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We identify the quantum channels corresponding to the interaction of a Gaussian quantum state with an
already formed Schwarzschild black hole. Using recent advances in the classification of one-mode bosonic
Gaussian channels, we find that (with one exception) the black hole Gaussian channels lie in the
nonentanglement breaking subset of the lossy channels CðlossÞ, amplifying channels CðampÞ and classical-
noise channels B2. We show that the channel parameters depend on the black hole mass and the properties
of the potential barrier surrounding it. This classification enables us to calculate the classical and quantum
capacity of the black hole and to estimate the quantum capacity where no tractable quantum capacity
expression exists today. We discuss these findings in the light of the black hole quantum information loss
problem.
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I. INTRODUCTION

Because the standard semiclassical approximation to
quantum gravity is a free-field theory in curved space-time
[1], there is currently no unambiguous way to introduce
interactions between radiation and black holes [2] (but see
Ref. [3][Chap. 9] and Ref. [4] for methods to introduce
interactions in an axiomatic way). Yet, the problem of
information loss in black holes [5–8] (as well as the related
firewall paradox [9,10]) explicitly considers the fate of
information-bearing particles interacting with a black hole.
A way out of this conundrum has recently been proposed,
by explicitly studying the interaction of a scalar massless
field with an already formed Schwarzschild black hole
in terms of quantum channel theory [11]. Such an inter-
action can be written down using Sorkin’s effective model
[12], which makes explicit the interactions described
implicitly by the graybody factor of Hawking [1], and in
particular allows for a calculation of the spectrum of
radiation emitted by a black hole in response to late-time
incoming radiation (such a calculation was first presented
for early-time incoming states by Bekenstein and Meisels
[13] as well as Panangaden and Wald [14] (see also
Ref. [15]). In Sorkin’s construction, the outgoing field
operator A is related to the incoming modes by a
Bogoliubov transformation,

A ¼ αaþ βb† þ γc: ð1Þ

Here, a; b and c are the annihilation operators defining the
early- and late-time particle content (modes) in the incom-
ing sector, respectively, and α; β; γ are coefficients to be

determined later. The early-timemodes a and b are standard
within the literature of curved space quantum field theory,
and are associated with quantum fields that were emitted
during the formation of the black hole and travel just inside
(b) and just outside (a) the event horizon. As Hawking
showed [1], when propagated toward future null infinity,
these horizonmodes are exponentially redshifted relative to
the frequencies that a stationary observer at late time might
expect. If that observerwould send her own cmodes into the
black hole, the relative blueshift of thesemodeswith respect
to the black hole horizon modes implies that the support of
the quantum fields associated with cmodes is disjoint from
that of the a and b modes. As a consequence, the outgoing
field operator A should resolve into a superposition not just
of the ingoing horizon modes a and b but also the ingoing
late-time blueshifted “signal”modes c [12]; see Fig. 1 (note
that our notation differs from Ref. [12]).
Using the expanded Bogoliubov transformation (1),

Sorkin showed that the resulting expression for the radi-
ation experienced by a stationary observer suspended far
away from the black hole horizon precisely reproduces the
standard Hawking radiation effect including the effect of a
black hole potential (graybody factor) of which the param-
eters are implicit in the coefficients in Eq. (1). Adami and
Ver Steeg [16] then recently showed that the Bogoliubov
transformation (1) is in fact completely analogous to a
corresponding relation in quantum optics, with an inter-
action term between the late-time modes c and early-
time horizon modes a implemented by a beam-splitter
Hamiltonian (see also Ref. [17]). Thus, Sorkin’s construc-
tion enables a direct analysis of the interaction of scalar
massless particles with a black hole horizon and makes it
possible to investigate the capacity to transmit classical or
quantum information via a black hole.*kbradler@ap.smu.ca
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The operator relation Eq. (1) completely characterizes the
evolution of any input (bosonic) state and therefore is
sufficient to study the fate of quantum information.
However, the bosonic sector of the (infinite-dimensional)
Fock space is unwieldy, and hence it is often advisable to
further limit the input Hilbert space to a physically moti-
vated subset. One option investigated in Refs. [11,16] is to
confine the input Fock space to be a sector spanned by a
vacuum j0i and a single photon state j1i. Then, an arbitrary
two-level state (qubit) can be constructed using the so-called
dual-rail encoding [18].
Here we examine instead a different input subset that is a

favorite choice in quantum optics due to its experimental
relevance—Gaussian states. Gaussian states are completely
described by the first two moments of the canonical
quadrature variables. The most prominent examples of
Gaussian states are coherent states, (multi- or single-mode)
squeezed states, and thermal states. Focusing on Gaussian
states narrows the number of possible input states sub-
stantially without unduly simplifying the system. Owing to
the form of Eq. (1), classifying the black hole quantum
channel is reduced to the study of one-mode Gaussian
(OMG) channels [19] (loosely defined as bosonic com-
pletely positive maps transforming Gaussian states into

Gaussian states). The set of all possible OMG channels has
recently been exhaustively classified [19–21]. We now
know that there exist eight equivalence classes of OMG
channels that are embodiments of various passive and
active optical elements. Among those channels, we find for
example the family of lossy channels (implemented by
imbalanced beam splitters) as well as the amplification and
conjugated channel families, related to the parametric
amplification process. For details on those channels, we
refer the reader to the excellent expositions [19,21].
OMG channels are important in another respect: for

lossy and amplifying OMG channels with added classical
noise (sometimes called phase-insensitive Gaussian chan-
nels), it is possible to calculate their classical capacity [22],
that is, the capacity to transmit classical information via a
quantum channel. For other situations where the classical
capacity is calculable, see Ref. [23]. Here we calculate the
quantum capacities of these OMG channels. Viewing the
black hole in terms of the OMG channel construction will
allow us to study how much information—encoded in a
Gaussian state and sent into the black hole horizon—can be
recovered by an outside stationary observer. Understanding
what happens to information (both classical and quantum)
incident on a black hole is known as the black hole
information problem (even though what is and is not a
problem is often hotly contested [24]). A rigorous analysis
of this problem must begin with the identification of the
physical system (incident states and black hole) in terms of
a quantum channel and calculating its channel capacities as
argued in Refs. [11,16]. As information theory has not yet
become a standard tool in the relativist’s arsenal, we present
in the next section the minimal background needed to
appreciate the power of channel capacity theorems, in
particular their quantum realizations.

