a neuron starts

growing axons and dendrites, produces offspring cells
and might initiate cell differentiation. Gene expressions
may lead to protein production cascades, stimulation,
and ultimately information exchange between neurons.
After every simulation cycle the network’s ‘fitness’ is de-
termined by comparing any inputs and outputs to what
is expected in this particular world, producing a real-
valued reinforcement signal between 0 (punishment) and
1 (reward). This signal can be used by the organism if
a reinforcement sensor is present and if the organism
chooses to connect to it.

3 An Example Genome

Figure 3 documents the development of a simple ANN
from a hand-written genome. Starting from a single ini-
tial neuron, cell division takes place and connections (ax-
ons and dendrites) start to grow along the gradient of dif-
fusing cell-type proteins. After a while, sensors, neurons
and actuator cells are connected in a particular manner.
In fact, this network displays conditioned reflex behav-
ior as in Pavlov’s classical experiment [10]. Suppose the
sensor on the lower left side in Figure 3 is stimulated
(active) at the sound of a bell. Further, suppose the
upper left sensor is an optical stimulus representing the
presence (or absence) of food. Finally, let us imagine
that the actuator on the right side triggers a salivary
gland if food is present. This behavior is the hardwired
unconditioned reflex. The above network can learn to
associate the reflex with a condition: the sound of the
bell. If presence of food and the ringing of the bell are
associated repeatedly, the network will learn to trigger
the gland even if only the bell rings. If the bell rings
after the conditioning without the presence of food, the
association will gradually, but steadily, weaken. Such a
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1. NNY(ip) SUP(cpt) ANY(spt0) -> SPL(acpt0) PRD(ip) SPL(acpt2) GDR(spt0) DFN(NT1)
2. NNY(ip) SUP(acpt0) ANY(spt1) ANY(cpt) -> PRD(ip) GDR(spt1) GRA(cpt) DFN(NT1)
3. ANY(spt1) SUP(acpt2) NNY(ip) ANY(apt0) -> SPL(acpt1) GDR(spt1) PRD(ip) GRA(apt0)
4. ANY(acpt2) SUP(acpt1) ANY(spt0) NNY(ip) -> GRA(acpt2) GDR(spt0) GDR(cpt) PRD(ip)
5. ANY(ip) -> PRD(ip)
6. NSUP(cpt) NSUP(acpt1) ADD(eNT) -> EXT
7. SUP(acpt1) ADD(NT1) MUL(eNT) -> EXT
8. ADD(eNT) -> PRD(ip1)
9. ADD(ip1) -> PRD(ip2)
10. SUP(cpt) ADD(NT1) MUL(ip2) -> PRD(ep)
11. SUP(cpt) ADD(ep) -> EXT

Figure 4: Genome for development and behavior of network exhibiting classical conditioning

behavior can be modelled using different kinds of cell-
types. The “C” cell is activated if the network is in
the conditioned state, which means that acoustical and
optical stimuli have been present together before. Cell
“E” is activated if the acoustical stimulus is currently
present and the network is in the conditioned state at
the same time. If so, cell “G” representing the trigger of
the salivary gland is activated. Of course, cell “G” is also
activated if only food is present. This is the “hardwired”
reflex. A schematical drawing of the network is shown in
Figure 5. The genome which encodes the development
and behavior of this network is shown in Fig. 4.

Bell

Food

E

G
C eNT

Sensor cells Actuator
eNT

eNT
spt0

acpt1

acpt2 apt0

eNT
acpt0eNT

spt1

NT-switch
NT1

eNT

cpt

NT1

Figure 5: A schematical representation of the network for

classical conditioning. The types of neurotransmitter used

are shown next to the axons. The cell-type protein used by
each cell is indicated near the cell body.

It is beyond the scope of this paper to go into the
details of this genome and its function (see [8, 9] for a
more thorough description). However, the explanation
that follows still gives an idea of the type of information
necessary to grow networks with particular characteris-
tics.

The genome consists of 11 genes, each of which has
its condition (left-hand side) and its expression (right-
hand side). Genes 1 to 4 control cell division into the
different types that are needed, as well as the growth of
axons and dendrites. The first gene is only expressed by
the initial cell, and only if no internal protein ip is present
(the sequence NNY(ip) SUP(cpt)). In addition, gene 1 is