II. QUANTUMCAPACITY OF A NOISY QUANTUM
CHANNEL: CONSTRUCTION AND

INTERPRETATION

In this section we review basic notions of quantum
channel theory that are used in this manuscript. The reader
familiar with these concepts can skip directly to Sec. III,
where the OMG channel for black holes is introduced.
The success of quantum Shannon theory developed in

the past 15 years draws from its classical counterpart,
created virtually singlehandedly by Shannon [25,26].
Shannon’s theory is often called the mathematical theory
of classical communication, and as its name suggests, one
of its main goals is to rigorously calculate the rate at which
two or more parties can reliably communicate even under
the presence of noise. The principal idea behind how to
achieve this is to add some redundancy to the message and
craft it in such a way that the noise “eats up” the added
redundancy and leaves the message intact. The message
transformation is called encoding, and its outcome is a
code, so the purpose of the encoding is to make the message

FIG. 1 (color online). The modes a, b, and c are concentrated in
a region of past null infinity indicated by the letter. Modes a and b
are the standard early-time modes that travel just outside and just
inside the horizon, while mode c is a late-time mode that is
severely blueshifted with respect to the a and b modes. The
operator A annihilates modes outside the horizon at future
infinity. The channels N (red, mode a) and their complement
N̂ (blue, modes b and c) are also indicated.
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error correctable. The encoding must ensure that the
received message can be arbitrarily perfectly recovered
(decoded) and that the amount of redundancy must be as
small as possible. In other words, it must be possible to
substitute the whole noisy transmission line with a noise-
less one at the lowest cost. The quantity that characterizes
the efficiency of this algorithm is called the noisy channel
capacity, and Shannon’s major achievement in this direction
was the derivation of a simple capacity formula for a fairly
general model of classical communication. The capacity is
essentially the maximal ratio of the message length to the
code length given the amount of noise. Two extreme
examples serve to illustrate this notion. If the channel
capacity is maximal, there is no need to create a code as
the channel is already noiseless. If the capacity is zero, there
is noway of correcting the errors and reliably conveying any
classical information—the channel is useless for commu-
nication purposes. For any value in between, a larger
capacity implies a faster way to transmit the information
perfectly (even though the precise manner of encoding to
reach the capacity might not be known). It is important to
note that if the capacity of a channel is nonzero then it is
guaranteed that it is possible to transmit information with
arbitrary accuracy, but it could take very long to do so.
Many aspects of the classical capacity concept carry over

to the quantum case, but in general the theory is far richer,
with many questions still open. Quantum mechanics is
obviously a more general theory than classical physics,
allowing for a large variety of information transmission
modes. It is possible to transmit classical or quantum
bits through a quantum channel, while having classical
or quantum resources at one’s disposal. There is one
crucial difference between classical and quantum informa-
tion theory that is worth highlighting: Unlike classical
Shannon theory (that could be classified as part of engineer-
ing), the quantum theory conveys something truly funda-
mental about a physical system. It tells us how.
One aspect that carries over to quantum Shannon

theory is its asymptotic character. (The quantum theory
dealing with the single use of a channel—the “one-shot
capacity”—is currently under vigorous development [27]).
In the asymptotic regime, it is assumed that the channel can
be used n times and the capacity results are derived under
the assumption that n → ∞. This is normally a physically
reasonable assumption and also the first step toward usually
more involved one-shot settings, where the channel can be
used only once or twice, for instance. The commutative
asymptotic theory relying on the notions of typical sets was
already used by Shannon [26] and was relatively recently
generalized to the quantum setting by taking into account
the inherent noncommutativity of the quantum world
[19,28]. In quantum Shannon theory (see for example
Refs. [19,29]), the goal is exactly the same as in the
classical framework: the intention is to simulate a noiseless
quantum channel by attaching an encoder E to the noisy

communication channelN followed by a decoderD on the
receiver’s side: id≃Dn∘N⊗n∘En [see Fig. 2(a)]. Again, we
ask for the composite channel to be arbitrarily close (using
an operationally motivated distance measure introduced
later) to the identity as n grows. Given the quantum
character of the physical system, we may decide whether
to send classical or quantum information over the channel.
The classical capacity of a noisy quantum channel quan-
tifies how much classical information (encoded in a
quantum state) can be perfectly recovered from the output
of the channel. Similarly, the quantum channel capacity
quantifies the amount of quantum information that can be
transmitted with a vanishing error. Both channel capacities
are fundamental quantities—they represent the maximal
rates at which the respective information can be transmitted
through a quantum system. Given the nature of the physical
system studied in this paper (a Schwarzschild black hole),
we will be interested in transmitting quantum information
through a quantum channel. Semiclassical black holes are
often accused of “losing” information, but often the term
“information” is not well defined in the context. Indeed,
when the black hole information problem was first for-
mulated, the concepts of classical and quantum capacity of
quantum channels did not even exist. But they do now, and
so it behooves us to study the fate of quantum information
that is either already present in the black hole [30] or is sent

FIG. 2. Quantum communication channels. (a) A setup where
the task is to reliably transmit an arbitrary state ϱ from a sender to
a receiver through n copies of noisy quantum channel N . If the
channel is not too noisy, the encoder adds enough redundancy so
that the errors can be corrected by the recipient and the quantum
state ϱ can be reconstructed. The output state σ is, in the
asymptotic limit n → ∞, indistinguishable from ϱ. (b) An
equivalent quantum channel using the purified picture, that
simplifies the formulation of the direct coding theorems for
the quantum capacity of a noisy channel.
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toward the horizon after the black hole is already formed,
using the appropriate framework.

A. Direct coding theorem for entanglement
transmission over a noisy quantum channel

We review here certain crucial aspects of the derivation
of the quantum capacity in the asymptotic case, but in a
modern reformulation. Quantum information transmission
can be conceived in terms of two at first sight different
communication setups, that, however, turn out to be
equivalent. The most straightforward formulation is
depicted in Fig. 2(a) where a sender prepares an arbitrary
quantum state ϱ and sends it through a noisy quantum
channel N , in the hope that the message can be recovered
by the receiver via error correction using the decoder. It
turns out that this formulation is hard to analyze, but a
crucial reformulation of this process in terms of the
“purified" system [shown in Fig. 2(b)] allows much
progress. In the process depicted in Fig. 2(b), part of an
entangled state is sent through the channel, but such a
scenario is in fact equivalent given the insight that such an
entangled state will allow the transmission of arbitrary
quantum states via quantum teleportation [31].
A state ϱA is purified by ϱRA if ϱA ¼ TrRϱRA and ϱRA is

pure. A quantum channel can be purified as well, on account
of the Stinespring theorem [32] that states that for every
completely positive map N there exists a partial isometry
WN such thatN ðϱAÞ ¼ TrE½WN ϱAW

†
N &. The isometry thus

“lifts” the quantum channel to a larger Hilbert space, also
known as the Stinespring dilation. Recall that an isometry
V is a linear map between two normed vector spaces
A and B such that jζjA ¼ jVζjB for all ζ ∈ A, where j · j
denotes a norm (this is equivalent to V†V ¼ id). A partial
isometryW is a linear map that becomes an isometry when
restricted to the complementary subspace of its kernel,
and it is a projector: ðW†WÞ2 ¼ W†W. Hence, instead of
Fig. 2(a), we will treat the equivalent process depicted in
Fig. 2(b). Tracing over the output B of the isometric
extension, WN creates the complementary channel to N :

N̂ ðϱAÞ ¼
df TrB½WN ϱAW

†
N & [19], a supremely important

notion within quantum channel theory. Note that isometries
and purifications are not unique.1

Before defining the quantum channel capacity formally,
we state the direct coding theorem of quantum information
theory (the direct theorem proves the existence of a coding
scheme that achieves the capacity) due to Refs. [34,35], but
in a modern reformulation of the problem. Hayden et al.’s
approach [36] based on a decoupling theorem (see below)
is conceptually clearer and arguably superior to the original

formulation in that it allows for a generalization to the one-
shot setting [37], going well beyond merely reliable
quantum communication over a noisy quantum channel.
The decoupling theorem states that for a randomly

and uniformly chosen unitary operator U the following
inequality holds:

Z

U
∥σðδÞREn − IR ⊗ σðδÞEn ∥1dU ≤ 2

n
2½K−HðBÞσþHðEÞσþ2δ& ≤ εn:

ð2Þ

The integrand is a unitary expectation value of a distance
between two states, induced by the trace norm

∥A∥1¼
df Tr½ðA†AÞ1=2& (the Schatten 1-norm). The theorem

states that a randomly chosen unitary U causes the state
σðδÞREn to become close to a product of a (normalized) identity
IR and σðδÞEn as long as the right-hand side of (2) is made
sufficiently small by the choice of the rate K, where
2nK ¼ dimR. The symbol δ stands for states from a
δ-typical subspace of a tensor product of many copies
of a Hilbert space. A δ-typical Hilbert space is a gener-
alization of a δ-typical set from classical Shannon theory
(see Refs. [26,36] for the proper classical and quantum
definition).
We note the appearance of the von Neumann entropy

HðBÞσ ¼
df − Tr½σB log σB& (the entropy of the final state

density matrix; see Fig. 3) in the exponent of Eq. (2).
Together withHðEÞσ (the entropy of the environment), they
make up the coherent information [38]

~IcohðN ; ϑAÞ ¼
df HðBÞσ −HðEÞσ: ð3Þ

FIG. 3. Sketch of the setup for decoupling via random encod-
ing. The goal is to transmit part of an entangled state εR0An

through the n copies of the channel N by decoupling the RBn

subsystem from the complementary channel output En. The
random code is a random matrixΠδU, whereU is a randomly and
uniformly chosen unitary operator and Πδ is a projector onto a
δ-typical Hilbert subspace. This explicit but impractical pro-
cedure achieves the decoupling of which the precise formulation
is shown in Eq. (2) and below.

1Also note that for infinite-dimensional Hilbert spaces the
operator theory becomes substantially more complicated. By
restricting ourselves to Gaussian states and operators, many of
those problems are avoided [33].
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The decoupling theorem states that whenever 0 ≤ K <
~IcohðN ; ϑAÞ the right-hand side of (2) goes to zero, and
decoupling (of the system A from its entangled partner R)
follows.
It is possible to show that decoupling for δ-typical states

in Eq. (2) implies decoupling for all states [36] and,
crucially, decoupling holds for almost all unitaries:

∥σREn − IR ⊗ σEn∥1 ≤ ~εn: ð4Þ

Even more remarkably, due to decoupling the owner of the
B subsystem (the receiver) is able to decode and prepare a
maximally entangled state,

ΦRD ¼ 2−nK=2
X2nK

i¼1

jiiRjiiD; ð5Þ

of dimension given by the rate K, where the D subscript is
the output of the receiver’s decoder Dn. In other words, the
sender and receiver are able to perfectly transmit quantum
information through the channel N at the rate K of the
entanglement transmission protocol.
To formally define the quantum capacity, we need to

introduce some additional terminology. Using the defini-
tion of the fidelity between a mixed state ϱ and a pure state

φ given as Fðφ; ϱÞ ¼df hφjϱjφi, we further observe:
(I) The pair ðϑR0An ;DnÞ is called a ðK; n; ~εnÞ entangle-

ment generation code for the channel N if

FðΦRD;Dn∘M⊗n∘ϑR0AnÞ ≥ 1 − ~εn:

(II) A rate K is achievable if there is a sequence of
ðK; n; ~εnÞ such that ~εn → 0.

(III) The quantum channel capacity QðN Þ is the maxi-
mum over all achievable rates.

We can now state the direct coding theorem in terms of
decoupling theory as follows [36]:
Theorem: (direct coding theorem). For a channel N

and a code ϑA, every rate K is achievable as long
as 0 ≤ K < ~IcohðN ; ϑAÞ.
The single-copy quantum capacity (the optimized

coherent information) is then

IcohðN Þ ¼df sup
ϑA

~IcohðN ; ϑAÞ: ð6Þ

By “bundling” k copies of N at the same time (setting
mk ¼ n, so that m → ∞) and using some elementary
properties of the coherent information, we can show that

0 ≤ K <
1

k
~IcohðN⊗k; ϑAkÞ: ð7Þ

By increasing k we finally arrive at a lower bound for the
quantum capacity formula:

QðN Þ ≥ lim
k→∞

1

k
sup
ϑAk

~IcohðN⊗k; ϑAkÞ: ð8Þ

This is almost the final result if we invoke the converse
theorem (the reverse of the direct coding theorem) that
happens to prove Eq. (8) with the opposite inequality,2

leading to the central result for the quantum capacity:

QðN Þ ¼ lim
k→∞

1

k
sup
ϑAk

~IcohðN⊗k; ϑAkÞ: ð9Þ

Equation (9) is called a multiletter capacity formula, and it
is disappointing in the sense that this regularized expression
is incalculable owing to the infinite limit that makes the
optimization intractable. To some extent this is the crucial
difference between classical and quantum information
theory. Quantum mechanics allows the use of entangled
states ϑAk as codes, and it is not known over what set of
states to optimize the capacity, or even how to parametrize
it. Even if we fixed k to be a reasonably small integer, we
would struggle to find the maximum in the above expres-
sion. As opposed to the classical Shannon theory where
single-letter (no regularization) results are abundant (an
example being Shannon’s celebrated results mentioned
earlier), the quantum Shannon theory generically produces
multiletter capacity formulas that are not calculable.
A consequence of this intractability is that the quantum

capacity is currently known only for three special cases of
channels called degradable [39], conjugate degradable
[40], and antidegradable (the quantum capacity vanishes
for antidegradable channels), and in general only a lower
bound can be given using Eq. (6). We recall that a channel
N is degradable if there exists another channel G (called a
degrading channel) such that G∘N ¼ N̂ , where N̂ is a
complementary channel to N . In this case N̂ is called
antidegradable. The complementary channel captures the
evolution of the channel’s environment, and so degradable
channels can simulate that environment by composition
with the degrading map. Hence, for degradable channels
there exists a single-letter quantum capacity formula,

QðN Þ ¼ IcohðN Þ: ð10Þ

Degradable and antidegradable channels will play an
important role in the Gaussian scenario [33,41] studied
here (see Sec. V), allowing us to estimate the quantum
channel capacity for a substantial fraction of the OMG
channels that occur in black holes and calculate it exactly in
certain special cases.
To understand the flow of quantum information, we also

extensively study the complementary quantum channel,

2The importance of the (strong) converse lies in showing that
for rates larger than the quantum capacity, the decoding error
approaches one.
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corresponding to the transmission of quantum information
behind the horizon (see Fig. 1), to be decoded by a potential
observer inside the black hole. We find that the process
of absorption of quantum states by the black hole horizon
is, in the language of OMG channels, described by the
family of conjugated channels. We discuss the implications
for the transmission of quantum information in the con-
cluding section.

III. BLACK HOLE AS AN OMG CHANNEL

While not stated explicitly by Sorkin, we show below
that the coefficients in Eq. (1) describing the field dynamics
in the Heisenberg picture belong to the symplectic group
over the reals Spð6;RÞ, and the coefficients in Eq. (1)
satisfy jαj ≤ 1 and β; γ ∈ R. Moreover, the coefficients
must be such that the outgoing field operator is correctly
normalized: ½A; A†& ¼ 1. To derive these conditions, we set3

X ¼ rðκa†b† − κabÞ þ sða†c − ac†Þ ð11Þ

and identify A ¼ eXae−X with the right-hand side of
Eq. (1). In (11) we recognize the Hamiltonians for a
two-mode squeezing transformation as well as a beam
splitter, where r; s; κ > 0. We restricted the Hamiltonian
parameters to be real in hindsight, as complex phases will
not play any role. The Baker–Campbell–Hausdorff theorem
leads to an identification of the coefficients in Eq. (1) with
the Hamiltonian parameters as we will exemplify on the A
operator relation. We first rewrite Eq. (11) as follows:

X ¼ ra†
!
κb† þ s

r
c
"
− ra

!
κbþ s

r
c†
"
≡ ra†d − rad†:

ð12Þ

We thus find

A¼ eXae−X ¼ cosra− sinrd¼ cosra− sinr
#
κb† þ s

r
c
$
;

ð13Þ

and by asking ½A; A†& ¼ 1 we find that κ2 ¼ s2=r2 − 1must
be satisfied. Note that this is equivalent to the condition
½d; d†& ¼ 1. Hence, we obtain

α ¼ cos r; ð14aÞ

β ¼ '
#
s2

r2
− 1

$
1=2

sin r; ð14bÞ

γ ¼ −
s
r
sin r: ð14cÞ

Later [see below Eqs. (24)], we will find that requiring
complete positivity for an OMG channel further
imposes s ≥ r.
A similar procedure for the ‘out’ field-operators

B ¼ eXbe−X and C ¼ eXce−X gives rise to the following
transformation of a column list of field operators
L∶ fa; b†; cg↦fA;B†; Cg:

L ¼

2

666664

cos r −
!
s2
r2 − 1

"
1=2

sin r − s sin r
r

−
!
s2
r2 − 1

"
1=2

sin r s2þðr2−s2Þ cos r
r2 −

sðs2
r2
−1Þ1=2ðcos r−1Þ

r

s sin r
r

sðs2
r2
−1Þ1=2ðcos r−1Þ

r
ðcos r−1Þs2

r2 þ 1

3

777775
: ð15Þ

By introducing a symplectic form,

ω ¼
%

0 1

−1 0

&
; ð16Þ

and settingΩ¼df ω⊕ω⊕ω, we find that ðL⊕LÞΩðL⊕LÞT ¼
Ω for L⊕L acting on a column list of field operators
assembled as fa; a†; b; b†; c; c†g. Hence, L ∈ Spð6;RÞ.
We now would like to write L in the basis of quadrature
operators p and q [42] given by σ∶fq; pg↦fa; a†g where

σ ¼
%
1 i
1 −i

&
; ð17Þ

and we set ℏ ¼ 2. This can be achieved by writing the
global evolution transformation of quadrature operators as

S ¼ Σ−1ðL⊕LÞΣ; ð18Þ

where Σ¼df σ⊕σ⊕σ and one can verify that SΩST ¼ Ω is
satisfied (for more information see for example
Refs. [43,44]). The S matrix introduced above will allow
us to find the black hole response to an arbitrary incoming
Gaussian state (for comprehensive definitions of Gaussian
states and transformations, see Ref. [19]).

3Note that this parametrization is different from the ansatz
made in Ref. [16] that, however, leads to the same solution.
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On physical grounds, we are interested in the following
scenario. The early-time (input) black hole horizon modes
(a and b) are in a vacuum state, and the late-time incoming
mode cwill be a one-mode Gaussian state that is completely
described by a covariance matrix Vin capturing the second
quadrature moments that completely determine the channel.
Hence, we can set the first moments describing the state
displacement in the phase space to zero. Because S is a
symplectic transformation, the output modes are Gaussian.
We are not, however, interested in the outgoing states per se.
Our task is to deducewhich of the OMG channels described
in the Introduction is responsible for the state transforma-
tion, solely from the output covariance matrix Vout.
To study this we use the recent complete classification of