only expressed if it senses nonzero concentrations of cell-
type protein spt0 (ANY(spt1) ANY(spt0)) which is emitted
by one of the sensor cells and has diffused. Under these
circumstances the initial cell will divide and produce off-
spring of type acpt0 and acpt2 (SPL(acpt2) SPL(acpt0)),
grow a dendrite that follows the gradient of the sensor
protein spt0 (GDR(spt0)), and produce the internal pro-
tein ip. Once ip is produced, this will continue to happen
(gene 5) which prevents that gene 1 can ever be turned on
again. Genes 2 to 4 work just as gene 1, but for other cell
types. While gene 5 takes care of the hardwired-reflex
stimulation, genes 10 and 11 control the conditioning
(expressed only by cell-type cpt). If food is present and
the bell rings, gene 10 is expressed. It produces certain
amounts of external protein ep. The concentration of ep
influences cell stimulation (gene 11 exhibits stimulation
via EXT). Due to diffusion, ep diminishes over time, so
the conditioning decreases accordingly. As pathways to
the “C” cell are not equally long, a production cascade of
internal proteins in genes 8, 9 and 10 is necessary that
delays the input of the acoustical sensor. The behav-
ior of the resulting phenotype network is documented in
Figures 6, 7 and 8.

4 WWW-based Genetic Algorithm:
Community of Artificial Organisms

While it is not difficult to write genomes which lead
to simple networks with desired characteristics, one of
the main features of the system is its evolvability. Cer-
tainly, the search space for such genomes is immense,
and it is unreasonable to hope that interesting genomes
can be found without massive parallelism. Rather than
choosing to implement this system on supercomputers,
we opted to allow users on the Internet to donate their
CPU time by participating in a global evolutionary ex-
periment.

Using Sun’s JavaTM technology, we developed an asyn-
chronous, distributed GA system which allows a massive
parallel search for new genomes based on evolutionary
principles [8, 9]. It consists mainly of a central server
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Figure 6: First, only food is present. This triggers the gland because of the hardwired reflex, while the “C”-cell and “E”-cell

remain inactivated. Later, only the bell signal is present. Due to the fact that the network is not yet conditioned, none of the
cells becomes active as a result.
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Figure 7: Both sensors, food and sound, are stimulated. The ANN becomes conditioned (“C”-cell) and the gland is triggered
due to the presence of food.
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Figure 8: Being in the conditioned state, the food sensor suddenly becomes deactivated while the bell keeps on ringing.
Thus, the activation of the “C”-cell becomes weaker. This implies a decrease of activation of the “E”-cell which finally results

in a decline of gland activity.
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Sun SPARC 141.7.12.105
Organism, e.g. on

somewhere

an i86-PC

Organism as Applet
in a browser, on
architecture ’foo’,

on Sun SPARC
131.215.48.50

Central GA-server, e.g.

Organism, e.g. on

evaluation request for

register request

new genotype or
’go on’ reply

genotype reply:ζ

new client central GA-server

Φ(ζ)

Figure 9: Left: genotype evaluation in clients of different architecture, using TCP/IP for communication with the
asynchronous genetic algorithm. Right: communication between the GA-server and a client hosting an organism.

application and clients, each of which hosting one indi-
vidual of the current GA population.

As Java is supposed to be platform independent,
clients can be started from every computer for which
an accurate Java 1.1 virtual machine or browser exists
(Figure 9). The clients are hybrids, which means that
they can be started as Java Applet by choosing the html
page from our WWW-server, or with the help of a boot-
loader program which dynamically downloads the client
and starts it as a Java application (no browser neces-
sary).

A client automatically sends a request-to-register to
the central GA-server after it was started, and receives
from the server a genotype ζ. The client then starts
up a simulation as described in Section 2.4. After a
certain number of simulation cycles, it sends the geno-
type’s fitness Φ(ζ) (average reinforcement signal during
simulation) to the server. By comparing Φ(ζ) to the
fitness of other genotypes in the database, the server de-
cides if it is worth to keep this genotype or if the client
should be assigned a new one. If the server has to send a
new genotype, it either takes a suspended one out of its
database, or constructs one through the processes of re-
combination and/or mutation from genotypes of known
fitness already present in the population (Figure 9). Fit-
ter genotypes are more likely to be selected for recombi-
nation and/or asexual copying then genotypes of lower
fitness. This leads to an increase of the average fitness
over time.

5 Conclusion

We introduced a developmental and behavioral model
based on artificial gene expression which shares key prop-
erties with natural neural development. Within this
model we succeeded to construct simple systems with
properties which are believed to be essential [11, 12]
for higher self-organizing information processing sys-
tems, such as deterministic structure development, self-
limiting growth, growth following diffusion gradients,
computation of logical functions, pacemaker behavior
and simple adaptation (sensitization, habituation, as-
sociative classical conditioning) [8, 9]. Furthermore, we
showed how an evolutionary search for genomes coding
for information-processing network structures can be dis-
tributed in a platform-independent manner such that
the unused CPU power of the Internet can be tapped
to search for ANNs that reduce the gap between the ab-
stract models and neurophysiology.
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