OMG channels [20]. These authors found that there are
eight equivalence classes of OMG channels [19–21]
(modulo two Gaussian unitaries—one preceding and the
other following the channel) distinguished by the values of
three parameters that fully characterize the OMG com-
pletely positive maps. The Stinespring dilations relevant for
the OMG channels studied in this paper are a two-mode
symplectic transformation with a complementary (refer-
ence) input given by a thermal state of mean photon number
hni. This number is the first of the three parameters
characterizing the OMG channels. The two remaining
parameters come from a generic evolution of one-mode
covariance matrices,

Vout ¼ TVinT⊤ þN; ð19Þ

where T and N are real (symmetric) 2 × 2 matrices.
Equation (19) represents a channel if the following neces-
sary and sufficient conditions are satisfied [23]:

y ≥ jτ − 1j; N ≥ 0; ð20Þ

where y ¼df
ffiffiffiffiffiffiffiffiffiffiffi
detN

p
and τ ¼df detT. In that case, the two

remaining parameters characterizing all OMG channels are
τ and r ¼ min ½rankT; rankN&. The parameters just defined
can be used to write down the canonical representatives of
all equivalence classes of OMG channels [20,21]. If we
were able to deduce a canonical form from the action of S in
Eq. (18), we could find the form of a black hole Gaussian
channel for all admissible α; β; γ from Eq. (1). As we will
now show, this is indeed the case.
Consider an input three-mode state Vabc;in ¼ ida⊕idb⊕

Vc;in where id stands for a two-dimensional identity matrix
and

Vc;in ¼
%
e g
g f

&
ð21Þ

is a generic input OMG covariance matrix (e; f; g ∈
R s:t:Vc;in þ iω ≥ 0 [45]). We then find that the
Gaussian black hole channel is already in a canonical
form where the matrices N and T are proportional to
identity matrices resulting in

Va;out ¼
%
e s2
r2 sin

2rþ cos 2rþ s2
r2 sin

2r g s2
r2 sin

2r
g s2
r2 sin

2r f s2
r2 sin

2rþ cos 2rþ s2
r2 sin

2r

&
: ð22Þ

This leaves us with only three possible candidates labeled
in Ref. [21] as CðlossÞ, CðampÞ, and B2 that possess the
following canonical forms:

ðT;NÞCðlossÞ ¼ ð
ffiffiffi
τ

p
id; ð1 − τÞð2hniþ 1Þ idÞ; ð23aÞ

ðT;NÞCðampÞ ¼ ð
ffiffiffi
τ

p
id; ðτ − 1Þð2hniþ 1Þ idÞ; ð23bÞ

ðT;NÞB2
¼ ðid; hni idÞ: ð23cÞ

The admissible values of τ are (in order) 0 ≤ τ < 1, τ > 1,
and τ ¼ 1.
The class CðlossÞ represents lossy channels (for example

the action of an unbalanced beam splitter), and CðampÞ
denotes the class of amplification channels. B2 forms its
own equivalence class of the so-called classical-noise
channels [20]. In the following we will refer to the family
of channel Eqs. (23) as the Gaussian black hole channels,

defined by the a subsystem of (22). Using that equation we
identify

τa ¼
s2

r2
sin2r; ð24aÞ

ya ¼ cos 2rþ s2

r2
sin2r; ð24bÞ

where we have introduced the subscript a to the parameters
τ and y to indicate that the a subsystem is the quantum
black hole channel output. We further verify that the first
condition of complete positivity in Eq. (20) is satisfied
whenever s2 ≥ r2. The second condition N ≥ 0 gives a
weaker constraint.
How large is the set of channels given by (24) with

respect to the classes it is part of? To visualize the set, we
adopt a figure from Refs. [22,23] where all (four) rank r ¼
2 OMG channels are parametrized using the coordinates
ðτ; yÞ; see Fig. 4. The form of Eq. (24a) dictates τa ≥ 0.
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Consequently, from (24b) we obtain ya ¼ cos 2rþ τa, and
this leads to an interesting observation: If we choose a
given τa ≥ 0, then by adjusting r (and therefore s ≥ 0 to
keep τa constant), the value of ya oscillates between τa − 1
and τa þ 1 for all τa. The oscillation boundaries become
jτa − 1j and τa þ 1 for 0 ≤ τa < 1 due to the condition of
complete positivity.
Among all OMG channels, many are entanglement

breaking (blue area in Fig. 4). Recall that a quantum
channel N is entanglement breaking if the state ðidA ⊗
N BÞðϱABÞ is separable (i.e., classically correlated) for any
bipartite entangled state ϱAB. The black hole channels that
lie in the area marked “black hole region,” on the other
hand, are not entanglement breaking; they are composed of
the equivalence classes CðlossÞ, CðampÞ, and B2. The only
exception to this rule is part of the boundary region y ¼
τ þ 1 (τ ≥ 0) denoted by the dashed blue line, where even
the black hole channel is entanglement breaking.
It is instructive to investigate what channel in the black

hole region in Fig. 4 we obtain if we choose certain limiting
parameters of the Bogoliubov transformation Eq. (1). For
example, as the parameter α sets the reflectivity of the black
hole, we could study α ¼ 0 and α ¼ 1 as they correspond to
the limiting cases of a perfectly reflecting and absorbing
black hole, respectively. [11,16]. Indeed, these two cases
were studied in Ref. [11] for the case of a qubit black hole
channel. To obtain α ¼ 1 we set r ¼ 0, and from Eqs. (24)
we obtain τa ¼ s2 and ya ¼ 1þ s2, corresponding to the
blue dashed line in Fig. 4 (recall that s ≥ r ¼ 0), and this is
precisely the only instance where the black hole channel is

entanglement breaking (for all s). This is consistent with the
(non-Gaussian) dual-rail encoding studied in Ref. [11]
wherewe found the case α ¼ 1 to be entanglement breaking
as well. For the other case α ¼ 0, we set r ¼ π=2 and this
time we find τa ¼ 4s2=π2 and ya ¼ 4s2=π2 − 1. Because
s ≥ π=2 we obtain τa ≥ 1 and ya ≥ 0, and we can identify
the channel region to be the lower semi-infinite dashed
boundary in Fig. 4, corresponding to degradable channels
(see Sec. II A). But this finding is again in perfect agreement
with the (physically very different) qubit case we studied
earlier [11], wherewe also found that the perfectly reflecting
channel (known also as the Unruh channel [47]) is degrad-
able.As amatter of fact, all values r ∈ ½0; π=2& generate half-
lines that “foliate” the semi-infinite black hole strip in Fig. 4.

IV. QUANTUM CAPACITY OF OMG CHANNELS

The classical capacity of phase-insensitive OMG chan-
nels was studied by Giovannetti et al. [22], who derived
explicit expressions for them. Here we are interested in
calculating the quantum capacity of these channels, and in
particular the quantum capacity of the black hole channels
depicted in Fig. 4. Unlike their classical capacities, the
quantum capacity can only be explicitly calculated for a
small fraction of channels because a single-letter formula is
not presently known for all [19].
A large area of parameter space of the black hole

channels (the green area in Fig. 4) has vanishing quantum
capacity [46], owing to the fact that these channels can be
written as a composition of an arbitrary Gaussian channel

FIG. 4 (color online). Classification of the set of all rank-2 one-mode Gaussian (OMG) channels given by Eq. (19), and parameterized
by the pair ðτ; yÞ given by τ ¼ detT and y ¼

ffiffiffiffiffiffiffiffiffiffiffi
detN

p
consisting of lossy channels CðlossÞ, amplifiers CðampÞ, conjugated channels D,

and classical-noise channels B2. The latter class is indicated by a red vertical line and includes the red dot: a rank-one class B2ðidÞ at
(1,0). The brick wall represents the area of noncomplete positive maps where Eq. (20) is violated (the unphysical region). The blue
region contains entanglement-breaking channels for which y ≥ jτjþ 1 holds [20], which are a subset of all zero quantum capacity
channels (the green area covering the region y ≥ τ intersects with all completely positive maps [46]). For the black hole scenario, we find
that all Gaussian black hole channels (the a mode) generating the outgoing radiation are confined to a semi-infinite strip demarcated by
the dashed boundary (inclusive).
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and an antidegradable Gaussian channel [19]. The partial
overlap of the Gaussian black hole channels with the zero
quantum capacity region is fundamental from a physical
point of view because this overlap implies that for some
black holes [that is, some values of r and s in the evolution
operator Eq. (18)] quantum information cannot be recov-
ered by an outside observer.
The situation is more complicated in the white part of the

black hole region of Fig. 4, where the capacity cannot so
easily be calculated. In Fig. 5 we focus only on the black
hole region of the OMG channel parameter space. We
remind the reader that the black dashed line that separates
the green area in Fig. 5 from the entanglement breaking
channels (the blue area in Fig. 4) itself describes entangle-
ment breaking channels, which in fact are known to have
vanishing capacity [19]. The black dashed line from
(0.5,0.5) to (0,1) separating the green area from the
unphysical maps consists of channels that are antidegrad-
able, and therefore their capacity also vanishes. The
remaining area of black hole channels (the white area in
Fig. 4, also the white and purple areas in Fig. 5) contains
channels with both calculable and unknown capacities.
On a part of the boundary of that region [depicted by the

black dashed lines from (1,0) to (0.5,0.5) and y ¼ τ − 1], the
OMG channels are known to be degradable [41,48], which
implies that the capacity is calculable (and thus known).
Inside of this area, the quantum capacity can only be
bounded from below [19,33]. Moreover, it is not known
from general principles whether the quantum-capacity
achieving codes in this area are Gaussian at all, unlike in
the boundary (degradable) region where the optimal quan-
tum codes are coherent (and therefore Gaussian) states [41].

Our starting point for calculating the quantum capacity
is the optimized coherent information of a general
quantum channel N introduced in Eq. (6). Using (3)
and the definition of the complementary channel N̂ , we
can write it as

IcohðN Þ ¼ sup
ϱ
½HðN ðϱÞÞ −HðN̂ ðϱÞÞ&: ð25Þ

For a special case of OMG channels (labeled by G),
Eq. (25) becomes [19,33]

IcohðGÞ¼
df sup

N
~IcohðN;GðϱÞÞ ¼ sup

N
½gðN0Þ − gðxþÞ − gðx−Þ&;

ð26Þ

whereN ¼ Tr½ϱa†a& is themean particle number of an input
Gaussian state ϱ and gðxÞ is its von Neumann entropy [49]

gðxÞ≡ ð1þ xÞ log ð1þ xÞ − x log x: ð27Þ

Following Refs. [19,33], we set

N0 ¼
(
τN þ K for 0 ≤ τ < 1

τN þ τ − 1þ K for τ > 1;
ð28aÞ

xþ ¼ 1

2
ðDþ N0 − N − 1Þ; ð28bÞ

x− ¼ 1

2
ðD − N0 þ N − 1Þ; ð28cÞ

FIG. 5 (color online). The black hole region (the green and white areas within the dashed lines in Fig. 4), colored to emphasize the
(calculable) nonzero values of the coherent information (purple area) from Eq. (31). This expression gives a nonzero lower bound for the
quantum capacity of the Gaussian black hole channel. The green area represents a region with zero quantum capacity, as discussed
earlier. The white region in between is uncharted territory, that is, where the quantum capacity is unknown. The coherent information is
zero in this region, but this does not imply that the quantum capacity vanishes, as the coherent information is just a lower bound [33].
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where

K ¼ 1

2
ðy − j1 − τjÞ; ð29Þ

D ¼ ððN þ N0 þ 1Þ2 − τ 4NðN þ 1ÞÞ1=2: ð30Þ

The first line of Eq. (28) has a neat interpretation in
terms of the added classical noise K present in the
environment plus the mean photon number in the
channel input N modulated by the transmissivity factor
τ. The second line has a similar meaning except that
there the parameter τ > 1 is related to the amplifier gain
and the component τ − 1 is a vacuum contribution. The
expressions in Eqs. (28b) and (28c) are eigenvalues
that are needed to calculate the entropies entering the
coherent information in Eq. (26).
In general, the optimized coherent information is maxi-

mized over all possible code words, here restricted to
Gaussian states [19]. Unlike in the calculation of the
classical capacity [33], the limit of infinite input power
N → ∞ does not usually lead to a diverging entropic
quantity. It turns out that for the value K ¼ 0 the maxi-
mization over code words is achieved for N → ∞ for τ >
1=2 because Eq. (26) is increasing monotonically. For τ <
1=2 the function decreases monotonically, and the maximal
value is reached for N ¼ 0, leading to a vanishing coherent
information. This (vanishing) value is compatible with the
vanishing quantum information in the green region in
Fig. 5 [19].
When K > 0 the coherent information does not

increase monotonically for τ > 1=2 as a function of N.
One of us recently showed that even in this case the
supremum is achieved for N → ∞ [50]. Taking the limit,
we can generalize the coherent information expression
and obtain

IcohðGðϱÞÞ ¼ lim
N→∞

~IcohðN;GðϱÞÞ

¼ K
j1 − τj

log
K

j1 − τj

−
j1 − τjþ K
j1 − τj

log
j1 − τjþ K
j1 − τj

þ log
τ

j1 − τj
;

ð31Þ

where GðϱÞ is CðlossÞ or CðampÞ. The equation reduces
to Icoh ¼ log τ

jτ−1j for K ¼ 0, which coincides with the
expression from Ref. [19] (see also Ref. [41]) valid
whenever τ > 1=2. Indeed, K vanishes on the dashed
boundary of the purple region and of the green region
(where y < 1) in Fig. 5. The dashed boundary of the
purple region is where the quantum capacity is nonzero
and actually calculable—the OMG channels there are
known to be degradable.

The case τ ¼ 1 must be treated separately, as channels
with τ ¼ 1 represent a separate class of zero added
classical-noise channels (denoted by B2; see Fig. 4). We
find

lim
τ→1−

lim
N→∞

~IcohðN; CðlossÞÞ≡ lim
τ→1þ

lim
N→∞

~IcohðN; CðampÞÞ

¼ −1 − logK:

Evidently, this is a singular case where the optimized
coherent information [and by inference the quantum
capacity; see Eq. (8)] diverges. This happens when K¼
0 and τ ¼ 1, and represents the rather exceptional point
(1,0) in Fig. 4, corresponding to the subclass of B2

channels where T ¼ id and N ¼ 0 in Eq. (19) [20]. In
other words, this is a trivial noiseless (identity) Gaussian
channel, the capacity of which is known to diverge in
classical physics [26].

V. COMPLEMENTARY OMG CHANNEL

We just observed that a sizable swath of the black hole
OMG channel space has a vanishing capacity, implying that
quantum information cannot be retrieved from it by an
outside stationary observer. As discussed previously, this
implies that the observer cannot perfectly reconstruct the
quantum entanglement that the sender has been part of.
However, as opposed to a loss of classical information
that would imply the loss of microscopic time-reversal
invariance [51], the loss of quantum information does not
contradict any known laws of physics. But we can
nevertheless ask where the quantum information is hiding
because in a completely unitary picture of quantum
dynamics, quantum information cannot be lost from the
universe. In this section we show that the quantum
information is available to observers behind the horizon,
by calculating a lower bound the capacity of the quantum
channel to send information beyond the horizon: the
complementary OMG channel.
Before we proceed it is important to emphasize a

particularity of the isometry eX from Eq. (11). So far,
we studied the Gaussian black hole channels that corre-
spond to the a mode (the horizon mode available to outside
observers). The minimal Stinespring dilation for these
channels would usually be a two-mode isometry satisfying
certain properties discussed in Ref. [21]. However, the
expression eX is a three-mode operator, and this could
conceivably not be the most economic dilation [52]. For
example, on the black dashed boundary in Fig. 4, the
minimal Stinespring dilation is known to be a two-mode
isometry [22]. On the other hand, our redundant (noneco-
nomic) isometry contains valuable information about the
physics of the black hole interaction. Namely, the two
modes forming the complementary black hole channel (b
and c) correspond to the physical system of the black hole
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itself and the radiation that crosses the event horizon,
respectively, which are both integral to the channel.
Could it be that the green area for the a mode (the black

hole channel in Fig. 4 or 5 with vanishing capacity)
corresponds to a nonzero quantum capacity of the c mode
(the radiation penetrating the horizon from outside) and
vice versa? To study this, we must investigate the fate of the
c mode explicitly. Using the same input state Vabc;in as
before, we find for the parameters that characterize the
c-channel into the black hole

τc ¼
#
s2ðcos r − 1Þ

r2
þ 1

$
2

; ð32aÞ

yc ¼
s2

r2

#
s2

r2
− 1

$
ðcos r − 1Þ2 þ s2

r2
sin2r: ð32bÞ

We can express τc and yc in terms of τa and ya by first
writing [using Eqs. (24)]

r ¼ 1

2
arccos ðya − τaÞ þ kπ; ð33Þ

where k ∈ Z. It then follows from Eqs. (24) and (32) that

τc ¼
#

τa
sin2r

ðcos r − 1Þ þ 1

$
2

; ð34aÞ

yc ¼
τa

sin2r

#
τa

sin2r
− 1

$
ðcos r − 1Þ2 þ τa: ð34bÞ

We can now see what the corresponding OMG channel in
the c mode is, for a given a mode channel. It turns out that
for a given pair ðτa; yaÞ inside the black hole parameter
region (that is, excluding the dashed boundary in Fig. 4) we
find two solutions ðτc; ycÞ corresponding to even or odd k
in Eq. (33). In other words, the map from the set of all
admissible parameters to the set of all black hole channels
is onto (surjective) but not one-to-one (it is actually two-to-
one quotiented by 2π). This two-to-one mapping deserves a
closer look.
The physical properties of a black hole are determined by

the isometry parameters r and s in Eqs. (14). They uniquely
specify the isometry eX and therefore the Gaussian black
hole channel (the a output). Suppose that another pair of
parameters r0; s0 that leads to a different isometry eX

0

induces the same Gaussian black hole channel (this is in
principle possible). This implies that the complementary
channel (the bc output) induced by those two isometries
must also be equivalent. However, it does not imply this
identity for any part of the complementary channel (the b
or c outputs alone). That is precisely what is happening
here: A black hole channel defined by ðτa; yaÞ leads to two
solutions of the black hole parameters r; s in Eq. (33) for
the c-channel.

The first solution (even k) is depicted in Fig. 6(a) where
the semi-infinite rectangle from Fig. 4 is sampled by 35
points in the black hole region close to the origin. The
corresponding c-mode channel parameters are shown in
Fig. 6(b). We can see that there are instances where
both channels have vanishing capacity (for example, the
set of parameters labelled 30 in Fig. 6). The only region
where there is a certain kind of complementarity between
the a and cmodes is the line connecting the points (0,1) and
(1,0) (note the opposite orientation of this line in both
panels) and also the red line covering degradable channels
(if continued indefinitely).
The solutions corresponding to odd k are depicted in

Fig. 7(b). We sampled the black hole region Fig. 6(a)
slightly differently with 25 points compared to k even. We
stress again that the existence of two different c-channels
corresponding to a given Gaussian black hole channel is
not surprising because the c-channel is not the whole
complementary channel to the black hole channel.
By analyzing Vb;out from Eq. (19), we find that for all

Gaussian input states the b output subsystem is given by an
OMG channel from the conjugated equivalence classD, the
generic form of which reads [20,21]

ðT;NÞD ¼ ð
ffiffiffiffiffiffi
−τ

p
σz; ð1 − τÞð2hniþ 1ÞidÞ; ð35Þ

where τ < 0 and σz is the Pauli z matrix. Inspecting Fig. 4
we see that all these channels lie in the entanglement
breaking region and by themselves cannot carry any
quantum information. But if the information is never in
the b mode and often neither in the c nor a modes, does it
mean it is lost? It turns out that this is not necessarily
the case.
As we stressed several times, the channel across the

black hole horizon (the c-mode channel) is not the full
black hole complementary channel, which must be
“spanned” by both the b and c modes. Because this is a
two-mode channel, we do not know to what Gaussian
channel it corresponds (the present analysis is concerned
exclusively with OMG channels). However, this does not
prevent us from estimating its quantum capacity. The green
region in Figs. 4 and 5 is a zero capacity region, and so
IcohðGÞ ¼ QðGÞ ¼ 0, where G is one of the identified
Gaussian channels in Eq. (23). The quantum capacity is
zero due to the fact that the green channels are antidegrad-
able [46]. Therefore, the only Gaussian code words ϱ that
exist are such that HðGðϱÞÞ −HðĜðϱÞÞ is negative and the
supremum is necessarily zero.
The very same Gaussian codes are then used to calculate

the coherent information for the Gaussian complementary
channel ĜðϱÞ (the bc modes), and naturally they give a
positive value even without taking the supremum

IcohðĜÞ > HðĜðϱÞÞ −HðGðϱÞÞ > 0: ð36Þ
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FIG. 7 (color online). Correspondence between a-mode and c-mode channels for odd k. τc, and yc in Eq. (34). (a) Sample of 25
channels in the black hole region and (b) their corresponding c-mode channels. The missing channel numbers in panel (b) are too far
from the origin to appear in the figure.

FIG. 6 (color online). OMG channel properties outside and inside the horizon. (a): We labelled 35 points in the space of parameters
ðτa; yaÞ that characterize 35 OMG channels sampling the black hole region from Fig. 4—the Gaussian black hole channel (mode a). The
numbers in the parentheses on the axes are the coordinates ðτa; yaÞ. (b): Each of the a-channel parameters is transformed into the
corresponding c-channel parameters as described in the text. By following the points (and lines), we can study the relationship between
the a-mode and c-mode channels. It is important to keep in mind that (as discussed in the text) the c mode is not the entire
complementary subsystem to the black hole channel; see the discussion before Eq. (35). The numbers in the parenthesis on the axes are
the coordinates ðτc; ycÞ.
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As a consequence, the supremum itself is positive for the
complementary channel. We thus conclude that the quan-
tum capacity QðĜÞ ≥ IcohðĜÞ [see Eq. (8)] is positive in
general (even if the capacity vanishes individually for the c
and b modes), and the information is delocalized in the
modes inside the black hole whenever the Gaussian black
hole channel capacity outside vanishes (the green region in
Fig. 4 or 5). As a matter of fact, we can say more. Since the
zero capacity green region is formed by channels G that are
Gaussian antidegradable, the complementary channels Ĝ
are degradable as discussed in Sec II A. Therefore, the
capacity is given by the single-letter expression Eq. (10):
QðĜÞ ¼ IcohðĜÞ [19]. Finally, notice that the only known
point in the dashed boundary region in Fig. 5, where the
channel is both degradable and antidegradable, is the one
with the coordinates ðτ; yÞ ¼ ð1=2; 1=2Þ. The value of the
quantum capacity in the white region in Fig. 5 is currently
unknown.

VI. CONCLUSIONS

We analyzed the late-time interaction of a scalar field in
the form of Gaussian states with a Schwarzschild black
hole based on Sorkin’s model. For a distant outside
observer, such a black hole acts as a quantum channel
from a family of one-mode Gaussian channels that were
recently classified. Here we refer to these channels as
“Gaussian black hole” channels. The classification enables
us to ask the following question: How much information
can a distant observer at future infinity recover if a
Gaussian state carrying classical or quantum information
interacts with an already formed black hole?
This question is nothing but a reformulation of the black

hole information loss problem, and it can be answered by a
calculation of the classical and quantum capacity of these
quantum Gaussian channels. The classical capacity of
phase-insensitive one-mode Gaussian channels was calcu-
lated by Giovannetti et al. [22], but it is the fate of quantum
information that is arguably more relevant for the black
hole information puzzle. By mapping the black hole to the
Gaussian quantum channels in this manner, we are closer to
resolving the fate of information interacting with a black
hole. In particular we found the exact parameter region of
one-mode Gaussian channels corresponding to an arbitrary
Schwarzschild black hole. These black hole Gaussian
channels represent an interesting subset of three equiv-
alence classes of Gaussian channels that are (with one

exception) nonentanglement breaking. We find that half of
the parameter space of black hole channels has a vanishing
quantum capacity. The other half of this region splits into
two parts: one part where the quantum capacity is calcu-
lable (or is at least known to be nonzero) and the other
where no non-negative lower bound is known. There is,
however, currently no argument that excludes a positive
quantum capacity for those channels.
We also studied the complementary channel (sending

quantum information across the black hole horizon) and
found that the channel’s capacity is given by the optimized
coherent information and is positive in one-half of the black
hole parameter region when the capacity to transmit
quantum information outside the black hole vanishes. In
this manner, the no-cloning theorem is respected (as also
seen in the dual-rail channel discussed in Ref. [11]):
quantum information is never available in two places. At
the same time, each of the modes b and c that together
compose the complementary channel may not be sufficient
to reconstruct quantum states inside the black hole by
themselves.
What are the consequences for (quantum) information

retrieval from a black hole? That is a question we can
answer only partially. We are not aware of any physical
mechanisms restricting or favoring some sections of the
whole black hole channel parameter region, which implies
that quantum information can be lost within black holes.
We can only say that if the black hole resides in the nonzero
capacity region, quantum information can be retrieved with
arbitrary accuracy, and we can calculate or estimate the rate
of recovery [certain extreme points such as the noiseless
identity channel B2ðidÞ can be safely ignored, as the black
hole always introduces some noise due to the presence of
spontaneous emission of radiation, namely the Hawking
radiation effect]. If on the other hand a black hole channel is
in the zero capacity region, quantum information cannot be
recovered from it on the outside. This, however, does not
imply a breakdown of quantum mechanics, or any other of
our known laws of physics. We conclude that mapping
black holes to a one-mode Gaussian channel allows us to
understand how black holes process classical or quantum
information using concepts from quantum optics and
quantum information theory only.
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